
Write-Optimized Indexing for Log-Structured Key-Value Stores

Yuzhe Tang † Arun Iyengar ‡ Wei Tan ‡ Liana Fong ‡ Ling Liu †

†Georgia Institutue of Technology, Atlanta, GA, USA , Email: {yztang@, lingliu@cc.}gatech.edu
‡IBM T.J.Watson Research Center, Yorktown, NY, USA , Email: {aruni, wtan, llfong}@us.ibm.com

Abstract

The recent shift towards write-intensive workload on

big data (e.g., financial trading, social user-generated data

streams) has pushed the proliferation of the log-structured

key-value stores, represented by Google’s BigTable, HBase

and Cassandra; these systems optimize write performance by

adopting a log-structured merge design. While providing key-

based access methods based on a Put/Get interface, these

key-value stores do not support value-based access methods,

which significantly limits their applicability in many web and

Internet applications, such as real-time search for all tweets

or blogs containing “government shutdown”. In this paper,

we present HINDEX, a write-optimized indexing scheme

on the log-structured key-value stores. To index intensively

updated big data in real time, the index maintenance is made

lightweight by a design tailored to the unique characteristic

of the underlying log-structured key-value stores. Concretely,

HINDEX performs append-only index updates, which avoids

the reading of historic data versions, an expensive operation

in the log-structure store. To fix the potentially obsolete

index entries, HINDEX proposes an offline index repair

process through tight coupling with the routine compactions.

HINDEX’s system design is generic to the Put/Get interface;

we implemented a prototype of HINDEX based on HBase

without internal code modification. Our experiments show

that the HINDEX offers significant performance advantage

for the write-intensive index maintenance.

I. Introduction

In the big data era, the key-value data updated by intensive

write streams is increasingly common in various application

domains, such as high-frequency financial trading, social web

applications and large network monitoring. To manage the

write-intensive workload, various log-structured key-value

stores, abbreviated as LSKV store, recently emerged and

become prevalent in the real-world production use; this list

includes Google’s BigTable [1], Facebook’s Cassandra [2],

[3], Apache’s HBase [4] and among many others. These key-

value stores are based on a log-structured merge design [5],

which optimizes the write performance by append-only oper-

ations and lends themselves to the write-intensive workloads.

The existing key-value stores typically expose key-based

data access methods, such as Put and Get based on the

primary data keys. While such interface works for basic

workloads, the lack of a value-based access method limits

the applicability of an LSKV store in the modern web and

Internet applications. For example, a simple search based

on the value attribute such as “finding all tweets or blogs

containing ’government shutdown’ ” would lead to a full-

table scan in the store, resulting in an unacceptable latency

for end users.

To enable value-based access methods, we propose HIN-

DEX to support secondary indexing on generic LSKV stores.

The HINDEX is an indexing middleware that sits on top of

generic LSKV stores; Together with the Put/Get interface,

it provides a unified framework to support both key-based

and value-based data access to key-value stores. The system

design of HINDEX is optimized towards a write-intensive

workload on LSKV stores. In this setting, there are two fea-

tures that are desirable: 1) Real-time data availability: In the

presence of update-intensive data, index should be updated

in real time to reflect the latest version of an (evolving)

object to the end users. In many real-world scenarios, the

end users are mostly interested in the latest data, such as the

latest score in a game, the latest online news, or the latest

bids in a web auction. 2) Write-optimized index maintenance:

In order to catch up with intensive write stream, the index

maintenance has to be optimized on writes. However, it is

challenging to maintain a real-time index in a write-optimized

manner; because these two goals favor essentially opposite

index designs. Upon a data update, the real-time indexing

needs to apply the update to the index structure as early

as possible, while the write-optimized indexing may prefer

delay or even avoid the action of updating the index so

that the extra write cost associated with the action can be

saved. To strike a balance in the trade-off between the two

ends, we propose the use of append-only indexing design

for HINDEX, based on the unique performance characteristic



of underlying LSKV stores. Concretely, upon data updates,

HINDEX performs the append-only Put operations to the

index structure; it deliberately avoids the deletion of obsolete

versions and thus avoids the reading of historic data using

Get operations. The rationale behind this design is based

on the fast-write-slow-read performance of LSKV stores;

in a typical setting, the latency of a Get operation in an

LSKV store can be significantly higher than that of a Put

(e.g. by an order of magnitude). The detailed explanation

will be given in Section II. While it optimizes the index

update costs, the append-only design may cause an eventual

inconsistency between the index structure and the base data.

To fix the index inconsistency, an index repair process is

used that conceptually runs a batch of Get’s to find the

obsolete index entries and then deletes them. We propose

a novel design that defers the index repair to the offline

compaction time. Here, a compaction is a native maintenance

routine in the LSKV stores. Coupling the index repair with

the compaction can save the repairing overhead substantially.

This is based on our key observation that the Get perfor-

mance in an LSKV store is significantly affected by the

compaction process. To verify this observation, we conducted

performance study on the most recent HBase release (i.e.,

HBase 0.94.2). A preview of experiment results is shown in

Figure 1; the Get latency after compaction is much faster

(with more than 7× speedup) than the latency before.1

1.0 5.0 10.0 15.0 20.0
Target throughput(kops/sec)

0

5

10

15

20

25

30

35

Re
ad

 la
te
nc
y(
m
se
c)

After compaction

Before compaction

Fig. 1: Read latency before/after compaction
In summary, our contributions in this work are following:

• We have coined the abstraction of LSKV stores for

various industrial strength big-data storage systems and

propose HINDEX to extend this abstraction with real-

time value-based access methods.

• We optimize the HINDEX performance towards write-

intensive workload by taking into account of the unique

performance characteristic of underlying LSKV stores.

By carefully deferring certain part of index maintenance,

it makes the real-time indexing lightweight and unin-

trusive to the system online performance. The deferred

computations (i.e. index repair) are made efficient as

well, by coupling with the native compaction routine.

1For details, please refer to the experiments in Section VI-B and the
explanation in Section II.

• The HINDEX system is generic and adaptable. It can

be integrated to any LSKV store and relies solely on

the generic Put/Get interface. To demonstrate the ease

of implementation, we have built a complete prototype

of HINDEX on HBase, without any code change on

the HBase side. With this prototype, our real-world

experiments show that HINDEX can offer significant

performance improvement on write-intensive workload

comparing to the status quo indexing approaches.

II. Background: LSKV stores

In this section, we present a background introduction

on the LSKV stores. Due to the proliferation of write-

intensive workloads, many emerging key-value stores fall

under the category of a LSKV store, including Google’s

BigTable [1]/LevelDB [6], Apache’s HBase [4] and Cassan-

dra [3], and recently proposed RocksDB [7] by Facebook.

These scalable stores expose a key-value data model to

client applications and internally adopt the design of log-

structured merge tree (or LSM tree) that optimizes the write

performance.

In a key-value data model, a data object is stored as a

series of key-value records – each object is identified by

a unique key k and associated with multiple overwriting

versions. Each version has a value v and a unique timestamp

ts. To retrieve and update an object, LSKV store exposes

a simple Put/Get interface: Put(k,v, ts), Delete(k, ts) and

Get(k) → {< v, ts >}. Note that the Get operation only

allows for key-based access.

LSM Tree-based Data Persistence

LSKV stores adopt the design of LSM tree [5], [8] for

its local data persistence. The core idea is to apply random

data updates in append-only fashion, so that most random

disk access can be translated to efficient, sequential disk

writes. The read and write paths of an LSM tree are shown

in Figure 2. After the LSM tree locally receives a Put

request, the data is first buffered2 in an in-memory area called

Memstore3, and at a later time is flushed to disk. This Flush
process sorts all data in Memstore based on key, builds a key-

based cluster index (called block index) in batch, and then

persists both the sorted data and index to disk. Each Flush
process generates an immutable file on disk, called HFile.

As time goes by, multiple Flush executions can accumulate

multiple HFiles on disk. On the data read path, an LSM

tree process a Get request by sifting through existing HFiles

on disk to retrieve multiple versions of the requested object.

Even in the presence of existing in-memory index schemes

(e.g., Bloom filters and the block index used in HBase), an

LSM tree still has to access multiple files for a Get, because

2For durability, LSM trees often have option for write-ahead logging (or
WAL) before each write to buffer.

3In this paper, we use the HBase terminology to describe an LSM tree.



the append-only writes put multiple versions of the same

object to different HFiles in a non-deterministic way. This

design renders LSKV store to be a write-optimized system

since a data write causes mostly in-memory operations, while

a read has to randomly access the disk, causing disk seeks.

A LSKV store exposes a Compact interface for system

administrator to perform the periodical maintenance routine,

usually in offline hours. A Compact call triggers the com-

paction process, which merges multiple on-disk HFiles to

one and performs data cleaning jobs to reclaim disk space

from obsolete object versions. The Compact consolidate the

resource utilization in the LSKV store for further operation

efficiency.

Memstore

WAL

Put

HFile

Get

Memory

Storage 

device HFile HFile

...

...

Block 

Index

Fig. 2: System architecture of an LSM tree: The figure shows the

data write and read path resp. by black and red arrows. The thick arrows

represent disk access.

III. The HINDEX Structure

In this section we present the system and data model used

in HINDEX, and then describe the index materialization in

an underlying LSKV store.

A. System and Data Model

The overall system where HINDEX is positioned is a cloud

serving data center, in which the server cluster is organized

into a multi-tier architecture. The application tier prepares

data for writes or for query processing, and the storage tier

is responsible for persisting data. The LSKV store resides in

the storage tier. In this architecture, as shown by Figure 3,

HINDEX is a middleware that resides between the application

tier and storage tier: It exposes programming interfaces to

the application clients, while it changes certain behavior of

the LSKV store. In this paper, we refer to the application

server the “client”, since it is the client to the key-value store.

Note this client still resides inside Cloud serving data center.

Internally, HINDEX rewrites the application-level function

calls into Put/Get operations of the LSKV store.

The extended key-value model: The data model ex-

posed by HINDEX is an extended key-value model in the

sense that in addition to the key-based access, HINDEX adds

a value-based access method. Given multi-version object, we

adopt a general m-versioning policy, which considers valid

and fresh the latest m > 1 versions instead of one. HINDEX

has the following API:

HIndex 

Client Lib

Reader 

Client

KVS Client Lib

LS-KV store

HIndex Server Extension

Index Table Base Table

HIndex 

Client Lib

Writer 

Client

Read

Value(v)

Write

(k,v)
Delete

(k)

HIndex

v k0, k1

k0 v

k1 v

HIndex 

Client Lib

Writer 

Client

Read

Key(k)

Get/Put

Providers Consumers

LS-KV Client LS-KV Client

Cloud serving data center
Write 

stream

Query 

stream

Application tier 

Storage tier

Fig. 3: HINDEX architecture

• Write(k,v, ts): Given a row key k, it updates (or inserts)

the value to be v with timestamp ts.

• Remove(k, ts): Given a row key k and a timestamp ts,

it deletes all previous versions with timestamp before ts.

• ReadKey(k, ts,m)→{< k,v′, ts′ >}m: Given a row key

k, it returns the value versions before ts, that is, ts′ ≤ ts.

Given a versioning number m, the method returns the

latest m versions of the requested key.

• ReadValue(v, ts,m)→{< k′,v, ts′ >}: Given value v in

an indexed column, it retrieves all the row keys k′ whose

values are v and which are valid under the m-versioning

policy. That is, the result version ts′ must be among the

latest m versions of its key k′ as of time ts.

The first three methods are similar to the existing key-based

Put/Get interface, while the last one is for value-based

access. In the API design, we expose timestamp ts which

allows the client applications to fully specify the consistency

requirement. In practice, generating a unique timestamp,

if necessary, can be done with the help of the existing

timestamp oracles [9], [10]. HINDEX, being a general index

maintenance protocol, can be adaptable to different index

and query types. Throughput this paper, we mainly use the

exact-match query and indexing as the use case, although

the HINDEX paradigm can be easily extended to other query

types; For instance, the keyword query can be supported

by parsing the keywords from value v when maintaining or

updating the index.

B. Index Materialization

To support global indexing in HINDEX, the index struc-

ture is materialized as a hidden table inside the underlying

LSKV store. In terms of structure, this index table is nothing

special to a regular sharded table in the LSKV store, except it

is hidden and invisible from the client applications’ perspec-

tive. The index table is fully managed by our HINDEX library.

The data inside the index table is an inverted version of the

base data; As shown in Figure 3, the index entries are keyed

by the value of the original key-value data. For different keys



associated with the same value in the base table, HINDEX

materializes them in the same row in the index table but as

different versions.

IV. Online HINDEX: Maintenance and Query

Evaluation

This section describes the online operations in HINDEX

which includes the index maintenance and value-based query

evaluation.

A. The Index Maintenance

To motivate the append-only design of index maintenance

in HINDEX, we first look at a baseline approach based on

the traditional update-in-place technique. The update-in-place

index is widely used in today’s database systems and is

applied on recent scalable indexes in cloud [11], [12].

TABLE I: Algorithms for online writes and reads

Algorithm 1 Write(key k, value v, timestamp ts)

1: index.Put(v,k, ts)
2: base.Put(k,v, ts)

Algorithm 2 ReadValue(value v, timestamp ts, versioning m)

1: {< k, ts′ >}← index.Get(v, ts) ⊲ ts′ ≤ ts
2: for ∀< k, ts′ >∈ {< k, ts′ >} do
3: {< k,v′, ts′′ >}← ReadKey(k, ts, m)
4: if ts′ ∈ {ts′′} then

5: result list.add({< k,v, ts′ >})
6: end if
7: end for
8: return result list

An update-in-place baseline: The update-in-place ap-

proach causes two index-updating actions in the data write

path. That is, upon a Write(k,v, ts) call, in addition to

updating the base table, the approach issues 1) a Put of new

index entry < v,k, ts > to the index table and 2) a Get to the

base table that reads the latest versions of the updated key k,

based on which it determines if there is any version obsoleted

because of this update. If a version, say < k,v0, ts0 >, is found

to be obsoleted, it further issues a Delete to the index table

that deletes the newly obsoleted index entry, < v0,k, ts0 >.

We call the first action an index append and the second

action an index repair. Note that the index append action

causes Put-only operations and the index repair action incurs

expensive Get operation for each data update. The update-

in-place design, by synchronously executing both actions,

leads to significant amplification of per-write cost (due to

the expensive Get), thus considerably decreasing the write

throughput.

In HINDEX, we made the design choice to execute only

the Put operations synchronously with data updates and and

defer the expensive index repair action. By this way, the

online write simply appends the new entry to the index table

at very low cost, which achieves real-time queriability yet

without sacrificing the write throughput. Algorithm 1 shows

the online Write algorithm. Note that the two Put calls are

specified with the same timestamp ts.

B. Online Read Query Evaluation

Given the append-only indexing design, the query evalu-

ation of ReadValue checks both the index and base tables

for the fresh result. It is necessary to check the base table

because of the potential existence of obsolete entries in the

index table, caused by the append-only index maintenance.

In addition, the obsolete index entries can only be discovered

by checking the base table where a full history of versions of

a data object are maintained in the same place. Algorithm 2

illustrates the evaluation of query ReadValue(v, ts,m): It first

reads all the index entries of the requested value v before

timestamp ts. This is done by a Get operation in the index

table. For each returned index entry, say ts′, it needs to be

determined whether the entry is obsolete in an m-versioning

sense. To do so, the algorithm reads the base table by issuing

a ReadKey query (which a simple wrapper of a Get call to

the base table), which returns all the latest m versions {ts′′}
before timestamp ts. Depending on whether ts′ show up in the

list of {ts′′}, the algorithm can then decide if it is obsolete.

Only when the version is not obsolete, it is then added to the

final result.

C. Implementation

Online HINDEX can be implemented on LSKV stores

by two approaches. The first approach is to implement it

in the client library. That is, the client directly coordinates

all the function calls (e.g. Write and ReadKey) as in the

Write and ReadValue algorithms; This is possible since

all the operations in these algorithms are based on the

generic Put/Get interface. The second approach is server-

side implementation. In this case, the index and base table

servers play the role of coordinators to execute the read and

write algorithms. In particular, the Write is rewritten to a

base-table Put by the HINDEX client library. When the base-

table Put gets executed in the base table, it also triggers the

execution of the index-table Put. Likewise, the ReadValue

is rewritten to an index-table Get call, upon the completion

of which the index table triggers the execution of the base-

table Get, if needed. The server-side implementation favors

the case where application servers and storage servers are

located in different clusters and the cross-boundary inter-

cluster communications are more expensive than the intra-

cluster communications. The server-side implementation can

be done by directly modifying the code of an LSKV store

system, or as in our implemented prototype, by adding server

extensions based on the extension interface of LSKV stores

(described in Appendix A).



V. Offline HINDEX: Batched Index Repair

In HINDEX, the index repair process eliminates the obso-

lete index entries and can keep the index fresh and up-to-date.

This section describes the system design and implementation

of offline HINDEX operations for the batched index repair.

A. Computation Model and Algorithm

To repair the index table, it is essential to find obsolete

data versions. A data version, say < v1,k, ts1 >, is considered

to be obsolete when either of the following two conditions

is met.

1. There are at least m newer key-value versions of key k

that exist in the system.

2. There is at least one newer Delete tombstone4 of key k

that exists in the system.

To find all the obsolete versions or data garbage currently

present in the system, we start from the base table; Because

the base table has the data records sorted in the key order,

which helps verify the above two conditions. To be specific,

we scan the base table while performing garbage collection.

Algorithm 3 illustrates the batched garbage collection algo-

rithm on a data stream coming out of the table scan. Basically,

it assumes the table scan throws a key-value data stream

ordered by key and then timestamp. The algorithm maintains

a queue of capability m and emit the version for the index

deletion only when the version has gone through the queue

(meaning it’s older than at least m versions which are still

in the queue) and it is not too older. This extra condition

considers the case of a very old version that might has already

been repaired in the last round of offline compaction (i.e.

with timestamp ts before the last compaction time tsLast).

In the algorithm, it also considers the condition regarding a

Delete tombstone; It will emit all the versions before the

Delete tombstone marker. Note that our algorithm runs in

one pass and maintains a small memory footprint (i.e. the

m-sized queue).

4In an LSKV store, a Delete operation appends a tombstone marker in
the store without physically deleting the data.

Algorithm 3 BatchedGarbageCollection(Key-value stream s)

1: for ∀Key-value data kv ∈ s do ⊲ Stream sorted by key and
time (in descending order)

2: if kCurrent == kv.k then
3: if queue.size() < m then
4: queue.enqueueToHead(kv)
5: else if queue.size == m then
6: queue.enqueueToHead(kv)
7: kv′← queue.dequeueFromTail()
8: if kv′.ts≥ tsLast then ⊲ kv.ts is no older than tsLast

9: emit(kv′)
10: end if
11: end if
12: else
13: loop queue.size()> 0 ⊲ Clear the queue for the last key

14: kv′← queue.dequeueFromHead()
15: if kv′ is a Delete tombstone then
16: emit(queue.dequeueAll())
17: end if
18: end loop
19: kCurrent← kv.k
20: queue.enqueueToHead(kv)
21: end if
22: end for

B. A Compaction-aware System Design

The index repair entails a table scan for collecting obsolete

versions. To materialize the table scan in the presence of of-

fline compaction process, one can have three design options,

that is, to run the index repair 1) before the compaction, 2)

after the compaction or 3) coupled inside the compaction. In

HINDEX, we made the choice to adopt the last two options

to either couple the index repair with the compaction or

after the compaction. Recall that in an LSKV store, the read

performance is significantly improved after the compaction.

The rationale is that table scan, being a batch of reads,

also has its performance dependent on the execution of the

compaction and the number of HFiles; Without compaction,

there would be a number of HFiles and a key-ordered scan

would essentially become a batch of random reads that make

the disk heads swing between the on-disk HFiles.

The offline HINDEX runs in three stages; As illustrated in

Figure 4, it runs offline compaction, garbage collection and

index garbage deletion. After a Compact call is issued, the

system would run the compaction routine, which also triggers

the execution of batched index repair. In the index repair

process, the garbage collection identifies the obsolete data

versions and emit them to the next-stage garbage deletion.

The index garbage deletion issues a batch of deletion requests

to the distributed index table. In the follows, we describe

our subsystem design for each stage and discuss the design

options.

1) The Garbage Collection: We present two system de-

signs for garbage collection, including an isolated design that

puts the garbage collection right after the compaction process,

and a pipelined design that couples the garbage collection

inside the compaction process.



Shuffle Buffer

Node 1

Node 3

Node 2

HFile HFile

Merge sort

Extension

Compaction

GC

Index garbage deletion
Garbage 

collection

GC

HFileHFile

HFile

PipelinedIsolated

Fig. 4: Compaction-aware system design for offline batched

index repair

An isolated design: The garbage collection subsystem

is materialized as an isolated component that runs after the

previous compaction completes. As portrayed in Figure 4,

the system monitors the local file store and the number of

HFiles in it. When an offline compaction process finishes,

it reduces the number of HFiles to one, upon which the

monitor component triggers the garbage collection process. In

this case, the garbage collection reloads the newly generated

HFile to memory (at the moment the file system cache may

very likely be hot), scan through it, and run Algorithm 3

to collect the obsolete data versions. This system design is

generic since it does not rely on anything internal of an

LSKV store.

A pipelined design: Alternatively, the garbage col-

lection subsystem can be implemented by pipelining the

compaction’s output stream directly to the garbage collection

service. To be specific, as shown in Figure 4, the pipelined

garbage collection intercepts the output stream from com-

paction while the data is still in memory; The realization of

interception is described in the next paragraph. Then it runs

the garbage collection computation in Algorithm 3; If the data

versions are found not to be obsolete, they are persisted to

the newly merged HFile, otherwise they are emitted without

persistence. By this way, we can guarantee that the new

HFile does not contain the any data versions that are already

repaired (In this case, Line 8 in Algorithm 3 will always be

true.) Comparing the isolated design, the pipelined design

saves disk accesses, since the data stream is pipelined in

memory without being reloaded from disk.

Implementation note: Interception of the compaction’s

output stream can be realized by multiple ways. The most

straightforward and generalized way is to directly modify the

internal code of an LSKV store. Another way is to rely on the

extension interface widely available in existing LSKV stores

(described in Appendix A) which allows for an add-on

and easier implementation. In particular, our HBase-based

prototype implements the pipelined design using extension-

based implementation; We register a CoProcessor callback

function to hook the garbage collection code inside the

compaction. By this way, our implementation requires no

internal code change of HBase, and can even be deployed

lively onto a running HBase cluster.

2) The Index Garbage Deletion: For each the key-value

record emitted from the garbage collection, it enters the

garbage deletion stage; The record is first buffered in memory

and later shuffled before being sent out by a Delete call

to the remote index table. The shuffle process sorts and

clusters the data records based on the value. By this way,

the reversed value-key records with the same destination can

be packed into a single serializable object in a RPC call, thus

network utilization can be saved. In design the garbage dele-

tion subsystem, we expose a tunable knob to configure the

maximal buffer size and adapt to system resource utilization;

The bigger the buffer is, the less bandwidth overhead it can

achieve at the expense of more memory overhead.

VI. Experiments

This section describes our experimental evaluation of

HINDEX. We first did experiments to study the performance

characteristics of HBase, a representative LSKV store, and

then to study HINDEX’s performance under various micro-

benchmarks and a synthetic benchmark with comparison to

alternate design approaches and architectures. Before all this,

we describe our experiment system and platform setup.

Client Storage server

HBase 

layer

HDFS 

layer

Zookeeper/

HMaster

Namenode

Utility YCSB

JMX 

client

HIndex 

client library

Store client

Master
Slaves

Regionserver

Datanode

HIndex 

CoProcessor

E
x
p
e
ri
m

e
n
t 

p
la

tf
o
rm

S
o
ft

w
a
re

 s
ta

c
k

Fig. 5: Experiment platform and HINDEX deployment

A. Experiment Setup

The experiment system, as illustrated in Figure 5, is

organized in a client/server architecture. In the experiment,

we used one client node and a 19-node server cluster,

consisting of a master and 18 slaves. The client connects

to both the master and the slaves. We setup the experiment

system by using Emulab [13], [14]; All the experiment nodes

in Emulab are homogeneous in the sense that each machine

is equipped with the same 2.4 GHz 64-bit Quad Core Xeon

processor and a 12 GB RAM. In terms of the software

stack, the server cluster used both HBase and Hadoop’s

HDFS [15]. The HBase and HDFS clusters are co-hosted

on the same set of nodes. As shown in Figure 5, the master

node serves a Zookeeper instance and an HMaster instance

at the HBase layer, and a namenode instance at the HDFS



layer. Each of the 18 slave nodes co-hosts a region server

for HBase and a data node for HDFS. Unless otherwise

specified, we used the default configuration in the out-of-box

HBase for our performance study. The client side is based

on YCSB framework [16], an industry-standard benchmark

tool for key-value stores. The original YCSB framework

generates only key-based queries, and for the purpose of

our experiment, we extended the YCSB to generate value-

based queries. We use the modified YCSB framework to

drive workload into the server cluster and measure the query

performance. In addition, we collect the system profiling

metrics (e.g. number of disk reads) through a JMX (Java

management extension) client. For each experiment, we clean

the local file system cache.

HINDEX prototype deployment: We have implemented

an HINDEX prototype in Java and on top of HBase 0.94.2.

The HINDEX prototype is deployed to our experiment plat-

form in two components; as shown by dark rectangular

in Figure 5, it has a client-side library and a server-side

component connected to HBase’s region servers through the

CoProcessor interface. In particular, the prototype imple-

ments both the isolated garbage collection and pipelined

garbage collection in the server component. Our prototype

implementation of HINDEX has been put in production

development inside IBM.

Dataset: Our raw dataset consists of 1000,000,000

key-value records, generated by YCSB using its default

parameters that simulates the production use of key-value

stores inside Yahoo!. In this dataset, data keys are generated

in a Zipf distribution and are potentially duplicated, resulting

in 20,635,449 distinct keys. The data values are indexed.

The raw dataset is materialized to a set of data files, which

are preloaded to the system in each experiment. For queries,

we use 1,000,000 key-value queries, be it either Write,

ReadValue or ReadKey. The query keys are randomly

chosen from the same raw dataset, either from the data keys

or the data values.

B. Performance Study of HBase

Read-write performance: This set of experiments eval-

uates the read-write performance in the out-of-box HBase

(with default HBase configuration) to verify that HBase is

aptly used in a write-intensive workload. In the experiment,

we set the target throughput high enough to saturate the

system. We configure the JVM (on which the HBase runs)

with different heap sizes or memory sizes. We varied the

read-to-write ratio 5 in the workload, and report the maximal

sustained throughput in Figure 6a, as well as the latency in

Figures 6b. In Figure 6a, as the workload becomes more

read intensive, the maximal sustained throughput of HBase

decreases, exponentially. For different JVM memory sizes,

HBase exhibits the similar behavior. This result shows that

5In the paper, the read-to-write ratio refers to the percentage of reads in
a read-write workload.

HBase is not omnipotent but particularly optimized for write-

intensive workloads. Figure 6b depicts the latency respec-

tively for reads and writes (i.e. Get and Put) in HBase. It

can be seen that the reads are much slower than writes, in an

order of magnitudes. This result matches the system model

of LSKV store in which reads need to check more than one

place for multiple data versions and the writes are append-

only and fast. In the figure, as the workload becomes more

read intensive, the read latency decreases. Because with read-

intensive workload, there are fewer writes and thus fewer data

versions in the system for a read to check, resulting in faster

read performance.

0.0 0.2 0.4 0.6 0.8 1.0
Read-to-write ratio

0

5

10

15

20

25

30

35

Th
ro
ug

hp
ut
(k
op
s/
se
c)

HBase-0.5G

HBase-1G

HBase-2G

(a) Maximal sustained throughput

0.0 0.2 0.4 0.6 0.8 1.0
Read-to-write ratio

0

5

10

15

La
te
nc

y(
m
se
c)

Reads

Writes

(b) Latency

Fig. 6: HBase performance under different read ratios
Read performance and HFiles: This experiment eval-

uates HBase’s read performance under varying number of

HFiles. In the experiment, we start with preloading the

dataset into the HBase cluster, which results in averagely

11 HFiles in each region sever as shown in Figure 1. During

the experiment, we issued every 5 million Put’s to the HBase

cluster and measure the read latency by issuing a number of

Get’s then. In this process, we have configured the HBase

to disable its automatic compaction and region split and

during the read performance evaluation, we disallow any Put

operations, so that the number of HFiles would stay constant

at that time. We measure the number of HFiles between each

Put stage. As shown in Figure 1, the average number of

HFiles increases from 11 to 27.5 in the experiment. In the

end, we manually issued an offline Compact call across all

the regions in the cluster, which should leave all the regions

with a single HFile. Then the read latency is measured again.

We report the changes of read latency in this process in

Figure 7 with the red line. As can be seen, the line of read

latency basically matches with that of number of HFiles; As

there are more HFiles present in HBase, the read latency also

becomes bigger. After the compaction which merge all HFiles

into one, the read latency also drops greatly. The experiment

shows the strong dependency between the Get latency and

the number of HFiles in HBase. In particular, for the state

with 27.5 HFiles and the final state with 1 HFiles, we have

shown the latency difference previously in Figure 1.

C. HINDEX Performance

Online write performance: This experiment evaluates

HINDEX performance under the write-only workloads. We



0 1 2 3 4 5 6
0

3

6

9

12

15

18

21

24

27

30

5M-Put

5M-Put

5M-Put

 

 Number of HFiles

 Read latency

Timeline

N
u

m
b

e
r 

o
f 
H

F
ile

s

Compaction

0

10

20

30

40

50

60

70

R
e

a
d

 la
te

n
c
y
 (m

s
e

c
)

Fig. 7: Read latency with varying number of HFiles

drive the data writes the HBase cluster deployed with our

HINDEX prototype. In the experiment, we compare HINDEX

with the update-in-place indexing approach described as in

Section IV-A. We also consider the ideal case where there

is no index structure maintained. The performance results

in terms of sustained throughput are reported in Figure 8.

As the target throughput increases, the update-in-place in-

dexing approach hits the bottleneck (or saturation point)

much earlier than HINDEX. While HINDEX can achieve a

maximal throughput at about 14 thousand operations (kops)

per second, the update-in-place indexing approach can only

sustain at most 4 kops per second. Note that the ideal case

can achieve higher throughput but can not deliver the utility

of serving value-based queries. This result leads to a 3×
performance speedup of HINDEX. In terms of the latency,

Figure 8b illustrates that HINDEX constantly outperforms

the update-in-place approach under scenarios of different

throughput.

2.0 4.0 8.0 20.0 100.0
Target Throughput(kops/sec)

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
(k

op
s/

se
c)

HIndex

Update-in-place

Ideal(NoIndex)

(a) Maximal throughput

2.0 4.0 8.0 20.0 100.0
Target Throughput(kops/sec)

0

5

10

15

20

25

30

La
te

nc
y(

m
se

c)

HIndex

Update-in-place

Ideal(NoIndex)

(b) Latency

Fig. 8: Index write performance

Online read-write performance: In this experiment, we

evaluate HINDEX’s performance in the workload that varies

from read-intensive workloads to write-intensive ones. We

compare the HINDEX on top of HBase against two alternative

architectures: the B-tree index in MySQL and the update-in-

place indexing on HBase. For fair comparison, we use the

same dataset in both HBase and MySQL, and drive the same

workload there. MySQL is accessible to YCSB through a

JDBC driver implemented by us, in which we reduce as

much as possible the overhead spent in the JDBC layer. The

results are shown in Figure 9. With varying read-to-write

ratios, HINDEX on HBase is clearly optimized toward write-

intensive workload, as can be seen in Figure 9a. On a typical

write-intensive setting with 0.1 read-to-write ratio, HINDEX

on HBase outperforms the update-in-place index on HBase

by a 2.5× or more speedup, and the BTree index in MySQL

by 10×. When the workload becomes more read-intensive,

HINDEX may become less advantageous. By contrast, the

update-in-place approach is more read-optimized and the

BTree index in MySQL has a stable and relatively inefficient

performance, regardless of different workloads. This may be

due to that MySQL has made intensive use of locking for full

transaction support, an overkill to our targeted use case and

workloads. In terms of latency, the HINDEX on HBase has the

lowest write latency but at expenses of relatively high read

latency due to the needs to read the base table. By contrast,

the update-in-place index has the highest write latency due to

the need to read obsolete version in HBase, and a low read

latency due to that it only reads the index table. Note that

in our experiments, we use more write-intensive values for

read-to-write ratios (e.g. more ticks in interval [0,0.5) than

in [0.5,1.0]).

Offline index repair performance: This experiment

evaluates the performance of offline index repair with com-

paction. We mainly focus on the approach of compaction-

triggered repair in the offline HINDEX; in the experiment

we tested two implementations, with isolated garbage col-

lection and pipelined garbage collection. For comparison,

we consider a baseline approach that reverses the design of

offline HINDEX, that is, to run the batch index repair before

(rather than after) the compaction. We also test the ideal

case in which an offline compaction runs without any repair

operations. During the experiment, we tested two datasets:

a single-versioned dataset that is populated with only data

insertions so that each key-value record has one version, and

a multi-versioned dataset populated by both data insertions

and updates which results in averagely 3 versions for each

record. While the multi-versioned data is used to evaluate

both garbage collection and deletion during the index repair,

the single-versioned dataset is mainly used to evaluate the

garbage collection, since there are no obsoleted versions to

delete. In the experiment, we have configured the buffer size

to be big enough to accommodate all obsolete data in mem-

ory. We issued an offline Compact call in each experiment,

which automatically triggers the batch index repair process.

Till the end, we collect the system profiling information. In

particular, we collect two metrics, the execution time and the

total number of disk block reads. Both metrics are emitted by

the HBase’s native profiling subsystem, and we implemented

a JMX client to capture the emitted values.

We run the experiment three times, and report the average

results in Figure 10. In terms of execution time, we have the

results shown in Figure 10a. In general the execution time

with multi-versioned dataset is much longer than that with

single-versioned dataset, because of the extra need for the

index deletion. Among the four approaches, the baseline is

the most costly because it loads the data twice and from the



0.00.010.050.1 0.2 0.3 0.4 0.5 0.7 0.90.99
Read-to-write ratio

0

5

10

15

Th
ro

ug
hp

ut
(k

op
s/

se
c)

B-tree(MySQL)

Update-in-place(HBase)

HIndex(HBase)

(a) Maximal throughput

0.00.010.050.1 0.2 0.3 0.4 0.5 0.7 0.90.99
Read-to-write ratio

0
10
20
30
40
50
60
70
80

W
rit
e 
la
te
nc
y(
m
se
c)

B-tree(MySQL)

Update-in-place(HBase)

HIndex(HBase)

(b) Write latency

0.00.010.050.1 0.2 0.3 0.4 0.5 0.7 0.90.99
Read-to-write ratio

0

20

40

60

80

Re
ad

 la
te
nc
y(
m
se
c)

B-tree(MySQL)

Update-in-place(HBase)

HIndex(HBase)

(c) Read latency

Fig. 9: Performance comparison between HINDEX in HBase and MySQL

single-versioned multi-versioned

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
)

Dataset

 HIndex-isolated

 HIndex-pipelined

 Baseline-reversed

 Ideal

(a) Execution time

single-versioned

0

20

40

60

80

100

N
u

m
b

e
r 

o
f 
d

is
k
 r

e
a

d
s
 (

k
o

p
s
)

Dataset

 HIndex-isolated

 HIndex-pipelined

 Baseline-reverse

 Ideal

(b) Number of disk reads

Fig. 10: Performance of offline index repair

not-yet-merged small HFiles, implying most disk reads are

random access. The ideal case incurs the least execution time.

Between the two HINDEX designs, the pipelined garbage

collection requires less execution time because it only needs

to load the on-disk data once. To understand the performance

difference, it is interesting to look at the disk read numbers,

as shown in Figure 10b. We only show the results with the

single-versioned dataset, because disk reads only occur in

the garbage collection. The baseline approach incurs similar

number of disk reads to the HINDEX with isolated design,

because both approaches load the data twice from the disk.

Note that the disk reads in the baseline approach are most

random access while at least half of disk access in the

isolated HINDEX should be sequential; this difference leads

to differences in their execution time. In Figure 10b, the

ideal case has similar cost to the HINDEX with the pipelined

design. Because both approaches load on-disk data once.

From the single-versioned results in Figure 10a, it can be

seen that their execution time is also very close to each

other, due to that the extra garbage collection caused by

the HINDEX approach is very lightweight and incurs few

in-memory computations.

Mixed online and offline operations: In this experi-

ment, we compare HINDEX and the update-in-place indexing

approach as a whole package of solution. In other words, we

consider the online and offline operations together. Because

the update-in-place approach already repairs the index in

the online phase, there is no need to perform index repair

in the offline time. For fair comparison, we run the offline

compaction (without any repair actions) for the update-in-

place index. In the experiment, the online workload contains

a series of writes and the offline workload simply issues a

Compact call and if any, the batch index repair. For sim-

plicity, we here only report the results of pipelined HINDEX.

We report the execution time and the disk read number. The

results are presented in Table II. In general, HINDEX incurs

much shorter execution time and fewer disk reads than the

update-in-place approach. For example, the execution time

of HINDEX (as bold text in the table) is one third of that of

the update-in-place approach. We breaks down the results to

the online costs and offline costs, as in the bottom half of

the table, which more clearly shows the advantage of having

the index repair deferred to the offline phase (recall this is

the core design of HINDEX). Although the update-in-place

index wins slightly in terms of the offline compaction (see

the bold text “279.179” compared to “459.326” in the table),

HINDEX wins big in the online computation (see bold text

“1093.832” compared to “4340.277” in the table). This leads

to an overall performance gain of HINDEX. In terms of disk

reads, it is noteworthy that HINDEX incurs zero costs in the

online phase.

TABLE II: Overhead under Put and Compact operations

Name Exec. time (sec) Number of disk reads

HINDEX 1553.158 60699

Update-in-place index 4619.456 313662

Name Online Offline Online Offline

HINDEX 1093.832 459.326 0 60699

Update-in-place index 4340.277 279.179 252964 60698

VII. Related Work

Data indexing in scalable data management systems in

cloud has been recently received many research attentions.

HyperDex [12] is the first key-value store that supports a

native ReadValue operation. The index in HyperDex is

designed to support multi-dimensional attributes. It employs



a space-filling curve to reduce data dimensionality and shard

data table on the reduced space. However, this approach can

only scale to a moderate number of indexable attributes. To

maintain the index, HyperDex treats it the same as a data

replication process; The value-dependent chaining technique

propagates the data updates to all replicas/indexes and essen-

tially employs an update-in-place paradigm to relocate an up-

dated object from the old place to a new one. Megastore [17]

is Google’s effort to support the cloud-scale database on the

BigTable storage [1]. Megastore provides secondary index at

two levels, namely the local index and the global index. The

local index indexes the local data from a small entity group

that is close to the local machine. The local index can be

maintained synchronously at a fairly low cost. The global

index which spans cross multiple groups is maintained in an

asynchronous and lazy fashion. F1 [18], built on top of Span-

ner, supports global indexing in fully consistent and transac-

tional way; It applies 2PC at a reasonable cost. PIQL [11]

supports a scale-independent subset of SQL queries on the

key-value stores which includes the value-based selection.

The index management in PIQL uses the update-in-place

paradigm; It deletes all the stale index entries upon an online

update. PIQL is implemented as a library centric database

purely on top of key-value store, while our HINDEX spans

across both the client and server sides of a key-value store.

To supports complex analytical queries, prior work [19]

maintains a global materialized view asynchronously and a

local materialized view synchronously on top of PNUTS [20].

In particular, the local view is mainly utilized for processing

aggregations, the global view assists to evaluate selection

queries based on secondary attributes. Secondary data index

has been recently discussed in the open source community,

such as for HBase [21] and Cassandra [22]. These key-value

store indexes adopt the hidden table design to materialize the

index data in key-value stores. In particular for HBase, it is

proposed (though not released) to use append-only online

indexing. However, it does not address any index repair

process and may suffer from an eventually inconsistent index

which further causes unnecessary cross-table checking during

query processing. In addition, all existing work for scalable

index/view support on key-value stores is not aware of the

asymmetric performance in a write-optimized store and does

not optimize the expensive index repair tasks, which the

HINDEX design addresses.

VIII. Conclusion

This paper proposes HINDEX, a lightweight real-time in-

dexing framework for generic log-structured key-value stores.

The core design in HINDEX is to perform the append-only

online indexing and compaction-triggered offline indexing.

By this way, the online index update does not need to look

into historic data for in-place updates, but rather appends

a new version, which substantially facilitates the execution.

To fix the obsolete index entries caused by the append-

only indexing, HINDEX performs an offline batched index

repair process. By coupling with the native compaction in

a LSKV store, the batch index repair enjoys significant

performance gain without incurring any extra disk overhead.

We implemented a HINDEX prototype based on HBase and

demonstrate the performance gain by a series of real-world

experiment conducted in an Emulab cluster.

References

[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A
distributed storage system for structured data (awarded best paper!),”
in OSDI, B. N. Bershad and J. C. Mogul, Eds. USENIX Association,
2006, pp. 205–218.

[2] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” Operating Systems Review, vol. 44, no. 2, pp. 35–
40, 2010.

[3] “http://cassandra.apache.org/.”

[4] “http://hbase.apache.org/.”

[5] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The log-
structured merge-tree (lsm-tree),” Acta Inf., vol. 33, no. 4, pp. 351–385,
1996.

[6] “http://code.google.com/p/leveldb/.”

[7] “http://rocksdb.org.”

[8] R. Sears and R. Ramakrishnan, “blsm: a general purpose log structured
merge tree,” in SIGMOD Conference, 2012, pp. 217–228.

[9] M. Yabandeh and D. G. Ferro, “A critique of snapshot isolation,” in
EuroSys, 2012, pp. 155–168.

[10] D. Peng and F. Dabek, “Large-scale incremental processing using
distributed transactions and notifications,” in OSDI, R. H. Arpaci-
Dusseau and B. Chen, Eds. USENIX Association, 2010, pp. 251–264.

[11] M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin, and
D. A. Patterson, “Piql: Success-tolerant query processing in the cloud,”
PVLDB, vol. 5, no. 3, pp. 181–192, 2011.

[12] R. Escriva, B. Wong, and E. G. Sirer, “Hyperdex: a distributed,
searchable key-value store,” in SIGCOMM, 2012, pp. 25–36.

[13] “http://www.emulab.net/.”

[14] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in OSDI, D. E.
Culler and P. Druschel, Eds. USENIX Association, 2002.

[15] “http://hadoop.apache.org/.”

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in SoCC, 2010, pp.
143–154.

[17] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin, J. Larson, J.-
M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” in CIDR,
2011, pp. 223–234.

[18] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. O. K. Littlefield, D. Menestrina, S. E. J. Cieslewicz, I. Rae et al.,
“F1: A distributed sql database that scales,” Proceedings of the VLDB

Endowment, vol. 6, no. 11, 2013.

[19] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava, and R. Ra-
makrishnan, “Asynchronous view maintenance for vlsd databases,” in
SIGMOD Conference, 2009, pp. 179–192.

[20] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” PVLDB, vol. 1, no. 2, pp.
1277–1288, 2008.

[21] L. Hofhansl, “http://hadoop-hbase.blogspot.com/2012/10/musings-on-
secondary-indexes.html.”

[22] “http://hadoop-hbase.blogspot.com/2012/10/musings-on-secondary-
indexes.html.”

[23] “https://blogs.apache.org/hbase/entry/coprocessor introduction.”

[24] “https://issues.apache.org/jira/browse/cassandra-1016.”

[25] “https://issues.apache.org/jira/browse/cassandra-1311.”



Appendix A

Extension Interfaces in LSKV store

Following the trend of moving computation close to

data, there is a recent body of work that enriches server-

side functionality by adding extension interfaces to the key-

value stores including HBase’s CoProcessor [23], Cassan-

dra’s Plugins/Triggers [24], [25], Percolators’ trigger func-

tionality [10]. These extension interfaces typically expose

event-based programming hooks and allow client applications

to easily inject code (e.g., stored procedure) into store servers

and associate that with their internal events. With the inter-

faces, one can extend the functionality of a key-value server

without changing its internal code.


