
Design Space Exploration of On-chip Ring
Interconnection for a CPU-GPU Architecture

Jaekyu Lee1 Si Li2 Hyesoon Kim1 Sudhakar Yalamanchili2

1School of Computer Science
Georgia Institute of Technology

{jaekyu.lee, hyesoon}@cc.gatech.edu

2School of Electrical and Computer Engineering
Georgia Institute of Technology

sli@gatech.edu sudha@ece.gatech.edu

Abstract
Future chip multiprocessors (CMP) will only grow in core count
and diversity in terms of frequency, power consumption, and re-
source distribution. Incorporating a GPU architecture into CMP,
which is more efficient with certain types of applications, is the
next stage in this trend. This heterogeneous mix of architectures
will use an on-chip interconnection to access shared resources such
as last-level cache tiles and memory controllers. The configuration
of this on-chip network will likely have a significant impact on re-
source distribution, fairness, and overall performance.

The heterogeneity of this architecture inevitably exerts different
pressures on the interconnection due to the differing characteris-
tics and requirements of applications running on CPU and GPU
cores. CPU applications are sensitive to latency, while GPGPU ap-
plications require massive bandwidth. This is due to the difference
in the thread-level parallelism of the two architectures. GPUs use
more threads to hide the effect of memory latency but require mas-
sive bandwidth to supply those threads. On the other hand, CPU
cores typically running only one or two threads concurrently are
very sensitive to latency.

This study surveys the impact and behavior of the interconnec-
tion network when CPU and GPGPU applications run simultane-
ously. This will shed light on other architectural interconnection
studies on CPU-GPU heterogeneous architectures.

1. Introduction
The demand for more computational power never ends. Tradition-
ally, growth in computational power was carried out by ever in-
creasing clock frequency until the power wall was hit. To circum-
vent this barrier, future chip multiprocessors (CMPs) will only
grow in core count and diversity in terms of frequency, power con-
sumption, and resource distribution. The next stage in this trend
involves heterogeneous architectures where each architecture is
more power efficient at a subset of tasks. A general-purpose GPU
(GPGPU) is one such example that is more power efficient for tasks
involving massive thread-level parallelism. Incorporating a GPU
architecture into CMPs is the next logical step. Recent examples in-
clude Intel’s Sandy Bridge [21], AMD’s Fusion [3], and NVIDIA’s
Denver [30] project. In these architectures, various on-chip re-
sources are shared by CPU and GPU cores, including the last-level
cache, memory controllers, and DRAM. Access to these shared
resources is controlled by the on-chip interconnection, which has
a significant impact on resource distribution, fairness, and overall
performance.

To improve network and overall performance, many researchers
have proposed a variety of mechanisms involving topologies, adap-
tive routing, scheduling, and arbitration policies. Many different
topologies [6, 10, 13, 23, 35] have been proposed to improve per-
formance. They tend to focus on either all CPU-based architec-
tures or on specialized SoCs operating running a narrow spectrum
of applications. Various adaptive routing algorithms are introduced
to improve performance [18, 19, 25, 27]. A significant amount of
work is proposed in router arbitration policies [11, 12]. Recently,
proposals on heterogeneous interconnection configurations have
been introduced [16, 26].

On-chip CPU-GPU heterogeneous architectures as well as their
interconnections, however, are not as well studied. While we antici-
pate that they will have characteristics similar to more conventional
CMP networks, we also expect additional complexities involv-
ing resource sharing mechanisms caused by the opposing mem-
ory demands exerted by applications running on the two architec-
tures. CPU and GPU architectures possess fundamentally diametric
network demands. CPU cores have high context switch overhead
and rely on instruction parallelism, large caches, and speculative
mechanisms to achieve high performance in serial execution. Since
CPUs usually operate on a very small number of threads, when one
is stalled on a memory access, it incurs a large penalty until that
access is satisfied. At the opposite end of the spectrum, GPUs tar-
get data-parallel applications to achieve high throughput. They ex-
change large caches and other power-consuming mechanisms for
more processing elements (PE) to execute on multiple data sets in
parallel. Although a hardware-managed cache exists, GPUs mainly
leverage the zero overhead, single-cycle context switch capability
to remove latency introduced by long latency instructions and their
dependencies. When a thread is blocked, the instruction scheduler
context switches to the next available thread or group of threads.
Due to the often massive number of potential threads waiting for
execution, GPUs can execute many memory instructions concur-
rently and also in parallel, thereby achieving higher bandwidth re-
quirements than CPUs.

In this paper, we evaluate the NoC behavior of this CPU-GPU
heterogeneous architecture. However, we limit our study to the
ring network. Although the ring network is not scalable with many
cores, it is still relevant because most commercial processors cur-
rently employ a ring network with a reasonable number of CPU and
GPU cores. Based on a network characterization of the Cell proces-
sor [2] and Intel’s Larrabee [36] we believe that the ring network
will be used at least for the next few years until the number of cores
breaches a threshold of 10 or 12 cores.

1

In this study, we seek answers to the following questions: 1)
How does the ring interconnection behave in CPU-GPU heteroge-
neous workloads? and 2) What is the best ring router configura-
tion in heterogeneous workloads. We first study the impact of a
variety of network resources and mechanisms on the system per-
formance of CPU and GPGPU applications running separately, in-
cluding the number of virtual channels, link width, link latency, and
different placements. Then, we evaluate the resource sharing in the
interconnection when both applications are running concurrently.
In particular, we study virtual and physical channel partitioning be-
tween CPU and GPU cores, heterogeneous link configuration for
each router, arbitrations, routing algorithms, and placements.

Based on the findings from empirical studies, we suggest an im-
proved ring interconnection network in CPU-GPU heterogeneous
architectures that improves performance by 22%, 19%, and 16%
for one-CPU/one-GPU, two-CPU/one-GPU, and four-CPU/one-
GPU workloads, respectively. We believe our studies will lead to
further architectural studies in this area of on-chip interconnection
for a CPU-GPU heterogeneous architecture.1

2. Background
2.1 CPU-GPU Heterogeneous Architecture
Intel’s Sandy Bridge [21], which was released in 2011, is the first
commercial CPU-GPU heterogeneous architecture product. In the
Sandy Bridge microarchitecture, the CPU and GPU cores share the
last-level (L3) cache and memory controllers connected by a 256-
bit wide ring network. Figure 1 shows the die picture of Sandy
Bridge. Note that GPU cores can execute graphics as well as data-
parallel GPGPU applications.

Ring Network

Figure 1. The die map of Intel’s Sandy Bridge.

AMD also released a different heterogeneous design, the Fu-
sion architecture [3], that integrates more powerful GPU cores. Al-
though CPU and GPU cores share caches and memory controllers,
all communications are performed through the north bridge, not
the generic interconnection. NVIDIA also disclosed its Denver
project [30], which integrates ARM-based cores into the GPU.
However, few details about this project have been released at the
time of this writing.

Although the current GPUs in on-chip heterogeneous architec-
tures are not as powerful as today’s high-performing GPUs, we
project that more SIMD cores will be integrated in future gener-
ations. Therefore, we model our baseline heterogeneous architec-
ture such that it has both high-performance CPU and GPU cores
on-chip. Section 4.1 details the configuration of our baseline archi-
tecture.

2.2 A Comparison of CPU and GPU Cores
This section examines the differences between CPU and GPU
cores. Modern high-performance CPU cores are typically based

1 In this paper, we interchangeably use the term on-chip interconnection
network and the network on chip (NoC).

on N-wide superscalar out-of-order cores. To reduce the penalty
of the branch instructions, novel and often power-intensive branch
prediction mechanisms are used. Large private caches (L1 and L2)
are often employed to avoid long-latency access to off-chip mem-
ory. These cores are ideal for the serial execution of a small number
of threads (1-4 way Simultaneous Multi-Threading (SMT)), so they
have limited thread-level parallelism (TLP).

On the other hand, GPUs pack more processing elements in
each core. Each GPU core is an in-order SIMD processor. Mul-
tiple threads execute the same instruction with different data sets
per core. When branch directions within a batch of threads are di-
verged, the execution of each branch path is serialized. Currently,
no branch prediction mechanism exists to reduce branch latency.
The core context switches to other batches of threads until the
branch is resolved. Similarly, to hide memory latencies, GPU cores
utilize massive multi-threading. When a thread is stalled due to the
memory instruction, the execution is switched to other available
threads. Since GPU cores are designed to pay zero context over-
head, this can happen on every instruction issued. Due to this high
level of TLP, GPUs coalesce memory requests to reduce memory
traffic when possible [29]. Additionally, GPUs are afforded single-
cycle access to massive register files. Some GPGPU applications
have frequent scatter-gather memory operations that hurt perfor-
mance due to unaligned memory accesses. To mitigate this costly
operation, GPUs often have special hardware to support the scatter-
gather operation. Table 1 summarizes the differences between CPU
and GPU cores.

Table 1. Comparison between CPU and GPU cores.
CPU GPU

Core OOO superscalar in-order SIMD
Branch Predictor 2-level N/A
TLP 1-4 way SMT abundant
Memory Latency-limited Bandwidth-limited
Latency tolerance Caching Caching, multi-threading
Miscellany Scatter-gather operation

2.3 Network-on-Chip (NoC) Router Microarchitecture
In this section, we provide a brief background of the structure of an
NoC router microarchitecture.

2.3.1 Structure of Router Architecture
A router has N input and output ports. For example, a bi-directional
ring network has three (local, left, and right) input and output
ports. A 2D-mesh has five (local, north, south, east, and west)
ports. Each input port has M input buffers or virtual channels
(VC). New packets from the local network interface are inserted
into the VCs, and packets from other routers are inserted into their
respective buffers. When a new packet (or flit) is inserted, the
routing computation unit decides the output port to the next router.
The virtual channel allocator (arbiter) assigns a virtual channel on
that output port. The switch arbitration unit controls the crossbar
to move a flit to the assigned output port. Each flit traverses a link
from the output port of one router to the input port of the next.
Figure 2 shows a diagram of the router microarchitecture.

2.3.2 Pipeline stages
The flow of packets is pipelined in the NoC router. This is modeled
in a five-stage pipeline model.
• Input buffering (IB): Flits received over a link or the source

node are inserted into the buffer .
• Route computation (RC): Using the information in the header

flit, the output port is determined.

2

P
o

rt 0

…

P
o

rt 1

…

P
o

rt 2

…

P
o
rt N

-1

…

…

VC0

VCn-1

VC0

VCn-1

VC0

VCn-1

VC0

VCn-1

Crossbar O
u

tp
u

t C
h

a
n

n
els

RC Unit

VC Allocator

(Arbiter)

SW Allocator

(Arbiter)

Figure 2. The architecture of an NoC router.

• Virtual channel allocation (VCA): Using the output port infor-
mation, a downstream virtual channel with available credits ac-
quires a packet.
• Switch allocation (SA): To traverse to the output port, a packet

needs an exclusive grant to access the cross bar from its input
buffer to the output port.
• Switch traversal (ST): Once a switch is allocated to a packet, it

can traverse to the output port over the crossbar.
• Link traversal (LT): A flit is moved to the next router through

the link.

2.3.3 The Arbitration
As explained in Section 2.3.2, packets from the same or different
input buffers compete against each other for a grant to a virtual
channel or a switch to the output port. Simple policies are used
to arbitrate between these packets: 1) round-robin: the winning
virtual channel is chosen in a sequential manner and 2) oldest-
first: all packets in the router are searched and the oldest request
is scheduled. More sophisticated proposals in the literature are
described in Section 6.

3. Problems and Design Space Exploration in
NoCs of CPU-GPU Heterogeneous
Architecture

This section describes the potential problems in designing the on-
chip interconnection network in a CPU-GPU heterogeneous archi-
tecture.

3.1 Routing Algorithm
NoC routers typically employ a simple static routing algorithm to
minimize latency and complexity. For example, x-y or shortest-
distance algorithms are widely used. However, this may result in
link congestion in the heterogeneous architecture. For example, in
Figure 1, the GPGPU packets are not likely to use the upper link
since the lower link offers the shortest distance from the GPU cores
to the L3. The lower link is also used between the L3 and the mem-
ory controllers. Therefore, only CPU packets use the upper link,
which is possibly under-utilized. While studies on other algorithms
show improved network performance, they are limited to traffic
generated by specialized or CPU-only applications [18, 19, 25].

3.2 Resource Contention and Partitioning
CPU and GPU packets compete to acquire resources in vari-
ous places, especially virtual and physical channels. When the

resources are naively shared by both kinds of cores, higher-
demanding cores will acquire the most resources, which are
GPU cores. This is the same problem found in the LRU cache-
replacement policy in the shared cache. To solve this problem,
many researchers have proposed various static and dynamic cache
partitioning mechanisms [34, 37]. Similarly, partitioning mecha-
nisms can be applied to on-chip virtual and physical channels. As
explained in Section 2.3.1, each port has multiple virtual channels.
We can partition these virtual channels to each application. Sim-
ilarly, if multiple physical channels exist, we can dedicate some
channels to CPU cores and the other channels to GPU cores. If the
interference exhibited by other applications is significant, resource
partitioning would prevent interference and improve performance.
However, this can lead to resource under-utilization if partition-
ing is not balanced with demand. Therefore, partitioning should be
carefully applied to on-chip network resources.

3.3 Arbitration Policy
As described in Section 2.3.3, multiple arbiters exist in each router
to coordinate packets from different ports. In a CPU-GPU hetero-
geneous architecture, due to the different network demands, arbi-
tration between CPU and GPU packets is a non-trivial problem.
At first glance, statically giving higher priority to CPU applica-
tions appears to be a reasonable solution since CPU applications
are more latency sensitive. However, when CPU and GPGPU ap-
plications are both bandwidth-intensive, CPUs may be robbed of
their fair share of the bandwidth. Therefore, the arbitration policy
should also be carefully applied.

3.4 Homogeneous or Heterogeneous Link Configuration
A homogeneous router configuration has the practical benefit of
easier implementation. If all NoC routers are identical, each router
module can be duplicated with little or no individual adjustment.
Since the requirements of CPU and GPU cores are very different,
routers may require higher bandwidth interconnection in terms of
the link width or larger buffers to effectively handle traffic from
both applications. However, this may result in under-utilization of
resources in a certain core. For example, if a wider link width is
used, GPGPU applications may directly benefit from more band-
width capability, but CPU applications may not because they do not
require such a high bandwidth. Therefore, the utilization of CPU
links will be low. A heterogeneous link configuration may work
better in this situation but requires more complex implementation
and may not perform as well in some bandwidth-intense situations.
However, a heterogeneous configuration will require more design
and implementation efforts compared to the homogeneous network.
We leave this discussion to future work since this is beyond the
scope of our study.

3.5 Placement
As explained in Section 3.1, any placement of these components –
CPU, GPU, L3, MC – results in unbalanced utilization of on-chip
interconnection resources for some scenarios or under-utilization
for all situations. Figure 3 shows four possible examples of place-
ment in the ring network. Among these examples, the placement of
memory controllers (Figure 3 (d)) in many-core CMPs is studied
by Abts et al. [1].

The first two examples are GPU- and CPU-friendly placements.
Since all cache misses from a core need to reach L3 caches first,
the distance between a core and a target L3 node may have a
major impact on performance. Figure 3 (a) shows that the distance
between the GPU cores and the L3 caches is shorter than the
distance from the CPU cores. If there are more frequent accesses
from the GPU cores to the L3 caches, this placement results in

3

C0

L3

G0

M1

C1 C2 G1 G2

M0 L3 L3 L3

(a) GPU-friendly placement

L3

G0

M1

G1 G2

M0 L3 L3 L3

C0 C1 C2

(b) CPU-friendly placement

C0

L3

G0

M1

C1 C2 G1 G2

M0 L3 L3 L3

(c) Distributed MC placement

C0

L3

G0

M1

C1 C2 G1 G2

M0 L3 L3 L3

(d) Interleaved placement

Figure 3. Placement examples in the ring network.

better system performance. For the same reason, Figure 3 (b) is
more beneficial for CPU applications.

In another configuration, each memory controller is placed at
the end of the die in Figure 3 (c). If we can map the disjoint
address range of the physical memory for the two types of cores
(by the operating system), we can balance the link usage and the
latency between each core to the L3 cache and traffic to the memory
controllers will be reduced. This setup could effectively divide the
chip into two halves, which would be the most beneficial when each
half requires the same amount of bandwidth, but would otherwise
result in a major imbalance in resource distribution.

Figure 3 (d) shows an interleaved placement, where CPU and
GPU cores are interleaved. The possible benefit of this design is
that it can balance the traffic in each direction from each applica-
tion. In other designs, the traffic from each type of application tends
to head in the same direction due to the shortest-distance routing
algorithm. When too much traffic is headed in one direction, the
application will slow down.

Although some placements are not practical in an actual im-
plementation, this is beyond the scope of our study. We leave this
discussion to future work.

4. Evaluation Methodology
4.1 Simulator
We use MacSim [17] for our simulations. For all simulations,
we repeat early terminated applications until all applications have
finished at least once. This is to model the resource contention
uniformly across the duration of simulation, which is similar to the
work in [22, 24, 34, 39].

Table 2. Processor configuration.

CPU

1-4 cores, 3.5GHz, 4-wide, out-or-order (OOO)
gshare branch predictor
8-way, 32KB L1 D/I cache, 2-cycle
8-way 256KB L2 cache, 8-cycle

GPU
4 cores, 1.5GHz, in-order, 2-wide SIMD
8-way, 32KB L1 D (2c), 4-way 4KB L1 I (1c)
16KB s/w managed cache

L3 Cache 4 tiles (each tile: 32-way, 2MB), 64B line
Memory DDR3-1333, 2 MCs (each 8 banks, 2 channels)
Controller 41.6GB/s BW, 2KB row buffer, FR-FCFS scheduler

Table 2 shows the processor configuration. We model our base-
line CPU similarly to Intel’s Sandy Bridge [21] with GPU cores
similar to NVIDIA Fermi [31].

Table 3 shows the configuration of the NoC router. To avoid
the deadlock configuration, we use bubble routing [33]. We set the
GPU-friendly placement in Figure 3 (a) as the baseline configura-
tion, which is a configuration similar to Intel’s Sandy Bridge.

Table 3. NoC configuration.
Topology Bi-directional ring network
Pipeline 5-stage (IB, RC, VCA, SA/ST, LT)
VCs 4 per port (4-flit buffer)
ports 3 (Local, Left, Right) per router
Link width 128 bits (16 B)
Link latency 2 cycles
Routing Shortest distance
Flow control credit-based, bubble routing [33]

4.2 Benchmarks
We use 29 SPEC 2006 CPU benchmarks and 31 CUDA GPGPU
benchmarks from publicly available suites, including Nvidia CUDA
SDK, Rodinia [9], Parboil [20], and ERCBench [8]. For the CPU
workloads, Pinpoint [32] was used to select a representative simula-
tion region with the reference input set. Most GPGPU applications
run until completion.

Tables 4 and 5 show the characteristic of the evaluated network-
intensive CPU and GPGPU benchmarks, respectively. The two
metrics, MPKI (Miss Per Kilo Instruction) and IPKC ((Packet)
Injection Per Kilo Cycles), are strongly correlated because cache
misses will introduce more traffic into the network. For this reason
we only consider IPKC when categorizing the benchmarks into
two groups: network-intensive (Group N, IPKC greater than 10
(CPU), 37.5 (GPU)) and non-network-intensive (Group C). We
demonstrate that GPGPU benchmarks in general generate higher
network traffic than CPU benchmarks. This is mainly due to the
high number of concurrent threads running in a GPU core, which
serves to hide memory latency by overlapping memory accesses.
Subsequently, GPU cores generate a higher intensity of network
traffic.

Table 4. CPU benchmark characteristics.
Benchmark Suite MPKI/Core IPKC/Core
bzip2 Int 0.4 10.2
gcc Int 1.2 10.9
mcf Int 43.6 29.9
libquantum Int 26.8 20.8
omnetpp Int 10.2 21.5
astar Int 7.6 17.8
bwaves FP 22.3 61.6
milc FP 31.1 49.4
zeusmp FP 5.8 23.7
cactusADM FP 6.2 31.6
leslie3d FP 24.7 71.6
soplex FP 13.9 34.4
GemsFDTD FP 18.9 51.2
lbm FP 18.0 71.1
wrf FP 15.2 55.2
sphinx3 FP 0.6 31.2

Section 5.1 evaluates the network behavior of N-type applica-
tions running individually in the arrangement of Figure 3 (a). Each
application was tested by running one copy on compatible cores of
the network. For the heterogeneous configuration experiments, we
randomly choose combinations of N-type CPU and GPGPU appli-
cations. Table 6 describes the workload we evaluated.

4.3 Evaluation Metric
We use the geometric mean (Eq. 1) of the speedup of each applica-
tion (Eq. 2) as the main evaluation metric.

speedup = geomean(speedup(0 to n−1)) (1)

speedupi =
IPCi

IPCbaseline
i

(2)

4

Table 5. GPGPU benchmark characteristics (MPKI and IPKC is
the average of each core).

Benchmark Suite MPKI/Core IPKC/Core
BlackS SDK 25.6 153.2
ConvS SDK 0.0 39.6
Dct8x8 SDK 0.1 42.7
Histog SDK 5.4 39.8
ImageD SDK 0.1 62.7
MonteC SDK 0.0 47.1
Reduct SDK 123.5 164.5
SobolQ SDK 22.7 152.1
Scalar SDK 0.4 80.7
backPr Rodinia 3.4 39.7
cfd Rodinia 323.9 112.9
neares Rodinia 0.1 81.7
bfs Rodinia 10.6 95.4
needle Rodinia 10.2 65.0
SHA1 ERCBench 4.5 47.1
fft parboil 0.2 56.4
stencil parboil 16.7 134.3

Table 6. Workload description.
Workload # CPU # GPU # combinations Reference
W-1CPU 1 1 13 Section 5.2
W-2CPU 2 1 10 Section 5.3
W-4CPU 4 1 10 Section 5.3

We occasionally use the weighted speedup metric defined in Eq. 3.

weighted speedup =
∑
i

IPCshared
i

IPCalone
i

(3)

5. Results
In this section, we first evaluate each application running singly
in the system. Then we evaluate combinations of applications in
the following order: one-CPU/one-GPU, two-CPU/one-GPU, and
four-CPU/one-GPU applications. In each evaluation, we measure
the impact of the number of virtual channels, link width, physi-
cal channel partition, link latency, arbitration policy, and network
placement configuration. Note that we do not evaluate different
routing algorithms since the ring network has only two possibili-
ties of the route decision (left or right).

5.1 Single Application Analysis
In this section, we first evaluate each application in isolation (CPU
or GPGPU application only) to analyze its characteristics without
interference. Although previous studies exist [4, 5] on the effect of
the on-chip network for GPGPU applications, we again present the
data to correlate with our other experiments. Each CPU application
is tested by running it on one CPU core while all other cores remain
idle. Similarly, GPGPU applications run all GPU cores while CPU
cores remain idle.

5.1.1 Different Number of Virtual Channels
Figure 4 (a) shows the result when we vary the number of virtual
channels from two to eight. All results are normalized to the base-
line configuration (4 VCs). CPU applications suffered less perfor-
mance loss than GPU applications with a small number of VCs.
With two VCs, the maximum performance loss is 6.6% for the
lbm benchmark, which is the most network-intensive benchmark
in Table 4. On the other hand, six GPGPU benchmarks show more
than a 40% degradation. When these applications are sharing the
on-chip interconnection, we expect the inter-application interfer-
ence to be a serious problem. We expect GPGPU applications to

have a considerably greater impact on other applications when run-
ning concurrently on the network. However, from this experiment,
guaranteeing a small number of VCs (one or two) to CPU applica-
tions is sufficient to maintain CPU application performance. Sec-
tion 5.2.2 evaluates the effect of virtual channel partitioning in a
multi-application environment.

SINGLE-VC

0.60

0.70

0.80

0.90

1.00

1.10

vc2 vc3 vc4 vc5 vc6 vc7 vc8

S
p

e
e
d

u
p

 o
v
e
r
 v

c
4

CPU GPU

(a) Average speedup over vc4

0

0.5

1

1.5

0 50 100 150 200

S
p

e
e
d

u
p

 w
it

h
 2

 V
C

s

(b
a

se
li

n
e
 4

V
C

s)

IPKC

GPU
CPU
Linear (GPU)
Linear (CPU)

(b) X-Y chart of speedup and IPKC with linear trend lines

Figure 4. Evaluation of different # of virtual channels.

To seek the correlation between the slowdown of having smaller
VCs and IPKC, we show an x-y chart in Figure 4 (b). Although both
applications show linear regression lines, CPU applications do not
show much variance. Applications with higher IPKC show greater
degradation in general.

5.1.2 Different Link Width
Figure 5 shows the impact of link widths for each type of applica-
tion compared to the baseline of the 16B link width. Compared to
the impact of varying the number of virtual channels, link width has
a greater effect on the performance of both applications. GPGPU
benchmarks generally show more sensitivity to link widths than
CPU benchmarks, especially in Reduct, Scalar, cfd, and bfs bench-
marks. This is potentially due to the large number of memory re-
quests made in a batch by a huge number of concurrently running
threads. GPGPU applications can take advantage of the wider links
and prevent network congestion. On the other hand, CPU bench-
marks do not show significant improvement with wider links (32B:
1.1%, 64B: 1.6% on average) compared to the baseline. However,
lower network bandwidth in GPGPU applications induces a sig-
nificant latency increase, thereby hurting performance excessively.
The L-G line in Figure 5 shows that the average network latency
of GPGPU applications is increased by 3.3 times, while CPU ap-
plications (L-C line) show a relatively small increase (1.87 times)
with the 2B link. As a result, GPGPU applications show 72% slow-
down over the 16B link, but CPU applications only show a 19%
slowdown.

From this observation, we conclude that having a wider link
is very helpful to GPGPU applications, but not to CPU applica-
tions. This confirms that GPGPU benchmarks are more bandwidth-
limited, while CPU benchmarks are not. As a result, this obser-
vation leads us to study heterogeneous link configurations in Sec-
tion 5.2.6.

5

0

50

100

150

200

0

0.5

1

1.5

2B 4B 8B 16B 32B 64B

P
a

c
k

e
t

L
a

te
n

c
y

S
p

e
e
d

u
p

 o
v
e
r
 1

6
B

 CPU GPU L-C L-G

Figure 5. Evaluation of different link width (L-C: CPU network
latency, L-G: GPU network latency).

5.1.3 Different Channel Configuration
In this section, we evaluate the impact of different widths and
number of physical channels. The purpose of this evaluation is
based on the intuition that a wider link can be beneficial to reduce
the latency in the cases of larger packet requests, but multiple
channels can be better utilized for more general traffic when smaller
packets become a contributing portion of traffic.

SINGLE-CHANNEL

0.9

1

1.1

1.2

1
6
B
x
1

8
B
x
2

3
2
B
x
1

1
6
B
x
2

8
B
x
4

6
4
B
x
1

3
2
B
x
2

1
6
B
x
4

16B 32B 64B

S
p

e
e
d

u
p

 o
v
e
r
 B

a
se

(1
6

B
x

1
)

CPU

GPU

Figure 6. Evaluation of different physical channel.

Figure 6 shows the results. For CPU applications, wider links
improve performance by only a small percentage. However, having
smaller, multiple links degrades performance. On the other hand,
GPGPU applications show improvement with two physical chan-
nels (16Bx2 and 32Bx2). However, having even more channels in-
creases the packet latency significantly (2x longer latency for data
packets) while not fully utilizing all channels. As a result, the ben-
efit of wider links decreases. This finding indicates that the width
and number of physical channels should be well balanced to sup-
port various applications that have different latency/bandwidth re-
quirements.

5.1.4 Different Link Latency
Figure 7 shows the different link latency evaluations with two-cycle
as the baseline latency. We double the link latency from one to 64
cycles. Although both types of applications are sensitive to link la-
tency, we observe that the degree of sensitivity is much higher in
CPU benchmarks. Even with small changes (from two to eight cy-
cles), most CPU benchmarks suffer from the increase in latency.
We observe 7%, 19%, and 36% degradations on average for four-
cycle, eight-cycle, and 16-cycle configurations, respectively. How-
ever, the performance of many GPGPU benchmarks did not de-
grade significantly until the 16-cycle latency configuration. On av-
erage the performance degradations are 5% and 18% for GPGPU
benchmarks for eight-cycle and 16-cycle configurations, respec-
tively.

As we explained in Section 2.1, CPU benchmarks are known
to be latency-sensitive and GPGPU benchmarks are bandwidth-
limited. This simulation result confirms this tendency.

0

0.5

1

1.5

1c 2c 4c 8c 16c 32c 64c

S
p

e
e
d

u
p

 o
v
e
r
 2

c

CPU

GPU

Figure 7. Evaluation of different link latency.

arbitration

0.98

1

1.02

1.04

GMEAN BlackS Reduct needle GMEAN

CPU GPUS
p

e
e
d

u
p

 o
v
e
r
 B

a
se

(o
ld

e
st

-f
ir

st
)

Figure 8. Round-robin arbitration (baseline: oldest-first).

5.1.5 Different Arbitration Policy
In this section, we evaluate two simple arbitration policies: round-
robin arbitration and oldest-first policy while fixing other config-
urations the same.2 Figure 8 shows the results. Not surprisingly,
neither type of application shows significant changes. Since there
are three input ports with few virtual channels in the ring network,
not enough bottleneck is introduced by network complexity for an
arbitration to resolve. CPU applications never show more than a
0.5% variance. Only a few GPGPU benchmarks, BlackS, Reduct,
and needle, show more than a 1.5% variance.

5.1.6 The Effect of Network Placement Configuration
Figure 9 shows the effect of different placement policies. We eval-
uate four different placements, as shown in Figure 3.

0.8

0.9

1.0

1.1

1.2

CPU Applications GPU Applications

S
p

e
e
d

u
p

 o
v
e
r
 B

a
se

(G
P

U
-F

r
ie

n
d

ly
) GPU CPU MC INT

Figure 9. Different placement results (MC: distributed memory
controller, INT: interleaved).

For each type of application, placing the cores closer to the
L3 caches improves performance by reducing the round trip la-
tency between the cores and the memory system (the L3 caches
and the memory controllers). The CPU-friendly placement improves
the performance of CPU applications by more than 8% on average.
On the other hand, the CPU-friendly placement degrades the per-
formance of GPGPU applications by 4.1% compared to the GPU-
friendly placement.

2 We evaluate other static arbitration policies with heterogeneous workloads
in Sections 5.2.3 and 5.3.4.

6

The MC placement improves the performance of CPU applica-
tions by 5.6%. The performance gain is partially from reducing the
through-traffic of the memory controllers. In other configurations,
the shortest distance from Core 0 to the L3 caches is through the
memory controllers. Therefore, even though the destination of a
packet is not a memory controller but an L3 cache node, all packets
from and to the core must travel through these memory controllers.
As a result, this path is always busy and tends to congest traffic.
However, by placing the memory controllers on both sides of the
cache nodes, through traffic is reduced.

On the other hand, there are cases in GPGPU applications where
the MC placement either hurts or improves performance (from -7%
to 6%). For negative cases, this placement introduces an extra node
in the critical path between GPU cores and L3 cache nodes (M0
in Figure 3 (c)), resulting in extra latency and higher congestion
(near M0) as traffic injected by the memory controller is also in
the critical path. Hence, in some applications these negative effects
offset the benefits of reducing congestion to/from the memory
controllers explained earlier. Overall, for GPGPU applications, the
benefit of the MC placement is washed out.

For the INT placement, note that CPU-friendly and INT place-
ments are identical for CPU applications since we run only one
application on Core 0 (C0), and this placement configuration does
not impact the latency from this core to memory nodes. For GPGPU
applications, we observe improvements of 3.9% on average due to
an increase in path diversity, as the cores will take both sides of the
ring instead of favoring only one side due to the shortest-distance
routing algorithm described in Section 3.1.

5.2 Multiple-Application Experiments
In this section, we look at multi-application experiments to analyze
the impact of inter-application interference. Each test randomly
chooses one N-type CPU and GPGPU application to run them con-
currently (the W-1CPU workloads in Table 6). Figure 10 shows an
x-y chart of all W-1CPU workloads in terms of the IPKC character-
istic. We split this into four regions (CPU Injection/GPU Injection,
HH – High CPU and High GPU, HL, LH, and LL) based on the CPU
and GPU injection rates.

Xy-w1

W1

W2
W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13 0

50

100

150

200

0 20 40 60 80

G
P

U
 I

n
je

c
ti

o
n

 R
a

te

CPU Injection Rate

HH

HL

LH

LL

Figure 10. W-1CPU workload characterization (IPKC: injection
per kilo cycles).

The following factors are measured for their impact: router
buffer partitioning, arbitration policy, network placement, physical
channel partitioning, and heterogeneous link configuration.

5.2.1 Interference with GPGPU applications
We first explain how applications interfere with each other. Fig-
ure 11 (a) shows an x-y chart of the slowdown of each application
compared to when they are running alone and Figure 11 (b) shows

the weighted speedup3 of each workload (sorted in ascending or-
der).

W1 W2

W3
W4

W5

W6

W7

W8

W9

W10

W11

W12

W13 0.95

1

1.05

1.1

1.15

0 1 2 3 4 5 6

G
P

U
 S

lo
w

d
o
w

n

CPU Slowdown

(a) Slowdown X-Y chart (4: HH, �: HL, �: LH, ◦:LL)

Ws-interference

1
1.2
1.4
1.6
1.8

2

W
e
ig

h
te

d
 S

p
e
e
d

u
p

(b) Weighted speedup (Workload and Group Id in Figure 10))

Figure 11. Interference with GPGPU applications.

We can observe that significant interference is caused by
GPGPU applications. In Figure 11 (a), most GPGPU applications
do not show more than a 5% slowdown, while only three CPU
applications show less than a 20% slowdown. In Figure 11 (b),
GPGPU applications in poorly performing combinations (from the
leftmost, W3, W12, W10, W5, and W6) all belong to the HH or
LH region, while the best performing ones (from the rightmost,
W1 and W13) belong to the HL region in Figure 10. We expect
that although GPGPU applications will experience more interfer-
ence with CPU applications as the number of concurrently running
CPU applications increases, GPGPU applications are more likely
to interfere with CPU applications.

5.2.2 Router buffer partitioning
As Tables 4 and 5 show, GPGPU benchmarks exhibit more fre-
quent network injections. If we do not partition the router buffer
space, the GPGPU packets will occupy more space and unnec-
essarily degrade the performance of CPU applications. This is
a similar problem to the traditional LRU replacement policy in
CMPs. Since the naive LRU policy does not partition cache space,
higher-demanding applications will occupy more cache space. To
solve this problem, many researchers have proposed static and dy-
namic cache partitioning mechanisms [34, 37]. Similarly, NoC vir-
tual channels can be statically or dynamically partitioned; in other
words, a few virtual channels can be dedicated to CPU packets and
other channels to GPU packets. In this section, we evaluate the ef-
fect of virtual channel partitioning.

We compare the baseline unpartitioned virtual channels with
various static partitioning configurations, as shown in Figure 12.
We observe that increasing the number of virtual channels is not
helpful. GPGPU packets occupy most of the available buffer space.
Increasing to six and eight virtual channels results in minor im-
provements in GPGPU applications, while the performance of CPU

3 Eq. 3. Higher is better. The ideal weighted speedup is 2 if no inter-
application interference is exhibited.

7

Het-vc

0.6

0.8

1.0

1.2

1.4

1.6

4 2:2 6 2:4 3:3 8 2:6 3:5 4:4

vc4 vc6 vc8

S
p

ee
d

u
p

 o
v

er
 B

a
se

(u
n

p
a

rt
it

io
n

ed
 4

 V
C

s)
 CPU Speedup GPU Speedup GMEAN

Figure 12. Router buffer partitioning results (ex. 6 is 6 unparti-
tioned VCs; 2:4 is 2 CPU VCs, 4 GPU VCs).

applications stays the same. Compared to the unmanaged base-
line, allocating at least some fixed number of virtual channels to
CPU applications significantly improves performance by more than
35%, while GPGPU applications show 8% and 1% degradations
with three and four dedicated virtual channels, respectively.

W1

W2

W3

W4

W5
W6

W7
W8

W9

W10
W11 W12

W13

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

G
P

U
 S

p
e
e
d

u
p

CPU Speedup

Group 1

Group 2 Group 3

Figure 13. VC partitioning x-y chart (baseline: shared VC, 4:
HH, �: HL, �: LH, ◦:LL in Figure 10).

For a deeper analysis, we show an x-y chart of CPU and GPU
speedups in the 2:2 (VC4) virtual channel partitioning config-
uration for all W-1CPU workloads in Figure 13. We pick this
configuration because both CPU and GPGPU applications with
this configuration show representative behavior from virtual chan-
nel partitioning. We observe that three groups exist in Figure 13:
group 1 (top left region, W1, W4, W9, W13: moderate CPU and
GPU speedup), group 2 (bottom right region, W3, W12: excessive
CPU and GPU), and group 3 (others: moderate CPU and excessive
GPU). In group 1, GPGPU applications have low injection rate (HL
or LL group in Figure 10), so the interference by GPGPU applica-
tions is limited as well. Therefore, CPU and GPGPU applications
effectively share VCs. As a result, both CPU and GPGPU applica-
tions do not show significant variances with VC partitioning. CPU
applications in group 2 have higher injection rate (greater than 50
IPKC), so the performance of CPU applications is significantly im-
proved with VC partitioning. Almost all CPU applications in group
3 have low injection rate (LH or LL group), so VC partitioning hurts
the performance of GPGPU applications. In other configurations,
we can observe that both CPU and GPGPU applications show sim-
ilar trends, but we do not see as much degradation as in the 2:2
(VC4) configuration for GPGPU applications.

From this observation, we see that when CPU and GPGPU ap-
plications run concurrently in the shared on-chip network, guaran-
teeing the minimum buffer space to CPU applications would im-
prove the overall system performance. However, providing addi-
tional buffer space does not result in additional performance in-
creases.

5.2.3 Arbitration Policy
In heterogeneous architectures, CPU and GPU packets compete for
buffer space and switch arbitration. To see the effect of arbitration
policies, we try two static policies: CPU-first and GPU-first policies.
To prevent starvation, we implement a form of batching similar to
that in [12, 28]. We compare these two static policies and the round-
robin policy with the oldest-first arbitration.

Figure 14 shows the results using the shared and partitioned vir-
tual channel configurations. First, as seen in Section 5.1.5, there is
no significant difference between oldest-first and round-robin poli-
cies, regardless of virtual channel configuration. However, for the
two static policies, the VC configuration affects the result signif-
icantly. Since VC partitioning guarantees the minimal service for
each type, the effect of different policies decreases. As a result, the
three policies behave similarly (less than 1% delta) with VC parti-
tioning.

0.8
0.85
0.9

0.95
1

1.05

CPU GPU GMEAN CPU GPU GMEAN

VC Shared VC Partitioned
S

p
e
e
d

u
p

 o
v
e
r

O
ld

e
st

-F
ir

st

RR CPU-First GPU-First

Figure 14. Different arbitration policy results (CPU and GPU indi-
cate the speedup of each application).

However, with the shared VCs, the CPU-first policy slightly im-
proves the performance of CPU applications without degrading that
of GPGPU applications. On the other hand, the GPU-first policy
degrades the performance of CPU applications by more than 15%
on average while improving GPGPU performance by only 0.5%.
Looking at the geometric mean, CPU-first improves performance
by 1.5%, but GPU-first degrades it by 7.3% on average. This exper-
iment again confirms that CPU packets are latency-sensitive, so we
need to prioritize CPU packets.

5.2.4 Network Placement Configuration
We evaluate different placement policies on heterogeneous work-
loads, as shown in Figure 15. We again perform experiments with
different VC configurations. With the shared VC, even CPU-friendly
placement degrades CPU applications. This is because the length-
ened distance from the GPU cores to both L3 caches and memory
controllers increases system-level traffic congestion. As a result,
each CPU packet is penalized by this congestion. The MC place-
ment slightly improves the performance of both applications (3.5%
on average), while the INT placement degrades both (-4.4% on av-
erage).

0.8

0.9

1

1.1

CPU GPU GMEAN CPU GPU GMEAN

VC Shared VC Partitioned

S
p

e
e
d

u
p

 o
v
e
r

G
P

U
-F

r
ie

n
d

ly
 GPU-Friendly CPU-Friendly MC INT

Figure 15. Different placement results for heterogeneous work-
loads (MC: distributed memory controller, INT: interleaved).

8

However, with the partitioned VC, we observe the expected
behavior. The CPU-friendly placement shows better performance
for the CPU applications (4.6%), but it degrades performance of
the GPGPU applications even more (-14.6%). This degrades over-
all performance. The MC placement improves CPU application
slightly by partially reducing the distance to the memory con-
trollers, but it worsens GPGPU applications. The INT placement
degrades the performance of both applications.

From this experiment, we observe that GPGPU applications
have more impact on the network. The overall performance gain
can be acquired by not penalizing GPGPU applications.

5.2.5 Physical Channel Partitioning
In this section, we evaluate physical channel partitioning. Similar
to router buffer partitioning, if multiple physical channels exist in
the router, we can partition channels to each type of application.

Het-cp

0.8

1

1.2

1.4

base 1:1 base 1:1 base 1:1

16B 32B 64B

S
p

e
e
d

u
p

 o
v
e
r
 1

6
B

 CPU Speedup GPU Speedup GMEAN

Figure 16. Physical channel partitioning results (16B-base: unpar-
titioned 1 channel, 16B-1:1: 2x8B channels and one channel is ded-
icated for CPU and the other is for GPGPU application).

Figure 16 shows the results. Similar to VC partitioning, the CPU
applications benefit from a dedicated channel. However, a signifi-
cant performance loss in GPGPU applications results. This indi-
cates that GPGPU applications require a wider physical channel
than CPU applications. When the channel is partitioned, we ob-
serve that the utilization of the GPU channel is slightly increased
while that of the CPU shows very low utilization (around 5%).
Therefore, to obtain better channel utilization for GPGPU appli-
cations, a wider channel instead of multiple channels is more effec-
tive.

5.2.6 Heterogeneous Link Configuration
In this section, we evaluate heterogeneous link configurations. We
first categorize routers into three groups: CPU-router (4 routers),
GPU-router (4 routers), and memory-router (6 routers: 4 L3 cache
and 2 memory controller routers). Our baseline uses one 128-bit
(16B) link between each node. We vary the number of physical
channels in each group.

0.6

1

1.4

1.8

2.2

CPU GPU L3 MC

C
h

a
n

n
e
l

U
ti

li
z
a

ti
o
n

Figure 17. Physical channel utilization (relative to CPU routers).

First, we show the physical channel utilization of each router
normalized to the CPU routers in Figure 17. L3 and MC routers
obviously have much more traffic, thereby utilizing channels more
compared to processor routers (CPU and GPU). Even if the number

0.9

1

1.1

1.2

1.3

1 2 4 2 4 2 4 2 4 2 4 2 4

ALL MEM M+C M+G CPU GPU

S
p

e
e
d

u
p

 o
v
e
r
 1

6
B

Figure 18. Heterogeneous link configuration results (ALL: all
routers, MEM: vary memory router link only, and M+C: memory
and CPU routers. 1, 2, or 4 in x-axis indicates the number of phys-
ical channels).

of concurrently running CPU applications increases, we expect that
a similar trend will be observed.

Figure 18 shows the results of various link configurations. We
first evaluate the homogeneous link configuration (ALL). Having
more physical channels is always beneficial, but there is a dimin-
ishing return in performance after two channels. We observe per-
formance improvements of 25% and 27% on average with two
and four physical channels, respectively. Then, we evaluate het-
erogeneous configurations by varying each type of router (MEM,
CPU, GPU, M+C, and M+G). While increasing the number of chan-
nels for CPU or GPU routers does not help improve performance,
increasing memory-router channels has a direct effect on perfor-
mance (22.1% and 22.4% with two and four physical channels, re-
spectively). As in Figure 17, memory routers are mostly busy dur-
ing the entire execution, but CPU and GPU routers are not. Because
there are five different data flows in the ring network – 1) CPU to
L3, 2) GPU to L3, 3) L3 to Memory controller (MC), 4) MC to L3,
and 5) L3 to CPU (or GPU) – most traffic goes through the mem-
ory routers. By allocating wider links to only the memory routers
rather than all routers, we can fully utilize these links without pow-
ering under-utilized links for the CPU and GPU routers. In addi-
tion, giving GPU routers additional channels, on top of wider mem-
ory router links, shows an additional boost in performance. Since
GPUs are major sources of network traffic, without more channels
between them, GPU-routers will become the new bottleneck.

5.3 Multiple CPU Application Experiments
In this section, we evaluate multiple CPU applications and one
GPGPU application running simultaneously. We repeat the same
set of experiments as in Section 5.2.

5.3.1 Router buffer partitioning
Figure 19 shows the results of VC partitioning in the W-4CPU
workloads (4 CPUs + 1 GPGPU). Note that the W-2CPU (2 CPUs
+ 1 GPGPU) workloads are omitted, as they show roughly iden-
tical results as W-4CPU results. W-2CPU and W-4CPU workload
data show very similar trends as W-1CPU (1 CPU + 1 GPGPU)
experiments. Dedicated (at least a few) virtual channels to CPU ap-
plications are shown to be helpful, but the performance of GPGPU
applications degrades with less than three VCs. This again indicates
significant traffic injected by GPGPU applications and interference
by GPGPU applications. VC partitioning will reduce this interfer-
ence.

From the various VC-related experiments, our conclusions of
the ideal VC configuration are that 1) VCs should be partitioned,
especially for CPU applications; 2) However two to three VCs
are sufficient; and 3) a GPGPU application requires at least three
VCs, but having more does not help. Therefore, the ideal VC

9

Het4-vc

0.6

0.8

1.0

1.2

1.4

4 2:2 6 2:4 3:3 8 2:6 3:5 4:4

vc4 vc6 vc8

S
p

ee
d

u
p

 o
v

er
 B

a
se

(u
n

p
a

rt
it

io
n

ed
 4

 V
C

s)
 CPU Speedup GPU Speedup GMEAN

Figure 19. Router buffer partitioning results (4 CPUs + 1 GPGPU
workloads).

configuration will be five virtual channels: two are dedicated for
CPU and the other three are for GPGPU applications.

5.3.2 Physical Channel Partitioning

0.8
0.9
1
1.1
1.2
1.3

CPU GPU GMEAN CPU GPU GMEAN

W-2CPU W-4CPU

S
p

e
e
d

u
p

 o
v
e
r
 1

6
B

 16B 8B:8B 32B 16B:16B 64B 32B:32B

Figure 20. Physical channel partitioning results (16B-base: unpar-
titioned 1 channel, 16B-1:1: 2x8B channels and one channel is ded-
icated for CPU and the other is for GPGPU application).

Figure 20 shows the results for both W-2CPU and W-4CPU
workloads. As the number of concurrently running CPU applica-
tions increases, the benefit of having a separate physical channel
for CPU applications decreases since the channel itself is shared by
more applications. However, GPGPU applications still suffer from
narrower links, as they depend on bandwidth. As a result, we al-
ways observe a system performance degradation with a partitioned
physical channel configuration.

5.3.3 Heterogeneous Link Configuration

0.9

1

1.1

1.2

1 2 4 2 4 2 4 2 4 2 4 2 4

ALL MEM M+C M+G CPU GPU

S
p

e
e
d

u
p

 o
v
e
r
 1

6
B

Figure 21. Heterogeneous link configuration results (ALL: all
routers, MEM: vary memory router link only, and M+C: memory
and CPU routers. 1, 2, or 4 in x-axis indicates the number of phys-
ical channels).

Figure 21 shows the results for the W-4CPU workloads. Again,
the W-2CPU workloads are omitted due to their similarity to the W-
4CPU workloads. Compared to the W-1CPU workloads, there is no
significant difference. Multiple physical channels for the memory
and the GPU routers proved to be beneficial. However, increasing

the number of physical channels for only CPU or GPU routers is
not beneficial because half of the traffic is cache-miss requests. The
size of request traffic is small (1 flit) and the request traffic would
not occupy multiple physical channels. Therefore, having multiple
physical channels does not improve performance. However, for
GPU routers, the additional channels for the memory routers adds
additional improvements.

5.3.4 Arbitration Policy
Figure 22 shows the results from different arbitration policies on
both shared (CPU and GPU packets share all VCs) and partitioned
VCs (2 VCs are dedicated for each type) for the W-4CPU work-
loads. Round-robin is comparable to the Oldest-First policy. Al-
though the CPU-First policy consistently shows better performance,
the benefit decreases with the partitioned VC. On average, CPU-
First shows 3.2% and 1.5% improvements with the shared and par-
titioned VC, respectively. On the other hand, GPU-First degrades
CPU applications in the shared VC configuration.

0.9

0.95

1

1.05

CPU GPU GMEAN GPU GPU GMEAN

VC Shared VC Partitioned

S
p

e
e
d

u
p

 o
v
e
r

O
ld

e
st

-f
ir

st

RR CPU-First GPU-First

Figure 22. Different arbitration policy results.

Throughout multiple-workload evaluations (W-1CPU, W-2CPU,
and W-4CPU), the effect of different arbitration policies is not so
important, especially if virtual channels are partitioned to each
type of application. This is not entirely unexpected since there is a
smaller number of input and output ports in the ring network. We
expect that the role of intelligent arbitration becomes significant
with 2D topologies.

5.3.5 Placement
Figure 23 shows different placement evaluations for W-2CPU and
W-4CPU workloads with different virtual channel configurations
(shared and partitioned). With the shared VC, the MC placement
shows the best results. This is mainly because traffic from/to the
memory controllers is distributed to both sides of the chip, thereby
reducing the congestion in those routers. With the partitioned VC,
the effect of different placement policies is a bit reduced. GPU-
friendly and MC placements perform the best.

5.4 Scalability
The last evaluation of our study is the scalability of the ring net-
work. The ring network is known to handle a small number of
nodes. In this section, we stress the ring network to show how many
cores can be used. We run GPGPU applications and scale the num-
ber of cores from four to 20.

Figure 24 shows four different types of applications: linear-scale,
log-scale, saturated-scale (performance saturated after N cores), and
unscalable. Linear and log-scale applications are less network inten-
sive and show performance improvement because increasing the
number of cores does not saturate the interconnection network.

The other two types show that the performance flat lines at
some point due to the congestion in the network. Especially, the
performance of unscalable benchmarks degrades for even a small
number of cores (Figure 24 (d)). These are the most network-
intensive benchmarks in Table 5 (BlackS, Reduct, SobolQ, cfd, bfs).

10

0.8

0.9

1

1.1

CPU GPU GMEAN CPU GPU GMEAN

VC Shared VC Partitioned

S
p

e
e
d

u
p

 o
v
e
r

G
P

U
-F

r
ie

n
d

ly
 GPU CPU MC INT

(a) W-2CPU workloads (2 CPUs + 1 GPGPU)

0.8

0.9

1

1.1

CPU GPU GMEAN CPU GPU GMEAN

VC Shared VC Partitioned

S
p

e
e
d

u
p

 o
v
e
r

G
P

U
-F

r
ie

n
d

ly
 GPU CPU MC INT

(b) W-4CPU workloads (4 CPUs + 1 GPGPU)

Figure 23. Placement (MC: distributed memory controller, INT:
interleaved).

scale1

0

2

4

4 6 8 10 12 14 16 18 20

(a) Linear-scale

0

1

2

4 6 8 10 12 14 16 18 20

(b) Log-scale

0.8

0.9

1

1.1

4 6 8 10 12 14 16 18 20

(c) Saturated-scale

0

0.5

1

1.5

4 6 8 10 12 14 16 18 20

(d) Unscalable

Figure 24. Scalability test (x-axis: # cores, y-axis: speedup over
4-core).

Figure 25 shows the correlation between the scalability of a
ring network and the IPKC. As we can expect, in general, higher
IPKC applications (especially above 100 IPKC) do not show good
scalability.

In sum, the ring network is not scalable when it comes to
significantly memory/network-intensive applications. However, we
observe that the ring network is still a good candidate to handle
moderate memory/network-intensive applications with a moderate
number of cores until the on-chip interconnection bandwidth can
handle them.

5.5 Summary of Findings
In this section, we summarize the findings from our evaluations.
1. As is widely known, CPU benchmarks are latency-sensitive and

GPGPU benchmarks are bandwidth-limited. From the empiri-
cal data, we confirm that this applies to the on-chip intercon-
nection under various circumstances.

0

1

2

3

4

0 50 100 150 200

S
c
a

la
b

il
it

y
 T

y
p

e

IPKC

Figure 25. Scalability (y-axis: scalability type, 1: linear, 2: log, 3:
saturated, 4: unscalable)

2. When CPU and GPGPU applications share the same NoC, a
significant interference by GPGPU applications exists. To pre-
vent this interference, we evaluate two resource partitioning
schemes: virtual and physical channels. Having enough dedi-
cated virtual channels for each type improves performance. On
the other hand, multiple narrower physical channels rather than
a single wider channel significantly degrades the performance
of GPGPU applications. However, they do not improve CPU
application performance due to lower link utilization.

3. A heterogeneous link configuration shows a promising re-
sult. Since the traffic is the highest in the last-level cache and
the memory controllers (to/from CPU and GPU cores), those
routers become traffic hotspots. By adding more physical chan-
nels, we can achieve similar performance compared to having
multiple channels for all routers.

4. Prioritizing CPU request packets yields the best performance
among other policies, but the benefit is very small. Generally,
router arbitration has minimal effect on performance in a ring
network.

5. GPU cores should be located close to the L3 caches and the
memory controllers to avoid congestion, which eventually af-
fects other applications as well. Moreover, separating memory
controllers to both sides of the chip would reduce the traffic and
improve performance in some cases.

6. The ring network is not scalable and even saturates with only a
small number of cores (4 to 6) for some benchmarks. However,
we observe that the ring network is still a good medium to han-
dle a moderate number of cores until on-chip interconnection
bandwidth can handle them.
From these findings, we suggest an optimal router option that

is a combination of the best performance with minimal hardware
resources for each individual experiment in Table 7, and Figure 26
shows the evaluation results. Please note that the suggested config-
uration requires more hardware resources (one more virtual chan-
nel per port in a router and more physical channels for memory and
GPU routers) than the baseline. The detailed tradeoff between more
hardware resources and performance/power improvements remains
in future work.

Table 7. Putting it all together.
Base Suggested option

Virtual Channel shared partitioned
4 VCs 5 VCs (2: CPU, 3: GPU)

Physical Channel 1x16B 1x16B for cpu
2x16B for mem and gpu

Arbitration Oldest-first CPU-first
Placement GPU-Friendly MC or GPU-Friendly

Greater improvements mostly come from virtual channel par-
titioning and heterogeneous link configurations, while other op-
timizations are less critical. Our suggested router configuration
improves performance by 22%, 19%, and 26% for W-1CPU, W-
2CPU, and W-4CPU workloads, respectively.

11

0.9

1

1.1

1.2

1.3

1.4

W-1CPU W-2CPU W-4CPUS
p

e
e
d

u
p

 o
v
e
r
 B

a
se

Base V V+L V+L+A V+L+A+P

Figure 26. Suggested on-chip interconnection configuration re-
sults (V: VC partitioning, L: Heterogeneous link configuration, A:
Arbitration, P: Placement)

6. Related Work
6.1 On-chip Ring Network
Although the ring network has been extensively studied in the past,
we limit our discussion to the on-chip ring network in this section.
Bononi and Concer [6] studied and compared various on-chip net-
work topologies, including the ring, in the SoC (System on Chip)
domain. Bourduas and Zilic [7] proposed a hybrid ring/mesh on-
chip network. A conventional 2D-mesh network has a large com-
munication radius. To reduce the communication cost, the net-
work is partitioned into several sub meshes and the ring connects
these partitions. Ainsworth and Pinkston [2] performed a case study
of the Cell Broadband Engine’s Element Interconnect Bus (EIB),
which consists of four ring networks for data and a shared com-
mand bus that connects 12 elements.

6.2 CPU-GPU Heterogeneous Architecture Research
Since the CPU-GPU heterogeneous architecture was introduced re-
cently, not many studies are available in the literature. In particular,
the resource-sharing problem is not well discussed. To the best of
our knowledge, the study by Lee and Kim [24] is the only study on
resource sharing in this type of architecture. The authors recently
studied the cache-sharing behaviors in a CPU-GPU heterogeneous
architecture and proposed TLP-aware cache management schemes.
However, some work on utilizing idle cores to boost performance
has been done. Woo and Lee proposed Compass [38], which uti-
lizes idle GPU cores for various prefetching algorithms in hetero-
geneous architectures.

6.3 Heterogeneous NoC Configuration
Much research has been done on heterogeneous NoCs involving
many-core CPUs. Heterogeneous network configurations (Het-
eroNoC), by Mishra et al. [26], proposed asymmetric resource
allocations (buffers and link bandwidth) to exploit non-uniform
demand on a mesh topology. HeteroNoC showed that routers along
the diagonals provided performance improvement over homoge-
neous resource distribution. Grot et al. [16] proposed Kilo-NOC,
with shared resources isolated into QoS-enabled regions to min-
imize the network complexity. Kilo-NOC also reduces area and
energy, in non-QoS regions by using a MECS- (Multidrop Express
Channels) [15] based network with elastic buffer and novel virtual
channel allocation that reduces VC buffer requirements by eight
times over MECS with minimal latency impact.

6.4 NoC Prioritization
Application-aware prioritization [11] computes the network de-
mand of applications at intervals by looking at a number of met-
rics such as private cache misses per instruction, average outstand-
ing L1 misses in MSHRs, and average stall cycles per packet. This
produces a ranking of an application, and all packets of one appli-
cation are prioritized over another, resulting in a coarse granularity

of control. To prevent application starvation, a batching framework
is implemented that prioritizes all packets of one time quantum
over another, regardless of source application. Aérgia [12] predicts
the available latency (slack) of any packet by the number of out-
standing L1 misses and prioritizes low-slack (critical) packets over
packets with higher slack when they are within the same batching
interval.

6.5 NoC Routing
Ma et al. [25] proposed destination-based adaptive routing (DBAR),
a network with a novel congestion information network with a low
wiring overhead. Like RCA [14], DBAR uses the virtual channel
buffer status of nodes on the same dimension to route around con-
gested paths. In addition, DBAR ignores nodes outside the potential
path to eliminate interference and provides dynamic isolation from
outside regions of the network.

Bufferless routing [27] showed substantial energy savings from
removing input buffers by deflecting incoming packets from con-
gested output ports. This routing algorithm managed performance
similar to other buffered routing algorithms but only at low traffic.

7. Conclusion and Future Work
In this paper, we explore a broad design space in the on-chip ring in-
terconnection network for a CPU-GPU heterogeneous architecture.
We observe that this type of heterogeneous architecture has been
adopted by major players in the industry and will become the main-
stream processor type in subsequent generations. We observe that
the interference exhibited by other applications, mostly by GPGPU
applications, is significant and can be detrimental to system perfor-
mance if not properly managed. We examine resource partitioning
schemes for virtual and physical channels. Virtual channel parti-
tioning improves performance, but physical channel partitioning
degrades it because of link under-utilization. Heterogeneous link
configurations, different arbitration policies, and placement config-
urations have been considered in this paper as well. The hetero-
geneous link configuration shows effectiveness, but other configu-
rations have less benefit. From numerous experimental results, we
suggest an optimal router configuration that combines the best of
individual experiments for this architecture, which improves per-
formance by 22%, 19%, and 16% for W-1CPU, W-2CPU, and W-
4CPU workloads, respectively.

In future work, we will evaluate other topologies, including two-
dimensional mesh and torus. Also, we will study various resource
partitioning mechanisms for the on-chip network.

References
[1] D. Abts, N. D. E. Jerger, J. Kim, D. Gibson, and M. H. Lipasti.

Achieving predictable performance through better memory controller
placement in many-core CMPs. In Proc. of the 31st annual Int’l. Symp.
on Computer Architecture (ISCA), pages 451–461. ACM, 2009.

[2] T. W. Ainsworth and T. M. Pinkston. On characterizing performance
of the cell broadband engine element interconnect bus. In Proc. of the
1st ACM/IEEE Int’l Symp. on Network-on-Chip (NOCS), pages 18–29,
Washington, DC, USA, 2007. IEEE Computer Society.

[3] AMD. Fusion. http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx,
2011.

[4] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt.
Analyzing cuda workloads using a detailed GPU simulator. In Proc.
of the 2009 IEEE Int’l. Symp. on Performance Analysis of Systems and
Software (ISPASS), pages 163–174. IEEE, 2009.

[5] A. Bakhoda, J. Kim, and T. M. Aamodt. Throughput-effective on-chip
networks for manycore accelerators. In Proc. of the 43rd Int’l. Symp.
on Microarchitecture (MICRO), pages 421–432. IEEE, 2010.

[6] L. Bononi, N. Concer, M. D. Grammatikakis, M. Coppola, and R. Lo-
catelli. Noc topologies exploration based on mapping and simulation

12

models. In Proc. of the 10th Euromicro Conf. on Digital System De-
sign Architectures, Methods, and Tools (DSD), pages 543–546. IEEE,
2007.

[7] S. Bourduas and Z. Zilic. A hybrid ring/mesh interconnect for
network-on-chip using hierarchical rings for global routing. In Proc.
of the 1st ACM/IEEE Int’l Symp. on Network-on-Chip (NOCS), pages
195–204, Washington, DC, USA, 2007. IEEE Computer Society.

[8] D. Chang, C. Jenkins, P. Garcia, S. Gilani, P. Aguilera, A. Nagarajan,
M. Anderson, M. Kenny, S. Bauer, M. Schulte, and K. Compton. ER-
CBench: An open-source benchmark suite for embedded and reconfig-
urable computing. In Proc. of 20th Intl. Conf. on Field Programmable
Logic and Applications (FPL), pages 408–413, 2010.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In Proc. of the 2009 IEEE Int’l Symp. on Workload
Characterization (IISWC), pages 44–54. IEEE, 2009.

[10] N. Concer, S. Iamundo, and L. Bononi. aEqualized: A novel routing
algorithm for the spidergon network on chip. In Proc. of Design,
Automation, and Test in Europe (DATE), pages 749–754, Leuven,
Belgium, 2009. European Design and Automation Association.

[11] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Application-aware
prioritization mechanisms for on-chip networks. In Proc. of the 42nd
Int’l. Symp. on Microarchitecture (MICRO), pages 280–291, New
York, NY, USA, 2009. ACM.

[12] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Aérgia: exploiting
packet latency slack in on-chip networks. In Proc. of the 32nd annual
Int’l. Symp. on Computer Architecture (ISCA), pages 106–116, New
York, NY, USA, 2010. ACM.

[13] V. Dumitriu and G. Khan. Throughput-oriented noc topology gen-
eration and analysis for high performance socs. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 17(10):1433–1446,
2009.

[14] P. Gratz, B. Grot, and S. W. Keckler. Regional congestion awareness
for load balance in networks-on-chip. In Proc. of the 14th Int’l. Symp.
on High Performance Computer Architecture (HPCA), pages 203–
214, Washington, DC, USA, 2008. IEEE Computer Society.

[15] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Express cube
topologies for on-chip interconnects. In Proc. of the 15th Int’l. Symp.
on High Performance Computer Architecture (HPCA), pages 163–
174, Washington, DC, USA, 2009. IEEE Computer Society.

[16] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Kilo-noc: a
heterogeneous network-on-chip architecture for scalability and service
guarantees. In Proc. of the 33rd annual Int’l. Symp. on Computer
Architecture (ISCA), pages 401–412, New York, NY, USA, 2011.
ACM.

[17] HPArch. MacSim simulator. http://code.google.com/p/macsim/, 2012.
[18] J. Hu and R. Marculescu. Exploiting the routing flexibility for en-

ergy/performance aware mapping of regular noc architectures. In
Proc. of Design, Automation, and Test in Europe (DATE), pages 688–
693, Washington, DC, USA, 2003. IEEE Computer Society.

[19] J. Hu and R. Marculescu. DyAD: smart routing for networks-on-chip.
In S. Malik, L. Fix, and A. B. Kahng, editors, Proc. of the 41st annual
Design Automation Conference (DAC), pages 260–263, New York,
NY, USA, 2004. ACM.

[20] IMPACT. Parboil benchmark suite.
http://impact.crhc.illinois.edu/parboil.php.

[21] Intel. Sandy Bridge.
http://software.intel.com/en-us/articles/sandy-bridge/, 2011.

[22] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High per-
formance cache replacement using re-reference interval prediction
(RRIP). In Proc. of the 32nd annual Int’l. Symp. on Computer Ar-
chitecture (ISCA), pages 60–71, New York, NY, USA, 2010. ACM.

[23] J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: a cost-efficient
topology for high-radix networks. In Proc. of the 29th annual Int’l.

Symp. on Computer Architecture (ISCA), pages 126–137, New York,
NY, USA, 2007. ACM.

[24] J. Lee and H. Kim. TAP: A TLP-aware cache management policy for
a CPU-GPU heterogeneous architecture. In Proc. of the 18th Int’l.
Symp. on High Performance Computer Architecture (HPCA), pages
91–102, Washington, DC, USA, 2012. IEEE.

[25] S. Ma, N. D. E. Jerger, and Z. Wang. Dbar: an efficient routing algo-
rithm to support multiple concurrent applications in networks-on-chip.
In Proc. of the 33rd annual Int’l. Symp. on Computer Architecture
(ISCA), pages 413–424, New York, NY, USA, 2011. ACM.

[26] A. K. Mishra, N. Vijaykrishnan, and C. R. Das. A case for hetero-
geneous on-chip interconnects for cmps. In Proc. of the 33rd annual
Int’l. Symp. on Computer Architecture (ISCA), pages 389–400, New
York, NY, USA, 2011. ACM.

[27] T. Moscibroda and O. Mutlu. A case for bufferless routing in on-
chip networks. In Proc. of the 31st annual Int’l. Symp. on Computer
Architecture (ISCA), pages 196–207, New York, NY, USA, 2009.
ACM.

[28] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared dram systems.
In Proc. of the 30th annual Int’l. Symp. on Computer Architecture
(ISCA), pages 63–74, Washington, DC, USA, 2008. IEEE Computer
Society.

[29] CUDA Programming Guide, V4.0. NVIDIA.

[30] NVIDIA. Project denver. http://blogs.nvidia.com/2011/01/project-
denver-processor-to-usher-in-new-era-of-computing/, .

[31] NVIDIA. Fermi: Nvidia’s next generation cuda compute architecture.
http://www.nvidia.com/fermi, .

[32] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing representative portions of large
intel R©itanium R©programs with dynamic instrumentation. In Proc.
of the 37th Int’l. Symp. on Microarchitecture (MICRO), pages 81–92,
Washington, DC, USA, 2004. IEEE Computer Society.

[33] V. Puente, C. Izu, R. Beivide, J. A. Gregorio, F. Vallejo, and J. M.
Prellezo. The adaptive bubble router. J. Parallel Distrib. Comput., 61
(9):1180–1208, 2001.

[34] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches. In Proc. of the 39th Int’l. Symp. on Microarchitecture (MI-
CRO), pages 423–432, Washington, DC, USA, 2006. IEEE Computer
Society.

[35] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis. An analysis
of on-chip interconnection networks for large-scale chip multiproc
essors. ACM Transactions on Architecture and Code Optimization
(TACO), 7(1):4, 2010.

[36] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86 architecture
for visual computing. ACM Transactions on Graphics (TOG), 27(3),
2008.

[37] G. Suh, S. Devadas, and L. Rudolph. A new memory monitoring
scheme for memory-aware scheduling and partitioning. In Proc. of the
8th Int’l. Symp. on High Performance Computer Architecture (HPCA),
pages 117–128, Washington, DC, USA, feb. 2002. IEEE Computer
Society.

[38] D. H. Woo and H.-H. S. Lee. Compass: a programmable data
prefetcher using idle gpu shaders. In Proc. of the 15th Int’l. confer-
ence on Architectural support for programming languages and oper-
ating systems (ASPLOS), pages 297–310, New York, NY, USA, 2010.
ACM.

[39] Y. Xie and G. H. Loh. PIPP: promotion/insertion pseudo-partitioning
of multi-core shared caches. In Proc. of the 31st annual Int’l. Symp. on
Computer Architecture (ISCA), pages 174–183, New York, NY, USA,
2009. ACM.

13

