
CCM: Scalable, On-Demand Compute Capacity
Management for Cloud Datacenters

Mukil Kesavan†, Irfan Ahmad±, Orran Krieger‡, Ravi Soundararajan?,
Ada Gavrilovska†, Karsten Schwan†

†Georgia Institute of Technology, ±CloudPhysics, Inc, ‡Boston University, ?VMware Inc.

Abstract
We present CCM (Cloud Capacity Manager) – a proto-
type system, and, methods for dynamically multiplex-
ing the compute capacity of cloud datacenters at scales
of thousands of machines, for diverse workloads with
variable demands. This enables mitigation of resource
consumption hotspots and handling unanticipated de-
mand surges, leading to improved resource availability
for applications and better datacenter utilization levels.
Extending prior studies primarily concerned with accu-
rate capacity allocation and ensuring acceptable appli-
cation performance, CCM also focuses on the tradeoffs
due to two unavoidable issues in large scale commodity
datacenters: (i) maintaining low operational overhead,
and (ii) coping with the increased incidences of man-
agement operation failures. CCM is implemented in
an industry-strength cloud infrastructure built on top of
the VMware vSphere virtualization platform and is cur-
rently deployed in a 700 physical host datacenter. Its ex-
perimental evaluation uses production workload traces
and a suite of representative cloud applications to gen-
erate dynamic scenarios. Results indicate that the prag-
matic cloud-wide nature of CCM provides up to 25%
more resources for workloads and improves datacenter
utilization by up to 20%, compared to the alternative ap-
proach of multiplexing capacity within multiple smaller
datacenter partitions.

1. INTRODUCTION
Multi-tenant cloud computing datacenters run diverse

workloads with time varying resource demands. This
continuously leads to areas of high and low resource uti-
lization throughout the cloud infrastructure. By dynami-
cally multiplexing capacity between workloads and cor-
recting these imbalances, significant improvements in
application resource availability, and, as a consequence,
overall datacenter utilization can be achieved. However,
architecting a realistic solution for multiplexing at the
scale of thousands of machines, across an entire data-
center, is a challenging proposition.

Commercially available infrastructure resource allo-
cation software such as Microsoft PRO, VMware DRS,
and Citrix XenServer only support dynamic allocation
for a set of 32 or fewer hosts [7, 3, 16]. Gulati et.al.
summarize the potential reasons underlying such a scale
restriction such as overhead, machine heterogeneity, re-
source partitions, fault-tolerance etc. [27]. Consequently,
cloud providers are forced to use dynamic allocation
within multiple smaller partitions in order cover their
entire infrastructure[17, 18, 15]1. But such static parti-
tioning foregoes opportunities to multiplex capacity ac-
ross the entire datacenter, leading to decreased utiliza-
tion levels. It also limits responses to unexpected in-
creases in workload demand to the capacity available
within each partition, even when there is unused capac-
ity elsewhere, thereby negatively impacting application
performance, as well. Therefore, the need for practi-
cal datacenter-wide capacity multiplexing solutions can
hardly be overstated.

The focus of much of the research done in this area
has been on the development of accurate methods for
workload demand prediction and allocation, and, SLA-
compliance [39, 23, 35, 49, 47, 41]. Methods that allo-
cate capacity with SLA guarantees tend to be optimized
for specific workloads (e.g. such as allocators for web
servers that add/remove extra server instances). Given
the steadily increasing number and variety of cloud ap-
plications [1], service providers need solutions that are
application model agnostic. Methods focused on alloca-
tion accuracy tend to be computationally expensive (for
e.g. ones that construct and compare individual VM re-
source usage signatures for finding multiplexing oppor-
tunities [35]). Their benefits given practical issues in
large scale datacenters such as management operation
failures (e.g. failure to migrate VMs or failure to com-
municate with agents to set capacity allocations etc.)
and non-determinism in the cost of operations (e.g. du-

1Popular infrastructures like Amazon EC2 do not seem to em-
ploy live migration of VMs at all, a feature required to dynam-
ically allocate capacity across many servers [40].

1



Clus Clus Clus

S-Clus S-Clus

Cloud

hosts hosts hosts

Figure 1: Hosts are grouped into a logical cluster with a cluster-
level capacity manager (VMware DRS), clusters are grouped into a
supercluster with a corresponding capacity manager and a cloud is
composed as a collection of superclusters under a cloud level capacity
manager.

ration of VM migration) [45, 44] haven’t received much
attention. These issues have the potential to seriously
impair system operation and influence the convergence
of allocation algorithms. Such challenges suggest the
need for notably different design choices when devel-
oping capacity management solutions for real-life, large
scale infrastructures.

In this paper, we present CCM (Cloud Capacity Man-
ager), an on-demand compute capacity management sys-
tem that combines various low-overhead techniques, mo-
tivated by practical on-field observations, to achieve scal-
able capacity allocation for thousands of machines.
CCM achieves this scale by employing a 3-level hierar-
chical management architecture as shown in Figure 1.
The capacity managers at each level continuously mon-
itor and aggregate black-box VM CPU and memory us-
age information and then use this aggregated data to
make independent and localized capacity allocation de-
cisions. The use of black-box monitoring and allocation
enables CCM to perform capacity allocation for a broad
class of applications including those that don’t typically
scale out horizontally but yet vary dramatically in the
amount of capacity they use over time [30].

The core concept embodied in CCM’s capacity multi-
plexing is the on-demand balancing of load, across log-
ical host-groups, at each level in the hierarchy. Reduc-
tions in management cost are obtained by having moni-
toring and resource changes occur at progressively less
frequent intervals when moving up the hierarchy, i.e. at
lower vs. higher level managers, as explained in Sec-
tion 3.

The cost of reconfiguration, i.e. performing VM mi-
grations, at large scales is fairly expensive [45] and non-
deterministic [44]. Further, as we show in this work,
performing too many management operations increases
the incidence of failures in those operations due to ex-
cessive resource pressure. Thus, there is an implicit limit
to the amount of reconfiguration that can be performed
at any given time, and, hence, the effectiveness of any
potential allocation method in this environment. CCM
takes this into account in its design and, hence, uses a
simple greedy hill-climbing algorithm to iteratively re-

duce load imbalances across the hierarchy. It also uses
management operation throttling and liberal timeouts, to
select cheaper management actions, and, minimize the
incidence of management failures. Such simple meth-
ods are easier to scale, develop and debug, and, their
effectiveness is shown through detailed large scale ex-
periments.

In order to properly characterize CCM’s scalability
and resilience to the aforementioned practical issues in
real-life environments, we deploy and evaluate CCM
on a 700 physical host datacenter, virtualized with the
VMware vSphere [14] virtualization platform. We gen-
erate realistic datacenter load scenarios using a com-
bination of a distributed load generator [29] and addi-
tional application workloads. The load generator is ca-
pable of accurately replaying production CPU and mem-
ory usage traces, and simulating resource usage spikes
at varying scales. The application workloads include
Cloudstone [43] – a 3 tier web 2.0 application, Nutch [2]
– a mapreduce based crawler, Voldemort [9] – a key-
value store and the Linpack high performance comput-
ing benchmark [8].

In the remainder of the paper, Section 2 presents back-
ground on the vSphere abstractions that can be used
to achieve desired isolation and sharing objectives at
smaller scales. Section 3 presents CCM’s black-box
metrics computed for dynamically allocating capacity
to application VMs at cloud scale, the assumptions we
make, and its load balancing algorithms. Section 4 out-
lines CCM’s implementation, with a focus on methods
for dealing with management failures. Section 5 presents
a detailed experimental evaluation. Related work in Sec-
tion 6 is followed by a description of conclusions and
future work.

2. VSPHERE BASICS
VMware vSphere [14] is a datacenter virtualization

platform that enables infrastructure provisioning and vir-
tual machine lifecycle management. CCM relies on
VMware vSphere platform features that include (i) Dis-
tributed Resource Scheduler (DRS) [12] (ii) Distributed
Power Management (DPM)[11]. These features are em-
ployed at the smaller scale cluster level in our hierarchy.
Hosts are arranged into logical clusters, each a collec-
tion of individual physical hosts. The overall resource
capacity of a cluster is the sum of all individual host
capacities. With vSphere, a central server offers these
features for a cluster of at most 32 hosts. CCM uses and
extends vSphere and its resource control and allocation
methods to cloud scales of thousands of hosts. We refer
the reader to [26] for a detailed discussion of the design
of DRS and DPM.
DRS Capacity Allocation. DRS automates the initial
and continuing placement of VMs on hosts based on the

2



following resource controls.
Reservation: a per resource minimum absolute value (in
MHz for CPU and MB for memory) that must always
be available for the corresponding VM. To meet this
requirement, VM admission control rejects VMs with
reservations when the sum of powered on VMs’ reser-
vations would exceed total available cluster capacity.
Limit: a per resource absolute value denoting the maxi-
mum possible allocation of a resource for the VM; strict-
ly enforced even in the presence of unused capacity.
Share: a proportional weight that determines the frac-
tion of resources a VM would receive with respect to the
total available cluster capacity and other resident VMs’
shares; allows graceful degradation of capacity alloca-
tion under contention.

Details on to choose appropriate values for these con-
trols, based on application needs, appear in [4]. For each
VM, DRS computes a per-resource entitlement value as
a function of its own and other VMs’ resource controls
and demand, and, also the total available cluster resource
capacity. VM demand is estimated based on both its
present and anticipated future resource needs: computed
as its average resource usage over a few minutes plus
two standard deviations. Using the entitlement values,
DRS computes a set of VM to host associations and per-
forms migrations as necessary.
DPM Power Management. Whenever a cluster host’s
utilization value falls below a specified threshold, DPM
performs a cost benefit analysis of all host power downs
in the entire cluster, so as to raise the host utilization
value above the threshold by accepting the VMs from
the powered down hosts [26]. The outcome of this anal-
ysis is a per-host numeric value called DPMScore. A
higher DPMScore denotes greater ease with which a
host can be removed from operation in a cluster. CCM
uses this value to aid in host reassociation between clus-
ters and superclusters, as explained in Section 3.

3. CCM: SYSTEM DESIGN

3.1 Variation in Aggregate Workload Re-
source Consumption at Scale

It is well-known that clustering and hierarchies can
help with scalability [31] by reducing the overheads of
system operation. More importantly, in the capacity al-
location context, as resource consumption of workloads
is aggregated across larger and larger numbers of phys-
ical machines, as one moves upwards from lower lev-
els in the hierarchy, there is the possibility of decreased
degrees of variation in this aggregate consumption. The
intuition here is that across a large set of servers in a typ-
ical multi-tenant cloud, the individual customer work-
load resource consumption patterns are not likely tem-
porally correlated, i.e., their peaks and valleys don’t co-

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

5 25 100 200 300%
a
g
e
 C

V
 o

f 
A

g
g
r 

D
e
m

a
n
d

Number of Hosts

CPU
Memory

(a) VMware vSphere Cluster

 20

 40

 60

 80

 100

 120

 140

0.1 10.0 200.0%
a
g
e
 C

V
 o

f 
A

g
g
r 

D
e
m

a
n
d

Number of Tasks(Hosts) - 100s

CPU
Memory

(b) Google Production Cluster

Figure 2: Variation in Aggregate Demand over increasing scales
from production traces.

incide. As a result, there could be substantial oppor-
tunity for workload multiplexing, which increases with
the size and the diversity of the workload [35].

We reinforce this idea by analyzing the aggregate re-
source consumption in two production datacenter traces
from: (a) an enterprise application cluster running the
VMware vSphere [14] datacenter virtualization platform
and (b) a publicly available trace from Google’s pro-
duction cluster [5] (version 1). The VMware trace pro-
vides multiple samples (over several hours) of the av-
erage CPU and memory resources consumed per host
during small fixed intervals. The Google traces provides
similar resource usage information at a per task granu-
larity for multiple classes of workloads [36], over sev-
eral hours. The mapping of tasks to physical hosts is not
known in that dataset, but we observe that as the num-
ber of tasks being considered for aggregation increases,
the number of hosts on which those tasks run should
increase, as well. Figure 2 presents the coefficient of
variation (as percentage) in aggregate CPU and mem-
ory consumption across larger and larger groupings of
physical hosts, in each trace. The graphs show that the
coefficient of variation, for both CPU and memory re-
sources, decreases roughly for each order of magnitude
increase in the number of hosts considered for aggrega-
tion. In terms of its system design implication, this per-
mits monitoring and management operations to achieve
low overhead by running at progressively larger time
scales, when moving up the hierarchy, without substan-
tive loss in the ability to meet changing workload re-
source demands.

3.2 Hierarchical Capacity Management
The above factors motivate the natural fit of a hierar-

chical management architecture, shown in Figure 1, to
capacity allocation. Hierarchies can also be defined so
as to: a) match underlying structures in the datacenter
in terms of rack boundaries, performance or availability
zones, different machine types, etc., b) capture structure
in the application such as co-locating frequently com-
municating VMs in the same part of the infrastructure.
We plan on exploring this in our future work.

3



In our architecture, there are managers at each level,
but per-VM management takes places only at cluster
level. At this level, VMware DRS [12] is used to make
independent and localized decisions to balance loads as
briefly explained in Section 2. Whereas at higher levels,
CCM computes the total estimated demand of a cluster
or supercluster, as an aggregation of per-VM resource
usage, of all the running VMs under the purview of the
entity in consideration. This total demand estimate is
then used to determine the amount of capacity required
by a cluster or supercluster and coarse grain capacity
changes are performed as necessary. The capacity cha-
nges are realized by logically reassociating hosts be-
tween cluster and supercluster managers. A logical host
reassociation or host-move operation is a two step pro-
cess where the VMs running on a chosen host are first
live migrated to other hosts in the original source cluster
and then the source and destination managers’ invento-
ries are updated to reflect the change. This operation,
however, preserves VM to capacity manager associa-
tions across the hierarchy. The benefit of this property
and the rationale behind its choice are explained in detail
in Section 3.3. Such coarse-grained higher level capac-
ity changes, then, automatically trigger the cluster-level
actions of DRS. Finally, for reasons cited above, both
the monitoring and resource changes in our system oc-
cur at progressively less frequent intervals when moving
up the hierarchy.
Metrics. The following key metrics are computed and
used by CCM algorithms at the supercluster and cloud
levels of the management hierarchy to determine the ca-
pacity to be allocated to these entities, based on their
aggregate demand and R, L, S constraints.

Entitlement(E): For each VM, per-resource entitle-
ments are computed by DRS (see Section 2). We ex-
tend the notion of entitlement to entire clusters and su-
perclusters, to express their aggregate resource demand.
There are no R, L, S parameters for clusters and super-
clusters. This entitlement calculation is explained in de-
tail in Section 3.5.

For the CCM hierarchy, an aggregate notion of de-
mand is computed by successively aggregating VM level
entitlements for clusters and superclusters. Upper-level
capacity managers, then, allocate capacity between clus-
ters and superclusters using such aggregate information
instead of considering individual VMs, while lower-level
cluster managers continue to independently decide and
perform detailed allocations.

We note that when aggregating entitlements, some ad-
ditional head room is added, worth the last two standard
deviations in resource usage, so as to absorb minor tran-
sient usage spikes and also give VMs the ability to indi-
rectly request more resources from the system, by con-
suming the extra head-room over longer periods. This

results in the successive addition of some amount of ex-
cess resource to the computed entitlement as aggrega-
tion proceeds up the hierarchy. The effect is that even
with coarser sample/estimation intervals, there is a high
likelihood of being able to cover a cluster’s or superclus-
ter’s varying resource demands. The resource volume
used for this head-room is directly proportional to the
amount of variability in resource demands – i.e., when
demands are stable, less resources are added, and vice
versa.

Normalized Resource Entitlement(NE): is a mea-
sure of the utilization of available capacity. For a given
entity, e.g., cluster or supercluster, it is defined as the
sum of the total amount of a resource entitled to that en-
tity, divided by the entity’s total resource capacity. Thus,
NE captures resource utilization, ranging from 0 to 1.

Resource Imbalance(I): captures the skew in resou-
rce utilizations across a set of similar entities at the same
level in the resource management hierarchy. It is de-
fined as the standard deviation of individual normalized
resource entitlements (NE) of the entities in considera-
tion. High I and NE values suggest the need for capac-
ity reallocation between entities to better back observed
VM demand.

DPMRank: is a cluster-level aggregation of the indi-
vidual host DPMScore values. A high DPMRank met-
ric for a cluster indicates its suitability to cheaply donate
hosts to other overloaded clusters, or superclusters in the
event of a higher layer load imbalance. It is computed
as the squared sum of individual host DPMScores, so
that the metric favors clusters with a small number of
hosts with very low resource utilization vs. those that
have large numbers of relatively modestly utilized hosts.
For example, a cluster of 3 hosts with a DPMScore of
10 each will be favored over a cluster of 10 hosts with
DPMScores of 3. The reason, of course, is that the cost
of reassociating a host with DPMScore of 10 is less than
that of a host with DPMScore of 3.

3.3 Logical Capacity Reassociation
As mentioned before, CCM logically reassociates ca-

pacity between cluster and supercluster managers. We
chose such reassociation based on several practical con-
siderations. First, in any given large scale system, hosts
fail and recover over time, causing these systems to in-
corporate capacity changes in their design, thereby mak-
ing dynamic host addition and removal a standard mech-
anism. Second, VM migration would also require mov-
ing substantial state information about each such VM
accumulated at the corresponding capacity managers.
This includes statistics computed about the VM’s re-
source usage over the course of its existence, runtime
snapshots for fail-over, configuration information, etc.
Migrating this state along with the VM to the new ca-

4



pacity manager, would be costly, and it would poten-
tially seriously prolong the delay experienced until the
VM and capacity management once again become fully
operational. While we do have mechanisms to migrate
VMs across clusters, we found host reassociation to be
a simpler solution from a design and implementation
standpoint.

For the reasons above, CCM preserves the associa-
tion of VMs to clusters and superclusters, and it man-
ages capacity by logically reassociating evacuated hosts
between them. Host reassociation uses the DPMRank
value to identify clusters with hosts for which evacu-
ation costs are low, and once a host has been moved
to its new location, the lower level resource managers
(DRS/ESX) notice and automatically take advantage of
increased cluster capacity by migrating load (i.e., ex-
isting VMs) onto the new host. In this fashion, CCM
achieves a multi-level load balancing solution in ways
that are transparent to operating systems, middleware,
and applications.

3.4 Assumptions
In the construction of CCM, we make two basic as-

sumptions about datacenters and virtualization technolo-
gies. (1) Hosts are assumed uniformly compatible for
VM migration; this assumption could be removed by
including host metadata in decision making. (2) Storage
and networking must be universally accessible across
the cloud, which we justify with the fact that there al-
ready exist several instances of large scale NFS deploy-
ments, and VLANs that are designed specifically to fa-
cilitate VM migration across a large pool of hosts. Fur-
ther assistance can come from recent technology devel-
opments in networking [38, 24, 34, 10], along with the
presence of dynamically reconfigurable resources like
storage virtualization solutions, VLAN remapping, swi-
tch reconfiguration at per VM level, etc. Finally, these
assumptions also let us carefully study the impact of
management operation failures and costs on system de-
sign.

3.5 Capacity Management Algorithms
Table 1 summarizes the metrics described previously.

CCM’s cloud-scale capacity management solution has
three primary allocation phases: (i) Initial Allocation,
(ii) Periodic Balancing, and (iii) Reactive Allocation.
The initial allocation recursively distributes total avail-
able cloud capacity among superclusters and clusters
based solely on the underlying VMs’ static resource al-
location constraints: Reservation, Limit and Shares. On-
ce this phase completes, the periodic balancing phase
is activated across the hierarchy; it continually moni-
tors and rectifies resource utilization imbalances, i.e.,
the presence of high and low areas of resource content-

L Entitlement Norm. Ent Imbalance

C
EV M ← f (R,L,S,Cap(CL))

NEH = ∑H EV M
Cap(H)

IC = σ(NEH ),∀H
EC = ∑EV M

SC
ESC

C = EC +2∗σ(EC)
NEC =

ESC
C

Cap(C)
ISC = σ(NEC),∀C

ESC = ∑ESC
C

CL ECL
SC = ESC +2∗σ(ESC) NESC =

ECL
SC

Cap(SC) ICL = σ(NESC),∀SC

Cluster DPMRankC = ∑(DPMScoreH )
2

Table 1: Resource Management Metrics Across All Levels in the Hi-
erarchy. Key: R = Reservation, L = Limit, S = Share, Cap = Capacity,
H = Host, C = Cluster, SC = SuperCluster and CL = Cloud. MetricY

X

denotes value of “Metric” for an entity at level “X” computed at an
entity at the next higher level “Y”. MetricX implies “Metric” for an
entity at level “X” computed at the same level. IX denotes the Imbal-
ance metric computed across all sub-entities of level “X”.

ion. Finally, in order to deal with unexpected spikes in
resource usage, CCM uses an additional reactive alloca-
tion phase, which is triggered whenever the resource uti-
lization of an entity exceeds some high maximum thresh-
old (e.g., 80%). Reactive allocation quickly allocates
capacity using a tunable fraction of idle resources set
aside specifically for this purpose. In this manner, the
three phases described allow for the complete automa-
tion of runtime managment of datacenter capacity.
(i) Initial Allocation. The amount of a resource to
be allocated to a cluster or supercluster is captured by
the entitlement metric. For an initial allocation that does
not yet have runtime resource demand information, the
entitlement value is computed using only static alloca-
tion constraints. As capacity allocation proceeds across
the cloud, three types of VMs, in terms of resource al-
location, will emerge: (a) Reservation-Based VMs (R-
VMs), (b) Limit-Based VMs (L-VMs), and (c) Share-
Based VMs (S-VMs). A R-VM requires more of a given
resource due to its specified resource reservation being
larger than the amount of resources it would have been
allocated based only on its proportional shares, i.e., EV M
= RV M . Similarly, a L-VM requires less of a given re-
source due to its resource limit being lower than the
amount of resources it would have been allocated based
on its proportional shares alone, i.e., EV M = LV M . The
VMs that don’t fall into either category have their ca-
pacity allocations determined by their Shares value – S-
VMs.

For example, consider four VMs A, B, C, and D con-
tending for a resource, all with equal shares. The amount
of resources they would receive based on their shares
alone is 25% each. Now, if A has a reservation of 40%
for the resource and B has a limit of 20%, the resulting
allocation for VMs A and B would be 40% and 20%,
respectively. VM A, then, is a R-VM, whereas VM B is
a L-VM. VMs C and D are S-VMs, and they share the

5



remaining resources (after A’s and B’s constraints have
been enforced) at 20% each.

Therefore, R-VMs reduce the total amount of resourc-
es available to be proportionally shared between S-VMs,
and L-VMs have the opposite effect. The process of
initial allocation, then, involves the identification of the
three classes of VMs and then computing the final en-
titlement values. Across the cloud, R-VMs would be
entitled to their reservation values, L-VMs would be en-
titled to their limit values, and the remaining capacity is
used to compute the entitlement for S-VMs.

In order to explain the resource entitlement calcula-
tion for S-VMs, we first define a metric for these VMs,
called entitlement-per-share (EPS), as ρ such that, ρ =
EV M/SV M . Since a VM’s resource proportion is com-
puted using its share with respect to the share values of
all of the other VMs in the cloud, the EPS value stays
the same for every Share-Based VM. Now, a given S-
VM’s entitlement can be computed as EV M = ρ ∗SV M .
Thus, the complete equation to compute the entitlement
of a specific resource of a VM is given by Equation 1.

The goal of initial capacity allocation is to ensure that
all of the available capacity in the cloud is allocated to
VMs in lieu of their allocation constraints as in Equation
2. We simplify the determination of capacity to be allo-
cated to VMs, i.e., entitlement, via a recursive alloca-
tion algorithm. The algorithm performs a binary search
over all possible assignments for ρ such that Equation 2
is satisfied throughout the process of computing entitle-
ments using Equation 1. VM-level entitlements are ag-
gregated across levels of the hierarchy. There can only
be one unique value for ρ that ensures that this sum ex-
actly equals the total available resource capacity of the
cloud [25].

EV M = MIN(MAX(RV M ,SV M ∗ρ),LV M) (1)

∑EV M =Capacity(Cloud) (2)

EV M = MIN(MAX(RV M ,MIN(SV M ∗ρ,DV M))),LV M) (3)

(ii) Periodic Balancing. As mentioned before, the peri-
odic balancing algorithm typically runs increasingly in-
frequently at lower vs. higher levels. Since the granu-
larity of this interval impacts the overhead and accuracy
of the CCM capacity balancing solution, administrators
are given the ability to configure the resource monitor-
ing and algorithmic intervals to individual deployment
scenarios. The VM entitlement calculation now uses es-
timated runtime resource demand (DV M) information to-
gether with the resource controls as shown in Equation
3. Load balancing between different hosts in a cluster is
provided by the DRS software.

For a given set of clusters or superclusters, when the
maximum value of the normalized resource entitlement
of the set, for a given resource, exceeds an administrator-
set threshold and, simultaneously, the resource imbal-

ance across the set exceeds a second administrator-spec-
ified threshold, the CCM capacity balancing algorithm
incrementally computes a series of host reassociations
across the set to try to rectify the imbalance, upto a
configured upper limit (explained in Section 4). The
first condition ensures that CCM does not shuffle re-
sources unnecessarily between entities of the same level
in the hierarchy when the overall utilization is low al-
though the imbalance is high. Once it has been de-
cided to rectify the imbalance, hosts are moved from en-
tities with lowest normalized resource entitlements (and
higher DPMRanks) 2 to those with highest normalized
resource entitlements. This results in the greatest reduc-
tion in resource imbalance. When removing hosts from
an entitity, we always ensure that its capacity never goes
below the amount needed to satisfy running VMs’ sum
of reservations (R). When selecting particular hosts to
be moved from a cluster or supercluster, hosts that have
the least number of running VMs are preferred.
(iii) Reactive Allocation. In order to deal with unex-
pected spikes in resource usage, CCM uses an additional
reactive allocation phase, which is triggered whenever
the resource utilization of an entity exceeds some high
maximum threshold (e.g. 80%). It is typically invoked
in the space of a few minutes, albeit progressively infre-
quently (upto an hour at the cloud level), as one moves
upwards in the management hierarchy. But, as seen in
Section 3, macro-level spikes across larger and larger
groupings of physical hosts are increasingly unlikely to
occur, especially at small time scales. To aid in the quick
allocation of hosts to resource starved clusters, we main-
tain a per supercluster central free host pool that holds
a tunable fraction of DPM module recommended, pre-
evacuated hosts from across clusters that belong to the
supercluster. This also removes the need for the host se-
lection algorithm to be run. CCM currently only holds
otherwise idle resources in the central free host pool, but
simple modifications to the scheme could allow holding
hosts even when the system is being moderately utilized.
If there are no hosts in the free host pool or if the hosts
currently present are insufficient for absorbing the usage
spike, the periodic algorithm has to perform the remain-
ing allocation in its next round.

There are some notable differences between the reac-
tive algorithm running at the supercluster manager vs.
the cloud manager. First, Second, the cloud manager
pulls from and deposits to the per supercluster central
free host pool as opposed to having to pick a specific
sub-cluster. This optimization serves to reduce over-
head and will not affect the operation of the supercluster

2In the actual realization, we sort in descending order of the
sum 0.5∗ (1−NE)+0.5∗NormalizedDPMRank. Both nor-
malized resource entitlement and NormalizedDPMRank are
given equal weights.

6



manager. The supercluster manager only maintains the
administrator specified fraction of hosts in the free host
pool and the rest are automatically distributed among
clusters.

4. PROTOTYPE IMPLEMENTATION
CCM is implemented in Java, using the vSphere Java

API [13] to collect metrics and enforce management ac-
tions in the vSphere provisioning layer. DRS is used in
its standard vSphere server form, but for DPM, we mod-
ify the vSphere server codebase to compute the DPM-
Rank metric and export it via the vSphere Java API. For
simplicity of prototyping and algorithm evaluation, both
the cloud manager and the supercluster manager are im-
plemented as part of a single multithreaded application
run on a single host.

An important element of CCM’s implementation is
the need to handle failures of management operations,
and non-determinism in management operation comple-
tion times. For example, certain complex multi-step
management actions may take longer than the periodic
balancing intervals, or they may simply just fail, result-
ing in invalid system states. We have observed diverse
causes for such behavior, including temporary network
connectivity issues, VM migration failures, hardware
failures, software crashes, etc. Also, prior research has
demonstrated that the total time taken to migrate a VM is
a function of the amount of its active memory being dirt-
ied [21]. The completion time for the logical host reas-
sociation operation, which uses VM migrations to evac-
uate the host, therefore, is variable and non-deterministic
due to this fact. Figure 3 shows the average time to re-
associate a single host for a particular run of the exper-
iment in Scenario I in Section 5. It can be seen that the
time varies between a wide range of 44 seconds to al-
most 7 minutes. This complicates the amortization of
management overhead subject to the workload benefits
being derived.

0 10 20 30 40 50 60
5 Min Intervals

0

113

225

338

450

Tim
e (

s)

Figure 3: Avg Single Host Move Latency.

CCM uses several methods to address issues. First,
the management algorithms at each manager are not em-
ployed when there is insufficient monitoring informa-
tion. Transient monitoring data “black-outs”, although
rare, happen in our environment due to temporary net-
work connectivity issues, monitoring module crashes

Metric NR TH TO All

Total Hostmove Mins 4577 703 426 355

Successful Hostmoves 14 24 30 37

Table 2: Management effectiveness. Key: NR - No Restrictions, TH
- Hostmove Thresholds, TO - Hostmove Timeouts, All - TH + TO.

etc. Second, management operations have timeouts, with
partial state-rollbacks to mitigate some of the negative
effects. This helps by aborting long running manage-
ment operations from inflating the management over-
head and taking away useful resources from applica-
tions. It also permits the potential exploration of alterna-
tive, cheaper actions at a later time. Third, failed multi-
step operations use asynchronous re-tries for some fixed
number of times before declaring them to have failed.
Fourth, the system’s management action enforcement
aggressiveness (i.e. number of host moves per round
and the parallelism in moves) can be tuned in order to
cap the management overhead and reduce failures due
to extreme resource pressure caused by management.

Table 2 shows the total amount of time spent in mak-
ing all hostmoves (including failed ones, counting par-
allel moves in serial order) and the number of successful
hostmoves for 4 different configurations of CCM with or
without timeouts and thresholds. The workload and con-
figuration parameters are described in detail in Scenario
I in Section 5. It can be seen that using a combination of
limiting hostmoves and using abort/retry, CCM exhibits
higher management action success rates and lower re-
source costs (directly proportional to the total enforce-
ment time) in our datacenter environment. This result
underscores the limitations imposed by practical issues
in large scale setups and how simple methods that ex-
plicitly design for these restrictions can lead to better
overall capacity allocation outcomes.

5. EXPERIMENTAL EVALUATION
The experimental evaluations described in this sec-

tion show: (i) that CCM is effective in keeping a cloud
load balanced, by shuffling capacity based on demand;
(ii) this reduces resource consumption hotspots and in-
creases the resources available to workloads, and as a
consequence, improves overall datacenter utilization;
and (iii) CCM incurs operational overheads commen-
surate with the dynamism in the total workload. We
measure system overhead as the number of VM migra-
tions performed. Migrations are the primary and biggest
contributor, in terms of resource usage and time, to the
cost of capacity management. The numbers reported in
this section are averaged over 3 runs of each experiment
for the first two scenarios and 4 runs for the final sce-
nario. We furnish information on the variability in per-
formance where it is non-trivial.

In the absence of a datacenter-wide capacity multi-

7



plexing solution, administrators typically resort to stati-
cally partitioning their servers and employing tradition-
al capacity multiplexing solutions within each
partition [17, 18, 15]. This strategy, which we refer to as
partitioned management (PM), forms the basis for com-
paring CCM’s performance and overheads. We emulate
such a strategy by using VMware DRS inside each parti-
tion to continuously migrate VMs amongst the machines
in the partition in response to load changes. CCM, then,
naturally builds upon and extends this strategy with tech-
niques explicitly designed to deal with issues at scale.
This makes it easier to adopt in existing deployments.

Testbed & Setup: CCM operates on a private cloud
in a 700 host datacenter. Each host has 2 dual core AMD
Opteron 270 processors, a total memory of 4GB and
runs the VMware vSphere Hypervisor (ESXi) v4.1. The
hosts are all connected to each other and 4 shared stor-
age arrays of 4.2TB total capacity via a Force 10 E1200
switch over a flat IP space. The common shared storage
is exported as NFS stores to facilitate migrating VMs
across the datacenter machines. The open-source Cob-
bler installation server uses a dedicated host for serv-
ing DNS, DHCP, and PXE booting needs. VMware’s
vSphere platform server and client are used to provision,
monitor, and partially manage the cloud.

Two important infrastructure limitations in this testb-
ed influence experiment design: (i) each server has a
fairly low amount of memory compared to current dat-
acenter standards, so that over-subscribing memory has
non-negligible overhead [46], and (ii) each server has
bandwidth availability of approximately 366 Mbps dur-
ing heavy use, due to a relatively flat but somewhat un-
derprovisioned network architecture, able to efficiently
support VM migration only for VMs configured with
moderate amounts of memory. As a consequence, most
experiments are designed with higher CPU resource vs.
memory requirements. Capacity allocation with respect
to one resource proceeds as long as the imbalance or
maximum utilization of other resource(s) do not cross
their respective thresholds.

The private cloud used in experiments is organized as
follows. The total number of hosts is divided into 16
partitions in the PM case, with an instance of VMware
DRS managing each partition. The DRS instances them-
selves run external to the partitions, on four individ-
ual hosts, as part of corresponding vSphere server in-
stances. CCM builds on these base partitions or clus-
ters by managing each set of 4 clusters via a superclus-
ter manager (4 total). All of the supercluster managers,
in turn, come under the purview of a single cloud level
manager. The cloud level and supercluster level man-
agers of CCM are deployed on a dedicated physical ma-
chine running Ubuntu Linux 9.10. Figure 1 from Sec-
tion 3 shows the overall logical organization of both PM

Job 1

t1 tm

c1 c4 c1 c4

taskgroups

1:1
400
VMs

100:1

SC 1 SC 4

Cloud

4:1 4:1

4:1

100:1

Job 4

t1 tn

taskgroups

1:1
400
VMs

32 hosts/
100 VMs 
per cluster

128 hosts/
400 VMs 
per s.cluster

512 hosts/
1600 VMs 
total

Figure 4: Google trace replay.

and CCM. The organization for PM appears inside the
dashed rectangle.

5.1 Workloads
Trace-driven Simulation: the Xerxes distributed lo-

ad generator [29] produces global, datacenter-wide CPU
and memory usage patterns. It is organized as a col-
lection of individually operating, per-VM load genera-
tors, supervised by a master node. The master takes in
a global load specification, translates it to per-VM load
specification, and sets up the simulation. Once the sim-
ulation starts, the individual VM generators need no fur-
ther intervention or coordination. We use this tool to re-
play real-life datacenter traces and also generate global
resource usage volume spikes, as will be explained in
detail later.

Cloud Application Suite: four distributed applica-
tions represent the most commonly deployed classes of
cloud codes: (i) Nutch (data analytics) [2], (ii) Volde-
mort (data serving) [9] with the YCSB [22] load gener-
ator, (iii) Cloudstone (web serving), and (iv) HPL Lin-
pack (high performance computing) [6]. The Nutch in-
stance crawls and indexes a local internal mirrored de-
ployment of the Wikipedia.org website, so that we avoid
any skews in results due to WAN delays. The crawl job
is set to process the top 200 pages at each level upto
a depth of 4. The Cloudstone Faban workload genera-
tor is modified to only generate read-only requests, in
order to avoid known mysql data-tier scalability bottle-
necks [20]. We set Faban to simulate a total of 12k con-
current users. For YCSB, we use 4MB records and a
workload profile that consists of 95% read operations
and 5% update operations with zipfian request popular-
ity. Finally, Linpack solves 8 problems of pre-determin-
ed sizes over the course of each experiment, measuring
the average throughput achieved in each case.

5.2 Experimental Scenarios
I. Rightsizing the Cloud: recently, Google Inc. re-

leased a large scale, anonymized production workload

8



resource usage trace from one of its clusters [5], con-
taining data worth over 6 hours with samples taken once
every five minutes. The workload consists of 4 large
jobs that each contain a varying number of sub-tasks at
each timestamp. The trace reports the normalized CPU
and memory usage for each of the tasks at a given times-
tamp. Using Xerxes, we replay the resource usage pat-
tern of the four major jobs in the trace on 1600 VMs,
400 per job, running on 512 of the 700 servers in our
private cloud. All the VMs have equal Shares with no
Reservation and Limit control values. For the sake of
convenience, we replay only the first 5 hours worth of
data from the traces.

Figure 4 illustrates how the trace is mapped to the
CCM datacenter: the tasks of a particular job are evenly
partitioned, at a given timestamp, into 400 taskgroups,
with one taskgroup mapped to a single VM. For exam-
ple, if there are 2000 tasks for Job 1 at a given time,
then each taskgroup contains 5 tasks, and a single VM
replays the aggregate CPU and memory usage of this
taskgroup3. This produces a different resource usage
footprint in each VM at a given simulation step, but to-
tal resource usage of all 400 VMs together reflects the
job’s relative resource usage from the trace at that step.
Across multiple runs of the scenario, for both PM and
CCM, the same taskgroup to VM mapping is used.

The placement of VMs on the physical hosts works
as follows. Each set of 400 VMs representing a par-
ticular job is further sub-divided into sets of 100 VMs
and initially distributed evenly amongst the 32 hosts of
a cluster or partition. Each VM is configured with 4 vir-
tual CPUs (vCPU) and 2GB of memory. In the case of
PM, VMware DRS dynamically multiplexes the load of
the 100VMs on the 32 hosts of each partition using VM
migrations. In the case of CCM, each set of 4 clusters
are further composed into a single supercluster, and the
4 superclusters in turn report to a single cloud manager,
with capacity multiplexing being performed at each of
those levels.

The first experiment evaluates CCM’s ability to con-
tinuously rightsize the allocation for each job based on
its actual runtime demand. Jobs become underprovi-
sioned when the VMs’ total resource demand during
any time period is more than the available capacity in
their respective cluster or partition, and similarly, be-
come overprovisioned when the total demand is less than
capacity. Table 3 shows the configurable parameter set-
tings for DRS and CCM used for this experiment.

All cluster, job, and cloud utilization numbers reported
here and in the other scenarios are aggregates of the in-
dividual VM utilizations, and they do not include the

3The CPU and memory usages of each taskgroup are re-
normalized to a percentage value representing the fraction of
the VM’s configured capacity.

Param (row-wise) Clus/Part S-clus Cloud

Scenario (col-wise) I, II, III I, III II I, III II

Mon Int. (secs) 20 120 600

Bal Int. (mins) 5 20 60

ICPU ≤ Prio3 0.15 0.1 0.15 0.1

IMEM ≤ Prio3 0.2 0.2

Max(Moveshost ) n/a 6 8 6 8

Movesparallel
host n/a 3 4 4 8

Timeoutmove
host (mins) 3 16 16

Reac. Int (mins) n/a n/a 10 n/a 30

Table 3: Scenario-wise DRS & CCM Parameters. Parameter set-
tings common for all scenrios span the entire entity column.

0
20
40
60
80

100

CP
U 

(T
Hz

-M
in

ut
es

)

PM CCM

(a) CPU

0

5

10

15

20
M

em
 (T

B-
M

in
ut

es
)

PM CCM Theory

(b) Memory

Figure 5: I. Cluster-wise/Partition-wise Resource Utilization.

resource utilization due to the management operations
or virtualization overhead. As a result, any improve-
ment in utilization is due to the workloads inside VMs
being able to do extra work as more resources are made
available to them. Figure 5a shows the cluster-wise or
partition-wise CPU usage computed as the Riemann sum
of the corresponding aggregated VM usage curve over
time, with individual samples obtained once every 5 min-
utes (average value over interval). Overall, there are a
few clusters that require a large amount of CPU resource
while the majority require a much smaller amount, over
the course of the experiment.

As seen in the figure, statically sizing partitions and
managing resources within the partition leads to sub-
optimal use of available cloud capacity. In contrast,
CCM is able to improve the total CPU utilization of the
VMs in high demand clusters by upto 58%, by adding
capacity from other unused clusters that are mostly part
of the same supercluster. Figure 6a shows the the job-
wise CPU usage as the sum of their corresponding VM
CPU usages. Here again, CCM is able to increase ev-
ery jobs’s utilization, between 14% to 25%, as its mul-
tiplexing removes resource consumption hots-pots. The

9



0
20
40
60
80

100
120
140
160
180

C
P
U

 (
T
H

z-
M

in
u
te

s)

PM CCM

(a) Jobs

0
100
200
300
400
500
600

C
P
U

 (
T
H

z-
M

in
u
te

s)

PM CCM

(b) Cloud
Figure 6: I. Aggregate CPU utilization.

0 10 20 30 40 50 60
5 Min. Intervals

0.00

0.11

0.23

0.34

0.45

S
td

. 
D

e
vi

a
ti

on

PM CCM

(a) Clusters of Supercluster 0
0 10 20 30 40 50 60

5 Min. Intervals

0.00

0.05

0.10

0.15

0.20

S
td

. 
D

e
vi

a
ti

on

PM CCM

(b) Superclusters

Figure 7: CPU Imbalance in Hierarchy.

additional effect of all of these actions is that CCM is
able to improve the overall datacenter VMs’ CPU uti-
lization by around 20%, as well (see Figure 6b), com-
pared to a partitioned management approach. Also, as
seen in Figure 5b, while CCM has a lower memory uti-
lization than PM for VMs of each cluster, it is still more
than what is theoretically required by the workload. The
memory utilization values collected for each VM at the
virtualization infrastructure level include both the work-
load and the guest OS base memory usage.

Figures 7a4 and 7b provide more information on how
CCM operates with respect to reducing imbalance. Acr-
oss the clusters of each supercluster, the CPU imbal-
ance metric starts off high but CCM soon reduces it
to the configured threshold of 0.15. Clusters are dy-
namically grown and shrunk in terms of capacity back-
ing the workload VMs in such a way that their normal-
ized utilization (NE) values are similar. Interestingly,
in Figure 7b, CPU imbalance between superclusters for
CCM grows higher than for the PM approach. This ex-
pected behavior is due to the fact that CCM does not take
any action to reduce imbalance as long as it is within
the configured threshold of 0.15. In addition to varying
workload demands, another factor affecting how quickly
CCM corrects resource usage imbalances in the data-
center, is the aggressiveness of its management actions,
controlled via active throttling.

The number of VM migrations performed by PM and
CCM across the entire datacenter, every 5 minutes, over
the course of the experiment, is shown in Figure 8. Given
4Due to space limitations, imbalance across clusters is only
shown for Supercluster 0; other superclusters follow a similar
trend.

0 10 20 30 40 50 60
5 Min Intervals

0

22

44

66

88

M
ig

ra
tio

ns

PM

0 10 20 30 40 50 60
5 Min Intervals

0

22

44

66

88
CCM

Figure 8: I. Total VM Migrations every 5 Minutes.

the increased imbalance inherent in this workload,
CCM’s successful balancing of capacity uses twice as
many migrations as PM on average – 32 vs. 14, per 5
minute interval, but it is apparent from Figure 6a that
the implied management overhead is sufficiently well
amortized, ultimately leading to notable improvement
in the resources made available to jobs. When consid-
ered in the context of the entire cloud, this figure re-
flects as only 0.9% and 2%, respectively, of all the VMs,
being migrated every 5 minutes. One reason for this
modest overhead is that CCM explicitly manages man-
agement enforcement, by using timeouts on the overall
hostmove operation to abort long running migrations,
and by promoting the selection of cheaper operations at
a later time.

II. Workload Volume Spikes: the previous exper-
iment featured jobs with variable demands but with a
gradual rate of change. To test CCM’s ability to allocate
capacity to workloads experiencing a sudden volume
spike in resource usage, as described by Bodik et.al.[19],
we use the parameters identified by the authors (dura-
tion of spike onset, peak utilization value, duration of
peak utilization and duration of return-to-normal) to add
two volume spikes to a base resource usage trace. We
generate the baseline resource (CPU only) usage trace
from enterprise datacenter resource usage statistics re-
ported by Gmach et.al.[23]. We use the statistics about
the mean and 95th percentile values of the 139 work-
loads described in the paper to generate per workload
resource usage trace for 5 hours assuming that the us-
age follows a normal distribution. Groups of 12 VMs
in the datacenter replay each single workload’s resource
usage, letting us cover a total of 1600 VMs on 512 hosts.
The cluster and supercluster organizations are similar to
the previous scenario. The first volume spike quickly
triples the overall workload volume over the space of
20 minutes across a subset of 100 VMs, mapping to a
single cluster/partition, during the intial part of the ex-
periment. The second spike triples the overall workload
volume somewhat gradually across a larger scale of 400
VMs, mapping to a single supercluster, over the space
of an hour, during the latter part of the experiment.

Table 3 shows the configurable parameter settings for
this scenario. The central free host pool is set to hold
DPM recommended hosts of upto 10% of the total su-

10



percluster capacity. The appropriate hosts are harvested
from the clusters of each supercluster at the end of ev-
ery periodic balancing round. Note also that in this sce-
nario the reactive balancing operation does not have any
limits to the number of hosts that can be moved from
the central free host pool to a resource starved cluster
or supercluster. This is due to the fact that these hosts
are already pre-evacuated, resulting in the correspond-
ing management action having lower complexity and
cost. The overall behavior of the system in this scenario
would be such that the majority of capacity movements
happen due to reactive balancing, with periodic balanc-
ing only correcting any major imbalances in sub-entity
utilizations.

0 10 20 30 40 50 60
5 Min. Intervals

0.0

62.5

125.0

187.5

250.0

C
PU

 (
G

H
z)

PM CCM

(a) Util. over Time

0

4

8

12

16

C
PU

 (
TH

z-
M

in
u
te

s)

PM
CCM

(b) Util. Area of Spike

Figure 9: II. Cluster Spike: Aggregate CPU utilization. Spike Du-
ration = Samples 10 to 25 (75 mins).

0 10 20 30 40 50 60
5 Min. Intervals

0

225

450

675

900

C
PU

 (
G

H
z)

PM CCM

(a) Util. over Time

0

40

80

120

160

C
PU

 (
TH

z-
M

in
u
te

s)

PM
CCM

(b) Util. Area of Spike

Figure 10: II. Supercluster Spike: Aggregate CPU utilization.
Spike Duration = Samples 20 to 56 (180 mins).

Figure 9 shows the total VM CPU utilization achieved,
for both PM and CCM, in the cluster replaying the sharp-
er spike across 100 VMs. CCM is able to achieve a
26% higher peak value compared to PM (see Figure 9a).
Overall, this translates to a 15% improvement in total
CPU utilization over the duration of the spike (see Fig-
ure 9b). With the larger magnitude supercluster level
spike though, CCM’s improvements are a modest 13%
for the peak CPU utilization value (see Figure 10a) and
4% for the overall CPU utilization over the duration of
the spike (see Figure 10b). Given the larger scale of
the spike, a higher improvement would require the quick
movement of a correspondingly larger number of hosts.

Our ability to accomplish this is constrained by the
capacity of the central free host pool at each superclus-
ter and also the rate at which the free host pool can be
replenished with hosts. In addition, the host harvesting

0 10 20 30 40 50 60
5 Min Intervals

0

11

22

33

44

M
ig

ra
tio

ns

PM

0 10 20 30 40 50 60
5 Min Intervals

0

11

22

33

44
CCM

Figure 11: II. Total VM Migrations every 5 Minutes.

operation at the end of each periodic balancing round
still has a limitation on the number of hosts that can
be moved in order to reduce move failures and man-
agement cost. Depending on the importance of dealing
with, and, the relative incidence of such aggressive vol-
ume spikes, the datacenter operator can choose to tailor
the configurable parameters to trade between the poten-
tial loss of performance due to holding too many hosts
in “hot-standby” vs. the improved ability to deal with
volume spikes.

In terms of total migration costs, as seen in Figure 11,
CCM has only a slightly higher migration rate compared
to PM. The extra migrations are mostly due to the host
harvest operations that happen at the superclusters. The
DPM module is fairly conservative in choosing candi-
date hosts to be powered down; sometimes even choos-
ing none. This reduces the number of hosts harvested
during each invocation and the number of migrations be-
ing performed.

III. Application Performance: CCM’s multiplexing
should improve the performance of applications experi-
encing high usage or increased resource constraints due
to co-location, without significantly degrading the re-
maining workloads. To evaluate this capability, we con-
struct a scenario in which the cloud runs a workload con-
sisting of the 4 jobs from Scenario I and an instance each
of Nutch, Olio, Linpack and Voldemort. This arrange-
ment allows us to capture each application’s behavior
in a datacenter environment with a realistic background
load pattern. We run the workloads using 1024 VMs
running on 256 servers in the datacenter. Almost all the
VMs have equal Shares with no Reservation and Limit
control values except for the Nutch, Linpack and Volde-
mort master nodes that have a memory Reservation of
1GB each given their relative importance. The over-
all physical and workload VM organization is shown in
Figure 12.

Table 4 shows the raw average application performan-
ce metrics and the coefficient of variation (CV) of each
metric, across 4 runs each of PM and CCM. The last col-
umn shows the percentage change in performance using
CCM compared to PM. It is apparent that by dynami-
cally allocating capacity to back the actual resource de-
mand, CCM leads to noticeable performance improve-
ments for Nutch, Olio and Linpack with a mild per-

11



64:1

SC 4

Cloud

4:1

4:1

16 hosts/
64 VMs 
per cluster

64 hosts/
256 VMs 
per s.cluster

256 hosts/
1024 VMs 
total

Job 1

c1 c3 c4

App 1

192
VMs

 64
VMs

Job 4

c1 c3 c4

App 4

192
VMs

 64
VMs

SC 1

4:1

Figure 12: Application Performance Scenario Architecture.

App. Metric PM CCM % diff
Avg CV Avg CV

Nutch Jobtime (mins) 134 0.55 106 0.28 21
Linpack MFLOPS 392 0.04 468 0.11 20

Voldemort Ops/s 10.81 0.42 9.8 0.5 -9
Olio Reqs/s 33 0.65 274 0.6 730

Table 4: Application Performance Metrics.

formance penalty for Voldemort. The Olio application
is both CPU and memory intensive during its opera-
tion. The reason for the extremely high improvement
seen with Olio is due to the fact that, unlike high CPU
pressure, an extremely high memory pressure causes the
Olio VM guest operating system to invoke its local mem-
ory management functions such as swapping and OOM
killer, during the course of the experiment. As a result,
request throughput suffers more than linearly, as in the
case of PM, when such memory pressure isn’t alleviated
with additional capacity.

An important factor to point out in these results is
the non-trivial variability in performance observed for
the applications (CV values in Table 4). Some of this
variability is due to the fact that management operations
in both PM and CCM (i.e. VM migrations and host-
moves) have different success and failure rates across
multiple runs. This leads to a different resource avail-
ability footprint for different runs causing variability in
performance. In addition, the current version of CCM
also has limitations due to the fact that it does not ex-
plicitly take into account datacenter network hierarchy,
rack boundaries etc. in its VM migration decisions. We
believe that upcoming fully provisioned datacenter net-
working technologies [24, 38] will obviate some of these
concerns. We are also currently creating interfaces be-
tween CCM and application frameworks to better man-
age end performance and reduce variability.

6. RELATED WORK
Broadly, resource management solutions for cloud dat-

acenters can be classified as application-driven, infrastru-
cture-driven, or a hybrid of both. Among the infras-

tructure level solutions, Meng et.al. present a system
to identify collections of VMs with complimentary re-
source demand patterns and allocate resources for the
collection so as to take advantage of statistical multi-
plexing opportunities [35]. Such opportunities are inher-
ent in cloud datacenter VM collections given the many
customers and workloads they host. Wood et.al. present
a system that uses black-box and gray-box information
from individual VMs to detect and alleviate resource
hotspots using VM migrations[47]. Chen et.al. pro-
vide and O(1) approximation algorithm to consolidate
VMs with specific demand patterns onto a minimal set
of hosts. These solution approaches are designed to in-
spect individual resource signatures to allocate and ex-
tract good multiplexing gains in the datacenter.

There also exist systems that use explicit application
feedback to tune resource allocation[32, 39, 48, 42, 37]
at fine granularity (e.g. MHz for CPU) and coarse gran-
ularity (e.g. add/remove servers) in order to maintain
SLAs. Such systems can be built on top of low-level ca-
pacity management systems like CCM to better achieve
the objectives of both the cloud provider and customers.
CloudScale [41] is an elastic resource allocation system
that monitors both application and system parameters,
primarily focusing on the accuracy of allocation meth-
ods in order to balance workload consolidation with SLA
achievement. As the authors point out, this system is
designed for a single datacenter node and can comple-
ment a large scale system like CCM. Zhu et.al. con-
struct an resource allocation solution that integrates con-
trollers that operate at varying scopes and time scales to
ensure application SLA conformance [49]. CCM shares
a similar architecture. The differences lie in the fact that
CCM’s mechanisms are designed for scalability (e.g.
moving capacity vs. VMs), tackling management oper-
ation failures and cost variability. Further, we envision
CCM as a low level datacenter capacity management
system that exports interfaces through which application
level solutions interact to maintain SLA conformance.

It is rather well known that large scale management
systems must be designed to work in the presence of
machine and component failures[33, 28]. However, the
presence and the need to design for failure of manage-
ment operations has received much less attention, if any.
In addition, management operations also have bursty and
highly variable resource consumption patterns [44, 45]
that if not kept in check, may lead to unacceptable over-
heads that degrade application performance. CCM shar-
es the design philosophy of using conservative but rea-
sonably effective methods in this regard, over complex
ones, with other large scale datacenter systems such as
Ganglia [33] and Autopilot [28].

7. CONCLUSIONS

12



This paper describes a composite set of low-overhead
management methods for managing cloud infrastructure
capacity. Most real life datacenters have varying hard-
ware and software limitations that prevent aggressively
carrying out management operations. We have demon-
strated, through data from an experimental evaluation
on a fairly large infrastructure, that to achieve better ca-
pacity multiplexing, the focus needs to not only be on
the accurate prediction of workload demand and aggres-
sive optimization of the allocation algorithms, but also
on dealing with the practical limitations of real-life in-
frastructures. While in this work, we stress the need
for, and, use simple methods to overcome the detrimen-
tal effects and achieve good performance, in the future,
we plan on further analyzing our data on these over-
heads and failures, and, develop systematic approaches
to tackling them.

8. REFERENCES
[1] Amazon Web Services - Case Studies.

http://aws.amazon.com/solutions/case-studies/.
[2] Apache Nutch. http://nutch.apache.org/.
[3] Configuration Maximums - VMware vSphere 5.1.

http://pubs.vmware.com/vsphere-51/index.jsp.
[4] Drs performance and best practices. www.vmware.com/

files/pdf/drs_performance_best_practices_wp.pdf.
[5] googleclusterdata - Traces of Google tasks running in a

production cluster.
http://code.google.com/p/googleclusterdata/.

[6] HPL - a portable implementation of the high-performance
linpack benchmark for distributed-memory computers.
http://www.netlib.org/benchmark/hpl/.

[7] Hyper-V: Using Hyper-V and Failover Clustering.
http://technet.microsoft.com/en-us/library/
cc732181(v=ws.10).aspx.

[8] Lapack - linear algebra package.
http://www.netlib.org/lapack/.

[9] Project Voldemort. http://project-voldemort.com/.
[10] Unified Computing System. http:

//www.cisco.com/en/US/netsol/ns944/index.html.
[11] VMware distributed power management concepts and use.

http://www.vmware.com/files/pdf/DPM.pdf.
[12] VMware DRS. http://www.vmware.com/products/DRS.
[13] VMware VI (vSphere) Java API.

http://vijava.sourceforge.net/.
[14] VMware vSphere.

http://www.vmware.com/products/vsphere/.
[15] Xen Cloud Platform Administrator’s Guide - Release 0.1, 2009.
[16] Citrix Workload Balancing 2.1 Administrator’s Guide, 2011.
[17] Oracle Enterprise Manager Cloud Control 12c, 2011.

http://www.oracle.com/us/products/enterprise-
manager/index.html.

[18] Cloud Infrastructure Architecture Case Study, 2012.
http://www.vmware.com/resources/techresources/10255.

[19] P. Bodik et al. Characterizing, modeling, and generating
workload spikes for stateful services. In SoCC ’10.

[20] R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec.,
39(4):12–27, May 2011.

[21] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation - Volume 2, NSDI’05, pages
273–286, Berkeley, CA, USA, 2005. USENIX Association.

[22] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In

Proceedings of the 1st ACM symposium on Cloud computing,
SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

[23] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Workload
analysis and demand prediction of enterprise data center
applications. In Proceedings of the 2007 IEEE 10th
International Symposium on Workload Characterization,
IISWC ’07, pages 171–180, Washington, DC, USA, 2007.
IEEE Computer Society.

[24] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. Vl2: a scalable
and flexible data center network. In Proceedings of the ACM
SIGCOMM 2009 conference on Data communication,
SIGCOMM ’09, pages 51–62, New York, NY, USA, 2009.
ACM.

[25] A. Gulati et al. Decentralized management of virtualized hosts,
12 2012. Patent No. US20120324441 A1.

[26] A. Gulati et al. VMware Distributed Resource Management:
Design, implementation and lessons learned. VMware Technical
Journal, 1(1):45–64, Apr 2012.

[27] A. Gulati, G. Shanmuganathan, A. Holler, and I. Ahmad.
Cloud-scale resource management: challenges and techniques.
In Proceedings of the 3rd USENIX conference on Hot topics in
cloud computing, HotCloud’11, pages 3–3, Berkeley, CA, USA,
2011. USENIX Association.

[28] M. Isard. Autopilot: automatic data center management.
SIGOPS Oper. Syst. Rev., 41(2):60–67, Apr. 2007.

[29] M. Kesavan et al. Xerxes: Distributed load generator for
cloud-scale experimentation. In Open Cirrus Summit, 2012.

[30] O. Krieger, P. McGachey, and A. Kanevsky. Enabling a
marketplace of clouds: Vmware’s vcloud director. SIGOPS
Oper. Syst. Rev., 44:103–114, December 2010.

[31] V. Kumar, B. F. Cooper, G. Eisenhauer, and K. Schwan.
imanage: policy-driven self-management for enterprise-scale
systems. In Proceedings of the 8th ACM/IFIP/USENIX
international conference on Middleware, MIDDLEWARE2007,
pages 287–307, Berlin, Heidelberg, 2007. Springer-Verlag.

[32] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh. Automated
control in cloud computing: challenges and opportunities. In
Proceedings of the 1st workshop on Automated control for
datacenters and clouds, ACDC ’09, pages 13–18, New York,
NY, USA, 2009. ACM.

[33] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia
distributed monitoring system: Design, implementation and
experience. Parallel Computing, 30:2004, 2003.

[34] N. McKeown et al. OpenFlow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev., 38, March 2008.

[35] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and
D. Pendarakis. Efficient resource provisioning in compute
clouds via vm multiplexing. In Proceedings of the 7th
international conference on Autonomic computing, ICAC ’10,
pages 11–20, New York, NY, USA, 2010. ACM.

[36] A. K. Mishra et al. Towards characterizing cloud backend
workloads: insights from Google compute clusters.
SIGMETRICS PER 2010.

[37] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds:
managing performance interference effects for qos-aware
clouds. In Proceedings of the 5th European conference on
Computer systems, EuroSys ’10, pages 237–250, New York,
NY, USA, 2010. ACM.

[38] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
Portland: a scalable fault-tolerant layer 2 data center network
fabric. In Proceedings of the ACM SIGCOMM 2009 conference
on Data communication, SIGCOMM ’09, pages 39–50, New
York, NY, USA, 2009. ACM.

[39] P. Padala et al. Adaptive control of virtualized resources in
utility computing environments. In EuroSys ’07.

[40] T. Ristenpart et al. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In CCS ’09.

[41] Z. Shen et al. CloudScale: Elastic Resource Scaling for

13



Multi-Tenant Cloud Systems. In SoCC ’11.
[42] R. Singh et al. Autonomic mix-aware provisioning for

non-stationary data center workloads. In ICAC ’10.
[43] W. Sobel et al. Cloudstone: Multi-platform, multi-language

benchmark and measurement tools for web 2.0. In CCA ’08.
[44] V. Soundararajan and J. M. Anderson. The impact of

management operations on the virtualized datacenter. In ISCA
’10.

[45] A. Verma et al. The cost of reconfiguration in a cloud. In
Middleware Industrial Track ’10.

[46] C. A. Waldspurger. Memory resource management in VMware
ESX server. In OSDI ’02.

[47] T. Wood et al. Black-box and gray-box strategies for virtual
machine migration. In NSDI’07.

[48] Q. Zhu and G. Agrawal. Resource provisioning with budget
constraints for adaptive applications in cloud environments. In
Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, HPDC ’10, pages
304–307, New York, NY, USA, 2010. ACM.

[49] X. Zhu et al. 1000 islands: Integrated capacity and workload
management for the next generation data center. In ICAC ’08.

14


