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Abstract—Data outsourcing offers cost-effective computing
power to manage massive data streams and reliable access
to data. For example, data owners can forward their data to
clouds, and the clouds provide data mirroring, backup, and
online access services to end users. However, outsourcing data
to untrusted clouds requires data authentication and query
integrity to remain in the control of the data owners and users.

In this paper, we address this problem specifically for multi-
version key-value data that is subject to continuous updates
under the constraints of data integrity, data authenticity, and
“freshness” (i.e., ensuring that the value returned for a key is
the latest version). We detail this problem and propose INCBM-
TREE, a novel construct delivering freshness and authenticity.

Compared to existing work, we provide a solution that
offers (i) lightweight signing and verification on massive data
update streams for data owners and users (e.g., allowing
for small memory footprint and CPU usage on mobile user
devices), (ii) integrity of both real-time and historic data, and
(iii) support for both real-time and periodic data publication.
Extensive benchmark evaluations demonstrate that INCBM-
TREE achieves more throughput (in an order of magnitude)
for data stream authentication than existing work. For data
owners and end users that have limited computing power,
INCBM-TREE can be a practical solution to authenticate the
freshness of outsourced data while reaping the benefits of
broadly available cloud services.

I. INTRODUCTION

In the big data era, data sources generate data of large

variety, volume, and at a high arrival rate. Such intensive

data streams are widely observed in system logs, network

monitoring logs, social application logs, and many others.

In order to efficiently digest the large data streams, which

can be beyond a regular data owner’s computing capability,

outsourcing data and computation to clouds becomes a

promising approach. Clouds can provide sufficient storage

and computing capabilities with the help of large data centers

and scalable networked software. By delegating processing,

storing, and query serving of data streams to a third-party

service, the data outsourcing paradigm not only relieves a

data owner of the cumbersome management work but also

saves significant operational cost.

For example, stock exchange service providers, social

networking companies, and network monitoring companies

can benefit from outsourcing their streaming data to clouds.

In a stock exchange market, stock buyers and sellers make

deals based on the changing price. To identify stock mar-

ket trends, stock buyers may frequently consult exchange

providers about historical and real-time stock prices. With a

large number of stocks, the footprint of the stock price data

would easily grow out of a regular company’s computing

capability or its IT budget. Moreover, as there are more and

more stock brokers in the market, it requires huge computing

power to serve such a large customer base. Another example

is a social networking website where the stream of social

application events arrive at a high rate. At an online auction

website, bid proposals are continuously generated, which

can easily exceed the limit of the server capability of the

operating company. Big data streams can be also observed

in a network monitoring scenario where a company monitors

its real-time network traffic.

Despite its advantages, data outsourcing causes issues of

trust, because the cloud, being operated by a third-party

entity, is not fully trustworthy. A cloud company could

deliver incomplete query results to save computation cost

or even maliciously manipulate data for financial incentives,

e.g., to gain an unfair advantage by colluding with a data

user competing with the rest. Therefore, it is imperative for

a data owner to protect data authenticity and freshness when

outsourcing its data to a third-party cloud.

It is crucial to assure temporal freshness of data, i.e.,

obtain proofs that the server does not omit the latest data

nor return out-of-date data. Especially when the value of

the data is subject to continuous updates, it is not sufficient

to guarantee only the correctness of data because a data

client1 expects to obtain the “freshest” data. For example, a

data user can query the latest price of a stock, the latest bid

towards the purchase of a product in an auction, or the sensor

readings of any monitored attributes at a specific time.

While a large corpus of work including [1], [2], [3], [4],

[5], [6], [7] focused on authentication of dynamic data,

efficient freshness authentication still remains as a chal-

lenging and understudied problem. Freshness authentication

essentially requires signing the relationships between a data

version and any time point when the version is valid. There

are two main approaches to sign the relationship. First,

a key-based signing approach is used for authenticating

1We interchangeably use a data client and a data user in the paper.
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Figure 1: System of outsourced key-value stores

dynamic data [3], [8] and aggregated information [9], [10].

The approach periodically signs the latest value with the

current time so that freshness of the value is guaranteed at

the granularity of the signing time interval. Even though this

approach offers a data client with efficient verification, it is

impractical for intensive data streams because it requires a

data owner to keep a local copy of the entire dataset. Second,

a time-based signing approach is used for authenticating data

streams [11]. The approach signs a sequence of incoming

data, and provides a data owner with efficient signing since

it does not require a local copy of the entire dataset. This

approach, however, could impose significant verification

overhead on a data client since all previous data have to

be retrieved for verification. Due to the limitation, freshness

authentication is provided only for recent data within a

sliding window [11].

In this paper, we propose a novel authentication frame-

work for multi-version key-value data streams. We note

that freshness verification overhead in existing work is high

because it lacks the capability to perform an efficient non-

membership test, e.g., there were no updates on the value of

key k within last 5 minutes. We formalize the problem in

§II and introduce a novel construct INCBM-TREE in §III to

address the problem. INCBM-TREE uses a Bloom filter [12]

for freshness authentication while enabling lightweight sign-

ing and optimized verification. Conceptually, INCBM-TREE

is a Merkle Hash tree (MHT) [13] that embeds a hierarchy

of Bloom filters (BFs). In INCBM-TREE, a MHT signs

and protects authenticity of data streams along with their

associated BFs, whereas BFs provide efficient verification

for version freshness. Furthermore, we design INCBM-

TREE in such a way that it can be incrementally constructed

and maintained so that signing data stream can be done

efficiently without accessing historical data. We summarize

the comparison of INCBM-TREE with existing work in

Table I, where +/– denotes that an approach support/does

not support a feature.

In summary, our main contributions are as follows.

Table I: Comparing INCBM-TREE with prior work

Data Approaches Version Lightweight Efficient
Model freshness signing verification

Stream [11] + + –

Agg [9], [10] – + +

Dynamic [8], [3] + – –
Data INCBM-TREE + + +

• To the best of our knowledge, we are the first to

efficiently solve the problem of outsourcing multi-

version key-value stores with verifiable freshness, en-

abling devices with limited computation capabilities to

leverage cloud-based data management while relying

on the freshness and authenticity of the outsourced data.

• We design a generic Put/Get interface for outsourced

data retrieval, which differentiates itself from sliding

window queries [11] and aggregation queries [10], [9]

on outsourced data.

• We define the authenticity property in the new problem

setting.

• We propose a novel construct INCBM-TREE to authen-

ticate version freshness, which dramatically reduces

freshness verification and does not incur disk I/O over-

head.

• We evaluate or implementation of INCBM-TREE and

our results confirm that it applies to generic key-

value stores, offering more throughput (in an order of

magnitude) for data stream authentication than existing

work.

II. PROBLEM FORMULATION

A. System Model

Figure 1 illustrates our system model. In this ecosystem,

there are three parties in different administrative domains:

• a data owner, e.g., a small technology start-up company

• a data user, e.g., a customer of the company

• a public cloud, offering data storage and management
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Note that both the data owner and the data user do not

fully trust a public cloud as it is operated by a third-party

company with its own interests, partially conflicting with

those of the small start-up company.

In this scenario, the data owner outsources a key-value

dataset to a public cloud, and each stream unit is an update

to a key-value record in the dataset, submitted by the

data owner to the public cloud. In order to provide data

authenticity, a data owner employs a signer to sign the raw

data stream before publishing it to a cloud (steps 1 and

2 ). The data user typically uses the Put/Get interface to

access the key-value dataset.

The data user issues Get queries to the outsourced key-

value store in the public cloud. The usual query path returns

a result of interests (steps 3 , 4 , and 5 ), and an additional

verification path (steps 5’ , 6’ , and 7’ ). A prover in a

cloud composes a proof and delivers it to the data user’s

verifier, which verifies the authenticity of the query results

for the data user. We assume that the data user knows the

public key of the data owner, and that the signer and the

verifier are time-synchronized (e.g., using a trusted network

time services) for freshness authentication. Details of the

authentication framework will be discussed in §II-E.

B. Data Model

Our data model is a multi-version key-value data stream.

We require that the signature for the data is publicly veri-

fiable. Without losing generality, we consider a basic key-

value data model where each object has a unique key k, a

value v, and an associated timestamp ts. v can be updated

multiple times. This basic data model can be easily extended

to support more advanced key-value models, such as the

column-family model, by multiplying the data model for

each column.

1) Query Model: We focus on the selection query with

time awareness. Given key k and timestamp ts, the query

returns the latest version of the object associated with key k
by ts. The API, modeled after the generic Put/Get interface

in key-value stores [14], [15], [16], [17], is defined as

follows.

VGet(k, ts) → 〈v, tslatest〉 ∪ π(k, v, tslatest, ts)

Here, π is a proof presented by a cloud to a data user. If

unspecified, the default value of ts is the current timestamp

tsnow. This API is primitive to many selection SQL queries

and can add time-awareness. Our model considers both

continuous and one-time queries.

C. Threat Model

We assume a threat model where neither the data user

nor the public cloud service is trusted by the data owner.

We assume that the adversary (e.g., having compromised

the cloud service) may deliberately conceal certain versions

of data by excluding them from responses to data users. The

adversary may also manipulate data values before presenting

them to the querying user. Further, we assume that an

adversarial cloud service may collude with malicious data

users, trying to obtain the data owner’s secret key so that it

can forge a proof for compromised data. In our solution, we

use public-key signature so that only public key is released

to the data user and cloud.

1) Security Goals: Based on our query and threat models,

there are two desirable properties to be guaranteed.

Definition 2.1: Given a query key k in our data model,

the cloud may return multiple versions updated at different

points in time {〈v, ts〉}. For a timestamp tsquery, a version

〈v, ts〉 is

• fresh if and only if 〈v, ts〉 is the latest version updated

before tsquery and

• correct if and only if 〈v, ts〉 is indeed a version that

belongs to the key k and was submitted by the data

owner.

D. Cryptographic Essentials

We introduce a set of cryptographic tools used throughout

the remaining of the paper.

1) Hash Function: A hash function H(·) takes a variable-

length input x and generates a fixed-length output y = H(x).
A hash can be efficiently computed. Hash functions used in

this work are assumed to be collision resistant, which means

that it is computationally infeasible to find two different

inputs x 6= x′ such that H(x) = H(x’), e.g., SHA1.

2) Digital Signature: A public-key digital signature

scheme provides data integrity and ownership of the signed

data. After creating a pair of keys (SK,PK), the signer

keeps the secret key SK , and publishes the public key PK .

A signature sig(x, SK) is produced for a message x, and

a recipient of the message can verify its integrity and the

ownership of x by using sig(x, SK) and PK . Note that

signing is typically much more expensive than hashing.

3) Merkle Tree: A Merkle hash tree (MHT) [13] is

a method of collectively authenticating a set of objects.

Specifically, being a binary balanced tree structure, each leaf

node of MHT corresponds to the hash of an object, and

each non-leaf node corresponds to the hash (digest) of the

concatenation of its direct children’s hashes. The root node

corresponds to the digital signature of the root digest. To

prove the authenticity of any object, the prover provides the

verifier with the object itself and the digests of the siblings

of the nodes that lie in the path from the root. By iteratively

computing and concatenating the appropriate hashes, the

verifier can then recompute the root digest and verify its

correctness using its digital signature.

4) KOMT: A key-ordered Merkle tree (KOMT) is an

approach of using a Merkle tree to sign data batches, e.g.

for authenticating data streams. Given a batch of data records

with key attributes, a KOMT sorts the data based on the key

and hashes each leaf node with its two neighboring nodes,
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i.e., the predecessor and the successor in the sorted order.

This allows to easily verify whether a range of keys or a

specific key is in the current dataset or not.

E. Authentication Framework

Based on our data model, we now describe the authen-

tication framework. As illustrated in Figure 1, the stream

of data updates is generated by the data owner and is

signed by a signer in the owner domain (step 1 ). The

signer signs the streaming updates in a batch. Given a

batch of updates b in the stream, the signer builds a digest

structure dd (e.g. a Merkle tree), and signs the digest

sig(dd, SK). In particular, the digest of the batch dd
includes the root of the constructed digest structure d, the

current timestamp tsend, and the timestamp of the last batch

tsstart. That is, dd = tsstart‖tsend‖d. The signature of the

batch is published along with the raw data stream to a cloud

(step 2 ). Upon receiving the signed updates stream, the

cloud materializes them in key-value stores. To accommo-

date the intensive data stream, a write-optimized key-value

store (e.g., BigTable [14], HBase [15], Cassandra [16] and

LevelDB [17]) can be used. These key-value stores optimize

the write operations by their append-only designs which

typically results in the co-existence of multiple versions

given a single data record in the store. In the signed data

stream, the raw data updates are applied to a base table in the

key-value store, and the signatures are stored in a meta-data

table. The digest structures, which are not transmitted to a

cloud for the sake of bandwidth efficiency, are reconstructed

on the cloud side from the raw data updates, and then stored

in another meta-data table. The following interface shows

how to persist key-value data and meta-data in the store.

BaseTable.Put(k, v, ts) (1)

BaseTable.Get(k, ts) → 〈v, tslatest〉

SigTable.Put(sig, tsstart, tsend)

SigTable.Get(ts) → sig

DigTable.Put(tsstart, tsend, d)

DigTable.Get(ts) → d

While the data owner sends the data streams to the cloud,

a data user can issue a VGet(k,ts) query to the cloud (step

3 ). A query engine server in a cloud processes the query

by interacting with the key-value store (step 4 ) and returns

the result to the user (step 5 ). At the same time, the query

engine prompts the prover to prepare the proof for the query

result (step 5’ ). The proof includes signatures and a specific

digest structure that links signatures to the result data. After

the proof is sent to the verifier in the data user domain

(step 6’ ), the verifier validates the result and provides the

authenticity test result to the user (step 7’ ).

Given a query and its result VGet(k,ts)→ 〈v, tslatest〉,
the proof π(k, v, tslatest, ts) needs to satisfy two properties:

the correctness ensuring that 〈v, tslatest〉 is a valid version

published by the data owner, and the freshness ensuring that

the returned version 〈v, tslatest〉 is indeed the latest version

of key k as of time ts. Proving the freshness of v requires

verifying that there is no version update of key k between

tslatest and ts. A naive proof includes all the data updates

or versions within the time interval with their signatures to

the verifier. This is too expensive for massive data streams,

especially if for keys that are updated infrequently. In this

work, we make the key observation that a version freshness

verification is essentially equivalent to a “non-membership”

test between a time interval, i.e., there doesn’t exist a version

〈v′, ts′〉 such that tslatest < ts′ ≤ ts.

We assume that the signer and the verifier are time

synchronized so that the freshness can be verified2. This

assumption can be satisfied by using a trusted time server

(e.g., NIST Internet Time Server3). In addition, we assume

that data owners are independent of each other, that is,

different stream owners have their own signature keys and

independently publish the streaming data to a cloud. Dif-

ferent owners’ streaming data is stored and served indepen-

dently by the cloud service. This is a common scenario in

outsourced cloud operations for privacy reasons.

Our framework for authenticating key-value stores is more

flexible and lightweight than existing stream/data authenti-

cation frameworks in an outsourced database. Compared to

stream authentication [11] where a sliding window query is

supported only on recent data, our framework allows access

to both recent and historic data. Compared to dynamic data

authentication [8], [3], our framework does not require local

materialization of the whole dataset (or its latest snapshot)

on the data owner side, thereby being more lightweight and

practical in the streaming scenario.

III. INCBM-TREE

A. The Need for Large Signing Batch

In our authentication framework, a big batch size is critical

to efficient verification. For a fixed amount of streaming

data, the larger batch is signed at a time, the fewer times

of signature verification is required. We have conducted a

performance study of KOMT. Figure 2 presents a preview

for verification performance under different key distributions

(e.g. the uniform and Zipfian distributions). The use of a

larger batch results in orders of magnitude faster verification.

1) A Baseline Approach: Limited memory space of the

owner is the primary factor that prevents data batch from

increasing infinitely. A straightforward approach for a data

2Consider a simple example for necessity of timing server and time
synchronization, where a data user’s time is on 12/04/2013 while owner’s
time is on 12/03/2013. Then the owner can sign the latest version up to
12/03/2013 while the user may think that it is yesterday’s version, but
not today.

3http://tf.nist.gov/tf-cgi/servers.cgi
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batch setting that is larger than the owner memory is to spill

the data on to disk and load it back upon the signing time.

At the signing time, the data in multiple spill files will be

merged and sorted based on key. This approach, termed on-

disk KOMT, serves as a baseline in this paper. It can have

a data batch as large as the owner disk can accommodate.

However, the main drawback is that it involves expensive

disk IO when the owner ingests the intensive data stream;

it could significantly slow down the sustainable throughput

to ingest the stream. This motivates us to seek a lightweight

authentication structure that can fit into memory yet still be

able to sign a large batch of data.

B. INCBM-TREE: Design and Structure

Our basic idea is to compress the data in memory as much

as possible before the digest and signature are constructed.

Based on the observation that a Bloom filter is a summary

for a (non)-membership test, we propose to combine a

Bloom filter with a Merkle tree for efficient verification of

both correctness and freshness. The structure of INCBM-

TREE is illustrated in Figure 3. Comparing to the traditional

Merkle tree, each tree node in INCBM-TREE maintains not

only a hash digest but also a digest value that summarizes

Table II: Notations

System model symbols

k: key
v: value
ts: timestamp
r: stream arrival rate
e: user tolerable delay
sr: record size
S: memory size

INCBM-TREE symbols

b: batch size
br: batch size in real-time publication
bb: batch size in periodic publication
Csig: cost of single digital signature
Cdig: per-record cost of building digest
d: the digest of a stream data batch
q: ratio of INCBM-TREE to KOMT

the key set in the subtree rooted at the node. For a key

set of the subtree, the digest includes a Bloom filter and an

interval of both upper and lower bounds. For instance, a leaf

node 6 maintains a Bloom filter BF6 summarizing key 1 on

node 12 and a hash digest h6. Given node 3 which is the

parent of two leaf nodes (node 6 and node 7), its digest is

a Bloom filter of union of its children nodes’ Bloom filters,

namely BF3 = BF6∪BF7. The range digest is simply with

lower bound 1 and upper bound 23, namely R3 = [1, 23]. It

comes from merging the ranges from its two children, that is,

[1, 23] = [1, 12]∪ [15, 23]. The hash digest is the hash value

of concatenation of all children’s hashes, the range digest,

and the Bloom filters, that is, h3 = H(h6‖h7‖BF3‖R3).
INCBM-TREE uses the following constructs.

R(node) = R(left child) ∪R(right child) (2)

BF (node) = BF (left child) ∪BF (right child)

h(node) = H(h(left child)‖h(right child)‖BF (node)‖R(node))

In a INCBM-TREE, the Bloom filter at every level is of

the same length. The error rate E of a bloom filter can be

estimated using equation E = (1 − e−
Kx
m )K , where K is

the number of hashes used in the Bloom filter and m is the

length of the array used to store bits in Bloom filter, x is

the number of values of the data set summarized in Bloom

filter. Given a pre-defined batch size b and a tolerable error

bound Eb, we can set the length of the Bloom filter l as

follows.

E = (1− e−
Kb
m )K (3)

⇒ m =
Kb

− ln (1 − Eb
1/K)

(4)

For the root node, the error rate is E = Eb. For an internal

node, the number of leaf nodes in the subtree is smaller than

b. Therefore, its actual error rate is bounded by E < Eb.

1) Security Property:

Theorem 3.1: The INCBM-TREE root node can authen-

ticate any bloom filter in the tree structure.

Proof: The proof of security is based on the infeasi-

bility of finding two different Bloom filters BF1 and BF2

such that H(. . . BF1‖ . . . ) = H(. . . BF2‖ . . . ). If this is

feasible, then there exist two values, v1 = . . . BF1‖ . . . and

v2 = . . . BF2‖ . . . , such that H(v1) = H(v2), which clearly

contradicts the fact that H is a collision resistant secure hash.

C. Proof Construction and Verification

The INCBM-TREE is used to construct proof to verify

a result of query VGet. We start the description of proof

construction by an ideal case where a bloom filter is without

error. Following the example in Figure 3, to provide a proof

for freshness on key 98, it suffices to return only two nodes,

that is, node 5 and node 3. Because bloom filter BF3 can
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test the non-membership of key 98 in the subtree at node 3,

and digest h3 can be used to verify authenticity of BF3.

In reality, a Bloom filter can have a false positive. This

implies that when a key k is not in a set, a Bloom filter

may claim the false membership that k is in the set. In this

case, our strategy is to go down INCBM-TREE by one level.

For instance, when BF3 can not verify the non-membership

of key k, we use the two children’s Bloom filters, BF6

and BF7, which collectively verify the non-membership.

By using multiple lower-level Bloom filters, the chance of

correctly verifying the non-membership becomes higher. In

an extreme case when all the internal nodes’ bloom filters

fail to confirm the non-membership and one reaches a leaf

node, the non-membership or membership can be verified

correctly by going through each element inside the leaf node.

In practice, the INCBM-TREE is built on top of the key-

ordered Merkle tree which can verify the non-membership

by returning an authentication path that covers the queried

key[11], [3]. Given a key-ordered Merkle tree of height c,
this authentication path involves with at most c hash values.

By this way, it can always guarantee error-free verification

(due to the collision resistance of a hash function).

1) Cost Analysis: Although descending the INCBM-

TREE guarantee the error-free of non-membership test, it

inevitably incurs extra verification cost. However, as we

will show below, the probability of descending the INCBM-

TREE decreases exponentially and given a small error rate

bound, the extra cost is expected to be a constant

Because descending one level down only happens when

a parent node is erroneous for answering a non-membership

test, it occurs with a probability equal to the error rate of

the node’s bloom filter. By enforcing all Bloom filters in

INCBM-TREE is of constant error rate E, we can have the

fact that descending N levels down occurs with probability

EN .

Theorem 3.2: In an INCBM-TREE with a Bloom filter,

an error rate bounded by E (E ≪ 0.5) at different tree

levels, the extra cost X is expected to be a constant value,

as follows.

X =
1− E

1− 2E
(5)

Here, cost X is defined to be the number of tree nodes for

error-free verification.

Proof: Suppose the expected cost of a tree node at level

l (l = 0 for leaf nodes) is Xl. There are two cases for query

processing: 1) The tree node’s Bloom filter can correctly

answer the non-membership query, and 2) The tree node

can not. For the first case, it occurs with probability 1−E,

since a Bloom filter’s error rate is E. When the query cost is

1 for a single node, its contribution to the overall expected

cost is (1 − E) · 1. For the second case, it occurs with a

Bloom filter’s error rate E. And the query evaluation needs

to descend into the tree node’s direct children at level l− 1.

The cost should be equal to the sum of expected costs at all

the children nodes. Suppose each tree node has 2 children,

the contribution of the second case to the overall expected

cost is E · 2Xl−1. Overall, we have the following and drive

a closed-form for the expected cost.

Xl = 2E ·Xl−1 + (1− E) (6)

= (2E)2 ·Xl−2 + (1− E)(1 + 2E)

= (2E)3 ·Xl−3 + (1− E)[1 + 2E + (2E)2]

...

= (2E)l ·X0 + (1− E)[1 + 2E + (2E)2 + · · ·+ (2E)l−1]

=
1− E

1− 2E
+ (2E)l

(

c+
1− E

1− 2E

)

The last step is due to that X0 = c. Because E ≪ 0.5, we

can approximate Xl → X = 1−E
1−2E .

The implication of this theorem is that when E grows

large, the tree node would not be very useful in terms of non-

membership test. For example, when E → 0.5, X → ∞,

making the INCBM-TREE useless. Recall that in Equation

3 E increases with the number of data records b (also the

batch size). The small error rate E is one of the factors

that constrain the growth of a INCBM-TREE during its

construction and limits its batch size. We describe the digest

construction using INCBM-TREE in the next.

D. Digest Construction

In our framework, the data stream is signed on the batch

digest constructed using the root node of INCBM-TREE. We

describe the incremental construction process of an INCBM-

TREE. Algorithm 1 illustrates the construction process; the

incoming data stream is partitioned to small batches and

a KOMT digest is constructed for each batch4. Then, the

4KOMT is used only for small batch of data; it is designed so because
of relative inefficiency of INCBM-TREE with small batch – a bloom filter
for very few records can be a waste of space.
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constructed KOMT digests are put into the leaf level of an

grow INCBM-TREE. In particular, merging two INCBM-

TREE nodes is based on calculation in Equation 2. If it

succeeds in merging, the merged node is promoted to one

level up and replaces the former node. Then the same

merging process repeats, until either it reaches the root node

or there is no former node at the current tree level. During

construction, it only needs to maintain the “frontier” nodes,

but not interior nodes inside the tree, as shown in Figure 4a.

Depending on certain conditions, the final batch digest is

produced by exporting the hash of the highest root. There

are different conditions to trigger a growing INCBM-TREE

to be exported and signed; it could be the hitting of the

memory limit, and/or crossing of the error rate lower bound

of INCBM-TREE.

Algorithm 1 IncBuild(Key-value batch s, incubator p)

1: currentNode←keyOrderedMerkleDigest(s)
2: l ← 0
3: node← p.removeTreeNode(l)
4: loopnode6=NULL
5: currentNode← merge(currentNode, node)
6: l ← l + 1
7: node← p.removeTreeNode(l)
8: end loop
9: p.insertTreeNode(currentNode, l)

10: if p.overflow() then
11: p.exportINCBM-TREE()
12: end if

E. Implementation and Integration

In implementation, we integrate INCBM-TREE with

KOMT. The memory is utilized 1) to hold the data to

construct KOMT of small batches, and 2) to hold the

Bloom filters of the constructed KOMTs. The proportion of

INCBM-TREE to KOMT denoted by q can be of different

values, ranging from 0 to 1. In practice, the choice of

value q should be bounded by the available memory size.

Since an INCBM-TREE can essentially build arbitrarily large

batches (bounded only exponentially due to the incremental

construction), we do not flush data from memory to a disk

in an INCBM-TREE yet still be able to construct the digest

of the same large batch.

1) Cost Analysis: We analyze the possible batch size

that can be achieved by a limited memory size S. As a

starting point, we first consider the case that the memory is

all dedicated to a KOMT; in this case, the memory can

accommodate batch of size bb = S
sr

. In our system, a

KOMT only occupies q
q+1 of the whole memory, leading

to the batch of KOMTs be able to host bb·q
q+1 records. An

INCBM-TREE occupies the rest of memory S
q+1 . Recall

that each leaf node in the INCBM-TREE corresponds to

the dataset of an INCBM-TREE. Suppose the compression

ratio of INCBM-TREE leaf node is p; in other words, given

a dataset of size S·q
q+1 , the INCBM-TREE leaf node is of

size S·q
q+1/p. Then the second part of memory can host up

to
S

q+1

S·q

q+1
/p

= p
q nodes of the INCBM-TREE. Based on the

property of incremental construction, the INCBM-TREE can

grow up to accommodating 2
p

q leaf nodes, or equivalently, a

KOMT. Therefore, the total batch size of an INCBM-TREE

is up to 2
p

q · bb·q
q+1 records.

We further analyze the expected query latency. For an

INCBM-TREE node with an error rate E, the expected cost

is X = 1−E
1−2E . The latency is N/(2

p

q
q

q+1bb) ·
1−E
1−2E . For the

pure KOMT, it is N/bb · log bb.

F. Real-time Publication

In addition to selection queries, we also consider the

model of real-time stream publication for continuous

queries. In this scenario, particularly, in the presence of

big data stream and powerful clouds, the system bottleneck

would be on the owner side which is of limited resources.

Especially, the rate of how fast the stream can be signed

at the owner side determines how much real-time data can

be delivered to the data users. For intensive data streams, a

saturating scenario may occur when streaming data arrives at

a higher rate than what the data owner’s system can handle.

The system is bounded by CPU utilization due to the need

of frequent signing (by using a batch size to achieve real-

time availability) and it is desirable to have a lightweight

signing approach.

To handle intensive data streams, we have two design

goals in our framework: 1) real-time availability of authen-

ticated streaming data, 2) efficient verification on both real-

time and historical data. To be specific, as data update stream

comes into the system continuously, we want to minimize

and if possible to bound the duration between the time when

it is generated and the time when it is stored in a cloud

and made available to data users. This real-time processing

is important to many latency sensitive applications, ranging

from marketing in stock exchange to real-time social news

mining. For verification efficiency, the verification cost is

dominated by that of historical or static data that are updated

long time ago. To authenticate freshness of such data, the

proof need to be presented in a way that enables verification

all the way from an old time to now or a recent time.

To approach the design goals, our key observation is

that batch size is critical to both the real-time-ness and

verification overhead. On the one hand, a small batch size

reduces the time lapse between data generation and the time

when the data become available. On the other hand, a large

batch size means high verification efficiency especially for

historical data (which will be elaborated in §III-A). There-

fore, in this work, we propose a multi-granularity signing

framework, in which the raw update stream is batched and

signed twice, respectively in small batches for real-time

publication and in large batches for efficient verification.
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Figure 4: INCBM-TREE operations and systems

The following two sections respectively describe the design

and system of our framework for real-time and periodic

publications. The system implementation and deployment of

these two components are flexible; they can be co-located

in a single machine or two separate machines.5

1) Cost Optimization: We formulate the per-record sign-

ing cost for optimized computation. We first consider the

cost model of our framework. To sign a data stream the

cost includes the cost of building digest Cdig(b). It can be

described as

Cdig(b) = Cdig · b log b, (7)

where Cdig is the cost of a hash operation and b log b is

the cost of building a (binary) Merkle tree on b records

and sorting. Given l records in a stream with a configured

batch size b, the overall signing cost Cpubl consists of

the cost to build the digests, namely l
bCdig, and the cost

of applying digital signatures, namely l
bCsig. Note l

b is

the number of batches for l records in the stream. By

plugging in Equation 7, we have the per-record signing cost

y =
Cpubl(x,n)

l as following,

y =
Csig

b
+ Cdig log b (8)

Our goal is to minimize the per-record signing cost y. We

can have following formula based on the first-order condition

for local optimum.

(Csig

bopt

+ Cdig log bopt

)′

b
= 0 (9)

⇒

{

bopt =
Csig

Cdig

yopt = Cdig(1 + log
Csig

Cdig
)

2) Real-time Stream Publication: We consider the prob-

lem of signing data stream in real time. Formally, we assume

the end user has a maximal tolerable delay e for signing. The

5Currently we do not address the interference of these two system
components when co-deployed on a single machine, which is the focus
of our future work.

Prover

YCSB-write

RPC
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RPC

Owner UserCloud
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Figure 5: Evaluation system overview

stream has an arrival rate r. This yields the upper bound of

batch size of real-time signing, denoted by br, as follows.

br ≤ r · e (10)

By combining Equation 9 and Equation 10, we can have

the following batch size setting.

br =

{

bopt =
Csig

Cdig
, if bopt ≤ r · e

r · e , otherwise
(11)

IV. EVALUATION

A. Implementation

We implemented a stream authentication system using

INCBM-TREE to evaluate the applicability of INCBM-

TREE to generic key-value stores and the performance

of INCBM-TREE. Our implementation is mostly based

on the cryptographic library provided by JAVA (i.e.

javax.crypto.*), and utilized RSA as signature

schemes. Our implementation also includes various digest

structures, such as KOMT and INCBM-TREE, and main

system components for verification, such as a signer on the

data owner side, a verifier on the data user side, and a prover

on the cloud side.

To evaluate the end-to-end stream authentication perfor-

mance, we built a client-sever system as depicted in Figure 5.

We utilized Yahoo! Cloud Serving Benchmark (YCSB)6, an

industrial standard benchmarking tool, to simulate key-value

workloads for comprehensive performance measurement.

6https://github.com/brianfrankcooper/YCSB/wiki
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In particular, we used a write-only workload generator

with the provided key distributions to simulate the stream

source of web applications used in Yahoo!. We also used a

read-only workload generator to simulate data users posing

queries to a cloud. Since a cloud is typically not a per-

formance bottleneck, all the data in our experiments in a

cloud is processed on a memory. To bridge clients with a

remote cloud, we used an RPC library based on Google’s

ProtoBuf and JBoss’s Netty. In order to make the RPC cost

less intrusive to our evaluation results, we chose to invoke

multiple operations, e.g., verifications of multiple queries in

a single RPC call.

1) Equipments: We conducted our experiments in Em-

ulab. The experiments were performed on two machines: a

weak machine for clients (i.e., a data owner and a data user)

and a powerful machine for a server (i.e., a cloud). The

powerful machine was equipped with one 2.4 GHz 64-bit

Quad Core Xeon processor (with hyper-threading support)

and 12 GB RAM. The less powerful machine was equipped

with 3 GHz processor, 2 GB RAM, and 300 GB disk.

2) Comparison: In our evaluation, we assumed that the

batch size was too large to fit into a data owner’s memory

because a data owner would have a limited computing power

in a typical data outsourcing scenario. A data owner would

need to flush the streaming data to a disk when a memory

cannot hold the entire stream.

We considered KOMT as the baseline for performance

comparison in that KOMT has been widely used in prior

steam authentication work [11], [8]. We compared the per-

formance of INCBM-TREE to the performance of the on-

disk KOMT. On-disk KOMT is a variant of KOMT to

support a large batch size; however, it may need to retrieve

the data from a disk and perform a merge sort to sign all

the data. We set the same batch size for INCBM-TREE for

fair performance comparison. However, note that INCBM-

TREE can be constructed incrementally without holding

entire data before signing. In our experiments, we evaluated

two different INCBM-TREE to KOMT ratios, e.g., 0.1 and

0.2. We fixed the error rate of Bloom filters as 0.1.

B. Micro-benchmark

1) Proof Construction Cost: We measured the proof

construction cost for non-membership by varying the error

rate of Bloom filters in INCBM-TREE. We changed the size

of a Bloom filter to change error rates. Under each setting,

we repeated the experiments for 1000 times and plotted the

average of the proof sizes in Figure 6. With small error

rates (e.g., < 10%), the proof size was very small, e.g.,

slightly above 1. With large error rates (e.g., ≥ 10%), the

proof size exponentially increased as shown in Figure 6b.

The result was consistent with our cost analysis discussed

in Equation 5.

2) Bandwidth Cost of Publication: In order to evaluate

the bandwidth cost of publication, we measured the size of
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Figure 6: Effect of the error rate of a Bloom filter on the

constructed proof size (Y axis in a log scale)

constructed digests. A digest size matters a lot to a cloud

where a digest has to be fully materialized. We measured the

digest size for INCBM-TREE while varying the data size.

We also included the size of digital signatures as comparison

points as shown in Figure 7a. A digest size, measured by the

number of hash values, increased linearly to the data size,

measured by the number of records in the stream. A digest

was significantly larger than a signature, which supported

our design choice where we did not transmit a digest to a

cloud.

3) Maximal Batch Size: We measured the maximal batch

size that can be achieved under the constraint of varying

memory sizes. As depicted in Figure 7b, the maximal

batch size of KOMT was linearly bounded by the memory

size while the maximal batch size of INCBM-TREE was

exponentially bounded. With different ratios q, the maximal

batch size differs. A large value of q (e.g., q = 0.2) means

more space is dedicated to INCBM-TREE and a big batch

can be constructed.
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Figure 7: INCBM-TREE digest size and maximal batch size

C. Write Performance

We comprehensively evaluated the write performance

when publishing stream with large batches. A large batch

size is desirable for a better performance as discussed in

§III-A.
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1) Experiment Setup: We measured the performance of

ingesting a data stream. In our setup, 300 million key-

value pairs were produced by YCSB’s workload-A gener-

ator [18] under a Zipf key distribution, and were fed into

the owner-side signer. While driving the workload to the

system, we measured the sustained throughput and latency

over the course of time. In a simulated environment, we

only measured the overhead from digest construction and

signature generation. We saturated the system by setting the

targeted throughput to be higher than sustainable throughput.

We fixed the compression ratio of a Bloom filter as 50, that

is, the size of a Bloom filter was less than 1
50 of the data

size.

2) Time-series Results: The time-series result was re-

ported in Figure 8a. We did not include the initial data

loading stage to exclude unstable system factors, e.g., cold

cache. While the throughput of INCBM-TREE remained

stable and high, the throughput of KOMT fluctuated along

the timeline. At the valley points, KOMT was performing

heavy disk I/Os to flush overflowing data and to load data

from a disk to a memory for signing. Due to the reason,

the average throughput of KOMT was lower than that of

INCBM-TREE.

3) Average Throughput: We repeated the above primitive

experiments multiple times under different settings and

reported their average. We first varied batch sizes under a

fixed memory size 0.5GB so that tested batch sizes were

always bigger than memory sizes. Figure 8b reports the

throughput. INCBM-TREE achieved an order of magnitude

higher average throughput than on-disk KOMT. As the

batch size increased, the throughput of KOMT decreased

because more disk accesses were required for signing. The

throughput of INCBM-TREE remained almost the same

across various batch sizes because of the incremental digest

construction. INCBM-TREE achieved much higher through-

put than KOMT due to the pure memory operations without

disk I/O. We then varied the memory size under the fixed

batch size of 4GB. As described in Figure 8c, the throughput

of KOMT increased with larger memory size mainly because

of fewer disk I/Os. The throughput of INCBM-TREE were

remained stable with different memory sizes.

D. Query Performance

1) Experiment Setup: We further conducted experiments

to measure the query performance, specifically the veri-

fication cost. In our setup, we used the write workload

generator to populate data to a cloud, and the cloud rebuilt

digest structures, e.g., KOMT and INCBM-TREE. Then,

we used YCSB with a read-only configuration to generate

query workload to the cloud. The query keys were generated

by YCSB workload-A generator. Upon receiving queries, a

prover prepared query results with proofs in a cloud. We

were not interested in the performance of a cloud because

a cloud is typically not a performance bottleneck; thus we

were mainly concerned with the performance of the client-

side, e.g., the user-side verification cost.

A data user issued a series of read requests to retrieves

proofs from a cloud and verify them. We used a YCSB

framework to measure the elapsed time. During the exper-

iments, we varied an update intensity that determined the

time interval between the query time ts and the time of the

last update tslatest.

2) Verification Performance: We compared the verifica-

tion performance of INCBM-TREE with the performance

of on-memory KOMT with a small batch size. We used the

verification time and the proof size, measured by the number

of hashes or signatures included in a proof, to evaluate

the verification performance. In term of the verification

time (Figure 9a) and the proof size (Figure 9b), INCBM-

TREE outperformed KOMT. The result demonstrated the

non-membership test of INCBM-TREE was highly efficient

for freshness verification. On the contrary, KOMT could

utilize only a small batch size due to memory constraint. The

performance gap between INCBM-TREE and on-memory

KOMT was little in Figure 9b because on-memory KOMT

could return more signatures than INCBM-TREE with the

same proof size.
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Figure 9: Verification performance

V. RELATED WORK

Security issues such as data integrity and confidentiality

have become increasingly concerned in cloud computing and

in an outsourced database scenario. Hacigumus et al. intro-

duced general security issues in an outsourced database [19].

There has been many emerging work addressing the confi-

dentiality issue in outsourced data [20], [21], [22]. Our work

is complementary as we address data integrity and authentic-

ity. Recently, several work has been proposed to address the

query authentication for outsourced databases [1], [2], [3],

[4], [5], [6], [7]. Their proposed methods were specialized to

specific data types (e.g., raw data or meta-data) and specific

data models (e.g., a database or data streams). Early work

focused on a traditional database model and often required

a data owner to keep a full local copy of the original data

for data updates. By contrast, our work, which also focuses
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Figure 8: Stream write performance

on authentication of queries, allow the querier to verify the

correctness of query results while minimizing data owner’s

computation requirements.

Existing work often employed collision-resistant hash

functions and digital signatures to construct verifiable ob-

jects that were returned along with query results to a data

client for the verification purpose. For example, signature

chaining was used to construct authentication information

on top of data structures, such as KD-tree and R tree to

guarantee query completeness and authenticity [5], [1].

Merkle hash tree (MHT) [23] is Another commonly used

authentication structure. Specifically, Devanbu et al. [2]

presented a general framework to publish data based on a

Merkle tree that allows a data client to authenticate query

answers. Pang and Tan [7] combined a Merkle tree with a B-

tree where each internal node was associated with a signed

digest that were derived from all tuples in the subtree. This

allowed a verification object to be constructed regardless of

tree sizes and be efficiently verified by edge servers. Yang et

al. [6] proposed a similar approach by embedding a Merkle

tree into a R-tree to support fast query processing and

verification. Merkle trees have been considered to used to

authenticate (non)-membership [24], [25], [26], yet most of

them consider a static dataset scenario. Li et al. [3] discussed

dynamic scenarios where a data owner was allowed to

update database records. However, due to the use of a Merkle

tree, updating database records entailed expensive overhead

of revoking and recomputing digital signatures.

More recently, as a streaming data model becomes in-

creasingly popular in the big data era, authenticating data

streams has attracted significant attentions from research

communities. To address unique challenges, such as data

freshness and lightweight authentication required by the

intensive streaming models, several approaches were pro-

posed including [27], [28], [11], [8]. For example, proof-

infused stream [11] considered a streaming data model

of continuous data updates and window-based queries. It

addressed data freshness only on sliding window queries

with various predicates (e.g., ranges on multiple data keys).

Result freshness of streaming data was discussed in [9] in

the context of global aggregations instead of fine-grained

(or per-version) selection queries. CAT [29] tackled a query

model close to our work, but freshness was provided by

expensive update-in-place actions which was not applicable

to a intensive stream scenario. CADS [8] built KOMT on

top of TOMT (a variant of KOMT to support temporal

completeness); however it still required recomputing the

hash values and digital signatures.

The main difference of INCBM-TREE from previous

approaches is the support of lightweight authentication of

intensive data streams with freshness (temporal complete-

ness) guarantees. Most existing work ensured freshness

of query results via either coarse-grained window-based

approach which only guaranteed data freshness for recent

time window [11] or revoking and resigning of the entire

dataset which made them less desirable for an data streaming

scenario [3], [8].

VI. CONCLUSION

In this paper, we highlighted and articulated the problem

of providing data freshness assurance for outsourced multi-

version key-value stores. We proposed INCBM-TREE, a

novel authentication structure which offers a set of desirable

properties in stream authentication: 1) lightweight for both

data owners and end clients, 2) optimized for intensive data

update streams, and 3) adaptive to varying delay tolerance.

Through extensive benchmark evaluation, we demonstrated

INCBM-TREE provided throughput improvement (in an

order of magnitude) for data stream authentication than ex-

isting work. The superior performance makes our approach

applicable particularly to data owners and clients with weak

computational capabilities, which is typical for outsourcing

scenarios.
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