
1

ClusterWatch: Flexible, Lightweight Monitoring for
High-end GPGPU Clusters
Magdalena Slawinska, Karsten Schwan, Greg Eisenhauer

College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332–0250
Email: magg@gatech.edu, karsten.schwan@cc.gatech.edu, eisen@cc.gatech.edu

Abstract—The ClusterWatch middleware provides runtime
flexibility in what system-level metrics are monitored, how fre-
quently such monitoring is done, and how metrics are combined
to obtain reliable information about the current behavior of
GPGPU clusters. Interesting attributes of ClusterWatch are (1)
the ease with which different metrics can be added to the
system—by simply deploying additional “cluster spies,” (2) the
ability to filter and process monitoring metrics at their sources,
to reduce data movement overhead, (3) flexibility in the rate at
which monitoring is done, (4) efficient movement of monitoring
data into backend stores for long-term or historical analysis, and
most importantly, (5) specific support for monitoring the behavior
and use of the GPGPUs used by applications. This paper presents
our initial experiences with using ClusterWatch to assess the per-
formance behavior of the a larger-scale GPGPU-based simulation
code. We report the overheads seen when using ClusterWatch,
the experimental results obtained for the simulation, and the
manner in which ClusterWatch will interact with infrastructures
for detailed program performance monitoring and profiling such
as TAU or Lynx. Experiments conducted on the NICS Keeneland
Initial Delivery System (KIDS), with up to 64 nodes, demonstrate
low monitoring overheads for high fidelity assessments of the
simulation’s performance behavior, for both its CPU and GPU
components.

I. INTRODUCTION

Modern scientific discovery requires investments in next-
generation hardware and software, provoking questions by
sponsoring organizations, hardware vendors, site administra-
tors, and end-users regarding the efficient use of the computing
resources acquired by the simulation codes being run. Of
particular interest in this space is the effectiveness and utility
of accelerators, such as GPGPUs, which are becoming increas-
ingly important for obtaining high performance for scientific
simulations.

Realizing the importance of performance monitoring and
profiling large-scale parallel codes and machines, tools like
Ganglia [1] and MRNet [2] have sought scalability in operation
and low overhead in use through distributed data structures ef-
ficiently mapped to parallel machines. Program profiling tools
such as TAU [3] have created rich infrastructures for moni-
toring desired program attributes, while seeking to minimize
monitoring overheads and resulting program perturbation.

We extract from extensive prior work like the efforts cited
above the following characteristics critical for the scalability
of monitoring large-scale systems.

• Monitoring should be selective, meaning that it must be
possible to select precisely what program or machine
attributes should be tracked, and with what accuracy. This

makes it possible to control the monitoring overheads
experienced by applications and systems.

• To reduce the volume of monitoring data and following an
approach similar to what is now being pursued for high-
performance I/O in exascale systems [4], the capture of
monitoring data (i.e., data logging) should be combined
with its dynamic analysis, termed monalytics in recent
monitoring research [5].

• Monitoring selectivity and analytics should be dynamic,
leading to interactive models of system and program
monitoring. An example are the “zoom in” and “zoom
out” capabilities described in [6]. This is particularly
useful for troubleshooting long-running applications [7],
[8], [9], [10], [11], [12], [13], where it is difficult to know
what metrics to capture and how to process metric data, a
fact that is causing current enterprises such as Amazon to
simply dump all monitoring logs to disk or other offline
storage [14], in order to later analyze it in the various
ways needed for performance or program debugging
and understanding. Unfortunately, with machine sizes
growing toward the exascale, it is no longer possible or
desirable to capture the potential petabytes of potentially
useful log data (and write it to offline storage) just
because such data might be needed for future analysis.
There is a consequent need for the online management of
monitoring and monitoring processes.

• Raw or analyzed monitoring data may require preserva-
tion for subsequent analysis, which implies the need to
efficiently store monitoring outputs on long-term storage,
and to effectively manage such historical data, including
to analyze offline jointly with online data. One way to
address this need is to use time series databases, like
OpenTSDB [15], to jointly maintain select data about the
current vs. long-term data captured and analyzed [16].

This paper describes the ClusterWatch monitoring system,
designed for monitoring large-scale parallel applications and
the systems on which they run. ClusterWatch is a lightweight,
pluggable monitoring middleware designed for (i) selective
monitoring, (ii) online analytics for monitoring data, along
with the (iii) online management of the monitoring and
analytics actions being used, and (iv) efficient interactions
with offline storage via a TSDB, using the OpenTSDB frame-
work [15]. ClusterWatch fills a gap between either system-
level or application-level monitoring, making it possible to
simultaneously do both, in order to offer end users rich moni-

2

toring experiences, including those needed to obtain insight
into how GPGPUs are utilized from the system’s as well
as from the particular application’s standpoints. ClusterWatch
uses the notion of “spies” to obtain such functionality, and for
detailed program profiling, it has the unique ability to co-run
with sophisticated program profiling tools like TAU [3].

ClusterWatch is constructed with the EVPath [17] mid-
dleware, using it both as an efficient transport and as a
way to add analytics to the log data stream. EVPath is an
event processing middleware whose features of interest for
ClusterWatch include its evDFG (EVPath Data Flow Graphs)
facility for dynamically deploying entire monitoring/analytics
– monalytics – graphs when and if needed – to obtain
dynamic selectivity – and its capability of runtime binary code
generation for dynamically pushing analytics actions to where
they are needed.

This paper’s experiments with the current implementation of
ClusterWatch serve to gain useful insights into the execution
of a GPGPU-based simulation, using the CUDA version of
the LAMMPS materials modeling code [18] as a driving
example. The paper presents results of validation experiments
demonstrating the reliability of obtained monitoring data both
with smaller scale experiments and within larger scale GPG-
PUs settings, all run on the XSEDE NICS Keeneland Initial
Delivery System (up to 64 12-core nodes and total 192 GPG-
PUs). Experimental evaluations demonstrate low ClusterWatch
overheads, in part due to monitoring selectivity, and additional
design discussions explain how ClusterWatch will obtain the
other desirable properties of large-scale monitoring systems.

II. RELATED WORK

Current distributed monitoring systems such as Ganglia [1],
Nagios [19], Munin [20], Host sFlow [21], Heka [22], MR-
Net [2] make it possible to capture a rich set of monitoring
data. Ganglia scales up to 2000-node clusters and it targets
monitoring federations of HPC clusters. It uses XML to
represent data, XDR as a data transport, and RRDtool (Round
Robin Database Tool) [23] to store and visualize data. Nagios
offers comprehensive monitoring solutions for the entire IT
infrastructure, allowing for monitoring applications, services,
operating systems, network protocols, system metrics, etc [19].
It can be tailored to user’s needs with a rich selection of
plugins (50 basic plugins and nearly 2000 additional plugins).
Munin [20] aims to aid users in diagnosing performance
issues, emphasizing its plug-and-play capabilities and ease of
developing new plugins tailored to the user’s specific needs.
It focuses on monitoring resource performance, and, similarly
to Ganglia, it exploits RRDtool. The Host sFlow [21] aims
at providing an open source monitoring solution to capture
various server-related performance metrics. It implements the
sFlow standard [24], an industry specification for monitoring
high-speed switched networks. sFlow specifies the format of
the exported data and it can collect data of an sFlow compliant
device. The sFlow data can be handled by many popular
monitoring systems, including Ganglia, Wireshark [25], and
the Linux ntop utility. There is also an sFlow specification that
describes NVML GPU structures [26]. Mozilla Heka [22] has

been designed to be pluggable and simplify the collection, and
analysis of data at the cluster level from multiple data sources.
Finally, MRNet [2] is focused on monitoring scalability, for
single, large-scale parallel machines, offering efficient methods
for data collection and aggregation.

Examples of popular tools targeting program-level monitor-
ing are Vampir [27], TAU [3], Scalasca [28], Periscope [29].
Vampir is a complex tool enabling scalable trace analysis of
gigabytes of monitoring data, interactive visualization of col-
lected data, and it also offers accelerator monitoring (CUDA
and OpenCL). Data analysis is based on Score-P [30], which
supports runtime data collection and code instrumentation.
TAU [31] is a profiling and tracing toolkit aimed at the
performance analysis of parallel programs. It instruments the
application source code and provides useful performance vi-
sualization analyses and displays, the latter via ParaProf [32].
It supports monitoring GPGPUs via the NVIDIA CUDA
Profiling Tools Interface (CUPTI) [33]. Scalasca [28] allows
for measuring and analyzing the runtime behavior of parallel
programs, specifically targeting communication and synchro-
nization bottlenecks. Periscope [29] offers the application-
level monitoring via Monitoring Request Interface (MRI); the
application processes need to be linked with (MRI) in order
to enable monitoring. Monitoring is provided by a hierarchy
of communication and analysis agents.

A plethora of node-level tools make it possible to monitor
various system and hardware resources, including the popular
Linux tool top and its variants (ntop, htop), sar (activity
node-level collection system), PAPI (Performance Application
Programming Interface) [34], etc.

Numerous research efforts have addressed program trou-
bleshooting, summarized in [7], [8], [9], [10], [11], [12],
[13]. One recent effort also using EVPath [17], a messaging
constructor middleware used by ClusterWatch, and its evD-
FGs (EVPath Data Flow Graphs) is VScope [6], which is a
middleware that can capture various metrics and dynamically
deploy relevant analysis actions to understand the collected
metric data and accordingly, troubleshoot the application. A
similar approach to metric deployment flexibility is present in
SDIMS [35] and Moara [36] that are aggregation systems ex-
ploiting Distributed Hash Tables (DHT) to construct dynamic
aggregation trees.

In the current ecosystem of monitoring tools, ClusterWatch
aims to contribute to several research topics. First, Cluster-
Watch will explore the collection and analysis of combined ap-
plication (TAU, Lynx [37]–a GPGPU code profiling tool) and
system level data to provide robust analytics of the collected
data at the cluster, node, and application level. In contrast
to popular monitoring systems such as Ganglia and Nagios
that merely offer a selection of various plugins to configure
the infrastructure to capture relevant data, ClusterWatch goes
beyond that. Its goal is to provide to the user a compre-
hensive and extensive monitoring status perspective based
on all (or select) available levels of monitoring granularity.
Second, ClusterWatch will offer flexible metric deployment
mechanisms. Similarly to VScope, it will use EVPath’s Data
Flow Graphs to deploy automatically relevant metrics tailored
to current monitoring requirements. Third, ClusterWatch will

3

investigate what, when, and how monitoring can best be per-
formed, e.g., via a “zoom in capability” to provide more or less
monitoring data on demand, turning on/off metrics at disparate
granularity levels. Finally, ClusterWatch targets specifically
large-scale accelerated systems, i.e., HPC GPGPU clusters. We
believe that combining advanced GPGPU monitoring solutions
such as Lynx [37] with cluster-level knowledge can provide
more insights into utilization of GPGPU resources by modern,
highly parallel applications at leadership HPC facilities.

III. CLUSTERWATCH

The purpose of ClusterWatch is to provide a flexible and
lightweight framework for capturing arbitrary system- and
application-level metrics in high-end clusters, while offering
straightforward ways to add to that metric set. ClusterWatch
aims at enabling filtering and processing monitoring metrics
on the entire path from their sources to eventual metric storage,
to reduce data movement overhead and to permit rapid metric
evaluation for use in real-time monitoring [6], [5].

Monitoring data is represented with efficient self-describing
data formats, called Fast Flexible Serialization (FFS) [38],
to permit its rapid analysis via data filters and/or aggregators
placed dynamically into the data path, but using standard
formats for monitoring logs placed into backend storage. The
FFS description of the C structure shown in Listing 1 that
defines the monitoring record for GPU related data is presented
in Listing 2.

The captured data, “raw” or processed are stored in a
persistent backend storage. There is an ongoing effort to im-
plement an advanced analytics module based on OpenTSDB,
a distributed, and scalable Time Series Database on top of
HBase, that will allow for performing complex analysis on
collected monitoring data.

Although ClusterWatch supports capturing metrics from
CPUs such as cpu utilization, memory utilization, or network
load, its primary focus is on GPUs present on the nodes of
current high-end cluster machines. The current ClusterWatch
prototype allows for capturing system-level data; support for
obtaining application-level (both CPU and GPGPU) data is to
some extent implemented (TAU based) and partially is a work
in progress (Lynx based).

Conceptually, the ClusterWatch implementation consists of
transporting and monitoring layers, as depicted in Figure 1.
The transporting layer is responsible for enabling communica-
tion between ClusterWatch components whereas the monitor-
ing layer comprises modules for capturing, processing, storing,
and analyzing monitoring data.

A. Monitoring Data Format

One of the ClusterWatch design goals is to use as little
bandwidth as possible whereas providing enough flexibility
to allow for fast data analysis and standard log formats on
the backend storage. To reconcile those two oppose aims
we leverage the FFS self-describing data format [38]. FFS
was implemented to support efficient marshaling of data
across a heterogeneous computing environment. FFS is record-
oriented: data writers must provide a description of the records

ClusterWatch

Transport Layer

Monitoring Layer

ClusterSpy

Dwarf
Module

Analytics
Module

EVPath

…
Module

Not implemented

Implemented

Fig. 1. The ClusterWatch architectural overview. Gray dashed items indicate
work-in-progress components.

written out and the data readers must provide a description of
the records that they are interested in reading. For instance,
the binary structure such as nvml_mon (Listing 1) has to be
described by providing information such as the name of the
field, the type of the field, the size, and the offset relative to
the beginning of the structure, and next registered with the
FFS format server. Correspondingly, the receiver side needs
to register with the FFS format server a similar description
of the record it intends to read, so data marshaling between a
sender and a receiver can be appropriately performed.

In order to gauge the efficiency of the FFS self-describing
data format we compared sizes of our binary format to a
hypothetical, XML-based format of our monitoring data. To
obtain the XML description of structures sent to the Clus-
terWatch aggregator by ClusterWatch collectors, we wrote a
simple program that uses FFS API to wrap C structures with
a hypothetical XML tags. Listing 3 presents the example,
suppositive, and automatically generated XML description for
the GPU monitoring record showed in Listing 1. The sizes
of binary C structures (i.e., sizeof(·)) vs. speculative XML-
based textual format (i.e., the number of characters) describing
the ClusterWatch monitoring data are shown in Listing 3.
Unsurprisingly, they demonstrate that the FFS binary format
performs ∼3-9 better in terms of data compactness than the
hypothetical, textual-based description. Having efficient data
format in the context of marshaling is particularly important
for frequent and periodic monitoring records (vs. capability
records sent only once during the resource registration in
ClusterWatch).

B. Transport Layer

The current implementation of the transport layer, con-
cretized as ClusterSpy, is built on top of EVPath [17], [39],
the event-based middleware. EVPath is designed to enable an
easy implementation of overlay networks supporting active
data processing, routing, and management at all points in
the overlay. One of the central ideas built into the library is
the concept of “stones” that correspond to processing entities
in dataflow diagrams. EVPath supports creation, monitoring,
management, modification and destruction of the stones. It
provides several types of stones that enable data filtering, data
transformation, data multiplexing and demultiplexing, and data
transfer between processes over the network interconnect.

4

Listing 1. The GPGPU monitoring data structure sent periodically by the NVML spy to the aggregator.
// monitoring structure for sending GPU related monitoring data
struct nvml_mon {

struct timeval ts; // the timestamp of the measurement
int id; // the id of the monitoring node
int gpu_count; // the number of devices attached to a node

char** performance_state;

int *mem_used_MB;
float *util_gpu; // utilization GPU in percentage
float *util_mem; // utilization memory in percentage
float *power_draw; // power draw limit
float *graphics_clock; // clock_graphics / Max Clock Graphics
float *sm_clock; // clock_graphics / Max Clock Graphics
float *mem_clock; // clock_graphics / Max Clock Graphics

};

Listing 2. FFS descriptions of GPGPU monitoring data sent by NVML spies to the aggregator.
FMField nvml_mon_field_list[] = {
{"ts", "struct timeval", sizeof(struct timeval), FMOffset(struct nvml_mon *, ts)},
{"id", "integer", sizeof(int), FMOffset(struct nvml_mon *, id)},
{"gpu_count", "integer", sizeof(int), FMOffset(struct nvml_mon *, gpu_count)},
{"performance_state", "string[gpu_count]", sizeof(char*), FMOffset(struct nvml_mon *,

performance_state)},
{"mem_used_MB", "float[gpu_count]", sizeof(float), FMOffset(struct nvml_mon *, mem_used_MB)},
{"util_gpu", "float[gpu_count]", sizeof(float), FMOffset(struct nvml_mon *, util_gpu)},
{"util_mem", "float[gpu_count]", sizeof(float), FMOffset(struct nvml_mon *, util_mem)},
{"power_draw", "float[gpu_count]", sizeof(float), FMOffset(struct nvml_mon *, power_draw)},
{"graphics_clock", "float[gpu_count]", sizeof(float), FMOffset(struct nvml_mon *,

graphics_clock)},
{"sm_clock", "float[gpu_count]", sizeof(float), FMOffset(struct nvml_mon *, sm_clock)},
{"mem_clock", "float[gpu_count]", sizeof(float), FMOffset(struct nvml_mon *, mem_clock)},
{NULL , NULL , 0, 0}

};

Listing 3. Automatically generated, hypothetical, XML counterpart of the description of the GPGPU monitoring data sent by NVML spies to the aggregator.
<struct_nvml_mon >
<ts>
<tv_sec >140309924857192 </tv_sec >
<tv_usec >140309922810500 </tv_usec >
</ts>
<id >1644578478 </id>
<gpu_count >3</gpu_count >
<performance_state >
P0 P0 P12 </performance_state >
<mem_used_MB >
204 205 200 </mem_used_MB >
<util_gpu >
100 30 89.03 </util_gpu >
<util_mem >
0.2 0.21 3.56 </util_mem >
<power_draw >
33.76 34.83 35.21 </power_draw >
<graphics_clock >
100 0 100 </graphics_clock >
<sm_clock >
0 0 0 </sm_clock >
<mem_clock >
0 0 0 </mem_clock >
</struct_nvml_mon >

5

TABLE I
BINARY VS. HYPOTHETICAL TEXTUAL FORMAT OVERHEAD FOR MONITORING DATA IN CLUSTERWATCH. THE TABLE PRESENTS A ROUGH COMPARISON

BETWEEN SIZES OF RECORDS SENT TO THE CLUSTERWATCH AGGREGATOR BY COLLECTORS FOR THE HYPOTHETICAL XML FORMAT AND FOR THE
BINARY FFS FORMAT EXPLOITED BY CLUSTERWATCH. THE ROWS SHOW THE SIZE OF TWO TYPES OF RECORDS: THE CAPABILITY RECORD (E.G.,

CPU-CAP), AND THE MONITORING DATA RECORD (E.G., CPU-MON). THE CAPABILITY RECORDS ARE SENT ONLY ONCE WHEN THE RESOURCE REGISTERS
ITS PRESENCE IN CLUSTERWATCH. THE MONITORING RECORDS ARE SENT PERIODICALLY TO THE CLUSTERWATCH AGGREGATOR.

Data XML size
[bytes]

Binary size
[bytes]

Ratio
[XML/Binary] Data XML size

[bytes]
Binary size

[bytes]
Ratio

[XML/Binary]

cpu-cap 231 49 4.71 cpu-mon 291 84 3.46
mem-cap 261 57 4.58 mem-mon 513 56 9.16
net-cap 302 73 4.14 net-mon 410 48 8.54

nvml-cap 1,797 549 3.27 nvml-mon 451 146 3.09
tau-cap 220 49 4.49 tau-mon 1,005 192 5.23

Sum 2,811 777 3.62 Sum 2,670 526 5.08

The ClusterSpy transport implementation leverages EVPath,
yet provides higher level interfaces suitable for monitor-
ing. For instance, it provides an API call arrange_node()
to plug a monitoring entity into its underlying, EVPath-
based messaging infrastructure that executes a sequence of
EVPath primitives to establish a connection (CMlisten(),
EValloc_stone(), create_attr_list(), add_xxx_attr(),
EVassoc_bridge_action(), etc).

ClusterSpy offers a centralized many-to-one communication
topology, i.e., there are many local data collectors and one
data aggregator. Supporting more complex data flow graphs is
a work in progress, and is briefly described in Section III-D.

C. Monitoring Layer

The monitoring layer aims at providing modules for actual
monitoring and analysis of captured monitoring data. At
present, the Dwarf module is implemented and used, and the
development of the analytics OpenTSDB module is a work in
progress.

The Dwarf module offers the concept of “collectors” ex-
ecuted locally on monitored nodes and an “aggregator” that
aggregates data sent by collectors, as depicted in Figure 2.
Collectors, called “spies,” gather metrics such as memory,
cpu, gpu utilization, network load. The aggregator analyzes
the monitoring data obtained from collectors and then prompts
actions that respond to the recognition of certain monitoring
states; it can also write obtained monitoring data to storage
for postmortem data analysis. A memory mapped file is used
as an intermediate buffer for such output actions, to enable
periodic readers that place data into backend stores such as
Sqlite3 or OpenTSDB.

The concept of “spies” aims at providing a convenient and
uniform abstraction that enables attaching ClusterWatch to an
arbitrary source of monitoring data. The primary task of the
spy is to get the data out of the source and present them
to ClusterWatch. The actual implementation of taking into
possession the monitoring data varies from spy to spy and
is data source specific. For instance, it might be as simple
as opening the file if the monitoring data are exposed via
a standard file interface; it might require usage of an API
provided by a library or, in certain cases, it might be necessary
to modify the source code of the monitoring data source in

order to embed the spy and allow for getting the data out to
ClusterWatch.

Technically, all spies are executed in a single process space
(a patrol process). Currently, the patrol program is configurable
via a simple key-value file that tells the patrol program to turn
on/off a particular spy. We are currently adding functionality
that can take such actions at runtime, to enable the “zoom in”
functionality explained in [6]. Basically, the idea is to enable
detailed monitoring if needed and disable monitoring or limit
the monitoring details if such information is not required at
the moment.

The aggregator process (a ranger process) is configured via
a similar key-value file, and it is executed on an arbitrary
cluster node, provided there are communication paths enabled
between all collector processes and the aggregator. The mem-
ory mapped file readers are implemented as a Python script
that can be configured to run a specific reader via command-
line parameters.

We have implemented six spies, namely cpu, memory,
network, nvidia_smi, NVML, and TAU spies. The former three
spies utilize the information obtained from the pseudo-file
system (/proc); the nvidia_smi spy uses the NVIDIA System
Management Interface (nvidia-smi) utility—a command line
utility intended to aid in the management and monitoring of
NVIDIA GPU devices [40]; the NVML spy uses NVIDIA
Management Library (NVML) [41] that provides API to gather
information about NVIDIA GPU devices (the nvidia_smi
utility exploits this library as well); and the TAU spy exploits
TAU [3]. There is an ongoing effort to implement the Lynx
spy that will enable detailed, kernel-level and program-level
GPGPU monitoring.

In order to implement a new spy it is required to describe
the data sent by a spy to the aggregator and routines to enable
reading the data. Since ClusterWatch relies on the EVPath-
based transport, the data need to be described in the Fast
Flexible Serialization (FFS) format [38]. Listing 2 presents
the example of the description of the monitoring data sent
by the NVML spy to the collector. Specifically, ClusterWatch
assumes that there are two types of data transferred from a spy
to the aggregator: the description of the resource’s capabilities
and the actual monitoring data. For instance, the description of
a GPGPU resource sent by the spy to the aggregator includes
information about the number of GPGPU devices attached

6

Node m

Ranger
(aggregator)

config

cpu-spy-mmap

net-spy-mmap

mem-spy-
mmap

nvi-spy-mmap

nvml-spy-
mmap

cpu-mmap-reader

net-mmap-reader

mem-mmap-reader

nvi-mmap-reader

nvml-mmap-
reader

cpu.db

net.db

mem.db

nvi.db

nvml.db

tau-mmap-reader

lynx-mmap-reader

OpenTSDB-mmap-
reader

Sqlite3

OpenTSDB/
HBase

lynx-spy-
mmap

tau-spy-mmap

lynx.db

tau.db

Node n

Pa
tr

o
l (

co
lle

ct
o

rs
)

CPU

GPU

NIC /proc

config

nvidia
-smi

MEM

cpu-spy

mem-spy

net-spy

nvi-spy

nvml-spy

EV
Pa

th

ClusterSpy

NVML

TAU

Lynx lynx-spy

tau-spy APP

Res. libs,
tools,
…

ClusterSpy

EV
Pa

th

Node n

Pa
tr

o
l (

co
lle

ct
o

rs
)

CPU

GPU

NIC /proc

config

nvidia
-smi

MEM

cpu-spy

mem-spy

net-spy

nvi-spy

nvml-spy

EV
Pa

th

ClusterSpy

NVML

TAU

Lynx lynx-spy

tau-spy APP

Res. libs,
tools,
…

Node n

Pa
tr

o
l (

co
lle

ct
o

rs
)

CPU

GPU

NIC /proc

config

nvidia
-smi

MEM

cpu-spy

mem-spy

net-spy

nvi-spy

nvml-spy

EV
Pa

th

ClusterSpy

NVML

TAU

Lynx lynx-spy

tau-spy APP

Res. libs,
tools,
…

p
lo

tt
in

g
 m

o
n

it
o

ri
n

g
d

at
a

(v
iz

)

Fig. 2. Monitoring in ClusterWatch. Gray dashed items indicate work-in-progress components. Blue and green components correspond to layers depicted in
Figure 1 and illustrate which components have been already implemented.

to the node, total amount of available memory per GPGPU
device, the power limit, maximum values of graphics, memory
and SM clocks, the compute mode, the serial number, and
the product name. The resource monitoring data include the
current “raw” values of the resource’s attributes (e.g., power
draw, used memory in MB) or basic metrics such as utilization
(e.g., GPGPU utilization in percentage, network load).

In addition to the description of the data, adding the new
spy requires implementation of a few functions to provide the
initialization of the spy and aggregator, the actual read routines
to obtain data from the resource, and optional processing
routines (e.g., to compute metrics); the example read routine
for the NVML spy is shown in Listing 4.

In the current implementation, spies may (1) collect raw
data and/or (2) preprocess some of the data. Preprocessing
is important for performance reasons, especially if large-scale
runs are taken into account that produce enormous amount of
raw data and the user is interested only in obtaining certain
metrics. The other reason for data preprocessing might be
ensuring the quality of monitoring data (e.g., dealing with out-
of-range values).

As a result, the data sent to the aggregator can be a
mixture of raw data and/or calculated metrics. In particular,
the cpu spy allows to obtain information about aggregated
cpu utilization (per node) or individual core usage within a
node; the memory spy calculates memory utilization as well
as buffers, cached, active, inactive, slab, mapped, swap cached,
and swap utilization; the net spy reports about network load
in terms of bytes transmitted, received or aggregated (both
transmitted and received) per network interface; the GPGPU
spy (both nvidia_smi and NVML) sends GPGPU utilization,
memory utilization and raw memory usage in MB, power
draw, performance state, and clocks related data (graphics
clock, memory clock, SM clock); the TAU spy logs occurrence

of specified user’s events such as MPI calls with parameters;
and Lynx spy will enable obtaining kernel-level metrics such
as the degree of branch divergence, memory efficiency, as well
as GPGPU application-level metrics, e.g., CPU-GPGPU data
movement costs.

The monitoring module provides also a simple graphical
tool, specifically a Python script exploiting matplotlib.pyplot
(a MATLAB-like plotting framework), that allows for basic,
yet useful visualization of monitoring data stored in Sqlite3
databases by the aggregator. The diagrams can be exported to
several popular graphics formats (e.g., png, jpg).

The implementation of a spy may be more or less challeng-
ing, depending on the degree of the exposure of monitoring
data by a monitoring data source. Some monitoring data
are exposed in a well-defined manner, e.g., through an API
(a file API for accessing the pseudo-file system /proc), or
a library (e.g., NVML). In other cases such as TAU [3],
the appropriate monitoring data exposure by a data source
has to be implemented in addition. For instance, in order to
implement the TAU spy we had to modify TAU sources to
enable the TAU events to be written out to a message queue
so the TAU spy can collect the data and send them to the
aggregator. The TAU spy also implements a prototype selective
monitoring functionality, i.e., the user can enforce starting or
stopping a collection of a specified TAU event.

The other interesting work-in-progress is the implementa-
tion of the Lynx spy. Similarly to the TAU spy, the Lynx spy
will offer the program-level monitoring; specifically, it will
enable reporting detailed GPGPU kernel-level metrics such as
the branch divergence, memory efficiency, CPU-GPGPU data
movement costs, obtained from Lynx [37]—the GPGPU code
profiling tool.

7

Listing 4. The monitoring data reading routine for the NVML spy.
int read_mon_nvml(void *data){

...
struct nvml_mon *p_rec = (struct nvml_mon*) data;
...
gettimeofday(&p_rec ->ts, NULL); // get the timestamp

for (i = 0; i < p_rec ->gpu_count; i++){
nvmlDevice_t p_device = NULL;
...
nvmlMemory_t mem;
if (nvmlDeviceGetMemoryInfo(p_device , &mem) == NVML_SUCCESS){

p_rec ->mem_used_MB[i] = mem.used / 1000000;
p_rec ->util_mem[i] = (float) mem.used / (float) mem.total * 100.0;

}
nvmlUtilization_t util_rates;
if (nvmlDeviceGetUtilizationRates(p_device , &util_rates) == NVML_SUCCESS){

p_rec ->util_gpu[i] = util_rates.gpu;
}
...

}
return ret;

}

D. Advanced Features
The primary use case for ClusterWatch is the online capture

and analysis of both node- and machine-level information
about the current state of GPGPU-based cluster machines.
There are several ongoing efforts to enhance ClusterWatch
with advanced monitoring features including (1) providing
scalable and flexible spy topologies based on EVPath Data
Flow Graphs (evDFGs), and (2) implementing the analytics
OpenTSDB module to enable long-term or historical analysis
of the application’s behavior.

• Scalable and Flexible Communication Topologies—
ClusterWatch relies on the centralized, many-to-one com-
munication topology. Although it is acceptable at our cur-
rent GPGPU cluster testbed, which has a relatively small
number of nodes (120 nodes on the Keeneland Initial
Delivery System and 264 nodes on the Keeneland Full-
Scale System), the centralized topology will obviously
not scale if the number of nodes increases. We have
started a development effort to leverage EVPath DFGs
in ClusterWatch. We have implemented the tool to easily
generate and deploy an arbitrary DFG and we have started
integration of the tool with ClusterWatch.

• OpenTSDB analytics—the current readers store the mon-
itoring data obtained by the aggregator from collectors in
the Sqlite3 database. ClusterWatch aims at providing a
complex analytics backend for the collected data. There
is an ongoing effort to develop an OpenTSDB-based
analytics engine to store the data and calculate interesting
metrics and relationships at runtime as well as provide
postmortem analysis.

IV. CLUSTERWATCH EXPERIMENTAL EVALUATION

We performed two types of experiments: (1) fidelity tests
on a local workstation and a single KIDS node, and (2) larger
scale measurements to observe the ClusterWatch overhead.
The evaluation of the TAU spy is a work in progress.

A. Fidelity Tests on a Single Node
In order to validate the fidelity of results reported by

ClusterWatch, we have performed validation experiments on
our local workstation for cpu, mem, and network spies. The
results are presented in Figure 3. The cpu spy was tested
by limiting the workload on workstation’s individual cores (a
workstation hosts Intel(R) Xeon(R) CPU X5365, 3.00GHz) to
30% and 60% with a cpulimit program, which is included
in the ClusterWatch distribution. Figure 3(a), presents the
expected workload under 60% workload on core 0. The
performed experiments showed that ClusterWatch correctly
reported cpu utilization under various workloads.

The mem spy was tested by allocating certain amount of
memory over short periods of time. Figure 3(b) shows the
results reported by ClusterWatch where 400MB of memory has
been malloc’ed eight times every five seconds. Again, our ex-
periments demonstrated that ClusterWatch reported expected
memory utilization.

Figure 3(c) and Figure 3(d) show the net spy tests—the
scp test and the ping test, respectively. Figure 3(c) shows the
scp test that contains two consecutive loops—the first loop
sends a 16MB file from the local workstation to the other
local machine ten times, and the following second loop sends
a 16MB file in the opposite direction ten times. The total load
presents the sum of bytes transmitted and received. The ping
test sends the 65KB packets to and from the workstation every
one second. In the scp test, we can observe that ClusterWatch
reports as anticipated constant outgoing network load for the
first loop, and next constant incoming network load for the
second loop. The ping test shows that ClusterWatch recorded
as expected ∼65-70KB receive network load, ∼65-70KB
transmitted network load, and ∼140KB cumulative network
load.

The validation of NVML spy was performed on a single
KIDS node by enabling both GPGPU spies, NVML spy and
nvidia_smi spy, and carrying out the comparison of their

8

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

CPU core utilization per node

core_0

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_1

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_2

1418697146
ranger

#core 4
Node Id

0

10

20

30

40

50

60

70

80

90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_3

(a) Cpu spy validation on a local workstation. The cpu workload has
been limited to 60% on core 0 by the cpulimit program.

0 10 20 30 40 50
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

Mem utilization per node

mem_util

0 10 20 30 40 50
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

mem_buffered

0 10 20 30 40 50
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

mem_cached

0 10 20 30 40 50
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

mem_active

0 10 20 30 40 50
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

mem_inactive

0 10 20 30 40 50
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

slab

0 10 20 30 40 50
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

mapped

0 10 20 30 40 50
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

swap_util

414696179
ranger

4041640 mem KB
2047992 swap KB

Node Id

0
10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

swap_cached

(b) Mem spy validation on a local workstation. An in-house program
allocated 400MB eight times every five seconds.

0 5 10 15 20 25 30 35
0

5000

10000

15000

20000

25000

30000

35000

lo
a
d
 [

K
B

]

eth0: nic_trans load per node

0 5 10 15 20 25 30 35
0

5000

10000

15000

20000

25000

30000

35000

lo
a
d
 [

K
B

]

eth0: nic_recv load per node

732640990
ranger

Node Id

0

5000

10000

15000

20000

25000

30000

35000

lo
a
d
 [

K
B

]

eth0: nic_total load per node

(c) Net spy validation on local workstations—an scp test: an in-house
script loops 10 times and sends a 16384 KiB file first from the
workstation to the other workstation, and next in the opposite direction
(the send loops were continually “scp-ing” a file).

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

lo
a
d
 [

K
B

]

eth0: nic_trans load per node

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

lo
a
d
 [

K
B

]

eth0: nic_recv load per node

298280712
ranger

Node Id

0

20

40

60

80

100

120

140

160

lo
a
d
 [

K
B

]

eth0: nic_total load per node

(d) Net spy validation on local workstations—a ping test in two direc-
tions, i.e., from the workstation and to the workstation; the test sent
ten 65507-byte packets; an interval between consecutive sends was one
second.

Fig. 3. ClusterWatch validation experimental results for cpu, memory, and network spies.

outputs. The results are presented in Figure 4. We have
observed minor discrepancies between reported values by the
NVML spy and nvidia_smi spy, specifically with respect to
memory readings. For instance, the total amount of memory
used by a GPU workload reported by the NVML spy is
200MB, 204MB, 205MB, whereas the nvidia_smi spy reports
191MB, 195MB. The other discrepancy is in the reported
total amount of available memory 5636MB, and 5375MB,
for the NVML spy and nvidia_smi spy, respectively. (The
NVML spy uses the NVML library, whereas nvidia_smi spy
executes the nvidia_smi utility provided by NVIDIA that
exploits the NVML library.) The overall outcome of this
experiment demonstrated that, apart from mentioned minor
discrepancies, both spies report similar values.

B. Overhead Measurements on Larger-scale Runs

We have tested the ClusterWatch prototype in larger scale
setups on the NICS KIDS machine (up to 64 nodes totaling to
192 GPGPUs) with LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) [18], [42] as a workload, a

GPU-accelerated classical molecular dynamics code used in
production runs. The KIDS node architecture is HP ProLiant
SL390 G7, with two 2.8 GHz Intel Xeon X5660 (Westmere 6-
core) per node, 24GB host memory per node, InfiniBand QDR
as interconnect, and three NVIDIA Tesla 2090 per node. KIDS
has 120 compute nodes.

LAMMPS offers potentials for a rich set of materi-
als (biomolecules, polymers, metals, semiconductors, coarse-
grained systems, mesoscopic systems). It can be used as a
generic parallel (MPI-based), spatial-decomposition particle
simulator at various scales (atomic, meso, or continuum) that
can be parameterized with an arbitrary input script.

For ClusterWatch testing purposes, we used LAMMPS
v. 5Mar2013 (compiled with OpenMPI v. 1.6.1 and Intel
compiler v. 12.1.5 20120612 on Keeneland Initial Delivery
System—KIDS [43], [44]) accelerated with a standard GPU
package (CUDA Toolkit v. 4.2).

In general, LAMMPS execution involves several execu-
tion stages, namely, pairing, neighboring, communication,
outputting, and other. The percentage share of those phases

9

depends on the executed input script. For the experiments,
we used the “melt” script distributed with LAMMPS sources
(in.melt.2.5.gpu); Figure 5 presents the measured percent-
age time share of those phases with respect to the overall
duration of the simulation in the function of the number of
GPGPUs. As the number of GPGPUs increases, the commu-
nication cost starts to dominate over the pairing phase, and for
192 GPGPUs it is about 52% of the overall duration of the
simulation, in comparison to about 40% spent in the pairing
phase.

12 24 48 96 192

0

20

40

60

GPGPU count

%

Melt

Pair Other Comm Neigh Outpt

Fig. 5. LAMMPS profile (pairing, neighboring, communication, outputting,
other) for the melt script configured with 256K atoms, 180K timesteps. All
percentage might not sum up to 100% for a particular GPGPU count due to
averaging and rounding errors. The diagram presents the average over 4 or 5
runs for a particular GPGPU count.

We ran ClusterWatch with the LAMMPS as a workload
to measure the ClusterWatch overhead. We compared the
baseline LAMMPS run with timings obtained from LAMMPS
runs executed with ClusterWatch running. After successful
execution, LAMMPS outputs a report containing various simu-
lation data including timings for the total LAMMPS simulation
duration, i.e., the loop duration. The reported loop duration
was used to evaluate the ClusterWatch overhead.

The absolute LAMMPS simulation timings with and with-
out ClusterWatch are presented in Figure 6(a); the percentage
with respect to the baseline run is presented in Figure 6(b).

The measured ClusterWatch overhead for 192 GPGPUs was
less than 3%.

We observed that the standard deviation between runs on a
large number of nodes can be significant. Figure 7 presents
the standard deviations over 5 or 8 runs for the baseline
runs and two different configuration of ClusterWatch—all
implemented spies enabled (apart from the TAU spy) and only
cpu/mem/net/nvml spies enabled.

The observed high standard deviations was the main premise
to measure overhead introduced on the local workstation. The
results are presented in Table II. The overhead is 4.5-fold

smaller on the isolated workstation (0.16%) in comparison to
a single KIDS node (0.72%).

TABLE II
CLUSTERWATCH OVERHEAD W.R.T. THE LAMMPS REPORTED “LOOP

TIME” FOR THE MELT INPUT SCRIPT ON A LOCAL WORKSTATION
AVERAGED OVER 10 RUNS EACH. LAMMPS (V. 5MAR2013).

Run name AVG Loop duration in [sec] STD DEV Overhead [%]

M-Baseline 224.95 0.29 0.00
M-5-spies 225.32 0.40 0.16

ClusterWatch can give insights about how system resources
are used at large scale. Figures 8—10 present the typical set
of monitoring data that can be obtained by running workloads
with ClusterWatch.

In particular, Figures 8—10 show monitoring data obtained
from LAMMPS executed with ClusterWatch on 192 GPGPUs.
In the experiment, LAMMPS was ran with three processes
per node, since the KIDS has three GPGPUs attached to a
node. The collector and aggregator nodes were configured to
perform measurements periodically every one second. Fig-
ure 8(a) shows the utilization per core captured by Cluster-
Watch and confirms that cores 1, 3, 5 were utilized during the
simulation on each of 64 compute nodes participating in the
LAMMPS simulation (in the experiment LAMMPS processes
were pinned to NUMA domain 1 that contains odd cores).
Figure 8(b) shows that in general the simulation used 20-30%
of memory per node. From Figure 9(b) and Figure 9(a), we
can learn that each node used mainly eth0 with 35-40KB total
network load (a sum of bytes transmitted and received), apart
from the aggregator node that is depicted as a ranger; the
total network load for the ranger node was ∼250KB. The
transmitting network load was at about 20KB per second,
whereas the receiving network load was at about 10-15KB
per second. Finally, a few metrics related to GPGPUs are
presented in Figure 10(a), Figure 10(b), and Figure 10(c)).
We can observe that all 192 GPGPUs were utilized at c.a.
25%. They used about 80% of total memory available on a
GPGPU. The GPGPU power draw was at the level 35%-40%
of the maximum power draw. We noticed that the change in
the GPGPU performance state was reported with a delay (the
12 value means that the GPGPU is in an idle state, the 0 value
means that the GPGPU is in a busy state.)

V. SUMMARY

In this paper, we present the design, prototype imple-
mentation, and evaluation of the ClusterWatch monitoring
system that aims at providing a flexible, pluggable monitoring
infrastructure capable of collecting monitoring system- and
program-level data, specifically targeting high-end GPGPU
clusters. We evaluate ClusterWatch by testing its fidelity and
measuring the overhead that for the LAMMPS workload
executed on 192 GPGPUs achieved ∼3%.

Finally, we describe our ongoing and future work that
will enhance ClusterWatch with advanced capabilities such
as GPGPU kernel-level monitoring with Lynx, scalable and
flexible topologies for large-scale setups with EVPath’s DFGs,

10

or advanced OpenTSDB-based analytics for enabling long-
term or historical analysis of the application’s behavior.

ClusterWatch has potential to provide a comprehensive
insight into utilization of resources at cluster, node, and
application levels that will help understand how to effectively
utilize computational resources.

VI. ACKNOWLEDGMENTS

Work supported in part by NSF grant 0910735.
We thank students Alexander Merritt and Naila Farooqui for

their work on the ClusterWatch transport layer, and Yanwei
Zhang for the TAU spy implementation.

REFERENCES

[1] “Ganglia site,” http://ganglia.sourceforge.net/, 2013.
[2] M. J. Brim, L. DeRose, B. P. Miller, R. Olichandran, and P. C. Roth,

“MRNet: A Scalable Infrastructure for the Development of Parallel
Tools and Applications,” Cray User Group 2010, May 2010, edinburgh,
Scotland.

[3] S. S. Shende and A. D. Malony, “The tau parallel performance system,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[4] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal,
T.-A. Nguyen, J. Cao, H. Abbasi, S. Klasky, N. Podhorszki, and
H. Yu, “FlexIO: I/O Middleware for Location-Flexible Scientific Data
Analytics,” 27th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2013), May 2013, Boston, MA.

[5] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar,
and M. Wolf, “Monalytics: online monitoring and analytics for
managing large scale data centers,” in Proceedings of the 7th
international conference on Autonomic computing, ser. ICAC ’10.
New York, NY, USA: ACM, 2010, pp. 141–150. [Online]. Available:
http://doi.acm.org/10.1145/1809049.1809073

[6] C. Wang, I. A. Rayan, G. Eisenhauer, K. Schwan, V. Talwar, M. Wolf,
and C. Huneycutt, “Vscope: middleware for troubleshooting time-
sensitive data center applications,” in Middleware 2012. Springer, 2012,
pp. 121–141.

[7] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. Peterson, “Lightweight,
high-resolution monitoring for troubleshooting production systems,”
in Proceedings of the 8th USENIX conference on Operating
systems design and implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 103–116. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855749

[8] U. Erlingsson, M. Peinado, S. Peter, and M. Budiu, “Fay: extensible
distributed tracing from kernels to clusters,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, ser.
SOSP ’11. New York, NY, USA: ACM, 2011, pp. 311–326. [Online].
Available: http://doi.acm.org/10.1145/2043556.2043585

[9] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt,
“Google-wide profiling: A continuous profiling infrastructure for data
centers,” IEEE Micro, vol. 30, no. 4, pp. 65–79, Jul. 2010. [Online].
Available: http://dx.doi.org/10.1109/MM.2010.68

[10] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale dis-
tributed systems tracing infrastructure,” Google Inc., Tech. Rep., 2010,
http://research.google.com/archive/papers/dapper-2010-1.pdf.

[11] Flume User Guide, Revision 0.9.4-cdh3u6 ed., Cloudera, March 2013,
http://archive.cloudera.com/cdh/3/flume/UserGuide/index.html.

[12] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Data Mining Workshops (ICDMW), 2010
IEEE International Conference on, 2010, pp. 170–177.

[13] A. Rabkin and R. Katz, “Chukwa: a system for reliable large-scale
log collection,” in Proceedings of the 24th international conference
on Large installation system administration, ser. LISA’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 1–15. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924976.1924994

[14] “Amazon cloudwatch,” http://aws.amazon.com/cloudwatch/, 2013.
[15] OpenTSDB manual, 2013, http://opentsdb.net/manual.html.
[16] I. Shafer, R. R. Sambasivan, A. Rowe, and G. R. Ganger, “Specialized

Storage for Big Numeric Time Series,” in Proceedings of the 5th
Workshop on Hot Topics in Storage and File Systems, June 2013.

[17] G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan, “Event-based
systems: opportunities and challenges at exascale,” in Proceedings of
the Third ACM International Conference on Distributed Event-Based
Systems, ser. DEBS ’09. New York, NY, USA: ACM, 2009, pp. 2:1–
2:10. [Online]. Available: http://doi.acm.org/10.1145/1619258.1619261

[18] S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular
Dynamics,” J. Comp. Phys., vol. 117, pp. 1–19, 1995.

[19] “Nagios site,” http://www.nagios.org/, 2013.
[20] “Munin site,” http://munin-monitoring.org/, 2013.
[21] “Host sFlow site,” http://host-sflow.sourceforge.net, 2013.
[22] “Heka–Data Acquisition and Collection Made Easy,” http://heka-

docs.readthedocs.org/en/latest/, 2013.
[23] “RRDtool–logging and graphing,” http://oss.oetiker.ch/rrdtool/, 2013.
[24] “sFlow standard site,” http://www.sflow.org, 2013.
[25] L. Chappell., Wireshark 101: Essential Skills for Network Analysis,

ser. Chappell University. Protocol Analysis Institute, Inc., Chappell
University, 2013. [Online]. Available: http://www.wiresharkbook.com

[26] R. Alexander and P. Phaal, “sFlow NVML GPU Structures,”
http://www.sflow.org/sflow_nvml.txt, August 2012.

[27] “Vampir site,” http://www.paratools.com/Vampir, 2013.
[28] “Scalasca,” http://www.scalasca.org/, 2013.
[29] “Periscope Performance Measurement Toolkit,”

http://www.lrr.in.tum.de/ periscop/, 2013.
[30] “Scalable Performance Measurement Infrastructure for Parallel Codes,”

http://www.vi-hps.org/projects/score-p/, 2013.
[31] “TAU—Tuning and Analysis Utilities,”

http://www.cs.uoregon.edu/research/tau/, 2013.
[32] ParaProf—User’s Manual, University of Oregon Performance Research

Lab, 2010, http://www.cs.uoregon.edu/research/tau/docs/paraprof/.
[33] “CUDA Profiling Tools Interface,” https://developer.nvidia.com/cuda-

profiling-tools-interface, 2013, nVIDIA. Developer Zone.
[34] “Performance Application Programming Interface,”

http://icl.cs.utk.edu/papi/, 2013.
[35] P. Yalagandula and M. Dahlin, “A scalable distributed information

management system,” in Proceedings of the 2004 conference
on Applications, technologies, architectures, and protocols for
computer communications, ser. SIGCOMM ’04. New York,
NY, USA: ACM, 2004, pp. 379–390. [Online]. Available:
http://doi.acm.org/10.1145/1015467.1015509

[36] S. Y. Ko, P. Yalag, I. Gupta, V. Talwar, D. Milojicic, and S. Iyer, “Moara:
Flexible and scalable group-based querying system,” in In Proceedings
of the 9th ACM/IFIP/USENIX Middleware, 2008.

[37] N. Farooqui, A. Kerr, G. Eisenhauer, K. Schwan, and S. Yalamanchili,
“Lynx: A dynamic instrumentation system for data-parallel applications
on gpgpu architectures,” in Proceedings of the 2012 IEEE International
Symposium on Performance Analysis of Systems & Software, ser. ISPASS
’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 58–67.
[Online]. Available: http://dx.doi.org/10.1109/ISPASS.2012.6189206

[38] G. Eisenhauer, “FFS Users Guide and Reference,”
http://www.cc.gatech.edu/systems/projects/FFS/manual.pdf, October
2011.

[39] ——, “The EVPath library website,”
http://www.cc.gatech.edu/systems/projects/EVPath/doxygen/index.html,
March 2013.

[40] “NVIDIA System Management Interface program,”
https://developer.nvidia.com, nvidia-smi.4.304.pdf, August 2011,
NVIDIA Corporation.

[41] “NVML web site,” https://developer.nvidia.com/nvidia-management-
library-nvml, 2013, NVIDIA Corporation.

[42] “LAMMPS Molecular Dynamics Simulator – LAMMPS WWW Site,”
http://lammps.sandia.gov, 2013, (distributed by Sandia National Labora-
tories).

[43] J. Vetter, R. Glassbrook, J. Dongarra, K. Schwan, B. Loftis, S. McNally,
J. Meredith, J. Rogers, P. Roth, K. Spafford, and S. Yalamanchili,
“Keeneland: Bringing Heterogeneous GPU Computing to the Computa-
tional Science Community,” Computing in Science Engineering, vol. 13,
no. 5, pp. 90–95, Sept-Oct 2011.

[44] “Keeneland web site,” http://keeneland.gatech.edu/, 2013.

11

0 50 100 150 200 250 300
0

5

10

15

20

25
gpu_0: gpu_util per node

0 50 100 150 200 250 300
0

1

2

3

4

5

6
gpu_0: mem_util per node

0 50 100 150 200 250 300
0

50

100

150

200
gpu_0: mem_used_MB per node

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
gpu_0: power_draw per node

1644578478
ranger

Node Id

0

2

4

6

8

10

12
gpu_0: perf_state per node

(a) Monitoring data for GPU0 and LAMMPS as a workload captured by the nvidia_smi spy on KIDS. All values are as % (y axis), apart from
mem_used_MB (in MB) and GPGPU performance state (an integer number 0-12; 0 meaning the “busy” state, and 12—“idle state.”)

0 50 100 150 200 250 300
0

5

10

15

20

25
gpu_0: gpu_util per node

0 50 100 150 200 250 300
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
gpu_0: mem_util per node

0 50 100 150 200 250 300
0

50

100

150

200

250
gpu_0: mem_used_MB per node

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
gpu_0: power_draw per node

1644578478
ranger

Node Id

0

2

4

6

8

10

12
gpu_0: perf_state per node

(b) Monitoring data for GPU0 and LAMMPS as a workload captured by the NVML spy on KIDS. All values are as % (y axis), apart from mem_used_MB
(in MB) and GPGPU performance state (an integer number 0-12; 0 meaning the “busy” state, and 12—“idle.”

Fig. 4. ClusterWatch validation experimental results for GPU spies.

12

3 6 12 24 48 96 192

0

200

400

600

800

GPGPU count

L
oo

p
du

ra
tio

n
in

se
c

Melt

Baseline
cpu/mem/net/nvml/nvidia-smi

(a) LAMMPS/melt: 256K atoms; 36K timesteps for 3 GPGPU
count, 180K timesteps for 6,12,24,48,96,192 GPGPU count.

3 6 12 24 48 96 192

1

2

3

0.72

1.36 1.41
1.55

0.81

0.43

2.92

GPGPU count

%
w

.r.
t.

to
th

e
ba

se
lin

e
ru

n

AVG-Melt

cpu/mem/net/nvml/nvidia-smi

(b) LAMMPS/melt: 256K atoms, 3 GPGPUs—36K timesteps and
6, 12, 24, 48, 96, 192—180K timesteps timesteps each.

Fig. 6. ClusterWatch overhead w.r.t. the LAMMPS reported loop time for the melt input script Figure 6(a), and corresponding overhead percentage Figure 6(b).
The diagrams present average over 4 or 5 runs for a particular GPGPU count.

M
-B

ase
lin

e-8
-ru

ns

M
-C

/M
/N

/N
l/N

i-5
-ru

ns

M
-C

/M
/N

/N
l-8

-ru
ns

70

80

90

Application variant

L
oo

p
du

ra
tio

n
in

se
c

192 GPGPUs

Fig. 7. Standard deviations over multiple LAMMPS runs on 192 GPGPUs for the melt baseline (8 runs), melt cpu/mem/net/nvml/nvidia-smi (5 runs), and
melt cpu/mem/net/nvml (8 runs). The diagram data come from both data presented in Figure 6 and additional runs (i.e., not used for plotting in diagrams
from Figure 6).

13

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

] CPU core utilization per node

core_0

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_1

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_2

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_3

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_4

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_5

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_6

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_7

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_8

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_9

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_10

115355283
#core 12

122261940
#core 12

152898022
#core 12

172994579
#core 12

183042858
#core 12

349433048
#core 12

357967826
#core 12

435835848
#core 12

465980684
#core 12

484638599
#core 12

489388460
#core 12

533119702
#core 12

533384040
#core 12

594486606
#core 12

610154950
#core 12

614166775
#core 12

617024178
#core 12

665826929
#core 12

670519480
#core 12

707476233
#core 12

757660316
#core 12

785174657
#core 12

825310461
#core 12

840978805
#core 12

848301850
#core 12

862361954
#core 12

929500973
#core 12

935764334
#core 12

961196738
#core 12

970053164
#core 12

1066995490
#core 12

1087697913
#core 12

1168233859
#core 12

1169615191
#core 12

1208653882
#core 12

1209202438
#core 12

1216488054
#core 12

1246386100
#core 12

1426250408
#core 12

1426477317
#core 12

1435824989
#core 12

1450623129
#core 12

1482924761
#core 12

1493616335
#core 12

1513560843
#core 12

1515321132
#core 12

1527488778
#core 12

1533335752
#core 12

1589366808
#core 12

1628442929
#core 12

1650885761
#core 12

1676829292
#core 12

1779259514
#core 12

1801475438
#core 12

1815346063
#core 12

1850694577
#core 12

1875805333
#core 12

1937456455
#core 12

1996307484
ranger

#core 12

2024465122
#core 12

2026205531
#core 12

2041968614
#core 12

2060721269
#core 12

2105833843
#core 12

Node Id

0
10
20
30
40
50
60
70
80
90

100

C
P
U

 c
o
re

s\
u
ti

l
[%

]

core_11

(a) Monitoring cores utilization in ClusterWatch (64 nodes, melt).

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

Mem utilization per node

mem_util

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

mem_buffered

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

mem_cached

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

mem_active

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

mem_inactive

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

slab

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

mapped

0 50 100 150 200 250 300 350
0

10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

swap_util

115355283
24726112 mem KB

0 swap KB

122261940
24726112 mem KB

0 swap KB

152898022
24726112 mem KB

0 swap KB

172994579
24726112 mem KB

0 swap KB

183042858
24726112 mem KB

0 swap KB

349433048
24726112 mem KB

0 swap KB

357967826
24726112 mem KB

0 swap KB

465980684
24726112 mem KB

0 swap KB

484638599
24726112 mem KB

0 swap KB

489388460
24726112 mem KB

0 swap KB

533119702
24726112 mem KB

0 swap KB

533384040
24726112 mem KB

0 swap KB

594486606
24726112 mem KB

0 swap KB

610154950
24726112 mem KB

0 swap KB

614166775
24726112 mem KB

0 swap KB

617024178
24726112 mem KB

0 swap KB

665826929
24726112 mem KB

0 swap KB

670519480
24726112 mem KB

0 swap KB

707476233
24726112 mem KB

0 swap KB

757660316
24726112 mem KB

0 swap KB

785174657
24726112 mem KB

0 swap KB

825310461
24726112 mem KB

0 swap KB

840978805
24726112 mem KB

0 swap KB

848301850
24726112 mem KB

0 swap KB

862361954
24726112 mem KB

0 swap KB

929500973
24726112 mem KB

0 swap KB

935764334
24726112 mem KB

0 swap KB

961196738
24726112 mem KB

0 swap KB

970053164
24726112 mem KB

0 swap KB

1066995490
24726112 mem KB

0 swap KB

1087697913
24726112 mem KB

0 swap KB

1168233859
24726112 mem KB

0 swap KB

1169615191
24726112 mem KB

0 swap KB

1208653882
24726112 mem KB

0 swap KB

1209202438
24726112 mem KB

0 swap KB

1216488054
24726112 mem KB

0 swap KB

1246386100
24726112 mem KB

0 swap KB

1426250408
24726112 mem KB

0 swap KB

1426477317
24726112 mem KB

0 swap KB

1435824989
24726112 mem KB

0 swap KB

1450623129
24726112 mem KB

0 swap KB

1482924761
24726112 mem KB

0 swap KB

1493616335
24726112 mem KB

0 swap KB

1513560843
24726112 mem KB

0 swap KB

1515321132
24726112 mem KB

0 swap KB

1527488778
24726112 mem KB

0 swap KB

1533335752
24726112 mem KB

0 swap KB

1589366808
24726112 mem KB

0 swap KB

1628442929
24726112 mem KB

0 swap KB

1650885761
24726112 mem KB

0 swap KB

1676829292
24726112 mem KB

0 swap KB

1779259514
24726112 mem KB

0 swap KB

1801475438
24726112 mem KB

0 swap KB

1815346063
24726112 mem KB

0 swap KB

1850694577
24726112 mem KB

0 swap KB

1875805333
24726112 mem KB

0 swap KB

1937456455
24726112 mem KB

0 swap KB

1996307484
ranger

24726112 mem KB
0 swap KB

2024465122
24726112 mem KB

0 swap KB

2026205531
24726112 mem KB

0 swap KB

2041968614
24726112 mem KB

0 swap KB

2060721269
24726112 mem KB

0 swap KB

2105833843
24726112 mem KB

0 swap KB

Node Id

0
10
20
30
40
50
60
70
80
90

100

u
ti

l
[%

]

swap_cached

(b) Monitoring memory utilization in ClusterWatch (64 nodes, melt).

Fig. 8. The ClusterWatch experimental results with LAMMPS as a workload on 64 nodes (192 GPGPUs)–the cpu spy and memory spy on KIDS. There
were 3 LAMMPS processes per node, each used one GPGPU; the LAMMPS processes were pinned to NUMA domain 1 (odd cores).

14

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0
lo

a
d
 [

K
B

]
ib0: nic_trans load per node

0 50 100 150 200 250 300 350
0.00

0.02

0.04

0.06

0.08

0.10

0.12

lo
a
d
 [

K
B

]

ib0: nic_recv load per node

11535528312226194015289802217299457918304285834943304835796782643583584846598068448463859948938846053311970253338404059448660661015495061416677561702417866582692967051948070747623375766031678517465782531046184097880586236195492950097393576433496119673897005316410669954901087697913116823385911696151911208653882120920243812164880541246386100142625040814264773171435824989145062312914829247611493616335151356084315153211321527488778153333575215893668081628442929165088576116768292921779259514180147543818153460631850694577187580533319374564551996307484
ranger

20244651222026205531204196861420607212692105833843

Node Id

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lo
a
d
 [

K
B

]

ib0: nic_total load per node

(a) Monitoring network load (ib0) in ClusterWatch (64 nodes, melt).

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

lo
a
d
 [

K
B

]

eth0: nic_trans load per node

0 50 100 150 200 250 300 350
0

50

100

150

200

lo
a
d
 [

K
B

]

eth0: nic_recv load per node

11535528312226194015289802217299457918304285834943304835796782643583584846598068448463859948938846053311970253338404059448660661015495061416677561702417866582692967051948070747623375766031678517465782531046184097880586236195492950097393576433496119673897005316410669954901087697913116823385911696151911208653882120920243812164880541246386100142625040814264773171435824989145062312914829247611493616335151356084315153211321527488778153333575215893668081628442929165088576116768292921779259514180147543818153460631850694577187580533319374564551996307484
ranger

20244651222026205531204196861420607212692105833843

Node Id

0

50

100

150

200

250

300

lo
a
d
 [

K
B

]

eth0: nic_total load per node

(b) Monitoring network load (eth0) in ClusterWatch (64 nodes, melt).

Fig. 9. The ClusterWatch experimental results with LAMMPS as a workload on 64 nodes (192 GPGPUs) on KIDS–the net spy.

15

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30
gpu_0: gpu_util load per node

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90
gpu_0: mem_used_MB load per node

0 50 100 150 200 250 300 350
0

10

20

30

40

50
gpu_0: power_draw load per node

11535528312226194015289802217299457918304285834943304835796782643583584846598068448463859948938846053311970253338404057085192159448660661015495061416677561702417866582692967051948070747623375766031678517465782531046184097880586236195492950097393576433496119673897005316410669954901087697913116823385911696151911208653882120920243812164880541246386100142625040814264773171435824989145062312914829247611493616335151356084315153211321527488778153333575215893668081628442929165088576116768292921779259514180147543818153460631850694577187580533319374564551996307484
ranger

20244651222026205531204196861420607212692105833843

Node Id

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
gpu_0: perf_state load per node

(a) Monitoring GPGPU utilization (GPU0) in ClusterWatch (64 nodes, 192 GPGPUs, melt).

0 50 100 150 200 250 300 350
0

5

10

15

20

25
gpu_1: gpu_util load per node

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80
gpu_1: mem_used_MB load per node

0 50 100 150 200 250 300 350
0

10

20

30

40

50
gpu_1: power_draw load per node

11535528312226194015289802217299457918304285834943304835796782643583584846598068448463859948938846053311970253338404057085192159448660661015495061416677561702417866582692967051948070747623375766031678517465782531046184097880586236195492950097393576433496119673897005316410669954901087697913116823385911696151911208653882120920243812164880541246386100142625040814264773171435824989145062312914829247611493616335151356084315153211321527488778153333575215893668081628442929165088576116768292921779259514180147543818153460631850694577187580533319374564551996307484
ranger

20244651222026205531204196861420607212692105833843

Node Id

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
gpu_1: perf_state load per node

(b) Monitoring GPGPU utilization (GPU1) in ClusterWatch (64 nodes, 192 GPGPUs, melt).

0 50 100 150 200 250 300 350
0

5

10

15

20

25
gpu_2: gpu_util load per node

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80
gpu_2: mem_used_MB load per node

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

45
gpu_2: power_draw load per node

11535528312226194015289802217299457918304285834943304835796782643583584846598068448463859948938846053311970253338404057085192159448660661015495061416677561702417866582692967051948070747623375766031678517465782531046184097880586236195492950097393576433496119673897005316410669954901087697913116823385911696151911208653882120920243812164880541246386100142625040814264773171435824989145062312914829247611493616335151356084315153211321527488778153333575215893668081628442929165088576116768292921779259514180147543818153460631850694577187580533319374564551996307484
ranger

20244651222026205531204196861420607212692105833843

Node Id

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
gpu_2: perf_state load per node

(c) Monitoring GPGPU utilization (GPU2) in ClusterWatch (64 nodes, 192 GPGPUs, melt).

Fig. 10. The ClusterWatch experimental results with LAMMPS as a workload on 64 nodes (192 GPGPUs) on KIDS–the nvml spy.

