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Abstract
Parametric static analysis allows choosing a parameter value to
balance the precision and cost of the instantiated analysis. We
propose an efficient approach to either find a cheapest parame-
ter value to prove a given query or show that no such parame-
ter value exists. Our approach is based on refinement, as in CE-
GAR (counterexample-guided abstraction refinement), but applies
a novel meta-analysis to abstract counterexample traces to effi-
ciently find parameter values that are incapable of proving the
query. We formalize our approach in a generic framework and
apply it to two parametric analyses: a thread-escape analysis and
a type-state analysis. The thread-escape analysis is implemented
and applied to eight Java benchmarks comprising 2.5 MLOC. Our
experiments show that our approach is effective in practice: for
our four largest benchmarks, searching 29K parameter values for
each of 10K queries on average per benchmark, it finds a cheapest
one for proving 46% queries and shows that none exists for 37%
queries, in one minute per query on average.

1. Introduction
A key problem in static analysis concerns how to balance its pre-
cision and cost. Ideally, the analysis should compute an abstrac-
tion of a given program that discards all the unnecessary details for
proving a given query, e.g., an assertion at a program point. Query-
oblivious analyses use a fixed abstraction independent of the query.
Query-guided analyses, on the other hand, exploit any gain in pre-
cision and reduction in cost by tailoring the abstraction to the query.

This paper presents a new approach to build efficient query-
guided static analyses. Our approach assumes a parametric static
analysis that takes as inputs a program s, a query q, and a parameter
value π ∈ P, and either proves the query or produces an abstract
counterexample trace as a witness of its failure to prove the query.
The set P of all parameter values is finite and preordered by the cost
of the instantiated analysis: π � π′ means performing the analysis
using π is at least as cheap as performing it using π′. Our goal is
then to solve the parametric static analysis problem which asks to
efficiently compute one of the following:

1. A Minimum-Cost Proof: A π such that (1) the analysis proves
the query using π and (2) whenever the analysis does the same
using a different parameter value π′, we have π � π′.

2. An Impossibility Result: There does not exist any π that en-
ables the analysis to prove the query.

Many static analyses can be naturally parameterized. For instance,
software model checkers such as SLAM are usually parametric in
program predicates to be used in the predicate abstraction [6],
and shape analyses are parametric in instrumentation predicates
that dictate how to abstract concrete heap cells to summary nodes
[17]. Cloning-based pointer analyses are parametric in the degree of
cloning π(h) ≥ 0 to use for each call site and each object allocation
site h in the program [11]. In all these cases, the parameter dictates

the cost of the instantiated analysis to a first approximation. For
instance, in cloning-based pointer analysis, it is reasonable to say
π � π′ holds if Σhπ(h) ≤ Σhπ

′(h).
A naive solution to our parametric static analysis problem is to

run the analysis using each parameter value in P, from the cheapest
to the most expensive, until we obtain a parameter value that proves
the query, failing which we get an impossibility result. However, P
is very large in practice, typically exponential in the size of the
program. For instance, with k degrees of cloning and a program
with N sites, we have |P| = (k + 1)N .

This paper presents a new approach to solve the parametric
static analysis problem. Our approach is based on refinement as in
CEGAR (counterexample-guided abstraction refinement) but dif-
fers radically in how it analyzes an abstract counterexample trace:
it computes a sufficient condition for the failure of the analysis to
prove the query along the trace. The condition represents a set of
parameter values Π ⊆ P such that the analysis instantiated using
any π ∈ Π is guaranteed to fail to prove the query. Our approach
then discards all parameter values in Π as unviable and picks the
next cheapest parameter value from P \ Π as dictated by �. If the
set of viable parameter values becomes empty then our approach
declares impossibility; otherwise, it returns the parameter value
that was used to instantiate the analysis in the final iteration as the
cheapest one that proves the query.

Our approach finds unviable parameter values by performing a
backward analysis on the trace. It is a meta-analysis that must be
proven sound with respect to the abstract semantics of the forward
analysis. Scalability of backward analyses is typically hindered
by exploring program states that are unreachable from the initial
state. Our backward meta-analysis, in contrast, is guided by the
trace provided by the forward analysis. Moreover, this trace enables
our backward analysis to perform underapproximation while still
guaranteeing to find a non-empty set of unviable parameter values.

Like the forward analysis, the backward meta-analysis is a static
analysis, and the performance of our overall approach depends
heavily on how this meta-analysis balances its own precision/cost
tradeoff. If it performs underapproximation too aggressively, it
analyzes the trace efficiently but finds only the current parameter
value unviable, and requires more iterations to converge. On the
other hand, if it performs underapproximation too passively, it
analyzes the trace inefficiently but finds many more parameter
values unviable, and thereby requires fewer iterations to converge.

We present a generic framework for developing an efficient
backward meta-analysis, which involves choosing an abstract do-
main, devising (backward) transfer functions, and proving the
soundness of these functions with respect to the forward analysis.
Our framework suggests a domain built from a DNF representa-
tion of the formulas, and provides several effective optimizations
for scaling the backward meta-analysis, including double-negation,
simplification by clause subsumption, and beam search. We show
the versatility of the framework by applying it to two parametric
analyses in the literature: the thread-escape analysis from [13] and
a simplified type-state analysis based on [5]. These analyses are
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while (*) {
u = new h1;
v = new h2;
S;

pc: local(u)?
u.start();

}

Choices for S =

 (1) skip
(2) g = u
(3) v.f = u

Figure 1. Example program.

selected because they use very different heap abstractions and they
control these abstractions using different types of parameter values.

We implemented our approach for parametric static analyses of
Java programs and evaluated it using our thread-escape analysis as
a candidate analysis on a suite of eight Java benchmarks comprising
2.5 MLOC. This analysis is a fully flow- and context-sensitive, top-
down, summary-based shape analysis with 2N possible parameter
values for each query, where N is the number of object allocation
sites in the program. Our experiments show that our approach is
effective in practice: for our four largest benchmarks, each contain-
ing on average 9K such sites, 10K queries, and 350 KLOC, it finds
a cheapest parameter value for proving 46% queries and shows that
none exists for 37% queries, in one minute per query on average.

We summarize the key contributions of this paper:

• We formulate the parametric static analysis problem of choos-
ing a suitable parameter value to prove a given query. The for-
mulation seeks a cheapest parameter value that proves the query
or an impossibility result that none exists.

• We present a new refinement-based approach to solve the
problem. The central insight of our approach is a novel meta-
analysis that operates on abstract counterexample traces to find
parameter values that are incapable of proving the query.

• We present a generic framework to design the meta-analysis,
along with a DNF representation for the formulas tracked by it,
and several effective optimizations for scaling it. We apply the
framework to two parametric analyses in the literature.

• We present extensive empirical evaluation showing the efficacy
of our approach on a parametric thread-escape analysis for a
suite of several large real-world Java benchmarks.

2. Informal Description
We describe our approach informally using the thread-escape anal-
ysis. To simplify presentation, here we focus on what the approach
does, using later sections to illustrate details of how it works.

Parametric Thread-Escape Analysis. A heap object in a multi-
threaded shared-memory program is thread-local when it is reach-
able only from at most a single thread. For instance, consider the
program in Figure 1, which repeatedly allocates two heap objects at
sites labeled h1 and h2, binds them with local variables u and v, ex-
ecutes an unspecified code snippet S, and starts a new thread on the
object u by calling u.start() from java.lang.Thread. When
S is skip or v.f = u, local variable u at program point pc points
to a thread-local object, because this object is reachable only from
the current thread. On the other hand, when S is g = u that assigns
u to a global variable g (which corresponds to a static field in Java),
the object is not thread-local, because it is reachable from threads
besides the current thread via global variable g. In this case, we say
that the object is thread-escaping. Determining the thread locality
of heap objects is useful because it helps various other analyses to
reason about concurrent properties accurately or efficiently.

Our thread-escape analysis conservatively answers queries on
thread locality. It is a flow-sensitive analysis about the heap and
employs a very coarse heap abstraction. In this abstraction, all heap

objects are summarized to one of only two summary nodes L and
E. The node E includes all thread-escaping objects and possibly
some thread-local ones, whereas L summarizes only thread-local
objects. For instance, the abstract state [u 7→ L, v 7→ E] expresses
that the local variable u definitely points to a thread-local object
but v may point to a thread-escaping object. Hence, if this is the
analysis result at pc in Figure 1, we can conclude that object u at
pc is local to the current thread. On the other hand, if the analysis
result is [u 7→ E, v 7→ E], we cannot make the same conclusion
because the result allows u to point to a thread-escaping object.

One interesting aspect of our thread-escape analysis is that
its abstract semantics is parameterized, which opens the door for
tuning the analysis to a given query over a given program. The
parameter is a map π from each object allocation site to L or E, and
it determines the abstract semantics of object allocation. If π(h)
is L, all objects allocated at h are summarized by L. Otherwise,
they are summarized by E. For instance, there are four possible
parameter values for the program in Figure 1 with S = skip:

π0 = [h1 7→ E, h2 7→ E], π1 = [h1 7→ L, h2 7→ E],
π2 = [h1 7→ E, h2 7→ L], π3 = [h1 7→ L, h2 7→ L].

If we run the analysis with π0, the heap objects allocated at h1 and
h2 are summarized by the E node, so that we get the abstract state
[u 7→ E, v 7→ E] at pc. This analysis result does not ensure that u
points to a thread-local object, so we cannot prove the query at pc.
On the other hand, running the analysis with π1 leads to a proof
that object u is thread-local, because it produces the abstract state
[u 7→ L, v 7→ E] at pc.

Parameter Searching by Iterative Refinement. As a reader
might have guessed by now, in order to use the thread-escape analy-
sis most effectively, we need a mechanism for selecting a parameter
value π appropriate for a given query. Trying all possible π’s is not
an option, because the space of parameter values is huge: there
are 2N different parameter values for a program with N alloca-
tion sites. To make matters more complicated, the cost of running
the analysis varies depending on parameter values: although we
do not go into the details here, using a parameter value with more
E-mapped sites generally makes the analysis faster.

The iterative refinement algorithm in this paper provides an
effective solution to this parameter selection problem. It repeatedly
runs the thread-escape analysis with different parameter values,
until it proves the given query or infers that proving the query with
the analysis is impossible for any parameter value. In each iteration,
if the analysis with a parameter value π fails to prove the query, our
algorithm generates a counterexample trace, which is analyzed by
our algorithm to find out other parameter values π′ that would lead
to a similar verification failure.

We illustrate the algorithm using the program in Figure 1. As-
sume that skip is chosen for S in the program, and that we wish to
answer query local(u)? at pc. The algorithm first runs the thread-
escape analysis with the cheapest parameter value π0 = [h1 7→
E, h2 7→ E]. As we noted before, this analysis run leads to the ab-
stract state d0 = [u 7→ E, v 7→ E] at pc, and fails to prove the query.
At this point, our algorithm generates the counterexample trace:

u = new h1 ; v = new h2 ; skip ; local(u)?

whose abstract semantics under π0 produces the abstract state d0.
Then, it analyzes this trace backward, and infers a sufficient condi-
tion on π’s that makes the analysis fail to prove the query over the
same trace. The inference step here involves a meta-reasoning on
the behavior of the thread-escape analysis under various parame-
ter values, so we call it meta-analysis. In this example, the inferred
condition on parameter values π is π(h1) = E. In order to prove
the query, we should pick π outside of the above set. Our algorithm
chooses a cheapest such parameter value π1 = [h1 7→ L, h2 7→ E],
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u = create();
v = create();
g = v;

pc: local(u)?

create() {
return new h;

}

Figure 2. Example program to illustrate analysis incompleteness.

and runs the analysis again. This time the analysis computes the
invariant [u 7→ L, v 7→ E] at pc, and proves the query.

Impossibility. Some queries cannot be proved by our thread-
escape analysis no matter which parameter value is used with the
analysis. There are two reasons for this impossibility. The first is
that a heap object in concern is actually thread-escaping, so that the
query is false. The second more interesting case is that the query
holds but it cannot be proved by the analysis because of the inherent
incompleteness of the analysis.

The program in Figure 1 with g = u chosen for S illustrates the
first type of impossibility. In this case, object u is escaping at pc,
so the query local(u)? does not hold. Our algorithm finds this
impossibility as follows. It runs the thread-escape analysis with
π0 = [h1 7→ E, h2 7→ E], which computes the abstract state
[u 7→ E, v 7→ E] at pc and fails to prove the query. From the failed
analysis run, the algorithm generates the counterexample trace:

u = new h1 ; v = new h2 ; g = u ; local(u)?

which the meta-analysis analyzes, so as to compute the condition
π(h1) = E ∨ π(h1) = L for making the analysis fail to prove the
query. But this condition always holds, implying that the analysis
will always fail to prove the query no matter which parameter
value is used. Our approach detects this, and returns impossibility.
Note that although there are four parameter values, our analysis
detects this impossibility in a single iteration just by generalizing
the reason of failure of the first analysis run.

We use the program in Figure 2 to illustrate the second type
of impossibility, which occurs due to the incompleteness of the
analysis. The program in the figure first allocates two objects u
and v by calling a wrapper function create() to the allocation
command, and then assigns v to g, making the second object v
thread-escaping. A query is given right after this assignment, and
it asks whether u points to a thread-local object. The object u is
thread-local so the query holds in the concrete semantics. How-
ever, the thread-escape analysis cannot prove the query. For this
program, there are two possible parameter values, π0 = [h 7→ E]
and π1 = [h 7→ L], but using either of them leads to abstract state
[u 7→ E, v 7→ E] at pc and makes the analysis fail to prove the query.
For instance, when the analysis is run with π1, it computes the ab-
stract state [u 7→ L, v 7→ L] right before the assignment g = v, but
the assignment transforms this state to [u 7→ E, v 7→ E], because it
needs to consider the possibility that u and v are aliased and both
get affected by the assignment. Our algorithm finds this impossibil-
ity. As usual, it starts by running the analysis with π0 above, fails
to prove the query, and obtains the counterexample trace:

u = create() ; v = create() ; g = v ; local(u)?

The trace is analyzed by the meta-analysis, which computes the
condition π(h) = E∨π(h) = L. From this condition, the algorithm
concludes that the query is impossible to prove.

3. Preliminaries
This section describes a formal setting used throughout the paper.

3.1 Programming Language
We present our results using a simple imperative language:

(atomic command) a ::= ...
(program) s ::= a | s ; s′ | s+ s′ | s∗

trace(a) = {a}
trace(s+ s′) = trace(s) ∪ trace(s′)
trace(s ; s′) = {τ τ ′ | τ ∈ trace(s) ∧ τ ′ ∈ trace(s′)}

trace(s∗) = leastFixλT. {ε} ∪ {τ ; τ ′ | τ ∈T ∧ τ ′ ∈ trace(s)}

Figure 3. Traces of a program s. Symbol ε denotes an empty trace.

Fπ[s] : 2D → 2D

Fπ[a](D) = {JaKπ(d) | d ∈ D}
Fπ[s ; s′](D) = (Fπ[s′] ◦ Fπ[s])(D)
Fπ[s+ s′](D) = Fπ[s](D) ∪ Fπ[s′](D)

Fπ[s∗](D) = leastFix λD0. D ∪ Fπ[s](D0)

Fπ[τ ] : D→ D
Fπ[ε](d) = d
Fπ[a](d) = JaKπ(d)

Fπ[τ ; τ ′](d) = Fπ[τ ′](Fπ[τ ](d))

Figure 4. Abstract semantics. In the case of loop, we take the least
fixpoint with respect to the subset order in the powerset domain 2D.

The language includes a (unspecified) set of atomic commands.
Examples are assignments v = w.f and assume statements
assume(e), which filter out executions where e evaluates to false.
The language also contains the standard compound constructs: se-
quential composition, non-deterministic choice, and iteration.

A trace τ is a finite sequence of atomic commands a1a2 . . . an.
It records the steps taken during one execution of a program. Func-
tion trace(s) in Figure 3 shows a standard method for generating
all possible traces of a program s.

3.2 Parametric Static Analysis
We consider static analyses whose transfer functions for atomic
commands are parameterized. The parameter controls the preci-
sion/cost tradeoff of the analysis. By choosing it carefully, we can
tailor the analysis to a given program and a given query.

Our parametric analyses are specified by the following data:

1. A partially ordered set (P,�) specified by a preorder � (i.e.,
� is reflexive and transitive). Elements π ∈ P are parameter
values, and decide the degree of abstraction used by the analy-
sis. The preorder� on π’s approximates the cost of running the
analysis in terms of speed. Hence, running the analysis with a
smaller π correlates the lower cost of the analysis.
We require that every nonempty subset P ⊆ P has a minimum
element π ∈ P (i.e., π � π′ for every π′ ∈ P ).

2. A finite set D of abstract states. Our analysis uses a set of
abstract states to approximate reachable concrete states at each
program point. Formally, this means the analysis is disjunctive.

3. A transfer function JaKπ : D→ D for each atomic command a.
The function is parameterized by π ∈ P.

A parametric analysis analyzes a program in a standard way,
except that it requires a parameter value to be provided before
the analysis starts. The abstract semantics in Figure 4 describes
the behavior of the analysis formally. In the figure, a program s
denotes a transformer Fπ[s] on sets of abstract states, which is
parameterized by π ∈ P. Note that the parameter π is used when
atomic commands are interpreted. Hence, π controls the analysis by
changing the transfer functions for atomic commands. Other than
this parameterization, all the defining clauses are standard.

We remind the reader of a well-known result on disjunctive
program analyses, which applies to our parametric analyses.
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LEMMA 1. For all programs s, parameter values π, and abstract
states d, we have that Fπ[s]({d}) = {Fπ[τ ](d) | τ ∈ trace(s)},
where Fπ[τ ] is the result of analyzing trace τ as shown in Figure 4.

The lemma ensures that for all final abstract states d′ ∈ Fπ[s]({d}),
we can construct a trace τ transforming d to d′. This trace does not
have a loop, and is significantly simpler than the original program
s. We exploit this simplicity of generated traces in our approach, as
will be shown later.

Example: Thread-Escape Analysis. The thread-escape analy-
sis [13] is an example of a parametric static analysis. Let H be a
finite set of allocation sites, L that of local variables, and F a finite
set of object fields. The analysis uses the following domains for
parameter values and abstract states:

P = H→ {L, E}, D = (L ∪ F)→ {L, E, N},
π � π′ ⇔ |{h ∈ H | π(h) = L}| ≤ |{h ∈ H | π′(h) = L}|.

Here N means the null value, and L and E are abstract locations,
representing disjoint sets of heap objects, except that both L and
E include the null value. The abstract location E summaries null,
all the thread-escaping objects, and possibly some of thread-local
ones. On the other hand, L denotes all the other heap objects and
null. Hence it means only thread-local objects, although it might
miss some such objects. The analysis maintains an invariant that E-
summarized objects are closed under pointer reachability: if a heap
object is summarized by E, following any of its fields always gives
null or E-summarized objects, but not L-summarized ones.

A parameter value π determines for each site h ∈ H whether
L or E should be used to summarize objects allocated at h. An ab-
stract element d is a function from local variables or fields of L-
summarized objects to abstract locations or N. It records the values
of local variables and those of the fields of L-summarized heap ob-
jects. For instance, the abstract state [v 7→ L, f1 7→ E, f2 7→ E]
means that a local variable v points to some heap object summa-
rized by L, and fields f1, f2 of every L object point to those summa-
rized by E. Since all the thread-escaping objects are summarized by
E, this abstract state implies that the heap object v is thread-local.

We order parameter values π � π′ based on how many sites are
mapped to L by π and π′. The number of L-mapped sites usually
correlates the performance of the analysis. Hence, it is desirable to
run the analysis with a small parameter value when we attempt to
prove a given query.

The thread-escape analysis is developed to prove properties of
heap-manipulating programs, so it includes transfer functions of
the following heap-manipulating commands:

a ::= v = new h | g = v | v = g | v = null | v = v′ |
v = v′.f | v.f = v′

Here g and v are global and local variables, respectively, and h ∈ H
is an allocation site. The transfer functions of these commands
simulate their standard meanings but on abstract states, rather than
on concrete states. They are shown in Figure 5.

The function Jv = new hKπ(d) makes the variable v point to the
abstract location π(h), which simulates the allocation of a π(h)-
summarized heap object and the binding of this object with v. The
transfer function for g = v models that if v points to a thread-
local object, this assignment makes the object escaping, because
it exposes the object’s reference to other threads via the global
variable g. When v points to L, the transfer function calls esc(d),
which sets all the local variables to E (unless they have the N value)
and resets all the fields to N. This means that after calling esc(d),
the analysis loses most of the information about thread locality, and
concludes that all the variables point to potentially thread-escaping
objects. This dramatic information loss is inevitable because if v
points to L beforehand, the assignment g = v can lead to the
escaping of any object summarized by L. The transfer functions

esc : D→ D
esc(d) = λu. if (d(u) = N ∨ u ∈ F) then N else E

JaKπ : D→ D
Jv= new hKπ(d) = d[v 7→ π(h)]

Jg= vKπ(d) = if (d(v) = L) then esc(d) else d
Jv= gKπ(d) = d[v 7→ E]

Jv= nullKπ(d) = d[v 7→ N]
Jv= v′Kπ(d) = d[v 7→ d(v′)]

Jv= v′.fKπ(d) =

{
d[v 7→ d(f)] if (d(v′) = L)
d[v 7→ E] otherwise

Jv.f = v′Kπ(d) =

esc(d) if d(v) = E ∧ d(v′) = L
d if (d(v) = E ∧ d(v′) 6= L) ∨ d(v) = N
esc(d) if d(v) = L ∧ {d(f), d(v′)} = {L, E}
d[f 7→ L] if d(v) = L ∧ {d(f), d(v′)} = {N, L}
d[f 7→ E] if d(v) = L ∧ {d(f), d(v′)} = {N, E}
d if d(v) = L ∧ d(f) = d(v′)

Figure 5. Transfer function for the thread-escape analysis.

of the other atomic commands in the figure can be understood
similarly by referring to the concrete semantics and approximating
it over abstract states.

Running Example. Figure 6 revisits the example from Figure 1
with v.f = u chosen for S. It shows the abstract state (denoted
by ↓) computed by our thread-escape analysis at each point of an
abstract counterexample trace of this program (for now, ignore the
abstract states computed by the backward meta-analysis, denoted
by ↑). The results of the analysis in parts (a) and (b1) of the figure
are obtained using the same parameter value [h1 7→ E, h2 7→ E]
and are thus identical; the results in part (b2) are obtained using a
different parameter value [h1 7→ L, h2 7→ E].

Example: Simplified Typestate Analysis. The second example
is a simplified version of the typestate analysis from [5]. This
analysis tracks the so-called typestate of a heap object, which is
initially set to init but changes depending on the method called on
the object. In order to do this tracking correctly and precisely, the
original analysis keeps various information about pointer aliasing.
Our simplified version only keeps information about must aliases.

We assume we are given a set TS of typestates containing init ,
which represents the initial typestate of heap objects, and a function
JmK : TS→ TS ∪ {>} for every method m, which describes how
a call x.m() changes the typestate of object x and when it leads
to an error, denoted >. Using these assumed data, we specify the
domains and transfer functions of the analysis in Figure 7.

The parameter π of the analysis is a set of local or global
variables that determines what can appear in the must-alias set
of an abstract state. The abstract state d of the analysis has form
(Σ, X) or >, where X should be a subset of the parameter π,
and it tracks information about a single heap object. In the former
case, Σ represents all the possible typestates of the tracked object
and X , the must-alias set of this object. The latter means that the
heap object can be in any typestate including the error state >. For
brevity, we present transfer functions only for simple assignments
and method calls. Those for assignments x = y and x = null
update the must-alias set according to their concrete semantics and
the parameter value π. The transfer function for a method call
x.m() updates the Σ component of the input abstract state using
JmK. In the case where the must-alias set is imprecise, this update
includes both the old and new typestates.

According to our order �, a parameter value π is smaller than
π′ when its cardinality is smaller than π′. Hence, running this
analysis with a smaller π implies that the analysis would be less
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↓ [u 7→ N, v 7→ N]
↑ h1→E ∨ (h2→E ∧ h1→L)

u = new h1;
↓ [u 7→ E, v 7→ N]
↑ u→E ∨ (h2→E ∧ u→L) ∨
(h2→L ∧ (f→E ∧ u→L)

v = new h2;
↓ [u 7→ E, v 7→ E]
↑ u→E ∨ (v→E ∧ u→L) ∨
(v→L ∧ f→E ∧ u→L)

v.f = u;
↓ [u 7→ E, v 7→ E]
↑ u→E

pc: local(u)?

(a) Iteration 1 without under-approximation.

↓ [u 7→ N, v 7→ N]
↑ h1→E

u = new h1;
↓ [u 7→ E, v 7→ N]
↑ u→E

v = new h2;
↓ [u 7→ E, v 7→ E]
↑ u→E

v.f = u;
↓ [u 7→ E, v 7→ E]
↑ u→E

pc: local(u)?

Iteration 1: π = [h1 7→ E, h2 7→ E]

↓ [u 7→ N, v 7→ N]
↑ h1→L ∧ h2→E

u = new h1;
↓ [u 7→ L, v 7→ N]
↑ u→L ∧ h2→E

v = new h2;
↓ [u 7→ L, v 7→ E]
↑ u→L ∧ v→E

v.f = u;
↓ [u 7→ E, v 7→ E]
↑ u→E

pc: local(u)?

Iteration 2: π = [h1 7→ L, h2 7→ E]

(b) With under-approximation.

Figure 6. Example illustrating our approach for finding a minimum-cost proof.

(typestates) σ ∈ TS (we assume init ∈ TS)
(local/global variables) x, y ∈ V

(analysis parameter) π ∈ P = 2V

(abstract state) d ∈ D = (2TS × 2V) ∪ {>}
(order on parameters) π � π′⇔|π| ≤ |π′|

(transfer function) JaKπ : D→ D
JaKπ(>) = >

Jx= yKπ(Σ, X) =

{
(Σ, X ∪ {x}) if y ∈X ∧ x∈π
(Σ, X \ {x}) otherwise

Jx= nullKπ(Σ, X) = (Σ, X \ {x})

Jx.m()Kπ(Σ, X) =

> if ∃σ ∈ Σ. JmK(σ) = >
({JmK(σ) |σ ∈Σ}, X) else if x∈X
({σ} ∪ {JmK(σ) |σ ∈Σ}, X) otherwise

Figure 7. Data for the typestate analysis.

precise about must-alias sets, which normally correlates the faster
convergence of the fixpoint iteration of the analysis.

3.3 Parametric Static Analysis Problem
Parametric analyses are used in the context of query-driven verifi-
cation, where we are given not just a program to analyze but also a
query to prove. In this usage scenario, the most important matter to
resolve before running the analysis is to choose a right parameter
value π. Ideally, we would like to pick π that forces the analysis
to keep enough information to prove a given query for a given pro-
gram, but to discard information unnecessary for this proof, so that
the analysis achieves high efficiency.

The parametric static analysis problem provides a guideline on
resolving the issue of parameter value selection. It sets a specific
target on parameter values that we should aim at. Assume that we
are interested in queries expressed as subsets of D. The problem is
defined as follows:

DEFINITION 2 (Parametric Static Analysis Problem). Given a pro-
gram s, an initial abstract state dI , and a query q ⊆ D, find a
minimum parameter value π such that Fπ[s]{dI} ⊆ q,1 or show
that Fπ[s]{dI} ⊆ q does not hold for any π.

Note that the problem asks for not a minimal π, but a minimum
hence cheapest one. This requirement encourages any reasonable
solution of the problem to exploit cheap parameter values (deter-
mined by �) as much as possible.

1 The condition that π be minimum means: if Fπ′ [s]dI ⊆ q then π � π′.

Our approach to solve the problem is based on using a form
of a backward meta-analysis and reasoning about the behavior
of a parametric static analysis under different parameter values
simultaneously. We explain this backward meta-analysis next.

4. Backward Meta-Analysis
In this section, we fix a parametric static analysis

(P,�,D, J−K)

and describe corresponding backward meta-analyses. To avoid the
confusion between these two analyses, we often call the parametric
static analysis as forward analysis.

A backward meta-analysis is a core component of our algorithm
for the parametric static analysis problem. It is invoked when the
forward analysis fails to prove a query. The meta-analysis attempts
to determine why a run of the forward analysis with a specific pa-
rameter value π fails to prove a query, and to generalize this reason.
Concretely, the inputs to the meta-analysis are a trace τ , a parame-
ter value π, and an initial abstract state dI , such that the π instance
of the forward analysis fails to prove that a given query holds at
the end of τ . Given such inputs, the meta-analysis analyzes τ back-
ward, and collects parameter values that lead to a similar verifica-
tion failure of the forward analysis. The collected parameter val-
ues are used subsequently when our top-level algorithm computes
a necessary condition on parameters for proving the given query
and chooses a next parameter value to try based on this condition.

Formally, the meta-analysis is specified by the following data:

• A set M and a function

γ : M→ 2P×D.

Elements in M are the main data structures used by the meta-
analysis, and γ determines their meanings. We suggest to read
elements in M as predicates over P×D. The meta-analysis uses
such a predicate φ ∈ M to express a sufficient condition for
verification failure: for every (π, d) ∈ γ(φ), if we instantiate
the forward analysis with π and run this instance from the
abstract state d (over the part of a trace analyzed so far), we
will fail to prove a given query.

• A function

JaKb : M→ M
for each atomic command a. The input φ1 ∈ M represents a
postcondition on P× D. Given such φ1, the function computes
the weakest precondition φ such that running JaK from any
abstract state in γ(φ) has an outcome in γ(φ1). This intuition
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B[τ ] : P× D×M→ M
B[ε](π, d, φ) = φ
B[a](π, d, φ) = approx(π, d, JaKb(φ))

B[τ ; τ ′](π, d, φ) = B[τ ](π, d,B[τ ′](π, Fπ[τ ](d), φ))

Figure 8. Backward meta-analysis.

negate(p) = not(p)
negate(true) = false negate(φ∧φ′) = negate(φ)∨ negate(φ′)
negate(false) = true negate(φ∨φ′) = negate(φ)∧ negate(φ′)

toDNF(φ) transforms φ to the DNF form and sorts disjuncts by size

simplify(
∨
{φi | i ∈ {1, . . . , n}}) =∨
{φi | i ∈ {1, . . . , n} ∧ ¬(∃j < i.φj v φi)}

dropk(π, d,
∨
{φi | i ∈ {1, . . . , n}}) =

(
∨
{φi | i ∈ {1, . . . ,min(k − 1, n)}}) ∨ φj

(where (π, d) ∈ γ(φj) and j is the smallest such index)

Figure 9. Functions for manipulating φ’s.

is formalized by the following requirement on JaKb:

∀φ1 ∈M. γ(JaKb(φ1)) = {(π, d) | (π, JaKπ(d))∈ γ(φ1)}. (1)

• A function
approx : P× D×M→ M.

The function is required to meet the following two conditions:

1. ∀π, d, φ. γ(approx(π, d, φ)) ⊆ γ(φ); and

2. ∀π, d, φ. (π, d) ∈ γ(φ)⇒ (π, d) ∈ γ(approx(π, d, φ)).

The first condition ensures that approx(π, d, φ) underapproxi-
mates the input φ, and the second says that this underapproxi-
mation should keep at least (π, d), if it is already in γ(φ). The
main purpose of approx is to simplify the input φ. For instance,
when φ is a logical formula, approx turns φ to a syntactically
simpler one. The operator is invoked frequently by our meta-
analysis, and helps the analysis to keep the complexity of the
M value (the analysis’s main data structure) under control.

Using the given data, our backward meta-analysis analyzes a trace
τ backward as described in Figure 8. For each atomic command a
in τ , it transforms an input φ using JaKb first. Then, it simplifies the
resulting φ′ using the approx operator.

Our meta-analysis correctly tracks a sufficient condition that the
forward analysis fails to prove a query. This condition is not trivial
(i.e., it is a satisfiable formula), and includes enough information
about the current failed verification attempt on τ by the forward
analysis. Our theorem below formalizes these guarantees.

THEOREM 3 (Soundness). For all τ , π, d and φ ∈ M,

1. (π, Fπ[τ ](d)) ∈ γ(φ)⇒ (π, d) ∈ γ(B[τ ](π, d, φ)); and
2. ∀(π0, d0) ∈ γ(B[τ ](π, d, φ)). (π0, Fπ0 [τ ](d0)) ∈ γ(φ).

Proof See Appendix A.2 of our technical report [19].

4.1 Disjunctive Meta-Analysis and Underapproximation
Designing a good underapproximation operator approx is impor-
tant for the performance of a backward meta-analysis, and it often
requires new insights. In this subsection, we identify a special sub-
class of meta-analyses, called disjunctive meta-analyses, and define
a generic underapproximation operator for these meta-analyses. All
the example analyses in the paper have disjunctive meta-analyses,
and use the generic underapproximation operator.

A meta-analysis is disjunctive if the following conditions hold:

• The set M consists of formulas φ:

φ ::= p | true | φ ∧ φ′ | false | φ ∨ φ′ (p ∈ PForm)

where PForm is a set of primitive formulas, and the conjunction
and disjunction operators have the standard meanings:

γ(true) = P× D γ(φ ∧ φ′) = γ(φ) ∩ γ(φ′)
γ(false) = ∅ γ(φ ∨ φ′) = γ(φ) ∪ γ(φ′)

• The negation of every p ∈ PForm can be expressed by the
disjunction of other primitive formulas φ = p1 ∨ . . . ∨ pn:

(P× D) \ γ(p) = γ(p1 ∨ . . . ∨ pn).

We pick one such φ for each p ∈ PForm, and denote it not(p).
• The set M comes with a binary relation v such that

∀φ, φ′ ∈ M. φ v φ′ ⇒ γ(φ) ⊆ γ(φ′).

The second condition above has a consequence that the negation
of every formula in M can be expressed in M, as shown by the
negate operator in Figure 9. Hence, the domain M of a disjunctive
meta-analysis in a sense contains all the formulas from boolean
logic, which are constructed from primitive ones in PForm.

We define a generic underapproximation operator for disjunc-
tive meta-analyses as follows:

approx : P× D×M→ M
approx(π, d, φ) = let φ′ = (simplify ◦ toDNF)(φ) in

if (the number of disjuncts in φ′ ≤ k) then φ′

else let F = (simplify ◦ toDNF ◦ negate) in
let φ′′ = (F ◦ F )(φ′) in dropk(π, d, φ′′)

The approx operator works in four steps. First, it transforms φ to
the disjunctive normal form, and removes redundant disjuncts in
the DNF formula, which are subsumed by other shorter disjuncts
in the same formula. If the resulting formula φ′ is simple enough
in the sense that it has no more than k disjuncts (where k is pre-
determined by an analysis designer), the operator stops and returns
φ′ as a result. Otherwise, it moves to the next step. Second, the
approx operator negates φ′, converts the result negate(φ′) to the
disjunctive normal form, and removes redundant disjuncts in the
DNF formula. The function F above implements this second step.
Third, the operator applies F again. The result after these two steps
is bound to φ′′ above, and it is in the disjunctive normal form.
Finally, some disjuncts of φ′′ are pruned if the number of disjuncts
in φ′′ goes above the threshold value k. During the pruning, the first
k − 1 disjuncts according to their syntactic size survive, together
with the shortest disjunct φj that includes the input (π, d) (i.e.,
(π, d) ∈ γ(φj)). Our pruning is an instance of beam search in
Artificial Intelligence, which always keeps only the most promising
k options during exploration of a search space. Subroutines negate,
toDNF, simplify, and drop are defined in Figure 9.

A common confusion is to regard the application of F ◦F inside
the approx operator as redundant. Semantically, F just computes
the negation of φ′, as γ(F (φ′)) = (P × D) \ γ(φ′). Hence,
(F ◦ F )(φ′) computes the double negation of a formula φ′, which
means the same as the original φ′. How can such an identity
function do anything useful? A good way to clear this confusion
is to remember that the main goal of (F ◦ F )(φ′) is to change the
syntax of φ′, and that F (φ′) expresses the negated version of φ′

without using any explicit negation operator. When F (φ′) negates
its argument, it expresses the negation of each primitive formula p
in φ′ in terms of p1 ∨ . . . ∨ pn. Hence, the negated version usually
has more disjuncts than φ′, and has a higher chance of including
redundant disjuncts, which will be pruned by the call to simplify in
F (φ′). Thus, applying F twice is not no-op, and usually simplifies
φ′ dramatically, which we observed in our experiments.
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JaKb(true) = true JaKb(false) = false JaKb(φ ∧ φ′) = JaKb(φ) ∧ JaKb(φ′) JaKb(φ ∨ φ′) = JaKb(φ) ∨ JaKb(φ′)

Jg = vKb(δ→o) =



false if δ ≡ v ∧ o = L
v→L ∨ v→E if δ ≡ v ∧ o = E
v→N if δ ≡ v ∧ o = N
(v→E ∨ v→N) ∧ δ→L if δ ∈ (L \ {v}) ∧ o = L
(v→L ∧ δ→L) ∨ δ→E if δ ∈ (L \ {v}) ∧ o = E
δ→N if δ ∈ (L \ {v}) ∧ o = N
(v→E ∨ v→N) ∧ δ→o if δ ∈ F ∧ o ∈ {L, E}
v→L ∨ ((v→E ∨ v→N) ∧ δ→N) if δ ∈ F ∧ o = N
δ→o otherwise

Jv = gKb(δ→o) = if (δ ≡ v ∧ o = E) then (true) else (if (δ ≡ v ∧ o 6= E) then (false) else (δ→o))
Jv = new hKb(δ→o) = if (δ ≡ v) then (h→o) else (δ→o)
Jv = nullKb(δ→o) = if (δ ≡ v ∧ o = N) then (true) else (if (δ ≡ v ∧ o 6= N) then (false) else (δ→o))

Jv = v′Kb(δ→o) = if (δ ≡ v) then (v′→o) else (δ→o)

Jv = v′.fKb(δ→o) =

 (v′→L ∧ f→E) ∨ v′→E ∨ v′→N if δ ≡ v ∧ o = E
v′→L ∧ f→o if δ ≡ v ∧ o 6= E
δ→o if δ 6≡ v

Jv.f = v′Kb(δ→o) =



δ→o if δ 6∈ (L ∪ F)
δ→E ∨ (δ→L ∧ v→E ∧ v′→L)

∨ (δ→L ∧ v→L ∧ f→L ∧ v′→E)
∨ (δ→L ∧ v→L ∧ f→E ∧ v′→L)

if δ ∈ L ∧ o = E

δ→o if δ ∈ L ∧ o = N
δ→o ∧ (v→N ∨ (v→E ∧ (v′→E ∨ v′→N))

∨ (v→L ∧ (v′→N ∨ f→N
∨ (v′→L ∧ f→L)
∨ (v′→E ∧ f→E))))

if (δ ∈ L ∧ o = L)
∨ (δ ∈ F ∧ o = E ∧ δ 6≡ f)
∨ (δ ∈ F ∧ o = L ∧ δ 6≡ f)

δ→N ∨ (v→E ∧ v′→L)
∨ (v→L ∧ f→L ∧ v′→E)
∨ (v→L ∧ f→E ∧ v′→L)

if δ ∈ F ∧ o = N ∧ δ 6≡ f

(δ→N ∧ (v→E ∨ v→N ∨ (v→L ∧ v′→N)))
∨ (v→E ∧ v′→L)
∨ (δ→L ∧ v→L ∧ v′→E)
∨ (δ→E ∧ v→L ∧ v′→L)

if δ ∈ F ∧ o = N ∧ δ ≡ f

(δ→N ∧ v→L ∧ v′→L)
∨ (δ→L ∧ v→N)
∨ (δ→L ∧ v→E ∧ (v′→E ∨ v′→N))
∨ (δ→L ∧ v→L ∧ (v′→N ∨ v′→L))

if δ ∈ F ∧ o = L ∧ δ ≡ f

(δ→N ∧ v→L ∧ v′→E)
∨ (δ→E ∧ v→N)
∨ (δ→E ∧ (v→E ∨ v→L) ∧ (v′→E ∨ v′→N))

if δ ∈ F ∧ o = E ∧ δ ≡ f

Figure 10. Backward transfer function JaKb for the thread-escape analysis. Here δ ranges over h, v, f , and we use o to denote L, E, N.

Example: Meta-analysis for Thread-Escape. We define a dis-
junctive backward meta-analysis for the thread-escape analysis fol-
lowing the above recipe. Doing so means specifying four entities:
the set of primitive formulas, their negation, the order on formulas,
and a function J−Kb. We specify all these entities one by one.

The domain M of the meta-analysis is constructed from the
following primitive formulas p:

p ::= h→o | v→o | f→o
where o is an abstract value in {L, E, N}, and h, v, f are an alloca-
tion site, a local variable, and a field, respectively. These formulas
describe properties about pairs (π, d) of parameter value and ab-
stract state. Formula h→o says that a parameter value π should
map h to o. Formula v→o means that an abstract state d should
bind v to o; formula f→o expresses a similar fact on the field f .
We formalize these meanings via function γ : M→ 2P×D below:

γ(h→o) = {(π, d) | π(h) = o} γ(v→o) = {(π, d) | d(v) = o}
γ(f→o) = {(π, d) | d(f) = o}

All of our primitive formulas express a form of binding proper-
ties. The negations of these formulas simply enumerate all the other
possible bindings: when η is a local variable v or a field f ,

not(h→L) = h→E not(h→E) = h→L
not(h→N) = true not(η→L) = (η→E ∨ η→N)
not(η→E) = (η→L ∨ η→N) not(η→N) = (η→L ∨ η→E)

The allocation sites are treated differently because no parameter
value π maps a site h to N.

We order formulas φ v φ′ in M when our simple entailment
checker concludes that φ′ subsumes φ. This conclusion is reached
when φ and φ′ are the same, or both φ and φ′ are conjunction of
primitive formulas and all the primitive formulas in φ′ appear in
φ. This proof strategy is fast yet highly incomplete. However, we
find it sufficient for our application, where the order is used for
detecting redundant disjuncts in formulas in the DNF form.

For each atomic command a, our meta-analysis uses the func-
tion JaKb that satisfies the requirement (4) of our framework. This
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(primitive formula) p ∈ PForm

p ::= err | errNot | param(x) | paramNot(x) |
var(x) | varNot(x) | type(σ) | typeNot(σ)

γ(err) = {(π,>)}
γ(errNot) = {(π, d) | d 6= >}

γ(param(x)) = {(π, d) | x ∈ π}
γ(paramNot(x)) = {(π, d) | x 6∈ π}

γ(var(x)) = {(π, (Σ, X)) | x ∈ X}
γ(varNot(x)) = {(π, (Σ, X)) | x 6∈ X}
γ(type(σ)) = {(π, (Σ, X)) | σ ∈ Σ}

γ(typeNot(σ)) = {(π, (Σ, X)) | σ 6∈ Σ}

not(err) = errNot
not(errNot) = err

not(param(x)) = paramNot(x)
not(paramNot(x)) = param(x)

not(var(x)) = err ∨ varNot(x)
not(varNot(x)) = err ∨ var(x)

not(type(σ)) = err ∨ typeNot(σ)
not(typeNot(σ)) = err ∨ type(σ)

p v p′ ⇔ p = p′, or p′ is errNot and p is different from err
φ v φ′ ⇔ φ = φ′, or both φ and φ′ are conjunction of primitive

formulas and for every conjunct p′ of φ′, there exists
a conjunct p of φ such that p v p′

Figure 11. Data for backward meta-analysis for typestate analysis.

requirement means that JaKb collects all the parameter values π and
abstract pre-states d such that the run of the π-instantiated analysis
with d generates a result satisfying φ. That is, JaKb(φ) computes
the weakest precondition of JaKπ with respect to the postcondition
φ. The definition of JaKb is given in Figure 10.

LEMMA 4. For every atomic command a, backward transfer func-
tion JaKb in Figure 10 satisfies requirement (4) of our framework.

Proof See Appendix A.3 of our technical report [19].

Running Example. Figure 6 shows the backward meta-analysis
for thread-escape analysis without and with underapproximation,
on an abstract counterexample trace of the program in Figure 1
with v.f = u chosen for S. The trace in part (a) is generated by the
forward analysis using initial parameter value [h1 7→ E, h2 7→ E].
The abstract states computed by the meta-analysis at each point
of this trace without doing underapproximation are denoted by
↑. It correctly computes the sufficient condition for failure at the
beginning of the trace as h1→E ∨ (h2→E ∧ h1→L), thus yielding
the cheapest parameter value that proves the query as [h1 7→
L, h2 7→ L]. Despite taking a single iteration, however, the lack
of underapproximation causes an evident blow-up in the size of the
formula tracked by the meta-analysis with the length of the trace.

Part (b) shows the result with underapproximation, using k = 1
in the beam search via function dropk. This time, the first iteration,
shown in part (b1), yields a stronger sufficient condition for failure,
h1→E, causing our approach to next run the forward analysis
using parameter value [h1 7→ L, h2 7→ E]. However, the analysis
again fails to prove the query, and the second iteration, shown in
part (b2), computes the sufficient condition for failure as h1→L ∧
h2→E. By combining these conditions from the two iterations, our
approach finds the same cheapest parameter value as that without
underapproximation in part (a). Despite taking an extra iteration,
the formulas our meta-analysis tracks in part (b) are much more
compact than those in part (a).

JaKb(true) = true
JaKb(φ1 ∧ φ2) = JaKb(φ1) ∧ JaKb(φ2)

JaKb(false) = false
JaKb(φ1 ∨ φ2) = JaKb(φ1) ∨ JaKb(φ2)
Jx = yKb(err) = err

Jx = nullKb(err) = err
Jx.m()Kb(err) = err ∨

∨
{type(σ) | JmK(σ) =>}

JaKb(errNot) = negate(JaKb(err))
Jx = yKb(param(z)) = param(z)

Jx = nullKb(param(z)) = param(z)
Jx.m()Kb(param(z)) = param(z)
JaKb(paramNot(x)) = negate(JaKb(param(x)))

Jx = yKb(var(z)) =

{
param(x) ∧ var(y) if x ≡ z
var(z) otherwise

Jx = nullKb(var(z)) =

{
false if x ≡ z
var(z) otherwise

Jx.m()Kb(var(z)) = var(z) ∧
∧
{typeNot(σ) | JmK(σ) =>}

JaKb(varNot(z)) = negate(JaKb(var(z))) ∧ errNot
Jx = yKb(type(σ)) = type(σ)

Jx = nullKb(type(σ)) = type(σ)
Jx.m()Kb(type(σ)) = errNot

∧ (
∧
{typeNot(σ′) | JmK(σ′) =>})

∧ (varNot(x) ∧ type(σ)
∨
∨
{type(σ′) | JmK(σ′) =σ})

JaKb(typeNot(x)) = negate(JaKb(type(x))) ∧ errNot

Figure 12. Backward transfer function for the typestate analysis.

Example: Meta-Analysis for Typestate. The backward meta-
analysis for the typestate analysis is also disjunctive. All the data
for this meta-analysis are given in Figures 11 and 12.

The meta-analysis uses six primitive formulas. The first two
are err and errNot, and they say that the d component of a pair
(π, d) is > (in the case of err) or non-> (in the case of errNot).
These formulas are useful for capturing the fact that the forward
transfer functions often behave differently depending on whether
the d component is> or not. The remaining four formulas describe
elements that should be included or excluded in some component
of (π, d). For instance, var(x) says that the d component is a non-
> value (Σ, X) such that the X part contains x. The formula
varNot(x) makes a similar statement on the form of d but it says
that the X part of d does not include x. The negation of these
primitive formulas is defined following their meanings.

We order formulas φ v φ′ in M when φ and φ′ are the same,
or both φ and φ′ are conjunction of primitive formulas and every
primitive formula p′ in φ′ corresponds to some primitive formula
p in φ that implies p′. Finally, the backward transfer function
for each atomic command a is given from the requirement (4) of
our framework, which determines the semantics of the function in
terms of the weakest precondition.

LEMMA 5. For every atomic command a, backward transfer func-
tion JaKb in Figure 12 satisfies requirement (4) of our framework.

Proof See Appendix A.4 of our technical report [19].

5. Iterative Forward-Backward Analysis
This section presents our top-level algorithm, called TRACER,
which brings a parametric analysis and a corresponding backward
meta-analysis together, and solves the parametric static analysis
problem. Throughout the section, we fix a parametric analysis and
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description # classes # methods bytecode (KB) KLOC # alloc.
app total app total app total app total sites

tsp Traveling Salesman implementation from ETH 4 997 21 6,423 2.6 391 0.7 269 6,175
elevator discrete event simulator 5 998 24 6,424 2.3 390 0.6 269 6,180
hedc web crawler from ETH 44 1,066 234 6,881 16 442 6 283 7,326
weblech website download/mirror tool 57 1,263 312 8,201 20 504 13 326 7,663
antlr A parser/translator generator 118 1,134 1,180 7,786 131 532 29 303 7,748
avrora microcontroller simulation/analysis tool 1,160 2,192 4,253 10,985 224 634 64 340 10,151
hsqldb relational database engine 199 1,420 2,818 11,301 222 756 103 415 9,789
lusearch text indexing and search tool 229 1,236 1,508 8,171 101 511 42 314 7,395

Table 1. Benchmark characteristics. The “# classes” column is the number of classes containing reachable methods. The “# methods”
column is the number of reachable methods computed by a 0-CFA call-graph analysis. The “bytecode” column is the size of bytecode of
reachable methods. The “KLOC” column is the number of thousands of line of Java source code of reachable classes. The “total” columns
report numbers for all reachable code whereas the “app” columns report numbers for only application code (excluding JDK library code).
The “# alloc. sites” column is the number of object allocation sites in reachable methods.

a backward meta-analysis, and denote them by (P,�,D, J−K) and
(M, γ, J−Kb, approx), respectively.

Our TRACER algorithm assumes that queries are expressed by
elements φ in M satisfying the following condition:

∃D0 ⊆ D. γ(φ) = P×D0 ∧ (∃φ′ ∈ M. γ(φ′) = P× (D \D0)).

The first conjunct means that φ is independent of parameter values,
and the second, that the negation of φ is expressible inside M. We
call φ satisfying these two conditions query, and use a different
symbol q to denote it. The negation of a query q is also a query, and
we write not(q) to mean this negation.

TRACER takes as inputs initial abstract state dI , a program s,
and a query q ∈ M. Given such inputs, TRACER repeatedly invokes
the forward analysis with different parameter values, until it proves
the query or finds that the forward analysis cannot prove the query
no matter what parameter value is used. The most tricky part of
TRACER is to choose a new parameter value π′ to try after the
forward analysis fails to prove the query using some π. TRACER
does this parameter selection using the backward meta-analysis,
which goes over an abstract counterexample trace of the forward
analysis and computes a condition on parameter values necessary
for proving the query. Among parameter values satisfying this
necessary condition, TRACER chooses a minimum-cost π′.

The TRACER algorithm is shown in Algorithm 1. It uses the
variable Πviable to track parameter values that potentially lead
to the proof of the query. Whenever TRACER calls the forward
analysis, it picks a minimum π from Πviable, and instantiates the
forward analysis with π before running the analysis (lines 8-9).
Also, whenever TRACER learns a necessary condition from the
backward meta-analysis for proving a query (i.e., P \Π in line 14),
it conjoins the condition with Πviable (line 15). In the description
of the algorithm, we do not specify a particular way to choose an
abstract counterexample trace τ from a failed run of the forward
analysis. Such traces can be chosen by well-known techniques from
software model checking [1, 16].

THEOREM 6. TRACER(dI , s, q) computes correct results, and it is
guaranteed to terminate when P is finite.

Proof See Appendix A.5 of our technical report [19].

6. Experiments
We implemented our approach for parametric static analyses of
Java programs and evaluated it using our thread-escape analysis
as a candidate analysis on a benchmark suite. We next describe
our experimental setup and summarize our results. The source
code of our implementation and detailed results are available at
http://pag-www.gtisc.gatech.edu/psa/.

Algorithm 1 TRACER(dI , s, q): iterative forward-backward analysis

1: INPUTS: Initial abstract state dI , program s, and query q
2: OUTPUTS: Minimum π according to � such that
Fπ[s]({dI}) ⊆ {d | (π, d) ∈ γ(q)}. Or impossibility
meaning that @π : Fπ[s]({dI}) ⊆ {d | (π, d) ∈ γ(q)}.

3: var Πviable := P
4: while true do
5: if Πviable = ∅ then
6: return impossible
7: end if
8: choose a minimum π ∈ Πviable according to �
9: let D = (Fπ[s]({dI}) ∩ {d | (π, d) ∈ γ(not(q))}) in

10: if D = ∅ then
11: return π
12: end if
13: choose any τ ∈ trace(s) : Fπ[τ ](dI) ∈ D
14: let Π = {π′ | (π′, dI) ∈ γ(B[τ ](π, dI , not(q)))} in
15: Πviable := Πviable ∩ (P \Π)
16: end let
17: end let
18: end while

6.1 Experimental Setup
This section describes our generic implementation, a candidate
analysis that instantiates it, and our benchmark suite.

Implementation. We implemented our approach as a generic
framework for Java bytecode. The forward analysis is expressed as
an instance of the RHS tabulation framework [15] while the back-
ward meta-analysis is expressed as an instance of a trace analysis
framework that implements our proposed optimizations.

We presented our approach for a single query but in practice a
client may have multiple queries in the same program. Our frame-
work has the same effect as running our approach separately for
each query but it uses a more efficient implementation: at any
instant, it maintains a set of groups {G1, ..., Gn} of unresolved
queries (i.e., queries that are neither proven nor shown impossi-
ble to prove). Two queries belong to the same group iff the sets
of unviable parameter values computed so far for those queries are
the same. All queries start in the same group with an empty set of
unviable parameter values but split into different groups whenever
different sets of unviable parameter values are computed for them.
Finally, our implementation is capable of distributing this computa-
tion over a cluster, allowing different processes to handle different
groups of queries in parallel.

Candidate Analysis. We implemented our thread-escape analy-
sis in our framework. The set of possible parameter values to this
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Figure 13. Precision results of our current and previous approach.
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Figure 14. The running time of our approach for each query in three smaller benchmarks under three variants of underapproximation.

analysis is 2N , where N is number of object allocation sites in the
input program, since the parameter must set each site to L or E. A
query is each pair (pc, v) such that the statement at program point
pc in application code accesses (reads or writes) an instance field or
an array element of the object denoted by variable v. We chose such
queries for two reasons. First, they occur pervasively and uniformly
in Java programs, and thereby enable a comprehensive evaluation
of our approach. Second, these queries are posed by clients such
as static race detection. Other clients may pose queries more se-
lectively but our approach only stands to benefit in such cases by
virtue of being query-guided.

We chose thread-escape analysis as it is challenging to scale
and proving memory accesses thread-local is beneficial to a variety
of concurrency analyses. Our earlier work [13] that also uses this
client analysis shows that strawman solutions are ineffective: a
flow-insensitive thread-escape analysis is highly imprecise while
a trivial choice of the parameter value that sets all sites to L causes
our analysis to run out of memory even on small programs.

Benchmark Suite. We evaluated our approach on a suite of eight
real-world concurrent Java benchmarks comprising 2.5 MLOC.
Table 1 shows characteristics of the benchmarks. They include four
smaller ones to illustrate the performance impact of varying the
extent of underapproximation in our meta-analysis; we were unable
to run these variants on the four larger ones. All experiments were
done using JDK 1.6 on Linux machines with 3.3 GHz processors
and a maximum of 8GB memory per JVM process.

6.2 Evaluation Results
We now summarize our evaluation results, including precision,
scalability, and useful statistics of proven queries.

Precision. Figure 13 (a) shows the precision of our approach. The
absolute number of queries for each benchmark appears at the top.
The queries are classified into three categories: those proven using
a cheapest parameter value, those shown impossible to prove using
any parameter value, and those that could not be resolved by our
approach in 1000 minutes (we elaborate on these queries below).

Figure 13 (b) shows the precision of our old approach [13].
It involves performing a dynamic analysis on user-supplied in-

puts. A query might not be reached dynamically (denoted “Not at-
tempted”) in which case the query is unresolved; otherwise, the ap-
proach either observes the query to be false (denoted “Disproven”),
or guesses a cheapest parameter value from dynamic information
and uses it to attempt to prove the query. The attempt may suc-
ceed (denoted “Proven”), or fail (denoted “Unresolved”) due to
poor code coverage of the user-supplied inputs. From these two
graphs, we find that on average per benchmark, the new approach
proves 37.5% queries (versus 17.1% proven by the old approach)
and it shows 49.1% queries impossible to prove (versus 23.9% ob-
served to be false by the old approach), for a total of 86.6% re-
solved queries (versus 40.9% by the old approach). Thus, our new
approach greatly outperforms the old approach. We contrast the two
approaches further in Section 7.

We manually inspected several queries that were unresolved by
our new approach, and found that all of them were true but impos-
sible to prove using our thread-escape analysis, due to its limit of
two abstract locations. There are two possible ways to address such
queries depending on the desired goal: alter the backward meta-
analysis to show impossibility more efficiently or alter the forward
analysis to make the queries provable.

Scalability. It is challenging to scale backward meta-analyses.
All our optimizations (underapproximation, double-negation, sim-
plification by clause subsumption, and beam search) were mo-
tivated by experimentation: disabling any of them even on the
smaller benchmarks made our approach timeout for all queries.

Our implementation allows to tune the amount of underapprox-
imation by specifying the maximum number of disjuncts tracked
in any DNF formula. Neither too aggressive nor too passive under-
approximation is scalable: the former speeds up each iteration but
increases the number of iterations whereas the latter has the op-
posite effect. Figure 14 affirms this by showing the total running
time of our approach for each query in three representative smaller
benchmarks (elevator, hedc, weblech) under three different choices
of the maximum number of DNF disjuncts: 1, 5, and 10. The graphs
show that 5 outperforms the extreme choices 1 and 10. More sig-
nificantly, our approach timed out for all queries in the four larger
benchmarks using the extreme choices; hence, we used a maximum
of 5 disjuncts in all experiments.
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Figure 15. The running time of our approach for resolving each query in our three largest benchmarks. A query is resolved if it is proven or
if it is shown impossible to prove. Graphs in the upper row show numbers of resolved queries grouped by the total running time in minutes
of our approach. Graphs in the lower row show numbers of resolved queries grouped by the number of iterations of our approach.
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Figure 16. Statistics of the cheapest parameter values computed by our approach for proven queries. Graphs in the upper row show the size
of the parameter value for each proven query. Graphs in the lower row show the number of queries proven using the same parameter value.

Figure 15 shows the total running time and the number of
iterations our approach takes for each resolved query in our three
largest benchmarks (unresolved queries are not shown since they
are queries for which our approach timed out in 1000 minutes).
We show different bars for queries that were proven and queries
that were shown impossible to prove. The graphs highlight the
scalability of our approach as the vast majority of queries are
resolved in under two minutes each. They also reveal that our
approach is very effective at finding queries that are impossible to
prove as the vast majority of them are found in the first iteration.

Statistics of Proven Queries. We now present useful statistics
about proven queries. The upper row of Figure 16 shows, for
our three largest benchmarks, the size of the cheapest parameter
value that our approach computed for each proven query. The size,
plotted on the X axis, is the number of allocation sites set to L
(recall that the fewer such sites the cheaper the analysis). The
graphs show that the vast majority of queries require 1-2 such sites
though we even prove queries that need up to 96 such sites.

Finally, it is natural to ask how different the cheapest parameter
values computed by our approach are for these proven queries. The
lower row of Figure 16 answers this question: each graph in the
figure plots on the X axis the sizes of groups of proven queries for
which the same cheapest parameter value was computed, and the
number of groups of that size on the Y axis. These graphs show
that most groups contain 1-2 queries, indicating that the cheapest
parameter value is different for different queries, though there are
also groups containing up to 367 queries.

These statistics underscore both the promise and the challenge
of parametric static analysis: on one hand, most queries can be
proven by instantiating the analysis using very inexpensive param-
eter values, but on the other hand, these parameter values tend to
be very different for queries from different parts of the program.

7. Related Work
Our work is related to iterative refinement analyses but differs in the
goal and the technique. They aim to find a cheap enough parameter
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value to prove a query while we aim to find a cheapest parameter
value or show that none exists. We next contrast the techniques.

Many CEGAR-based model checkers compute a predicate ab-
straction and can be viewed as parametric in which program pred-
icates to use for computing the abstraction. When the abstraction
fails to prove a query, they analyze an abstract counterexample
trace to compute an interpolant, which can be viewed as a minimal
sufficient condition for the model checker to succeed in proving the
query on the trace. In contrast, our meta-analysis computes a suffi-
cient condition for the failure of the analysis to prove the query on
the trace. One advantage of model checkers over our approach is
that they can produce concrete counterexamples for false queries,
whereas our approach can at best declare such queries impossible
to prove using the given analysis. Conversely, our approach can
declare when true queries are impossible to prove using the given
analysis, whereas model checkers can diverge for such queries.

Refinement-based pointer analyses compute cause-effect de-
pendencies for finding aspects of the abstraction that might be re-
sponsible for the failure to prove a query and then refine these as-
pects in the hope of proving it. These aspects include field reads and
writes to be matched [18], methods or object allocation sites to be
cloned [11, 14], or memory locations to be treated flow-sensitively
[10]. A drawback of these analyses is that they can refine much
more than necessary and thereby sacrifice scalability.

Combining forward and backward analysis has been proposed
(e.g., [2]) but our approach differs in three key aspects. First, ex-
isting backward analyses are proven sound with respect to the pro-
gram’s concrete semantics, whereas ours is a meta-analysis that is
proven sound with respect to the abstract semantics of the forward
analysis. Second, existing backward analyses only track abstract
states (to prune the over-approximation computed by the forward
analysis), whereas ours also tracks parameter values. Finally, exist-
ing backward analyses may not scale due to tracking of program
states that are unreachable from the initial state, whereas ours is
guided by the abstract counterexample trace provided by the for-
ward analysis, which also enables underapproximation.

Parametric static analysis is a search problem that may be tack-
led using various algorithms with different pros and cons. Liang
et al. [12] propose iterative coarsening-based algorithms that start
with the most precise parameter value (instead of the least precise
one in the case of iterative refinement-based algorithms). Besides
being impractical, these algorithms solve a different problem and
cannot be adapted to ours: they find a minimal parameter value in
terms of precision as opposed to a minimum or cheapest parameter
value. Naik et al. [13] use dynamic analysis to infer a necessary
condition on the parameter value to prove a query. They instanti-
ate the parametric static analysis using a cheapest parameter value
that satisfies this condition. However, there is no guarantee that it
will prove the query, and the approach does not do refinement in
case the analysis fails. In fact, the limitations of this approach mo-
tivated our current approach, particularly, its need for user-supplied
program inputs, and its desire for those inputs to not induce long-
running executions (for performance of the dynamic analysis) and
to yield high code coverage (for strong necessary conditions). As
our experiments showed, our current approach, which is fully static,
proves 45.7% more queries on average per benchmark.

Finally, constraint-based and automated theorem proving tech-
niques have been proposed that use search procedures similar in
spirit to our approach: they too combine over-approximations and
underapproximations, and compute strongest necessary and weak-
est sufficient conditions for proving queries (e.g, [3, 4, 8, 9]). A
key difference is that none of these approaches address finding
minimum-cost abstractions or proving impossibility results.

8. Conclusion
We presented a new approach to parametric static analysis with
the goal of finding a cheapest parameter value that proves a given
query or showing that no such parameter value exists. Our approach
is CEGAR-based and applies a novel meta-analysis to abstract
counterexample traces to efficiently eliminate unsuitable parameter
values. We showed the generality of our approach by applying
it to two parametric analyses in the literature. We also showed
its effectiveness in practice by evaluating it on parametric thread-
escape analysis for large real-world Java benchmarks.

Our approach exposed intriguing new problems. First, defining
the transfer functions of the meta-analysis is tricky. One plausible
solution is to devise a general recipe for synthesizing these func-
tions automatically. Second, our approach requires the abstract do-
main of the parametric analysis to be disjunctive in order to be able
to provide a counterexample trace to the meta-analysis. One possi-
bility is to generalize our meta-analysis to operate on DAG coun-
terexamples that have been proposed for non-disjunctive analyses
[7]. Finally, the meta-analysis is a static analysis, and designing its
abstract domain is an art. We proposed a DNF representation along
with optimizations that were very effective in compacting the for-
mulas tracked by the meta-analysis for our thread-escape analysis.
It would be useful to devise a generic semantics-preserving simpli-
fication process to assist in compacting such formulas.
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A. Proofs of Lemmas and Theorems
In this part of the appendix, we provide proofs of Lemmas and
Theorems that are stated in the main text of the paper without
proofs.

A.1 Proof of Lemma 1
LEMMA 1. For all programs s, parameter values π, and abstract
states d, we have that

Fπ[s]({d}) = {Fπ[τ ](d) | τ ∈ trace(s)},
where Fπ[τ ] is the result of analyzing the trace τ as shown in
Figure 4.

Proof We prove the following generalization of the lemma:

∀s. ∀π ∈ P. ∀D ∈ 2D.
Fπ[s](D) = {Fπ[τ ](d) | d ∈ D ∧ τ ∈ trace(s)}.

The proof is by induction on the structure of s. When s is an
atomic command a,

Fπ[s](D) = Fπ[a](D) = {JaKπ(d) | d ∈ D}.
Since trace(s) = {a}, the equation above implies the lemma.

The next case is that s = s1 ; s2. Let D1 = Fπ[s1](D) and
D2 = Fπ[s2](D1). By the induction hypothesis on s1 and s2, we
have that

D1 = {Fπ[τ1](d) | τ1 ∈ trace(s1) ∧ d ∈ D}
∧D2 = {Fπ[τ2](d1) | τ2 ∈ trace(s2) ∧ d1 ∈ D1}.

Hence, D2 is

{Fπ[τ2](Fπ[τ1](d)) | τ2 ∈ trace(s2) ∧ τ1 ∈ trace(s1) ∧ d ∈ D}
= {Fπ[τ ](d) | τ ∈ trace(s1 ; s2) ∧ d ∈ D}.

We move on to the case that s = s1 + s2. In this case,

Fπ[s](D) = Fπ[s1 + s2](D) = Fπ[s1](D) ∪ Fπ[s2](D).

By the induction hypothesis, the RHS of the above equation is the
same as

{Fπ[τ ](d) | τ ∈ trace(s1) ∧ d ∈ D}
∪ {Fπ[τ ](d) | τ ∈ trace(s2) ∧ d ∈ D},

which equals

{Fπ[τ ](d) | τ ∈ trace(s1) ∪ trace(s2) ∧ d ∈ D}
= {Fπ[τ ](d) | τ ∈ trace(s1 + s2) ∧ d ∈ D}.

The remaining case is s = s∗1. LetK andG be functions defined
as follows:

K = λT. ({ε} ∪ {τ ; τ ′ | τ ∈ T ∧ τ ′ ∈ trace(s1)}),
G = λD′. (D ∪ Fπ[s1](D′)).

The trace set trace(s∗1) is the same as the least fixpoint of K, and
Fπ[s∗1](D) is defined by the least fixpoint ofG. LetR be a relation
on trace sets and sets of abstract states defined by

(T1, D1) ∈ R ⇔ D1 = {Fπ[τ1](d) | τ1 ∈ T1 ∧ d ∈ D}.
Meanwhile, we have that

{Fπ[τ ](d) | τ ∈ trace(s∗1) ∧ d ∈ D}
= {Fπ[τ ](d) | τ ∈ (leastFixK) ∧ d ∈ D}.

Thus, it is sufficient to prove that (leastFix K, leastFix G) ∈ R.
This proof obligation can be further simplified becauseR is closed
under arbitrary union: for every {(Ti, Di)}i∈I ,

(∀i ∈ I : (Ti, Di) ∈ R)⇒ (
⋃
i∈I

Ti,
⋃
i∈I

Di) ∈ R.

This means that the least upper bounds of any two R-related in-
creasing sequences will be related by R as well. Hence, we can

complete the proof of this loop case if we show that

∀(T1, D1) ∈ R : (K(T1), G(D1)) ∈ R.

We will prove the simplified requirement. Pick (T1, D1) ∈ R. We
should show that

{Fπ[τ1](d) | τ1 ∈ K(T1) ∧ d ∈ D} = G(D1).

We derive this desired equality as follows:

{Fπ[τ1](d) | τ1 ∈ K(T1) ∧ d ∈ D}
= {Fπ[τ1](d) | d ∈ D ∧ (τ1 = ε ∨ (τ1 = τ ; τ ′ ∧ τ ∈ T1

∧ τ ′ ∈ trace(s1)))}
= D ∪ {(Fπ[τ ′] ◦ Fπ[τ ])(d) |

τ ∈ T1 ∧ τ ′ ∈ trace(s1) ∧ d ∈ D}
= D ∪ {Fπ[τ ′](d′) | τ ′ ∈ trace(s1)

∧ d′ ∈ {Fπ[τ ](d) | τ ∈ T1 ∧ d ∈ D}}
= D ∪ {Fπ[τ ′](d′) | τ ′ ∈ trace(s1) ∧ d′ ∈ D1}
= D ∪ Fπ[s1](D1).
= G(D1).

The fourth equality comes from the assumption that (T1, D1) ∈ R.
The fifth equality holds because of the induction hypothesis. �

A.2 Proof of Theorem 3
THEOREM 3 (Soundness). For all τ , π, d and φ ∈ M,

1. (π, Fπ[τ ](d)) ∈ γ(φ)⇒ (π, d) ∈ γ(B[τ ](π, d, φ)); and

2. ∀(π0, d0) ∈ γ(B[τ ](π, d, φ)). (π0, Fπ0 [τ ](d0)) ∈ γ(φ).

Proof We prove the theorem by structural induction on τ . Pick
arbitrary π, d, φ. We will prove the two items of this theorem for
each case of τ .

When τ is ε, φ and B[τ ](π, d, φ) are the same, and Fπ′ [τ ] =
Fπ′ [ε] is the identity for every π′. The claim of the theorem follows
from these facts.

The next case is that τ is an atomic command a. In this
case, B[τ ](π′, d′, φ) = approx(π′, d′, JaKb(φ)) and Fπ′ [τ ](d′) =
JaKπ′(d′) for all π′, d′. Hence, the first item of the theorem can be
proved as follows:

Fπ[τ ](d) ∈ γ(φ)⇒ JaKπ(d) ∈ γ(φ)
⇒ (π, d) ∈ γ(JaKb(φ))
⇒ (π, d) ∈ γ(approx(π, d, JaKb(φ)))

The second and third implications come from the requirement on
JaKb and approx in our framework, respectively. For the second
item of the theorem, pick (π0, d0) ∈ γ(B[τ ](π, d, φ)). Then,

(π0, d0)∈ γ(B[a](π, d, φ))⇒ (π0, d0)∈ γ(approx(π, d, JaKb(φ))
⇒ (π0, d0)∈ γ(JaKb(φ))
⇒ (π0, JaKπ0(d0))∈ γ(φ).

The first implication is just the unrolling of the definition of B[a],
the second comes from our requirement that approx does underap-
proximation, and the last holds because of the requirement on JaKb
in our framework. The conclusion of the above derivation implies
the second item of this theorem.

The remaining case is that τ is τ1 ; τ2. Let

d′ = Fπ[τ1](d) and φ′ = B[τ2](π, d′, φ).

To prove the first item of the theorem, assume that (π, Fπ[τ ](d))
belongs to γ(φ). Then,

(π, Fπ[τ2](d′)) = (π, Fπ[τ2](Fπ[τ1](d))) ∈ γ(φ).

We apply the induction hypothesis on τ2 here, and obtain

(π, d′) ∈ γ(B[τ2](π, d′, φ)).
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The LHS in this membership is the same as (π, Fπ[τ1](d)), and
the RHS equals γ(φ′). This means that we can apply the induction
hypothesis again, this time on τ1, and get

(π, d) ∈ γ(B[τ1](π, d, φ′))

But the RHS here is the same as

γ(B[τ1](π, d,B[τ2](π, d′, φ)) = γ(B[τ ](π, d, φ)).

Hence, the first item of this theorem holds. Let’s move on to the
proof of the second item of this theorem. Consider (π0, d0) ∈
γ(B[τ ](π, d, φ)). We derive the conclusion of the second item of
the theorem as follows:

(π0, d0) ∈ γ(B[τ ](π, d, φ))
⇒ (π0, d0) ∈ γ(B[τ1](π, d, φ′))
⇒ (π0, Fπ0 [τ1](d0)) ∈ γ(φ′)
⇒ (π0, Fπ0 [τ1](d0)) ∈ γ(B[τ2](π, d′, φ))
⇒ (π0, Fπ0 [τ2](Fπ0 [τ1](d0))) ∈ γ(φ)
⇒ (π0, Fπ0 [τ ](d0)) ∈ γ(φ)

The first implication holds because of the definition of B[τ1 ; τ2],
the second and fourth implications use induction hypothesis, the
third is the simple unrolling of the definition of φ′, and the last
implication follows from the definition of Fπ0 [τ1 ; τ2]. �

A.3 Proof of Lemma 4
LEMMA 4. For every atomic command a, the backward transfer
function JaKb in Figure 10 satisfies requirement (4) in Section 4.

Proof For every atomic command a, define a function W [a] on M
by

W [a](φ) = {(π, d) | (π, JaKπ(d)) ∈ γ(φ)}.
We need to prove that for all φ,

∀a. γ(JaKb(φ)) = W [a](φ). (1)

Our proof is done by induction on the structure of φ.
We start by considering the cases that φ is true, conjunction,

false or disjunction. The reason that the equality in (1) holds for
these cases is that W [a] preserve all of true, conjunction, false and
disjunction:

W [a](true) = P× S, W [a](φ ∧ φ′) = W [a](φ) ∩W [a](φ′),
W [a](false) = ∅, W [a](φ ∨ φ′) = W [a](φ) ∪W [a](φ′).

The desired equality follows from this preservation and the induc-
tion hypothesis.

The remaining case is that φ = δ→o for some δ ∈ H∪L∪F and
o ∈ {L, E, N}. This is handled by the case analysis on the atomic
command a.

The first case is that a is g = v. We further subdivide this case
such that (1) δ ≡ h, (2) δ ∈ (L ∪ F \ {v}) and (3) δ ≡ v. The first
subcase is handled below:

(π, Jg= vKπ(d))∈ γ(h→o) ⇔ π(h) = o ⇔ (π, d)∈ γ(h→o).

The second subcase can be proven as follows:

(π, Jg = vKπ(d)) ∈ γ(δ→o)
⇔
(d(v) = L ∧ esc(d)(δ) = o) ∨ (d(v) ∈ {E, N} ∧ d(δ) = o)
⇔
(δ ∈ L ∧ d(v) = L ∧ d(δ) = L ∧ o = E)
∨ (δ ∈ L ∧ d(v) = L ∧ d(δ) ∈ {E, N} ∧ o = d(δ))
∨ (δ ∈ F ∧ d(v) = L ∧ o = N)
∨ (d(v) ∈ {E, N} ∧ d(δ) = o)

⇔
(δ ∈ L ∧ o = N ∧ d(δ) = N)
∨ (δ ∈ L ∧ o = E ∧ ((d(v) = L ∧ d(δ) = L) ∨ d(δ) = E))
∨ (δ ∈ L ∧ o = L ∧ d(v) ∈ {E, N} ∧ d(δ) = L)
∨ (δ ∈ F ∧ o = N ∧ (d(v) = L ∨ (d(v) ∈ {E, N} ∧ d(δ) = N)))
∨ (δ ∈ F ∧ o ∈ {E, L} ∧ d(v) ∈ {E, N} ∧ d(δ) = o)
⇔
(δ ∈ L ∧ o = N ∧ (π, d) ∈ γ(δ→N))
∨ (δ ∈ L ∧ o = E ∧ (π, d) ∈ γ((v→L ∧ δ→L) ∨ δ→E))
∨ (δ ∈ L ∧ o = L ∧ (π, d) ∈ γ((v→E ∨ v→N) ∧ δ→L))
∨ (δ ∈ F ∧ o = N ∧ (π, d) ∈ γ(v→L ∨ (v→E ∨ v→N) ∧ δ→N))
∨ (δ ∈ F ∧ o ∈ {E, L} ∧ (π, d) ∈ γ((v→E ∨ v→N) ∧ δ→o)).

The third subcase can be proven as follows:

(π, Jg = vKπ(d)) ∈ γ(v→o)
⇔
(d(v) = L ∧ esc(d)(v) = o) ∨ (d(v) = o ∧ o ∈ {E, N})
⇔
(d(v) = L ∧ o = E) ∨ (d(v) = o ∧ o ∈ {E, N})
⇔
(o= E ∧ (π, d)∈ γ(v→L ∨ v→E)) ∨ (o= N ∧ (π, d)∈ γ(v→N)).

The calculations for the three subcases above imply that the
claimed equality holds for g = v.

The second case is v = g. In this case, we can show the lemma
as follows:
(π, Jv = gKπ(d)) ∈ γ(δ→o)
⇔
(π, d[v : E]) ∈ γ(δ→o)
⇔
(δ ≡ v ∧ o = E) ∨ (δ ∈ (L ∪ F) \ {v} ∧ d(δ) = o)
∨ (δ ∈ H ∧ π(δ) = o)

⇔
(δ≡ v ∧ o= E ∧ (π, d)∈ γ(true)) ∨ (δ 6≡ v ∧ (π, d)∈ γ(δ→o)).

The third case is that a is v = new h. The proof of this case is
given below:

(π, Jv = new hKπ(d)) ∈ γ(δ→o)
⇔
(π, d[v : π(h)]) ∈ γ(δ→o)
⇔
(δ ≡ v ∧ π(h) = o) ∨ (δ ∈ (L ∪ F) \ {v} ∧ d(δ) = o)
∨ (δ ∈ H ∧ π(δ) = o)

⇔
(δ ≡ v ∧ (π, d) ∈ γ(h→o)) ∨ (δ 6≡ v ∧ (π, d) ∈ γ(δ→o)).
The fourth case is that a is v = null. We prove the lemma in

the case as follows:
(π, Jv = nullKπ(d)) ∈ γ(δ→o)
⇔
(π, d[v : N]) ∈ γ(δ→o)
⇔
(δ ≡ v ∧ N = o) ∨ (δ ∈ (L ∪ F) \ {v} ∧ d(δ) = o)
∨ (δ ∈ H ∧ π(δ) = o)

⇔
(δ≡ v ∧ o= N ∧ (π, d)∈ γ(true)) ∨ (δ 6≡ v ∧ (π, d)∈ γ(δ→o)).

The fifth case is that a is v = v′. We prove the lemma in the
case as follows:

(π, Jv = v′Kπ(d)) ∈ γ(δ→o)
⇔
(π, d[v : d(v′)]) ∈ γ(δ→o)
⇔
(δ ≡ v ∧ d(v′) = o) ∨ (δ ∈ (L ∪ F) \ {v} ∧ d(δ) = o)
∨ (δ ∈ H ∧ π(δ) = o)

⇔
(δ ≡ v ∧ (π, d) ∈ γ(v′→o)) ∨ (δ 6≡ v ∧ (π, d) ∈ γ(δ→o))
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The sixth case is that a is v = v′.f . We prove the case below:

(π, Jv = v′.fKπ(d)) ∈ γ(δ→o)
⇔
(d(v′) = L ∧ (π, d[v : d(f)]) ∈ γ(δ→o))
∨ (d(v′) 6= L ∧ (π, d[v : E]) ∈ γ(δ→o))

⇔
(δ ≡ v ∧ ((d(v′) = L ∧ d(f) = o) ∨ (d(v′) 6= L ∧ o = E)))
∨ (δ 6≡ v ∧ d(v′) = L ∧ (π, d) ∈ γ(δ→o))
∨ (δ 6≡ v ∧ d(v′) 6= L ∧ (π, d) ∈ γ(δ→o))

⇔
(δ ≡ v ∧ o = E ∧ ((d(v′) = L ∧ d(f) = E) ∨ d(v′) 6= L))
∨ (δ ≡ v ∧ o 6= E ∧ d(v′) = L ∧ d(f) = o)
∨ (δ 6≡ v ∧ (π, d) ∈ γ(δ→o))

⇔
(δ ≡ v ∧ o = E ∧ (π, d) ∈ γ((v′→L ∧ f→E) ∨ v′→E ∨ v′→N))
∨ (δ ≡ v ∧ o 6= E ∧ (π, d) ∈ γ(v′→L ∧ f→o))
∨ (δ 6≡ v ∧ (π, d) ∈ γ(δ→o)).

The last case is that a is v.f = v′. The following derivation
shows the lemma for this case:

(π, Jv.f = v′Kπ(d)) ∈ γ(δ→o)
⇔
(d(v) = E ∧ d(v′) = L ∧ (π, esc(d))∈ γ(δ→o))
∨ (((d(v) = E ∧ d(v′) 6= L) ∨ d(v) = N) ∧ (π, d)∈ γ(δ→o))
∨ (d(v) = L ∧ {d(f), d(v′)}= {L, E} ∧ (π, esc(d))∈ γ(δ→o))
∨ (d(v) = L ∧ {d(f), d(v′)}= {L, N} ∧ (π, d[f : L])∈ γ(δ→o))
∨ (d(v) = L ∧ {d(f), d(v′)}= {E, N} ∧ (π, d[f : E])∈ γ(δ→o))
∨ (d(v) = L ∧ d(f) = d(v′) ∧ (π, d)∈ γ(δ→o))
⇔
(δ 6∈ (L ∪ F) ∧ (π, d)∈ γ(v→E ∧ v′→L ∧ δ→o))
∨ (δ ∈L ∧ o= E ∧ (π, d)∈ γ(v→E ∧ v′→L ∧ (δ→L ∨ δ→E)))
∨ (δ ∈L ∧ o= N ∧ (π, d)∈ γ(v→E ∧ v′→L ∧ δ→o))
∨ (δ ∈F ∧ o= N ∧ (π, d)∈ γ(v→E ∧ v′→L))
∨ ((π, d)∈ γ(((v→E ∧ (v′→E ∨ v′→N)) ∨ v→N) ∧ δ→o))
∨ (δ 6∈ (L ∪ F) ∧ (π, d)∈ γ((f→L ∧ v′→E ∨ f→E ∧ v′→L)

∧ v→L ∧ δ→o))
∨ (δ ∈L ∧ o= E ∧ (π, d)∈ γ((f→L ∧ v′→E ∨ f→E ∧ v′→L)

∧ v→L ∧ (δ→L ∨ δ→E)))
∨ (δ ∈L ∧ o= N ∧ (π, d)∈ γ((f→L ∧ v′→E ∨ f→E ∧ v′→L)

∧ v→L ∧ δ→o))
∨ (δ ∈F ∧ o= N ∧ (π, d)∈ γ((f→L ∧ v′→E ∨ f→E ∧ v′→L)

∧ v→L))
∨ (δ 6≡ f ∧ (π, d)∈ γ((f→L ∧ v′→N ∨ f→N ∧ v′→L)

∧ v→L ∧ δ→o))
∨ (δ ≡ f ∧ o= L ∧ (π, d)∈ γ((f→L ∧ v′→N ∨ f→N ∧ v′→L)

∧ v→L))
∨ (δ 6≡ f ∧ (π, d)∈ γ((f→E ∧ v′→N ∨ f→N ∧ v′→E)

∧ v→L ∧ δ→o))
∨ (δ ≡ f ∧ o= E ∧ (π, d)∈ γ((f→E ∧ v′→N ∨ f→N ∧ v′→E)

∧ v→L))
∨ (π, d)∈ γ((f→L ∧ v′→L ∨ f→E ∧ v′→E ∨ f→N ∧ v′→N)

∧ v→L ∧ δ→o)
⇔
(δ 6∈ (L ∪ F) ∧ (π, d)∈ γ(δ→o ∧ (v→E ∧ v′→L

∨ v→L ∧ f→L ∧ v′→E
∨ v→L ∧ f→E ∧ v′→L)))

∨ (δ ∈L ∧ o= E ∧ (π, d)∈ γ((δ→L ∨ δ→o)
∧ (v→E ∧ v′→L
∨ v→L ∧ f→L ∧ v′→E
∨ v→L ∧ f→E ∧ v′→L)))

∨ (δ ∈L ∧ o= N ∧ (π, d)∈ γ(δ→o ∧ (v→E ∧ v′→L
∨ v→L ∧ f→L ∧ v′→E
∨ v→L ∧ f→E ∧ v′→L)))

∨ (δ ∈F ∧ o= N ∧ (π, d)∈ γ(v→E ∧ v′→L
∨ v→L ∧ f→L ∧ v′→E
∨ v→L ∧ f→E ∧ v′→L))

∨ (δ 6≡ f ∧ (π, d)∈ γ(v→L ∧ δ→o ∧ (f→L ∧ v′→N
∨ f→N ∧ v′→L
∨ f→E ∧ v′→N
∨ f→N ∧ v′→E)))

∨ (δ ≡ f ∧ o= L ∧ (π, d)∈ γ(v→L ∧ (f→L ∧ v′→N
∨ f→N ∧ v′→L)))

∨ (δ ≡ f ∧ o= E ∧ (π, d)∈ γ(v→L ∧ (f→E ∧ v′→N
∨ f→N ∧ v′→E)))

∨ (π, d)∈ γ(δ→o ∧ (v→L ∧ f→L ∧ v′→L
∨ v→L ∧ f→E ∧ v′→E
∨ v→L ∧ f→N ∧ v′→N
∨ v→E ∧ v′→E
∨ v→E ∧ v′→N
∨ v→N))

⇔
(δ 6∈ (L ∪ F) ∧ (π, d)∈ γ(δ→o))
∨ (δ ∈L ∧ o= E ∧ (π, d)∈ γ(δ→o

∨ δ→L ∧ v→E ∧ v′→L
∨ δ→L ∧ v→L ∧ f→L ∧ v′→E
∨ δ→L ∧ v→L ∧ f→E ∧ v′→L))

∨ (δ ∈L ∧ o= N ∧ (π, d)∈ γ(δ→o))
∨ (δ ∈L ∧ o= L ∧ (π, d)∈ γ(δ→o ∧ v→N

∨ δ→o ∧ v→E ∧ v′→E
∨ δ→o ∧ v→E ∧ v′→N
∨ δ→o ∧ v→L ∧ v′→N
∨ δ→o ∧ v→L ∧ f→N
∨ δ→o ∧ v→L ∧ v′→L ∧ f→L
∨ δ→o ∧ v→L ∧ v′→E ∧ f→E))

∨ (δ ∈F ∧ o= N ∧ δ 6≡ f ∧ (π, d)∈ γ(δ→o
∨ v→E ∧ v′→L
∨ v→L ∧ f→L ∧ v′→E
∨ v→L ∧ f→E ∧ v′→L))

∨ (δ ∈F ∧ (a= E ∨ o= L) ∧ δ 6≡ f
∧ (π, d)∈ γ(δ→o ∧ v→N

∨ δ→o ∧ v→E ∧ v′→E
∨ δ→o ∧ v→E ∧ v′→N
∨ δ→o ∧ v→L ∧ v′→N
∨ δ→o ∧ v→L ∧ f→N
∨ δ→o ∧ v→L ∧ f→L ∧ v′→L
∨ δ→o ∧ v→L ∧ f→E ∧ v′→E))

∨ (δ ∈F ∧ o= N ∧ δ ≡ f ∧ (π, d)∈ γ(f→N ∧ v→E
∨ f→N ∧ v→N
∨ f→N ∧ v→L ∧ v′→N
∨ v→E ∧ v′→L
∨ v→L ∧ f→L ∧ v′→E
∨ v→L ∧ f→E ∧ v′→L))

∨ (δ ∈F ∧ o= L ∧ δ ≡ f ∧ (π, d)∈ γ(f→L ∧ v→N
∨ f→L ∧ v→E ∧ v′→E
∨ f→L ∧ v→E ∧ v′→N
∨ v→L ∧ f→L ∧ v′→N
∨ v→L ∧ f→N ∧ v′→L
∨ v→L ∧ f→L ∧ v′→L))

∨ (δ ∈F ∧ o= E ∧ δ ≡ f ∧ (π, d)∈ γ(f→E ∧ v→N
∨ f→E ∧ v→E ∧ v′→E
∨ f→E ∧ v→E ∧ v′→N
∨ v→L ∧ f→E ∧ v′→N
∨ v→L ∧ f→N ∧ v′→E
∨ v→L ∧ f→E ∧ v′→E))
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⇔
(δ 6∈ (L ∪ F) ∧ (π, d)∈ γ(δ→o))
∨ (δ ∈L ∧ o= E ∧ (π, d)∈ γ(δ→E

∨ δ→L ∧ v→E ∧ v′→L
∨ δ→L ∧ v→L ∧ f→L ∧ v′→E
∨ δ→L ∧ v→L ∧ f→E ∧ v′→L))

∨ (δ ∈L ∧ o= N ∧ (π, d)∈ γ(δ→o))
∨ ((δ ∈L∧ o= L ∨ δ ∈F∧ o= E∧ δ 6≡ f ∨ δ ∈F∧ o= L∧ δ 6≡ f)
∧ (π, d)∈ γ(δ→o ∧ v→N

∨ δ→o ∧ v→E ∧ v′→E
∨ δ→o ∧ v→E ∧ v′→N
∨ δ→o ∧ v→L ∧ v′→N
∨ δ→o ∧ v→L ∧ f→N
∨ δ→o ∧ v→L ∧ v′→L ∧ f→L
∨ δ→o ∧ v→L ∧ v′→E ∧ f→E))

∨ (δ ∈F ∧ o= N ∧ δ 6≡ f ∧ (π, d)∈ γ(δ→N
∨ v→E ∧ v′→L
∨ v→L ∧ f→L ∧ v′→E
∨ v→L ∧ f→E ∧ v′→L))

∨ (δ ∈F ∧ o= N ∧ δ≡ f ∧ (π, d)∈ γ(δ→N ∧ v→E
∨ δ→N ∧ v→N
∨ δ→N ∧ v→L ∧ v′→N
∨ v→E ∧ v′→L
∨ δ→L ∧ v→L ∧ v′→E
∨ δ→E ∧ v→L ∧ v′→L))

∨ (δ ∈F ∧ o= L ∧ δ≡ f ∧ (π, d)∈ γ(δ→N ∧ v→L ∧ v′→L
∨ δ→L ∧ v→N
∨ δ→L ∧ v→E ∧ v′→E
∨ δ→L ∧ v→E ∧ v′→N
∨ δ→L ∧ v→L ∧ v′→N
∨ δ→L ∧ v→L ∧ v′→L))

∨ (δ ∈F ∧ o= E ∧ δ ≡ f ∧ (π, d)∈ γ(δ→N ∧ v→L ∧ v′→E
∨ δ→E ∧ v→N
∨ δ→E ∧ v→E ∧ v′→E
∨ δ→E ∧ v→E ∧ v′→N
∨ δ→E ∧ v→L ∧ v′→E
∨ δ→E ∧ v→L ∧ v′→N))

�

A.4 Proof of Lemma 5
LEMMA 5. For every atomic command a, the backward transfer
function JaKb in Figure 12 satisfies requirement (4) of our frame-
work in Section 4.

Proof For every atomic command a, define a function W [a] on M
by

W [a](φ) = {(π, d) | (π, JaKπ(d)) ∈ γ(φ)}.
We need to prove that for all φ,

∀a. γ(JaKb(φ)) = W [a](φ). (2)

Our proof is done by induction on the structure of φ.
We start by considering the cases that φ is true, conjunction,

false or disjunction. The reason that the equality in (2) holds for
these cases is that W [a] preserve all of true, conjunction, false and
disjunction:

W [a](true) = P× S, W [a](φ ∧ φ′) = W [a](φ) ∩W [a](φ′),
W [a](false) = ∅, W [a](φ ∨ φ′) = W [a](φ) ∪W [a](φ′).

The desired equality follows from this preservation and the induc-
tion hypothesis.

Now we prove the remaining cases one-by-one. The first case is
that φ = err. When a is x = y or x = null, we prove the desired

(2) as follows:

(π, d) ∈W [a](err) ⇔ (π, JaKπ(d)) ∈ γ(err)
⇔ JaKπ(d) = >
⇔ d = >
⇔ (π, d) ∈ γ(err) = γ(JaKb(err)).

When a is a method call x.m(), our proof of the desired property
(2) is slightly different, and it is given below:

(π, d) ∈W [x.m()](err)
⇔
(π, Jx.m()Kπ(d)) ∈ γ(err)
⇔
Jx.m()Kπ(d) = >
⇔
(d = >) ∨ (∃σ,Σ, X. d = (Σ, X) ∧ σ ∈ Σ ∧ JmK(σ) = >)
⇔
(π, d) ∈ γ(err ∨

∨
{type(σ) | JmK(σ) = >})

⇔
(π, d) ∈ γ(Jx.m()Kb(err)).

The second case is errNot. In this case, we notice that W [a]
preserves the negation. Hence, we prove the desired equality (2) as
follows: for all atomic commands a,

W [a](errNot) = W [a](not(err))
= P× D \W [a](err)
= P× D \ γ(JaKb(err))
= γ(negate(JaKb(err)))
= γ(JaKb(errNot)).

The third equality uses what we just proved in the err case.
The third case is param(z). For all atomic commands a,

(π, d) ∈W [a](param(z)) ⇔ (π, JaKπ(d)) ∈ γ(param(z))
⇔ z ∈ π
⇔ (π, d) ∈ γ(param(z))
⇔ (π, d) ∈ γ(JaKb(param(z))).

The fourth case is paramNot(z). The proof of this case is
essentially identical to that of the second case, except that we are
now using the fact that (2) holds for the param(z) case, instead of
the err case.

The fifth case is var(z). We handle three atomic commands
separately. First, we prove that (2) holds for x = y:

(π, d) ∈ γ(W [x = y](var(z)))
⇔
(π, Jx = yKπ(d)) ∈ γ(var(z))
⇔
∃Σ, X. d = (Σ, X)

∧ (y ∈ X ∧ x ∈ π ∧ z ∈ X ∪ {x} ∨ z ∈ X \ {x})
⇔
(z ≡ x ∧ (π, d) ∈ γ(var(y) ∧ param(x)))
∨ (z 6≡ x ∧ (π, d) ∈ γ(var(z)))

⇔
(π, d) ∈ γ(Jx = yKb(var(z))).

Second, we prove the required equality for x = null:

(π, d) ∈ γ(W [x = null](var(z)))
⇔
(π, Jx = nullKπ(d)) ∈ γ(var(z))
⇔
∃Σ, X. d = (Σ, X) ∧ (z ∈ X \ {x})
⇔
z 6≡ x ∧ (π, d) ∈ γ(var(z))
⇔
(π, d) ∈ γ(Jx = nullKb(var(z))).
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Third, we show the desired equality for x.m():

(π, d) ∈W [x.m()](var(z))
⇔
(π, Jx.m()Kπ(d)) ∈ γ(var(z))
⇔
∃Σ, X. d = (Σ, X) ∧ z ∈ X ∧ (∀σ. JmK(σ) = > ⇒ σ 6∈ Σ)
⇔
(π, d) ∈ γ(var(z) ∧

∧
{typeNot(σ) | JmK(σ) = >})

⇔
(π, d) ∈ γ(Jx.m()Kb(var(z))).

The sixth case is varNot(z). We use the fact that W [a] pre-
serves negation and conjunction, and derive the desired equality as
follows:
W [a](varNot(z)) =W [a](not(var(z)) ∧ errNot)

= (P×D \W [a](var(z)) ∩W [a](errNot)
= (P×D \ γ(JaKb(var(z)))) ∩ γ(JaKb(errNot))
= γ(negate(JaKb(var(z))) ∧ errNot).

The first equality just uses the fact that not(var(z)) = varNot(z)∨
err. The second uses the preservation of negation and conjunction
by W [a], and the third equality uses what we have proved in
the err and errNot cases. The last holds because γ preserves the
conjunction and negate implements the semantic negation.

The seventh case is type(σ). When a is x = y or x = null,

(π, d) ∈W [a](type(σ)) ⇔ (π, JaKπ(d)) ∈ γ(type(σ))
⇔ ∃Σ, X. d = (Σ, X) ∧ σ ∈ Σ
⇔ (π, d) ∈ γ(type(σ))
⇔ (π, d) ∈ γ(JaKb(type(σ))).

This shows that the desired equality holds for these atomic com-
mands a. When a is a method call x.m(), we prove the equality as
follows:
(π, Jx.m()Kπ(d)) ∈ γ(type(σ))
⇔
∃Σ, X. d = (Σ, X)

∧ (∀σ′. JmK(σ′) = > ⇒ σ′ 6∈ Σ)
∧ ((∃σ′. σ′ ∈ Σ ∧ JmK(σ′) = σ) ∨ x 6∈ X ∧ σ ∈ Σ)

⇔
(π, d) ∈ γ(errNot

∧ (
∧
{typeNot(σ′) | JmK(σ′) = >})

∧ ((
∨
{type(σ′) | JmK(σ′) = σ})
∨ (varNot(x) ∧ type(σ)))

⇔
(π, d) ∈ γ(Jx.m()Kb(type(σ))).

The last case is typeNot(σ). The proof of this case is similar to
that of the varNot(z) case. �

A.5 Proof of Theorem 6
We will first prove lemmas that describe the properties of TRACER.
Then, we will use the lemmas and prove the theorem.

LEMMA 7. If the domain P of parameters is finite, TRACER(dI , s, q)
terminates.

Proof We will prove that each iteration removes at least one ele-
ment from Πviable. Since no new elements are added to Πviable

in each iteration, this combined with the fact that P (the initial
value of Πviable) is finite will conclude the proof. Suppose some
π ∈ Πviable is chosen on line 8 and some trace τ ∈ trace(s) is
chosen on line 13 such that

Fπ[τ ](dI) ∈ (Fπ[s]({dI}) ∩ {d | (π, d) ∈ γ(not(q))}).
Such a trace τ exists because of Lemma 1. Hence, we have

(π, Fπ[τ ](dI)) ∈ γ(not(q)). (3)

Then, because of (3) above and the item 1 of Theorem 3, we have

(π, dI) ∈ γ(B[τ ](π, dI , not(q))).

The equation above implies that the Π computed on line 14 contains
π. Thus, at least π is removed from Πviable on line 15. �

LEMMA 8. If TRACER(dI , s, q) removes π from Πviable in some
iteration then Fπ[s]({dI}) is not a subset of {d | (π, d) ∈ γ(q)}.

Proof Suppose TRACER(dI , s, q) removes π′ from Πviable in
some iteration. We need to prove that

Fπ′ [s]({dI}) 6⊆ {d | (π′, d) ∈ γ(q)}.
But this is equivalent to

Fπ′ [s]({dI}) ∩ {d | (π′, d) ∈ γ(not(q))} 6= ∅,
which we will show in this proof. Since π′ is removed from Πviable

in some iteration, TRACER must have done so using π and τ ∈
trace(s) such that

(π, Fπ[τ ](dI)) ∈ γ(not(q)) ∧ (π′, dI) ∈ γ(B[τ ](π, dI , not(q))).

By the item 2 of Theorem 3, the second conjunct implies that

(π′, Fπ′ [τ ](dI)) ∈ γ(not(q)). (4)

Furthermore, because of τ ∈ trace(s), by Lemma 1, we also have
that

Fπ′ [τ ](dI) ∈ Fπ′ [s]({dI}). (5)
From (4) and (5) follows

Fπ′ [s]({dI}) ∩ {d | (π′, d) ∈ γ(not(q))} 6= ∅,
as desired. �

LEMMA 9. If TRACER(dI , s, q) returns π, we have that

Fπ[s]({dI}) ⊆ {d | (π, d) ∈ γ(q)}.
Furthermore, π is a minimum-cost parameter value (according to
�) satisfying the above subset relationship.

Proof TRACER(dI , s, q) returns π only when

Fπ[s]({dI}) ∩ {d | (π, d) ∈ γ(not(q))} = ∅. (6)

But there is some D0 ⊆ D such that

γ(not(q)) = (P× (D \D0)) ∧ γ(q) = (P×D0).

Hence, (6) implies the desired subset relationship on π. Let’s move
on to the proof that π is minimum. For the sake of contradiction,
suppose that there exists π′ such that

π 6� π′ ∧ Fπ′ [s]({dI}) ⊆ {d | (π′, d) ∈ γ(q)}. (7)

Then, π′ should not be in Πviable in the iteration of TRACER that
chose π from Πviable. Since Πviable is becoming a smaller set in
each iteration of the algorithm, π′ must have been removed from
Πviable in some previous iteration. According to Lemma 8, this
can happen only if

Fπ′ [s]({dI}) 6⊆ {d | (π′, d) ∈ γ(q)},
which contradicts the second conjunct of (7). �

LEMMA 10. If TRACER(dI , s, q) returns impossible, there is no π
such that

Fπ[s]({dI}) ⊆ {d | (π, d) ∈ γ(q)}.

Proof Suppose TRACER(dI , s, q) returns impossible. This means
that Πviable = ∅ right before the algorithm terminates. Hence, ev-
ery parameter value π was removed from Πviable in some iteration
of TRACER(dI , s, q). This combined with Lemma 8 implies that
Fπ[s]({dI}) 6⊆ {d | (π, d) ∈ γ(q)} for every π, as claimed by
this lemma. �
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THEOREM 6. TRACER(dI , s, q) computes correct results, and is
guaranteed to terminate when P is finite.

Proof The theorem follows from Lemmas 7, 9, and 10. �
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