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Abstract—Increased power and heat dissipation in
microprocessors impose limitations on performance scaling.
Power and thermal management techniques coupled with
workload dynamics cause increasing spatiotemporal variations
in electrical and thermal stresses. The coupling between various
physical phenomena (e.g., power, temperature, reliability,
delay) will be critical to microarchitectural operations in
future processors. Thus, we need modeling tools to enable the
exploration of such physical interactions and drive development
of microarchitectural solutions. This paper introduces a novel
framework, Energy Introspector (EI), for the coordinated
simulation of microarchitecture and physics models. The EI
framework features flexible modeling of processor component
hierarchy that enables simulating different microarchitecture
and package designs. The proposed framework uses standardized
interface to drive different implementations of physics models
and captures their interactions. The EI supports parallel
computation of models in anticipation of large-scale simulations
(e.g., high core-count processors). We present a case study using
the EI framework to assess reliability and performance tradeoffs
with a full-system cycle-level simulation of an asymmetric chip
multiprocessor (ACMP).

I. INTRODUCTION

Sustaining microprocessor performance growth is
challenged by physical limitations imposed by increased power
and heat dissipation. Power and thermal limits are typically
addressed using a variety of techniques including thread
scheduling and migration, dynamic voltage-frequency scaling
(DVFS), power gating (PG), etc. These techniques combined
with inherent workload dynamics cause spatiotemporal
variations of throughput, power, and temperature distributions.
The resulting electrical and thermal stresses alter device
properties and cause gradual and non-uniform device
degradation across the chip. As industry moves to smaller
feature sizes, performance will become increasingly dominated
by the physics. The challenge is in understanding how the
physics is manifested at the microarchitecture level. This
requires simulation and modeling environment that can
capture multiple distinct physical phenomena and the impact
on the microarchitecture.

The principal modeling challenge is to accurately
capture the interactions between multiple, distinct physical
phenomena; multi-physics modeling. We refer to collective
interaction of these phenomena and their architecture-level
impact as processor physics and its modeling process
as coordinated architecture-level simulation. In coordinated
architecture-level simulation, computations of distinct physical

phenomena occur in the same domain, interacting and
affecting with each other. Thus, an integrated modeling
environment must 1) include models of multiple distinct
physical phenomena, 2) reconcile the concurrent computation
of these models, and 3) accurately model the inter-dependence
between the physical phenomena.

In this paper, we present a coordinated architecture-level
simulation framework called Energy Introspector (EI). The
goal of the EI framework is to facilitate microarchitectural
exploration of tradeoffs between performance, energy,
temperature, reliability, etc. In particular, we seek to
design a universal, scalable, and flexible interface to
incorporate new models as they are developed, and address
practical issues of using the framework across various
microarchitecture simulators. The EI framework features
flexible modeling of processor component hierarchy that
enables simulating different microarchitecture and package
designs. Microarchitectural units are represented by modeling
components (i.e., source components) and placed in a
processor package (i.e., package component) via die partitions
(i.e., partition components), leading to natural connection of
microarchitecture, floorplanning, and package. The processor
hierarchy is formed by modeling components including
package, partition, and source-level components, and various
physical models are attached to the modeling components
at different levels of hierarchy. The EI provides a simulator
application programming interface (API) to drive the
computations of different physical models and automate
their interactions via modeling components. Computed results
are tagged with time information to correctly synchronize
between multiple physical models and microarchitecture
simulation. Thus, the EI framework enables us to construct the
physical environment corresponding to microarchitecture to be
simulated and reflect their inter-dependencies. The followings
summarize the contributions of the proposed EI framework.

1) Compatibility: The EI framework does not rely
on specific implementation of models. Any models
in C/C++ can be integrated into the simulation
framework. This is achieved by standardizing models
via subclassing similar models into the same library.

2) Usability: The standardization of models facilitates
the use of different models via the same virtual
functions (interface). Thus, microarchitecture
simulation use the same function calls to drive
computations regardless of which models are
actually used.



3) Flexibility: The framework can be configured to
model any microarchitecture via the notion of pseudo
components. The pseudo components form a tree
hierarchy that is arbitrarily configurable, and library
models are linked to appropriate pseudo components.
This feature also enables the mixed use of multiple
distinct models for different components to better
represent the processor characteristics.

4) Coordination: The EI orchestrates the cross-reference
of computed results between library models and
linked pseudo components (e.g., between temperature
and reliability). The data are tagged with time and
period information for correct time synchronization
among different simulators and models.

5) Scalability: The EI supports parallel execution for
large-scale simulation via message passing interface
(MPI) implementation. Microarchitecture simulators
and coupled EI computations may run in parallel,
and the EI itself can also run in parallel in multiple
MPI ranks. In addition, each EI process in an MPI
rank can be multi-threaded to perform independent
computations in parallel.

The remainder of the paper is organized as follows. We first
summarize related works in architecture-level modeling. Then,
we propose the EI framework for coordinated architecture
simulation and detail its implementation. Lastly, a case
study as an exercise of reliability/performance tradeoff
is presented based on transient degradation analysis of
race-to-idle execution compared to normal execution. We argue
that an infrastructure such as the EI is essential to explore such
tradeoffs.

II. MODEL CATEGORIES AND RELATED WORKS

In the past decade, the computer architecture community
has put great effort into developing useful models and tools
for the design space exploration of future microprocessor
technologies and microarchitectures. The usefulness of models
would be defined in terms of accuracy, speed, applicability
to different technologies, and flexibility to explore various
microarchitecture designs. Modeling tools both drive and limit
research capabilities and directions at the same time. In this
section, the architecture-level models of the most widely
explored physical properties are reviewed, and the limitations
of the models are presented. Our proposed framework
accommodates all of these models. This section reviews
many of the models available in the computer architecture
community as background to their integration in the EI
framework. Readers familiar with these models may skip ahead
to Section III.

A. Architecture Modeling

The architecture-level design space exploration is largely
based on the logical simulation of microarchitectural
components and functions. With continued multi-core scaling
and preference to architectural heterogeneity, building
full-system environment requires more complex simulation
capabilities and models; large core-count simulation with
heterogeneous architectures, cache and coherence protocol
modeling, on-chip network, and memory system. The
individual component models can be implemented in numerous

ways and vary in terms of functionality, detail, flexibility,
speed, scalability, supported instruction set architecture (ISA),
etc. In this paper, we focus on building scalable full-system
environment for the co-simulation of physical characteristics
rather than discussing the traits of individual component
model. The challenge of architecture modeling is to configure
a coherent combination of component models, depending on
simulation purpose and features of individual models. The
SST [1] and Manifold [2] infrastructures support configurable
full-system architecture simulation environment by selectively
building component models among a variety of integrated
models including gem5 [3], Zesto [4], Qsim [5], Orion
[9], DRAMsim [11], etc. In addition, the SST and Maifold
both provide scalable parallel simulation based on the MPI
that is a key to manycore simulations (Fig. 1), whereas a
single-threaded use of heavy core models such as gem5 is
practically limited to a few core simulation.
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Fig. 1. Example of an MPI-based parallel manycore simulation environment
based on Manifold discrete event simulation (DES) kernel.
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Fig. 2. Architectural decomposition into components within which
architectural accesses and switching activities are characterized.

The architecture models generate statistics that differ
by executed workloads and architectural configuration.
The statistics are used to analyze the characteristics of
input workloads and microarchitecture. The most important
architectural statistics used for estimating physical phenomena
are performance (or access) counts. They represent switching
activities of architectural components as depicted in Fig. 2,
which can be used to estimate dynamic energy dissipation in
conjunction with circuit-level models. The counters at each
component are differentiated by architectural behaviors such
as data array reads/writes, tag array accesses, logical switching
activities, etc. Typically high-level architecture models do
not capture bit-level switching behavior due to modeling
and simulation complexity unless specially focused on a
component-level analysis.



B. Power Modeling

Energy or power is the most widely explored yet
challenging physical phenomenon that must be associated with
microarchitecture and workload features. There are largely
two types of power models. First, an analytical model is
based on experimental data measured from target processors.
For instance, measured power is used to find weight factors
of polynomial equations with respect to key metrics such
as voltage, frequency, cycles per instruction (CPI), cache
miss rate, etc [19]. The difficulty of using this approach
lies on applying the model to new microarchitectures and
technologies. The second approach relies on access counts
acquired from architecture models. A circuit-level analysis
of a modeled component is performed to estimate energy
dissipation per access type (e.g., read, write). The dynamic
energy is calculated as a sum of the product of access counts
(Cacc) and per-access energy (Eacc) for each access type
during the observation period (Tobserv), and total power is sum
of dynamic and leakage energies divided by time.

P (t) =

{
N∑

T=1

Eacc,T · Cacc,T + Eleak

}
/Tobserv (1)

This approach does not capture bit-level detail since it
does not consider the number of switching bits thus energy
variation at each access. However, because of flexibility to
model various architecture configurations and applicability to
different technologies, this approach is most popularly used
for architecture-level power modeling as found in Cacti [6],
McPAT [7], Wattch [8], Orion [9], DSENT [10], DRAMsim
[11], etc. Cacti was one of the early architecture-level models
that supports rapid estimation of energy, area, and timing of
cache and memory structures [6]. Extending Cacti, McPAT
added a variety of non-cache models such as instruction
decoders, network, memory controller, functional units, etc [7].
Wattch was a widely used tool for dynamic power estimation
based on a capacitance model and performance counters [8].
Orion is a detailed on-chip network model that estimates area
and power based on a capacitance model of register-based
FIFO buffers, router clocks, and physical links [9]. DSENT
is an extended model of Orion and added an optical network
model [10]. DRAMsim is a cycle-accurate memory simulator
whose power calculation is based on Micron data sheets [11].

In full-system design space exploration, power is not
only related to microarchitecture, workload, circuit design,
and device technology but also advanced control techniques
such as dynamic voltage and frequency scaling, power gating,
thread migration, etc. Moreover, leakage power and operable
clock frequency are functions of temperature, whose problems
cannot be addressed without incorporating thermal modeling.
Fig. 3 (a) an exponential dependency of leakage power on
temperature and (b) an example of spatial variation of leakage
power across 64-core processor die.

Despite strong coupling between power and temperature,
few efforts are found to involve aforementioned modeling
tools into research at the intersection of microarchitecture,
workload, energy/power, and temperature due to complexity,
speed, and efforts to integrate them. Thus, finding an effective
way of incorporating useful physical models into design space
exploration tools is a challenging task.
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Fig. 3. (a) Temperature and leakage power dependency, and (b) spatial
variation of temperature across 64-core processor die (Fig. 9, Table I),
measured using McPAT [7] and HotSpot [13].

C. Thermal Modeling

Increased power density caused critical thermal problems in
microprocessor packaging and cooling. Thermal modeling and
management became another important topic for architecture
research. HotSpot [13] is the most popular temperature
model that brought thermal problems into architecture-level
analysis and design space exploration. A processor package
is designed as a volume of thermal grid cells that are
comprised of thermal resistors and capacitors as depicted in
Fig. 4. Thermal modeling is to solve differential equations
derived from RC-composed thermal cells using the energy
conservation property. Power dissipation is input to the source
thermal cells. HotSpot divides the source layer into blocks
called floorplans that is the unit block of power dissipation.
Floorplan-level power is evenly divided into thermal cells that
correspond to the location of floorplans. HotSpot supports
temperature modeling of 2-dimensional packages comprised
of substrate, source-layer silicon, thermal interface material,
heat spreader, and heat sink layers [13]. Although HotSpot
can configure vertically stacked source layers, it is not suitable
to model 3-dimensional integrated circuits (3D ICs) due
to the lack of important 3D package components such as
through-silicon-vias (TSVs). 3D-ICE [14] supports inter-layer
liquid cooling model of 3D ICs. It also utilizes floorplan-based
power mapping similar to HotSpot. In both HotSpot and
3D-ICE as standalone tools, offline power traces are used to
perform steady-state and transient power simulations. Such an
interface does not capture power-temperature interactions and
cannot be applied to design space exploration using dynamic
control techniques such as DVFS.
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Fig. 4. A thermal cell model [13], [14].

D. Degradation and Reliability Modeling

Continued technology scaling and increased power
density caused reliability concerns in microprocessors.



Moreover, increase of power and heat dissipation accelerates
the degradation of silicon devices. Thus, early failed
components threaten performability and reliability of
processors. Traditionally reliability was characterized
at the device-level. Srinivasan et al. in [16] presented
architecture-level modeling of lifetime reliability. In this work,
the lifetime reliability represented as mean-time-to-failure
(MTTF) or failures-in-time (FITs) is modeled based on
device-level characteristics. Each failure mechanism (e.g.,
electromigration, negative-bias temperature instability, etc.) is
modeled as an exponential distribution with its own failure
rate λ. Failure occurs when at least one failure mechanism
takes into effect. The system-level reliability can thus be
modeled as a series system of failure mechanisms; the system
operates only when none of the in-series models fail. Since
reliability is a function of various operation conditions such
as switching activity, voltage, frequency, temperature, and
stress time, reliability analysis cannot be performed without
the co-simulation of multi-physics.

E. Coordinated Architecture Modeling

Interactions between microprocessor physical properties
require a composite modeling environment. Earlier related
works focused on characterizing a single target phenomenon,
based on simplified assumption of other variables. However,
such simplification inadvertently overlooks dynamic
interaction between physical properties. For instance,
power is a function of microarchitecture and workload.
Power dissipation leads to temperature rise, and increased
temperature again affects leakage power as shown in Fig.
3. Electrical and thermal stresses induced by switching
activities cause degradation of silicon devices, which in
turn affect timing and power. Processor control techniques
place another degree of interaction by dynamically changing
voltage and frequency levels, turning off cores, or applying
different scheduling policies. The cyclic interactions between
microarchitecture and physics cannot be captured by a single
instance of a model. Thus, coordinated architecture modeling
is an inevitable choice for accurate design space exploration.

A related work regarding coordinated architecture
modeling is found in [19]. Bartolini et al. designed a virtual
platform for the design space exploration of multicore
processors by including the models of microarchitecture,
power, temperature, and reliability. The authors also
emphasized the importance of co-simulation of multiple
physical properties with microarchitecture; a trace-driven
cascaded simulation loses important information of
cross-dependency, and thus simulation accuracy degrades
[19]. Bartolini et al. composed a virtual platform on
MATLAB/Simulink by incorporating Simics for architecture
modeling, measurement-based power and thermal models
tuned for Intel Xeon processors [19]. This work contributes
coordinated modeling, but is target architecture specific and
therefore difficult to extend.

III. ARCHITECTURE-LEVEL MODELING OF
INTERACTIVE MICROPROCESSOR PHYSICS

Coordinated architecture simulation captures interactions
among microprocessor physical phenomena and their impact
on the microarchitecture. Such modeling enables the

exploration of more complex problems. Separate use of models
driven by offline traces cannot address the issues, where no
physical interactions are reflected in pre-generated traces.
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Fig. 5. Architecture-level modeling of interactive microprocessor physical
phenomena and microarchitecture.

Figure 5 shows the model of architecture-level physical
interactions. Given microarchitecture and technology,
the execution of workload incurs switching activities at
architecture components in data paths. Switching activities
are represented as access counts and used to calculate
dynamic power dissipation. Leakage power and temperature
are assumed to be constant for short cycle periods. Power
results are mapped onto thermal blocks (i.e., floorplans), and
temperature is computed based on power dissipation during
the cycle period. Stress conditions such as voltage, frequency,
temperature, and time cause degradation/recovery effects [16],
[18] and change device-level characteristics (i.e., technology
parameters). Processor management involved in the cycle
alters the execution of cores based on control decisions. In
the next cycle, all computations of physical phenomena are
affected by updated conditions and variables.

IV. SIMULATION FRAMEWORK FOR INTERACTIVE
ARCHITECTURE AND PHYSICS MODELS

Designing a coordinated architecture simulation framework
to model interactive physics and microarchitecture is a
challenging and time-consuming process. There are various
engineering problems that must be taken into account to
implement a universal, flexible, and scalable simulation
framework. We introduce a coordinated architecture simulation
interface called Energy Introspector (EI) and describe its
modeling methodology.

A. Design Motivation

We note that there already exist various modeling tools
popularly used in the community. Great amount of effort has
been invested to develop and validate the models, so utilizing
those models is a reasonable start. We elaborate on developing
sustainable framework that interacts with various models
instead of discussing the accuracy or novelty of individual
models. A variety of models are developed for different
purposes, and no single model suffices all requirements
(i.e., accuracy, speed, scalability, flexibility). The architecture
community continues to develop new models or update



existing tools along with technology trends. Thus, a simulation
framework must be compatible with various implementations
of models and open to integration of new models. These
features are distinct from the works of Bartolini et al. [19]
where the presented virtual platform was based on a specific
set of experimental models. In addition, the framework should
not be constrained to certain microarchitecture or packaging
design to limit the extent of design space exploration.

B. Standardization of Models

All models have different functionality and usage.
Supporting all different features on the main interface
eventually hinders the scalability of framework. In the EI
framework, four categories called model libraries are defined;
energy, thermal, reliability, and sensor libraries. The following
summarizes the functions of the model libraries.

• Energy library:
− Area, per-access energy estimation
− Thermal design power (TDP), runtime power
calculation
− Runtime variable update
− Models: McPAT, Orion, DRAMsim, IntSim, etc.

• Thermal library:
− Static and transient temperature computation
− Floorplan power mapping
− 3D IC layer indexing
− Runtime variable update
− Models: 3D-ICE, HotSpot, etc.

• Reliability library:
− Degradation estimation
− Failure probability computation
− Runtime variable update
− Models: electromigration, NBTI, TDDB, HCI, etc.

• Sensor library:
− Data read; read noise and delay
− Models: Sensors of temperature and delay

Any model being integrated into the EI framework becomes
a subclass of one of the libraries. Each library defines a set
of virtual functions that an integrated model must provide.
Models that fall into the same library are called with same
virtual functions. The interface is thus standardized regardless
of which model is used underneath. For instance, both
HotSpot and 3D-ICE are wrapped into the thermal library, and
temperature is calculated by calling the same virtual functions.

C. Processor Hierarchy and Pseudo Components

Different physical properties are characterized at different
levels of design abstraction. For example, energy/power is
characterized at architecture components with respect to
performance counts. Temperature is computed at die floorplan
and package levels. Reliability is typically computed at the
floorplan level. We need a formation that enables us to couple
these models in a coordinated and cohesive manner since they
operate at distinct levels of modeling abstraction. We define the
notion of pseudo component hierarchy in the EI framework.

The processor hierarchy is represented as pseudo
component tree as in Fig. 6. A thermal library model is linked

to package-level component that contains other components.
A package-level component does not need to be the tree
root, and there can be multiple roots to simulate different
chip packages. The thermal library designates partition-level
components that work similar to thermal floorplans of
HotSpot [13] and 3D-ICE [14]. Reliability is characterized
at this level. The pseudo component hierarchy is arbitrarily
configurable, and there can be intermediate components
between package and partition-level components, depending
on processor hierarchy formation. The pseudo component tree
continues under the partition-level component. Tree leaves are
source-level components that energy library models estimate
power dissipation with respect to access counts obtained from
architecture simulation or measurement. The power results
estimated at source-level components are summed upward
the tree, and partition-level power is the sum of all child
source components powers. This is a key difference between
partitions and thermal floorplans, where floorplans themselves
are power units in thermal models [13], [14]. Shrinking size
of architectural components with continued technology scaling
requires high resolution of thermal grids to have reasonable
mapping between floorplans and thermal cells. In addition, it is
practically impossible to place every architectural component
on silicon die and find exact coordinates (e.g., width/length
ratio, x-y location) in early-stage design space exploration. A
better solution is to group architecturally and technologically
similar components into the same partition and use it as a
thermal floorplan. Similarly, results computed at the high-level
components in the hierarchy such as temperature are applied
to sub-tree components, if the data are utilized by the library
models of child components.
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Fig. 6. An example of pseudo component hierarchy tree with components
linked to model libraries.

Pseudo components are not only used to construct a
processor configuration but also to match the discrepancy
between architecture simulators and energy library models.
In general, architecture simulators and models have different
levels of details to define a configuration. A pseudo component
represents a unit that the model is capable of estimating. It
can be a logic gate, wire, architectural block (e.g., cache,
functional unit), pipeline stage, or even entire processor
package. Thus, pseudo components represent the modeling
granularity. Binding model libraries to pseudo components
enables mixed used of multiple libraries to better characterize
the processor instead of relying on a sole model.



D. Coordination of Architecture Models and Simulation

A processor is modeled by the pseudo component
hierarchy. The use of models is standardized via grouping
models into libraries, and model libraries are instantiated at
appropriate pseudo components. Computed results of library
models are stored in the runtime data queue of pseudo
components and synchronized through the pseudo component
hierarchy. For instance, power calculated at source-level
components is cumulatively added up the hierarchy. When
data reference is required among pseudo components such
as power for temperature computation, data queues provide
necessary information requested by remote components and
their models. The data queues are time synchronized such that
all data are tagged with time and period information. Note that
all transient data computed from models are sampled data (e.g.,
runtime power, transient temperature) during the observation
period. For coordinated simulation, data produced by pseudo
components must be time-synchronized. Parallel architecture
simulation frameworks such as SST [1] and Manifold [2]
are comprised of multiple architecture simulators (e.g., cores,
caches, network, memory), and each processor component may
run in a different logical process. Thus, computation at each
process may occur out of order, and time synchronization
check is critical for parallel simulation.
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Fig. 7. Coordinated architecture simulation framework of Energy Introspector.

Fig. 7 shows the overview of the Energy Introspector
framework that implements the flow graph in Fig. 5. Each
source component is linked to one of the energy library
models to estimate power dissipation with respect to access
counts acquired from architecture simulators. The same
virtual function call of the energy library is used at every
source component to drive the library model and compute
power. This function also updates parent components in the
hierarchy tree. When temperature computation is called for
a package component, it checks if all partition components
have updated power data and they are synchronized with
requested time and period tags. After temperature is calculated,
partition components obtain updated temperature data. Since

placement is not further defined for source components within
a partition, it is assumed that source components have the
same temperature value as the partition. When new data are
pushed into data queues of components, necessary callback
functions of library models are triggered to update the model
states such as leakage power recalculation due to temperature
change. Reliability is characterized at the partition level.
It is represented as a failure probability using cumulative
distribution function (CDF). Failure probability is a function of
voltage, frequency, switching activity factor, stress time (e.g.,
on/off power gating period), and temperature. This process
alters several technology parameters such as threshold voltage.
The produced result is applied to other pseudo components in
a similar way as temperature, and the callback functions of
library models are used to update the variables and conditions.
The altered variables and conditions affect the computations
in the next simulation cycle.

E. Scalable Simulation for Manycore Processors

Similar to architecture simulations where a single-threaded
simulation of heavy architecture models is practically limited
to a few number of cores, the extent of complex physics
simulation is also limited with a single-thread execution.
The EI supports parallel execution of models over the MPI,
as illustrated in Fig. 8. In multi-process simulation, the EI
initiates a server listen thread. A simulator client can bind
to only one server and is delegated to call the EI functions
via MPI messages. Computation functions via clients are
non-blocking such that architectural simulation can proceed
while the requested computation is performed in the other
rank. On the other hand, data request functions are blocking
until they are returned from the server. Client simulators may
manipulate computed results to apply scheduling or control
policies.
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Fig. 8. Multi-process execution example of Energy Introspector over MPI
interface.

F. Contributions

Compared with past related works, Energy Introspector has
the following advantages:



1) The interface is compatible with various
implementations of models. Thus, popular and
already validated models can be utilized.

2) The standardized interface of models via grouping
into model libraries enables simpler user interface.
The interface does not depend on specific models.

3) Data is time-synchronized and can be referred by
other components to support coordinated architecture
simulation.

4) The component hierarchy can be configured in an
arbitrary way to model different microarchitecture
and package design.

5) Parallel execution is supported via the MPI
implementation and multi-threading.

V. APPLICATION TO COMPOUND ANALYSIS

A case study is performed with coordinated architecture
simulation via the Energy Introspector. We use this simulation
framework to characterize the impact of various failure
mechanisms on processor reliability. Since degradation is a
function of all stress variables such as switching activity,
voltage, frequency, and temperature, transient degradation
modeling requires a coordinated simulation framework. This
study is distinct from previous related works that explored
lifetime reliability problems based on abstract representation of
microarchitecture and related physics [24], [25]. Those studies
remained at high-level analyses such as increasing overall
reliability via deploying duplicated structures or redundant
cores. In this study, we present microscopic result than in
[24], [25] by involving detailed microarchitecture, power,
and temperature simulations. The case study is performed
with race-to-idle (RTI) execution, and the resulting failure
probability is compared against normal execution (NE).

TABLE I. EXPERIMENT CONFIGURATION FOR COORDINATE
ARCHITECTURE SIMULATION

Configuartion Description

Simulator Manifold 64-core simulation [2]

Benchmarks Multi-programmed execution of SPEC2006 suite

Cores Out-of-order In-order

Core counts 16 48

Issue width 4 1

Reorder buffer size 128 N/A

L1 Cache 4-way assoc, 64-byte line, 32KB size

L2 Cache 8-way assoc, 64-byte line, 256KB size, private L2

Voltage/frequency levels 0.8V/2.0GHz for NE, 1.2V/4.0GHz for RTI

Feature size 16nm technology projection to ITRS guideline

A. Reliability Problem Description

Recent multicore processors utilize boosted execution of
cores when hardware resources are underutilized and thus
total power consumption is below the limit. The execution
boost appears in various forms such as race-to-idle, Turbo
Boost [20], Turbo Core [21], and computation sprinting [22]
depending on boost level and stress releasing method.

In this case study, race-to-idle execution and its degradation
consequence are assessed. The race-to-idle execution technique
accelerates core execution by increasing clock speed and
voltage level. Performance increase is achieved during the
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Fig. 9. Asymmetric processor die partition layout; cores are partitioned
into pipeline stages of FE (frontend), SCH(schedule), EX(execute), and/or
MEM(memory).

race period at the cost of higher power and heat dissipations
that result in faster degradation. The boosted execution must
be followed by idle period to mitigate thermal stress and
degradation. The leakage power saving during the idle period
is traded, and thus RTI execution is known to save energy
over normal execution [20], [21], [22]. However, the reliability
impact of RTI execution has not been addressed and is
generally believed to be worse than normal execution.

B. Failure Probability Modeling

Several failure mechanisms and degradation models are
presented in [16], [17]. The processor is represented as a series
system of failure mechanisms such that the processor operates
only when none of the possible failure risks occur. In this case
study, we characterize reliability as a failure probability using
the CDF of exponential distribution functions. The following
known failure mechanisms and their equations are used to
calculate failure probability [16], [17].

• Electromigration (EM): Directional transport of
electrons and metal atoms in interconnect wires leads
to degradation and eventual failure [16].

• Time-dependent dielectric breakdown (TDDB):
Wearout of gate oxide caused by continued application
of electric field leads to electric short between gate
oxide and substrate [16].

• Hot carrier injection (HCI): Electrons that capture
sufficient kinetic energy overcome the barrier to
gate oxide and cause threshold voltage shift and
degradation [17].

• Negative bias temperature instability (NBTI): Holes
trapped in the gate cause the threshold voltage shift
and timing error. The switching between negative and
positive gate voltages cause degradation and recovery
of the BTI effects [16], [18].

• Stress migration (SM): Failure is caused by
mechanical stress due to the difference between
the expansion rates of metals.

• Thermal cycling (TC): Fatigue accumulates with
temperature cycles.

The system-level failure occurs when at least one of
aforementioned risks take effect. Therefore, the total failure



probability can be represented as a series system of
failure mechanisms. Note that the failure probability is a
non-decreasing function.

Ptotal(t) = 1− P0

n∏
i=1

∏
r∈Risks

(
1− Pr(ti − ti−1)
|Ci(Ti, Fi, Vi, Ai, Gi)

)
(2)

P0 is the initial failure probability, and Pr(t) is the failure
probability of individual mechanisms, given the operational
condition Ci(Ti, Fi, Vi, Ai, Gi) as a function of temperature,
frequency, voltage, switching activity factor, and power-gating
state at time t = ti. The failure probability at each computation
interval (ti − ti−1) is multiplied to calculate the time-varying
failure probability, based on the memoryless property of
exponential distributions.

C. Reliability Implications of Race-to-Idle Executions

Table I shows the experiment configuration. A cycle-level
x86 timing simulator, Zesto [4], is simulated with Manifold
[2], and McPAT [7] and HotSpot [13] are used to estimate
power and temperature with the Energy Introspector interface.
Asymmetric 64-core layout is designed as in Fig. 9. Cores
are grouped into 4 sets, and the RTI executions are applied
to each set in a periodic round robin manner. The RTI
execution is comprised of four phases as summarized in Table
II and repeated throughout the simulation. Generally, Turbo
Boost [20] or Turbo Core [21] increase clock speed not more
than 50%, whereas computation sprinting [22] does in an
order of magnitude over normal execution but with extra
thermal material support. In this case study, we examine an
intermediate case that doubles the speed of execution of cores
for race mode (4.0GHZ, 1.2V) than normal execution (2.0GHz,
0.8V).

TABLE II. RACE-TO-IDLE EXECUTION PHASES

Phase Race mode cores Idle mode cores

Phase 0 Set 3, 0 Set 1, 2

Phase 1 Set 0, 1 Set 2, 3

Phase 2 Set 1, 2 Set 3, 0

Phase 3 Set 2, 3 Set 0, 1

Fig. 10 shows transient behavior of degradation calculated
in failure probability. The transient behavior is observed at
left-bottom out-of-order core, marked X in Fig. 9. Periodic
race-to-idle executions with equal on/off duty cycle are made
such that the race-to-idle and normal executions run equal
amount of clock cycles. In this experiment, overhead for core
power gating is not considered but is comparably smaller than
race/idle periods [23]. Initially a core starts with accelerated
execution. Accelerated execution during race period increases
power and heat dissipation, leading to faster degradation.
Degradation slope of RTI execution in Fig. 11 initially follows
that of continuous race execution. After 10ms of execution, the
core turns off. Given model equations presented in [16] and
[17], failure probabilities due to some phenomena (i.e., EM,
NBTI, TDDB, HCI) stay flat when cores are turned off, as
shown in Fig. 11. Rather, recovery (i.e., NBTI) occurs during
the idle period and decreases the degradation slope when the
next race period starts, compared with that of continuous race
mode. On the other hand, thermal stresses (i.e., SM, TC)
remain as in Fig. 11 during the idle period, resulting in less

but continued degradation overall as shown in Fig. 10. Turning
off cores also helps reduce temperature increase across the
processor die. Overall, the failure probability of race-to-idle
execution shows similar result as normal execution.
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Fig. 10. Transient behavior of degradation calculated in failure probability
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Fig. 11. Breakdown of transient degradation behavior of different failure
mechanisms for race-to-idle execution.

The RTI execution performs differently depending on
core types and executed benchmarks. Another experiment is
performed to find a balance between race and idle periods
while maintaining the failure probability equal to normal
execution. First, continuous normal executions are applied to
all cores, and transient failure probability of each core is
sampled. This trace is used to control the RTI execution.
Cores are run for fixed period and then turned off until failure
probability becomes less than or equal to that of normal
execution.
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Fig. 12. Race and idle period balance with constrained failure probability
equalized to the sampled trace of normal execution.



Fig. 12 shows the samples of idle to race period ratio.
The ratio of 1.0 means the race and idle periods are equal
while maintaining the same failure probability with normal
execution. Since the race clock speed is twice faster than
normal execution, 1.0 ratio means that the race-to-idle and
normal executions operate the same number of clock cycles.
Thus, the idle to race period ratio below 1.0 implies either
less degradation or better performance. It is found that long
race time has negative effect on degradation; longer idle period
must follow to recover. Long race time creates hot spots
on racing cores, leading to faster degradation and thermal
coupling to neighboring cores. On the other hand, fast on/off
switching puts high frequency terms in power dissipation that
has less impact on temperature increase due to low pass
filter characteristic of power to temperature relation [15]. Such
power-temperature correlation affects degradation such that
race-to-idle execution with faster on/off switching of cores
perform better than normal execution. Also, difference is
observed between two core types. The RTI applied to in-order
cores is not as effective as out-of-order cores. Generally
simple cores dissipate less power than complex cores for
average behavior of benchmarks. With nature of low power
and heat dissipations, in-order cores have slow increase of
failure probability with normal execution. However, when the
RTI is applied, accelerated execution causes faster degradation,
and it takes more time to recover. Fig. 13 shows the inverse
relation of time and failure probability for three different
executions with same core type and workload. There is
increasing time gap for equal difference of voltage and clock
frequency. This means accelerating the execution of cores
that dissipate low power and heat has worse impact on
degradation than when they are normally executed, requiring
lengthened recovery time that is translated as performance
loss or more degradation. On the other hand, RTI applied to
complex cores that dissipate more power and heat requires
relatively shorter idle time than in-order cores. Similar analogy
can be applied to workloads by differentiating their power
usage. Thus, the RTI is better applied to complex cores
than simple cores and power-consuming computing tasks
than memory-bound workloads, not evening considering the
complexity of scheduling long-latency memory instructions.
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Fig. 13. Inverse plot of time vs failure probability; normal execution (2.0GHz,
0.8V), median execution (3.0GHz, 1.0V), and continuous race (4.0GHz, 1.2V).
Relative recovery time increases from median to normal execution than from
continuous race to median execution.

VI. CONCLUSION

Addressing physical challenges has become an important
part of architecture analysis and design space exploration.

Due to modeling complexity, interactions among physics
phenomena have been neglected in the past architecture-level
analyses. The coordinated architecture simulation framework
enables correct microprocessor modeling and compound
analyses.
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