
A

Spatial Alarm Processing and Algorithms

Myungcheol Doo, Georgia Institute of Technology
Ling Liu, Georgia Institute of Technology

Spatial alarms are fundamental capability for location based advertisements and location based reminders.
One of the most challenging problems in scaling spatial alarm processing is to compute alarm free regions
(AFR) such that mobile objects traveling within an AFR can safely hibernate the alarm evaluation process
until approaching the nearest alarm of interest. In this paper we argue that maintaining an index of both
spatial alarms and empty regions (AFR in the context of spatial alarm processing) is critical for scalable
processing of spatial alarms. Unfortunately, conventional spatial indexing methods, such as R-tree family,
k-d tree, Quadtree, and Grid, are not well suited to index empty regions. We present Mondrian Tree − a
region partitioning tree for indexing both spatial alarms and alarm free regions. We first introduce the Mon-
drian tree indexing algorithms, including index construction, search, and maintenance. Then we describe a
suite of Mondrian tree optimizations to further enhance the performance of spatial alarm processing. Our
experimental evaluation shows that the Mondrian tree index outperforms traditional index methods, such
as R-tree, Grid, Quadtree, and k-d tree, for spatial alarm processing.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Spatial Databases and GIS

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Location-based Systems, Data structures, spatial databases

1. INTRODUCTION
A spatial alarm is defined by three elements: a future reference location known as the
alarm monitoring region and represented typically by a spatial region of interest, an
owner who is the publisher of the alarm, and the list of subscribers of the alarm. In
contrast to time-based alarms that remind us of the arrival of a future reference time
point, spatial alarms remind us of the arrival of a future reference location.

We consider three categories of alarms: private, shared and public. Private alarms
are installed and used exclusively by the publisher. Shared alarms are installed by
the publisher with a list of authorized subscribers and the publisher is typically one of
the subscribers. Public alarms are usually installed with the purpose of sharing them
with all mobile users. Public alarms can be useful means of informing subscribers
about hazardous road situations, sever weather forecast, or delivering targeted adver-
tisement.

Example 1: Location-based advertisements. North Face is an example of such
services and it identifies the handsets of opted-in consumers within a certain radius
of retail stores and sends text messages with discount offers [Grove 2010]. This is an
example of public alarms with subscriptions.

Example 2: Location-based reminders [Sohn et al. 2005]. Alice sets a spatial
alarm on a vitamin store in Lenox Square to ”remind her to pick up some vitamin
products when she is within three miles of the store”. This is an example of a private
spatial alarm.

Spatial alarms are fundamentally different from spatial continuous queries. Figure
1 shows how spatial alarms are different from spatial continuous queries. Spatial con-
tinuous queries are targeted at mobile objects and events occur in the vicinity of the
current location of the mobile user who issued the queries (i.e., the query focal object,
represented as circles in Figure 1(a)). An example of spatial continuous query is ”find
a nearest restroom within 500 meters from the current location.” As the user moves
on the road, the spatial queries are always centered at the vicinity of the query focal
object as shown in Figure 1(a). For example, we search spatial objects within 500 me-
ters from the current location at t1, t2, t3, t4, and t5. In contrast, spatial alarms are

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

targeted at a future reference location of interest, instead of the current location of the
mobile subscriber. Consider a spatial alarm such as ”remind me to submit a petition
for graduation near Cherry Emerson Building.” When a user is moving on the road,
the continuous query approach keeps looking at the vicinity of the current location to
see if the focal object is overlapping with the boundary of Cherry Emerson Building.
However, the spatial alarm approach monitors the vicinity of the building if Alice is
located near the building.

t1 t2

t3

t4

Radius	 of	 focal	 object	
Trajectory	

t5

(a) Spatial Continuous Queries

Spa$al	 Alarm	
Trajectory	

t1 t2

t3

t4

t5

(b) Spatial Alarms

Fig. 1. Comparisons between spatial Continuous Queries and spatial alarms

Clearly, if the user is far from the alarm monitoring region, all alarm evaluations
are unnecessary and will not result in alarm notification. An ideal approach is to hi-
bernate the spatial alarm application when the user is traveling locally and only trig-
ger it when the user is approaching the Cherry Emerson Building within 200 meters.
Thus, an important challenge in scaling spatial alarm processing is to compute alarm
free regions such that mobile objects traveling within a rectangular region contain-
ing no spatial alarms can safely hibernate the alarm evaluation until approaching the
nearest alarms of interest. For example, when user is at t1 the mobile device starts to
hibernating and wakes up at t4 or t5. We argue that in the context of spatial alarm pro-
cessing, spatial alarms and alarm free regions are equally important and both should
be treated as the first class citizen.

It is well known that maintaining an index of spatial data of interest is critical for
retrieving those spatial data quickly. However, conventional spatial indexing methods,
such as R-tree [Guttman 1984], k-d tree [Bentley 1975], Grid [Nievergelt et al. 1984],
and Quadtree [Finkel and Bentley 1974], are not well suited to index empty regions.
Figure 2 shows how conventional indexing methods index spatial data of interests 1, 2,
3, and 4 (spatial alarms in this context) painted as gray rectangles. The users current
location is depicted as a red dot. Note that all structures except Quadtree and Grid do
not index empty regions (the non-gray regions.) Given the current user location, R-tree
and k-d tree know that the user is not inside of spatial alarms but do know what the
size of empty region where user can move around without worry of entering spatial
alarms. Grid knows user is in the cell (2,3) and the cell is empty. However, if a user
moves to the cell with a spatial alarm such as (1, 3), then Grid cannot tell what the size
of empty region without computing the empty region. Like Grid, Quadtree sometimes
knows the size of empty region. Given the current location, however, Quadtree cannot
tell the size of empty region without AFR computation.

It is not impossible to index empty regions for these conventional index structures.
For R-tree and k-d tree we can manually create small empty regions and add them into
the index. Then it becomes the Mondrian tree. For Grid the cell size should be smaller

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

1	

2	

4	

3	

2	 4	 6	 8	 10	 0	

2	

4	

6	

8	

10	

B	

C	

A	

(a) R-tree

1	

2	

4	

3	

2	 4	 6	 8	 10	 0	

2	

4	

6	

8	

10	

(b) k-d tree

1	

2	

4	

3	

2	 4	 6	 8	 10	 0	

2	

4	

6	

8	

10	

(0,	 0)	 (1,	 0)	 (2,	 0)	 (3,	 0)	 (4,	 0)	

(0,	 1)	 (1,	 1)	 (2,	 1)	 (3,	 1)	 (4,	 1)	

(0,	 2)	 (1,	 2)	 (2,	 2)	 (3,	 2)	 (4,	 2)	

(0,	 3)	 (1,	 3)	 (2,	 3)	 (3,	 3)	 (4,	 3)	

(0,	 4)	 (1,	 4)	 (2,	 4)	 (3,	 4)	 (4,	 4)	

(c) Grid

1	

2	

4	

3	

2	 4	 6	 8	 10	 0	

2	

4	

6	

8	

10	

(d) Quadtree

Fig. 2. Indexing spatial alarms using conventional spatial indexing methods

enough so that one of the cell boundaries coincides the borders of spatial alarms. This
smaller cell size causes two problems: (a) bigger storage and (b) frequent crossing cells.
We can further partition the cell of Quadtree so that the cell boundaries touch alarm
boundaries, we immediately know where the empty regions are. Then like Grid, we
face same issues. This example illustrates that if we want to index both spatial alarms
and the empty regions, the conventional indexes are no longer suitable since those
indexes by design work effectively only when some sub-regions in the universe of dis-
course containing the spatial objects of interest need to be indexed.

In this paper we present the design of Mondrian tree, a region partition index for
both spatial alarms and alarm free regions (AFR). We first describe the Mondrian tree
index construction, search, and maintenance algorithms. Then we describe a suite
of optimizations to further enhance the performance of Mondrian indexing and spa-
tial alarm processing. Mondrian tree index has two unique features. First, it utilizes
the pre-computation and indexing of empty regions to avoid on-the-fly computation of
alarm free regions based on the motion behavior of mobile subscribers. Second, it incor-
porates a suite of locality-aware and motion-aware optimizations to further minimize
the amount of wakeups and the number of region-crossing checks to be performed at
mobile clients. We conduct a set of extensive experimental evaluations and show that
the Mondrian tree indexing offers fast spatial alarm processing, and it significantly
outperforms existing spatial indexing methods, such as R-tree, k-d tree, and Quadtree,
which compute alarm free regions dynamically based on the motion behavior of mobile
users.

2. OVERVIEW AND RELATED WORK
A critical challenge for efficient processing of spatial alarms is to determine when to
evaluate each spatial alarm, while ensuring the two demanding objectives: high accu-
racy, which ensures zero or very low miss rate of spatial alarms, and high efficiency,
which requires highly efficient processing of spatial alarms.

Periodic evaluation can be performed for spatial alarms by checking whether a
mobile subscriber is entering the spatial alarm on every pre-defined time interval.
High frequency is essential to ensure that none of the alarms are missed. Though
periodic evaluation is simple, it can be extremely inefficient due to frequent alarm
evaluation and the high rate of irrelevant evaluations [Murugappan and Liu 2008].

Similarly, processing spatial alarms upon location updates of mobile users is
equally incompetent and wasteful due to the specific characteristics of spatial alarms.
For example, assume that the user is currently at t1, 10 miles away from her spatial
alarm as shown in Figure 1(b). Then it is unnecessary to evaluate those spatial alarms
upon her location updates when she approaches at t4 or t5 [Bamba et al. 2008].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

Safe regions are popular techniques for continuous spatial query processing [Gedik
and Liu 2004; Hu et al. 2005; Prabhakar et al. 2002; Hasan et al. 2009; Hu et al. 2005].
The safe region of an object o is dynamically computed at the server based on the set
of queries such that the current results of all queries remain valid as long as o is resid-
ing inside its safe region. Computing safe region takes O(n2) for n queries [Prabhakar
et al. 2002]. Although [Bamba et al. 2008] extends the safe regions to spatial alarm
processing, the high cost of dynamic safe region computation remains to be a challeng-
ing problem. As the mobile client moves, the server needs to re-compute its new safe
region continuously, which can be expensive. Figure 3 shows spatial alarms installed
near the Lombard street, San Francisco. At t0, the safe region is r1, the wide rectangle,
because it is the largest rectangle that does not overlap with any spatial alarms. At t1,
the client exists r1 and the server computes a new safe region, r2, the tall rectangle. At
t2, however, the client gets out of r2 and the server computes a new safe region which
is the same as r1. The computation of the same safe region, r1, occurs at t0, t2 and t4 as
the client moves along the Lombard street. This example scenario shows that although
the safe region approach reduces the amount of unnecessary alarm processing, it also
introduces a fair amount of unnecessary safe region computation.

Fig. 3. Safe regions computed at time ti

Bearing these issues in mind, we present the
Mondrian1 tree indexing structure, which parti-
tions the universe of discourse into smaller re-
gions of two types: spatial alarm regions and
empty regions. We call empty regions Alarm Free
Regions (AFR) because there is no alarm inside
of the region. With Mondrian indexing, it takes
O(log n) for searching the AFR of the mobile
client, which is much more efficient compared to
O(n2) for computing safe region on the fly. To our
best knowledge, Mondrian tree is the first index
structure to partition the universe of discourse
into small regions containing objects of interest
(spatial alarms in our context) and empty regions
and index them all.

3. BASIC MONDRIAN TREE INDEX
In this section we introduce the basic Mondrian tree index, including data structure,
batch index construction, search, and insertion algorithm. Although Mondrian tree
index is a general indexing structure and can be used to index any type of spatial
objects, in this paper we will introduce it in the context of spatial alarms.

3.1. Definitions and Notations
Given a universe of discourse containing a set of m spatial alarms {oj |1 ≤ j ≤ m}, the
corresponding Mondrian tree has a set of n nodes: {vi|1 ≤ i ≤ n}. Each vi stores the
partitioned disjoint rectangular region, which is either an empty region or a region con-
taining oj . Without loss of generality, we denote each spatial alarm oj by its minimal
bounding rectangle MBRj . The leaf nodes of a Mondrian tree are either MBR (spatial
alarms) or AFR (empty regions). The internal nodes of the Mondrian tree contain a set
of pointers to its children nodes. We represent and store each spatial region in Mon-
drian tree as points using a point transformation scheme [Seeger and Kriegel 1988]. A
k-dimensional rectangle shaped region with each side parallel to one dimensional axis

1The name Mondrian is named after Piet Mondrian because region partitioning resembles his ”Composition
with red, yellow blue and black”.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

is represented by a 2k-dimensional point. For example, a 2-dimensional rectangular
region r is defined by its lower left corner and upper right corner as a 4-dimensional
point r:

r = (p0, p1, p2, p3),

where (p0, p1) is the lower left corner and (p2, p3) is the upper right corner of the rectan-
gle. From now on, we use r[i] to denote the (i+1)-th coordinate value of a 4-dimensional
point r. For example, r[2] is p2. If r is an array, then r[i] is the (i+1)-th item. Each node
vi consists of 5 components:

vi = (Ri,OIDi, SIi,Ki,CHILDi).

Ri is a disjoint rectangular region that vi represents and expressed as a 2k-
dimensional point as explained above. OIDi is a set of identifiers of the spatial alarms,
which overlaps with the rectangular region Ri. Each non-leaf node is split into two
children nodes. SIi, a split index, and Ki, a key, are used for performing node split of
internal node vi. SIi decides which axis to use for partitioning the node vi and Ki is the
value of the split line. SIi is an integer value between 0 and 2k − 1 and is defined as:

SIi = di mod 2k,

where di is depth of vi. If SIi is zero or an even integer value, then we split the internal
node vi along the line parallel to x axis, otherwise, along the line parallel to y axis.
When splitting on vi containing oj , Ki is MBRj [SIi]. CHILDi is a set of pointers to
either null or the children nodes of vi. Leaf nodes do not have Ki because they are
either empty regions or MBRj and thus nonsplit nodes. We set the split index SIi of
leaf nodes to be -1. For the root node, v0, its depth d0 is 0. Given k as 2, SI0 is 0, which
is computed by (0 mod 2).

3.2. Region Partitioning through Node Split
Given a node vi, partitioning a node is processed using SIi, Ki, and oj . For each oj ,
we have MBRj = (p0, p1, . . . , p2k−1). Assuming that the value of the split index SIi is
set to 0. Then Ki = MBRi[SIi] and MBRi[SIi] = MBRi[0] = p0, and we split the node vi
along the line parallel to the y axis represented by x = p0. Now the region of vi is split
into two smaller disjoint regions, denoted by CHILDi[0] and CHILDi[1]. One of the two
children regions contains oj . Assuming that it is CHILDi[1], then the node split process
for vi repeats in the region of CHILDi[1]. In each iteration SIi and Ki are computed
again, and the node split of vi is performed along the line parallel to the x or y axis
determined by SIi and Ki. This node split process iterates until every pl (0 ≤ l ≤ 2k−1)
in Ri is examined.

Figure 4 shows how to partition the region. Figure 5 shows the Mondrian tree with
respect to Figure 4 and Table I shows how data is stored in the Mondrian tree. Node
v0 is the root node that covers the rectangle region A represented by (0, 0, 100, 100).
Initially we set SI0 as 0. MBR0 for the spatial alarm o0 is (40, 30, 70, 60). In step 1, we
compute the key K0 by MBR0[SI0], which is 40. Then v0 is divided into two children
along the line parallel to y-axis represented as x = 40. Now v0 has two children v1 for
rectangle B and v2 for rectangle C as shown in Figure 4(a). R1 for v1 is (0, 0, 40, 100),
which is computed from (0, 0, K0, 100) and R2 for v2 is (40, 0, 100, 100), computed
from (K0, 0, 100, 100). In step 2, v2, rectangle C, is chosen to be partitioned because
o0 intersects with v2. v2 is divided into v3, rectangle D, and v4, rectangle E as shown
in Figure 4(b). In step 3, v4 is chosen and partitioned into v5, rectangle F, and v6,
rectangle G. At last, v5, rectangle F, is divided into v7, rectangle H, and v8, rectangle I.
As a result, this example Mondrian tree indexes both the spatial alarm represented by

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

Table I. Data stored in the Mondrian tree

vi MBRi SIi Ki

v0 (A) (0, 0, 100, 100) 0 40
v1 (B) (0, 0, 40, 100) 1 N/A
v2 (C) (40, 0, 100, 100) 1 30
v3 (D) (40, 0, 100, 30) 2 N/A
v4 (E) (40, 30, 100, 100) 2 70
v5 (F) (40, 30, 70, 100) 3 60
v6 (G) (70, 30, 100, 100) 3 N/A
v7 (H) (40, 30, 70, 60) 0 N/A
v8 (I) (40, 60, 70, 100) 0 N/A

a gray rectangle H using index node v7 in Figure 4 and Figure 5 but also four empty
regions denoted by B (v1), D (v3), G (v6), and I (v8).

CB

(40, 30)

(70, 60)

A

(a) Step 1

E
B

D

A

(b) Step 2

F
B

D

G

A

(c) Step 3

I

B

D

G
H

A

r1 r2

(d) Step 4

Fig. 4. Partitioning Nodes

A

B C

(a) Step 1

A

B C

D E

(b) Step 2

A

B C

D E

F G

(c) Step 3

A

B C

D E

F G

H I

(d) Step 4

Fig. 5. Mondrian tree for Figure 4

3.3. Search Operation
In spatial alarm processing, we use the Mondrian tree to find whether a mobile user
enters a spatial alarm region or stays in an alarm free region which is an empty region.
We refer to this search operation as a point search. In addition, we also need a region
search operation that can find which index node overlaps with a given rectangle region.

Point search over the Mondrian tree is to find a leaf node node vi that contains a
point p. For example, in the context of two dimensional data space, the point search
can be used to answer a query like ”What is the smallest rectangular region that con-
tains the point (x, y)?” or ”Does the mobile user at position (x, y) enter a spatial alarm
region?”.

Given a point p in k dimensional space, POINTSEARCH in Algorithm 1 is the point
search algorithm that takes the Mondrian tree and the point p as input and outputs
the leaf node (either a spatial alarm region or an empty region) in which p resides. The
algorithm starts the search from the root node. For each node vi, POINTSEARCH de-
termines which dimension is used for vi to split the node (line 4). For this dimension,
we compare coordinate of p with the key, Ki, associated with vi. If p[Key] is greater

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

ALGORITHM 1: POINTSEARCH

Input: Node vi and current location p.
Output: A leaf node v that contains p.

1 if vi = leaf then
2 return vi
3 end
4 Dim← SIi mod k // Determine split line dimension; 0 for x or 1 for y
5 if p[Dim] < Ki then
6 return POINTSEARCH(CHILDi[0], p) // p is in left or bottom of split line
7 else
8 return POINTSEARCH(CHILDi[1], p) // p is in right or top of split line
9 end

than or equal to Ki, then POINTSEARCH searches the right subtree because p is lo-
cated on right side (or upper side) of the split axis. Otherwise, the left subtree will be
searched. POINTSEARCH repeats this process iteratively until it reaches the leaf node
that contains p.

The time complexity of the point search operation on a Mondrian tree is proportional
to the height of the tree given its binary search feature. The average height of a binary
search tree with n nodes is log n. Therefore, the time complexity of POINTSEARCH is
also O(log n). For the skewed Mondrian tree, the height might be n. Then the worst
time complexity of POINTSEARCH is O(n).

Region search algorithm REGIONSEARCH finds all leaf nodes in the Mondrian
tree, which overlap with a given rectangle r. Concretely, REGIONSEARCH first exam-
ines the root node vi to find if one of its two children nodes overlaps with r. Let c be SIi
mod k and c be (c + k) mod k. Unlike POINTSEARCH, REGIONSEARCH compares vi’s
key with an interval. The interval is given by an upper bound and a lower bound in the
c-th dimension of the given rectangle r, denoted by Min(r[c], r[c]) and Max(r[c], r[c]). If
Ki is greater than or equal to the upper bound, then the left children CHILDi[0] will be
taken as the input and the algorithm REGIONSEARCH starts the new iteration with
CHILDi[0] and r. If Ki is smaller than or equal to the lower bound, then the right chil-
dren CHILDi[1] will be taken as the input and the algorithm REGIONSEARCH starts
the new iteration with CHILDi[1] and r. Otherwise, both children of vi overlap with
r. Thus, both REGIONSEARCH(CHILDi[0], r) and REGIONSEARCH(CHILDi[1], r) are
invoked. This process repeats until the leaf nodes are reached.

Consider the Mondrian tree in Figure 5(d) and a rectangle r1(10, 10, 20, 30) as shown
in Figure 4(d), the algorithm REGIONSEARCH returns v1 representing regionB. Given
a rectangle r2(50, 10, 70, 40), the algorithm REGIONSEARCH returns three leaf nodes,
v3, v6, and v7, which represent rectangle regions D, G, and H, all overlapping with
r2. Concretely, r1’s x interval is (10, 20) and y interval is (10, 30). Given that K0 as
40, x’s upper bound, 20, is smaller than K0. Therefore the rectangle r1 is overlapping
with CHILD0[0], which is the rectangle region B and located at left of the split line.
Because B is the leaf node, REGIONSEARCH finishes returning B. Similarly, for r2
x interval is (45,65) and y interval is (10,40). Thus, K0 is smaller than the x’s lower
bound of r2, which is 45. That is r2 is overlapping with v2. We compare y interval with
K2 and K2 is staying between y interval. Therefore REGIONSEARCH launches two
REGIONSEARCH, one with v3 and the other with v4. The first launch finishes because
v4 is the leaf node. The second launch also launches two REGIONSEARCH. We keep
going down until all REGIONSEARCH reach leaf nodes. As a result we have D, G, and
H.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

ALGORITHM 2: REGIONSEARCH

Input: Node vi and rectangular region r.
Output: A set of leaf nodes that overlaps with r.

1 if vi = leaf then
2 return vi
3 end
4 c← SIi mod k // Determine index of one end of range

5 c′ ← (c+ k) mod k // Determine index of the other end of range

6 min←Min(r[c], r[c′]) // Left end of range

7 max←Max(r[c], r[c′]) // Right end of range
8 if max ≤ Ki then
9 return REGIONSEARCH(CHILDi[0], r) // r is in left of split line

10 end
11 else if Ki ≤ min then
12 return REGIONSEARCH(CHILDi[1], r) // r is in right of split line
13 end
14 // r is overlapping with split line
15 nodesleft ← REGIONSEARCH(CHILDi[0], r)
16 noderight ← REGIONSEARCH(CHILDi[1], r)
17 return nodesleft ∪ nodesright

Similar to a point query, REGIONSEARCH finishes if it arrives at the leaf node.
Therefore, REGIONSEARCH also takesO(log n) on average andO(n) for the worst case.

3.4. Insertion
The algorithm of inserting a new spatial alarm oj to a Mondrian tree starts from the
root node and find a node vt using REGIONSEARCH. vt is either a non-leaf node whose
children both overlap with MBRj or a leaf node. Then we consider three cases:

(i) MBRj ∩Rt = MBRj . MBRj is smaller than and fully contained in Rt of a leaf node
vt. Then we split vt into CHILDt[0] and CHILDt[1], such that only one of them
fully contains MBRj , say CHILDt[1]. Now INSERT is invoked with CHILDt[1] and
oj (Lines 5-10).

(ii) MBRj = Rt. MBRj is the same as Rt. Then we add the identifier of oj into OIDt
and stop the algorithm (Line 3).

(iii) Otherwise, vt is a non-leaf node and MBRj is overlapping with both children nodes
of vt. Then we split MBRj into two disjoint partitions along the line computed by
SIt and Kt. Now the insertion algorithm is invoked to insert two partitions of oj
into the two children nodes of vt one at a time (Lines 13-15).

We provide a sketch of the pseudo code in Algorithm INSERT. Given a Mondrian tree
of n nodes, the time complexity of INSERT is O(log n). INSERT consists of two parts:
(1) find vt and (2) partition vt or MBRj . First part takes usually O(log n). The second
part takes O(1).

Although Mondrian tree is a memory-based tree, it can be extended to a tree with
page-oriented storage like hard disks. Concretely, if the capacity of memory is n nodes,
then those n nodes are stored in the memory and the remaining nodes are stored
on external pages. We adopt this structure from LSD tree [Henrich et al. 1989]. In
this paper, we briefly describe basic ideas of using external pages. For more detailed
algorithm, you can refer the LSD paper. Figure 6 shows the combination of memory
and external storage. If the size of M exceeds n, then the subtree of M is written into
an external page. If the height of a subtree in external pages exceeds hp, which is set
by the system, then the external page is split into two pages.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

ALGORITHM 3: INSERT

Input: Node vi and spatial alarm oj .
1 if vi is leaf then
2 if MBRj = Ri or OIDi 6= null then
3 Add Oj .ID into OIDi // case ii
4 else
5 splitNode(vi) // case i
6 if CHILDi[0].R contains MBRj then
7 INSERT(CHILDi[0], oj)
8 else
9 INSERT(CHILDi[1], oj)

10 end
11 end
12 else
13 (oj .left, oj .right) = splitAlarm(oj) // case iii
14 INSERT(CHILDi[0], oj .left)
15 INSERT(CHILDi[1], oj .right)
16 end

.	 	

Internal	
Nodes	 M	 	

External	
Pages	 P	 	

Fig. 6. Memory and external storage

3.5. Deletion
The deletion algorithm consists of two steps. The first step is to find nodes that have
the alarm to be deleted. Given the alarm, a set of nodes that overlaps with the alarm
can be found if we maintain a hash table for a pair of alarm identification and a set
of nodes that contains the alarm. Then for each found node v, we remove the alarm
from v. The second step handles the merge operation. For example, in Figure 5(d), if
we remove the alarm from H, then we can remove all nodes except A. As a result, this
delete operation is the same as merge operation.

ALGORITHM 4: DELETE

Input: Set of nodes that contains oj
1 foreach Node v in set of nodes do
2 v.removeID(oj .ID)
3 MERGE(v)
4 end

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

ALGORITHM 5: MERGE

Input: Node v
1 p← v.getParent()
2 if p 6= NULL and p’s children has no alarms then
3 p.removeChildren()
4 MERGE(p)
5 end

4. MONDRIAN*: AN OPTIMIZED TREE
The basic Mondrian index does not guarantee the balance of the tree. Once a node is
partitioned into two disjoint smaller regions, one of them is not touched and the other
is selected for further partition. Therefore the basic Mondrian index cannot guarantee
the balance of the tree. Also the skewness of the tree is affected by the insertion order.
In this section we introduce Mondrian*, an optimized Mondrian index structure that
produces a more balance tree.

The Mondrian* tree also has similar data structure except that each node has four
children instead of two, denoted by CHILDi[0], CHILDi[1], CHILDi[2], and CHILDi[3].
Each rectangular region is stored at each node using four pointers instead two in the
basic Mondrian tree. Given vi, CHILDi has pointers to left, right, bottom and top of
MBRi. Thus, the Mondrian* tree has four keys in each node because we split the space
by four lines.

Figure 7 shows an example of how the Mondrian* partitions the space. For the cho-
sen spatial alarm, say A, the Mondrian* partitions the space by drawing two vertical
lines along the alarm as shown in Figure 7(a). Now we set CHILD0[0] and CHILD0[1] as
shown in Figure 7(e). A box with a diagonal line means that node is null. Then two hor-
izontal lines are drawn as shown in Figures 7(b) and we set CHILD0[2] and CHILD0[3]
as shown in Figure 7(f). When B is inserted, then we put B on CHILD0[0] because B
lies on left of A. Then we perform the same region partition operation on B as shown
in Step 3 and Step 4 of Figure 7.

A

B

(a) Step 1

A

B

(b) Step 2

A

B

(c) Step 3

A

B

(d) Step 4

A

(e) Step 1

A

(f) Step 2

A

B

(g) Step 3

A

B

(h) Step 4

Fig. 7. Region Partition in Mondrian*

Mondrian* Index Batch Construction. Given a set of n spatial alarms, the worst
case in index construction occurs when every spatial alarm oj(1 ≤ j ≤ m) is inserted
as a child at the lowest leaf node. One advantage of batch index construction is to
utilize the prior knowledge on the distribution of spatial alarms to avoid the extreme
skewedness of the tree. In this section we describe the batch construction method of
Mondrian* index such that no subtree has more than one half of the nodes in the
Mondrian* tree. For presentation brevity, we use k as 2 for two dimensional space as
our context.

The first step is to sort the set of n spatial alarm objects in x coordinate and sec-
ondly in y coordinate. Given a sorted list of spatial alarm objects, we choose the spa-
tial alarm object that is the medium of the ordered list as the root node of the Mon-
drian* tree, denoted by oroot. We insert this oroot first by performing the region par-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

tition as discussed above (recall example in Figure 4). The four children of oroot are
created and denoted as CHILDroot[0] (left), CHILDroot[1] (right), CHILDroot[2] (bottom),
and CHILDroot[3] (top). Furthermore, the remaining spatial alarm objects in the or-
dered list are regrouped into four sub-collections, each of which will be inserted into
one of four children of the root. Those spatial alarms that are ranked before the cho-
sen root object will be placed with CHILDroot[0] (left) or CHILDroot[2] (bottom) and the
remaining spatial alarms that are ranked after the chosen root object will be indexed
through CHILDroot[1] or CHILDroot[3]. This process iterates recursively until all alarm
objects in the ordered list are inserted in the Mondrian* tree. Clearly, this batch con-
struction process ensures that no subtree can possibly contain more than half of the
total number of nodes.

The time complexity of this algorithm is O(n2 log n), given the ordering step on n
spatial alarm objects takes O(n log n), the selection of the median requires O(1), and
INSERT takes O(n).

Figure 8 shows the result of region partitioning by basic Mondrian tree and Mon-
drian* tree after the batch index construction over six spatial alarms. Figure 9 shows
the corresponding Mondrian and Mondrian* tree. Although the spatial alarm D is cho-
sen as the root node for both basic Mondrian and Mondrian*, the region partitioning
result for Mondrian* is quite different than basic Mondrian tree (see Figure 8). So is
the index structure (as shown in Figure 9). This example illustrates that Mondrian*
is much more balanced compared to the basic Mondrian index and thus offers much
higher efficiency in terms of search and insertion.

A
C

B

D

F
E

(a) Mondrian

A
C

B

D

F
E

(b) Mondrian*

Fig. 8. Region Partitioning: An Example

Search algorithm for Mondiran* works in a similar way as the basic Mondrian search.
The only change that we need to add to the Mondrian* search is the index key com-
parison part since each node in Mondrian* has four keys, Ki[0], Ki[1], Ki[2], and
Ki[3]. Given a point p and a node vi in Mondrian*, the point search algorithm uses
DIRECTION(p, vi) to compute and return a pointer to one of vi’s four children, which
contains p, by comparing p’s coordinate value withKi. For example, if DIRECTION(p, vi)
returns 2 then we visit CHILDi[2].

5. SPATIAL ALARM EVALUATION
We have presented Mondrian tree and Mondrian* tree for indexing spatial alarms and
empty regions. Intuitively, we can treat each empty region as an alarm free region
(AFR) such that when a mobile user travels inside an AFR, the alarm evaluation is
hibernated, saving both energy consumption at the mobile client and the alarm evalu-
ation cost at the server. However, as shown in Figure 8, an empty region in Mondrian
tree may not be the best AFR for a mobile user, especially when multiple AFRs are
adjacent to one another. In this section we describe the best strategies for evaluating

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

D

A F E C

B

D

F

E

AB

C
(a) Mondrian (b) Mondrian*

Fig. 9. Mondrian v.s. Mondrian*: an example

spatial alarms using Mondrian tree indexes, including alarm free period, patched and
trimmed AFR, motion-aware AFR and distributed Mondrian indexing scheme.

In principle, a spatial alarm should be evaluated in three steps. First, we need to
determine what type of events should activate the spatial alarm evaluation process.
Second, the server needs to find out the list of alarms to be evaluated upon the occur-
rence of the alarm events. The shorter this list is, the more efficient the spatial alarm
evaluation will be. Third, the server executes the action component of those spatial
alarms whose alarm conditions are evaluated to be true.

As discussed in Section 2, periodic evaluation is extremely inefficient due to frequent
alarm evaluation and high rate of irrelevant evaluations. Although using the location
update of a mobile user as the alarm evaluation event seems appealing, and it is inde-
pendent of the concrete location update strategies, such as periodic, dead-reckoning or
others [Pesti et al. 2010], we have pointed out in Section 2 that many location update
events are not suitable as the alarm evaluation events. First, not all location updates
of a mobile user will lead to a successful evaluation of her spatial alarms, especially
when she travels in the spatial area that does not contain any of her spatial alarms.
Second, location updates of a mobile user will have zero probability of leading to suc-
cessful evaluation of those spatial alarms that are not owned or subscribed by this
mobile user. For instance, Bob’s private spatial alarms are indifferent to the location
updates of Alice.

To address the first issue, we promote the use of alarm free regions such that no
spatial alarm evaluation will be activated when a mobile user travels inside an alarm
free region. This can significantly reduce the frequency and overhead of spatial alarm
evaluation. To address the second issue, the server needs to find out the list of alarms to
be evaluated upon the occurrence of the alarm events. The shorter is this list, the more
efficient is the spatial alarm evaluation. This motivates us to design the distributed
Mondrian tree index structure.

5.1. Alarm Free Period
An obvious idea for evaluating spatial alarms efficiently is to incorporate the spatial
locality of the alarms and the motion behavior of mobile objects through alarm free
regions. We have discussed in Section 2 that dynamic computation of alarm free re-
gions is expensive due to unnecessary and possibly duplicate AFR computation. Given
that Mondrian tree approach indexes both spatial alarm regions and empty regions, it
is intuitive to use empty regions as alarm free regions (AFRs). The only cost for using
AFRs is time to lookup the leaf node instead of computing AFRs. Once AFR is acquired,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

then the client needs to check if it is still inside of AFR. We introduce the concept of
alarm free period (AFP) as a basic approach to assist a mobile user to determine when
to check whether she moves outside of her current AFR. An important property of AFP
is that it should avoid missing alarms or minimize the alarm miss rate.

5.1.1. Basic AFP. Given a mobile client m and an alarm free region AFRm, the AFPm
is the shortest travel time for m to arrive at the closest border of its current alarm free
region AFRm. During AFPm, m’s alarm evaluation service can enter a sleep (hibernate)
mode.

Two main factors that impact on the computation of the AFPm are the velocity of m,
say Vm, and the shortest distance from the current position of m to the closest border
of AFRm, say MinDist(m,AFRm). Thus, the AFPm can be computed as follows:

AFPm =
MinDist(m,AFRm)

Vm
(1)

One caveat with Equation 1 is that it assumes that the mobile subscriber m moves
in a straight line from her current location to the closed border of AFRm. It is, however,
not a realistic assumption in real life. For example, it is highly likely that the mobile
user m is moving towards a direction that is opposite of the closest border of its current
AFRm. The steady motion assumption is specifically true when mobile users move on
the road networks.

5.1.2. Steady Motion based AFP. Given a mobile user m and m’s previous moving direc-
tion θ, we can compute the moving direction ofm using the probability density function
of moving direction θ, denoted by p(θ). p(θ) is uniformly distributed and p(θ) is 1

2π if
the mobile client selects the next direction randomly, as shown in Figure 10(a).

However, under the steady motion assumption, the mobile client is likely to increase
or decrease the value of θ but not dramatically. For example, at an intersection, the
probability of making a U-turn for the mobile client is less than the probability of
making a left or right turn. Therefore, the density function p(θ) is not uniformly dis-
tributed. The modified p(θ) is provided as follows:

p(θ) =

1+ y

z d
π
2
−|θ|
yπ
z
e

2π if θ ∈ [− 1
2π ,

1
2π]

1− yz d
−π

2
+|θ|
yπ
z
e

2π otherwise

Here y and z are parameters of steadiness such that y
z < 1. Figure 10(a) shows the

probability density function p(θ) for different values of z when y = 1.
Figure 10(b) shows the steady motion behavior over the moving direction θ while

θ may change between −θL and −θR. Based on this assumption we define a steady
motion distance Dsteady(m,AFRm), as follows:

1

θR + θL

∫ +θR

−θL
Dθ(m,AFRm)dθ

(2)

where Dθ(m,AFRm) is the distance from the current location of m to the intersection
point with the boundary of AFRm over which m may cross while heading towards the
θ direction.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

−π −π /2 0 π /2 π

0.1

0.15

0.2

0.25

z=2
z=4
z=8
uniform

(a) p(θ)

θL
θR

θ
Current Direction
Possible Future Direction

(b) Moving Direction

Fig. 10. Steady Motion Assumption

The steady motion based alarm free period for mobile client m, denoted by AFPm, is
computed as follows:

AFPm =
Dsteady(m,AFRm)

Vm
(3)

5.2. Extending Alarm Free Regions
We have shown that the Mondrian tree indexes both spatial alarm regions and empty
regions, and thus we can efficiently determine whether a mobile user is inside of a spa-
tial alarm region or an alarm free region. Furthermore, by utilizing alarm free region
(AFR), we can significantly reduce the number of unnecessary alarm evaluations in
anticipation of mobile client movement.

However, directly using empty regions as alarm free regions can incur higher num-
ber of region crossing checks to be performed, especially when mobile clients travel
from one small empty region to another. Thus, the gain from reduction of the number
of unnecessary alarm evaluations is offset by the cost of higher AFR crossing checks
when AFRs are small in size. We below examine the cost of AFR based alarm evalua-
tion in order to better understand the impact of the AFR perimeter on the cost of alarm
evaluation.

Assume that the mobile user m moves in a randomly chosen direction with a con-
stant speed Vm, CSA is the cost for one alarm evaluation, θ is the angle between m’s
moving direction and the positive x-axis (as shown in Figure 10(b)), l(θ) is the distance
from the current location of m to the intersection point p with the boundary of AFRm
when m travels along the θ direction, λ(AFRm) is the perimeter of AFRm, and Vm is
m’s current speed. Given m’s current alarm free region AFRm, we can compute the
amortized alarm evaluation cost for m over time, denoted by Cm, as follows:

Cm = CSA × (

∫ 2π

0

l(θ)dθ

2π · Vm
)−1 =

CSA · 2π · Vm
λ(AFRm)

(4)

Note that
∫ 2π

0
l(θ)dθ = λ(AFRm), and given that AFRm is a rectangle region, the

intersection point p should be unique. Based on this equation, the average alarm eval-
uation cost is minimized when the perimeter of the AFRm is maximized.

This motivates us to investigate the opportunities of composing larger AFRs for each
mobile client by merging empty regions in the vicinity of the mobile client. Intuitively,
by maximizing the perimeter of AFRs, we can minimize the number unnecessary re-
gion crossing checks to be performed, which further minimize the average cost of alarm
evaluation. This is because reducing region crossing checks can lead to better energy

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

efficiency at mobile clients and reduced communication and computation load at the
server.

In the rest of this section, we describe two optimization techniques for extending
AFR.

5.2.1. Patch and Trim (PAT). Before describing our technique for merging empty regions
to form a larger AFR, we illustrate the technical challenge of this problem by example.
Figure 11(a) has five spatial alarms shown in small dark grey rectangles and the red
circle denotes the current location of mobile client m. Clearly the optimal AFR with
respect to these five spatial alarms and the current location of m is the light gray
rectangle in Figure 11(a). However, it is costly in general to compute such an optimal
AFR. According to [Chazelle et al. 1984], given a set of n spatial alarms, the time
complexity for computing the largest empty rectangle with respect to the n alarms is
O(n log3 n). Therefore, in this paper we develop a near-optimal but fast algorithm to
compute an extended AFR. We call it Patch and Trim (PAT).

(a) Optimal (b) PAT (c) MPAT

Fig. 11. Examples of extending AFRs

Figure 11(b) shows the result of constructing an AFR rectangle by patching the adja-
cent AFRs (empty regions) and trimming the patched polygonal region over orthogonal
lines.

PAT consists of two phases: Patch phase and Trim phase. In the Patch phase, we
search the Mondrian index to get a set of adjacent AFRs with respect to the current
location of mobile client m by using REGIONSEARCH in O(log n). Then we perform the
Trim phase over the four sides (top, right, bottom, left) of the patched empty region
in the clockwise manner in O(1). In total, PAT takes O(logn), which is faster than
O(n log3 n).

Figure 12 illustrates the patch phase and the four steps of the Trim phase. Assume
that the user is inside of empty region A. Figure 12(a) shows the resulting polygonal
area of the patch phase where all neighboring empty regions of A are selected. In the
trim phase, we need to trim the polygonal area into a rectangle region containing A by
setting the boundary of the extended AFR. This is done by selecting the intersecting
interval of neighboring empty regions on four sides of A, clockwise one at a time. For
example, in order to extend A upward, we consider A’s neighboring empty regions:
B, C, D, and E. The intersecting y interval by all four rectangles is the same as E’s
height. Therefore we choose y value of top border in E as the extended top boundary
shown in 12(b). On the right side of A, there are no adjacent AFRs. Therefore we use
the x value of A’s right border as the right boundary of extended AFR, shown in Figure
12(b). In order to extend A downward, we examine A’s downward neighboring empty
regions: F , G, and H and the intersecting y interval they share is the same as G’s y
interval (height). Thus we select y value of G’s bottom border as the bottom boundary
of the extended AFR, shown in Figure 12(c). Finally we examine if we can extend A on

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

its left border. Given that the left neighboring region of A is a spatial alarm, we cannot
extend A further on its left side. Thus, we choose the x value of A’s left border as the
left boundary of the extended AFR, shown in Figure 12(d).

B
C D

E
A

(a) Patch

A

(b) Top and Right

A

H
GF

(c) Down

A

(d) Left

Fig. 12. Patching and Trimming Steps

We have shown that PAT can quickly compute an extended AFR that is near opti-
mal when there is no additional knowledge about user’s mobility and motion behavior.
As discussed in Section 5.1, given the current AFR of a mobile user m, we compute
the alarm free period (AFP) during which m can hibernate its alarm evaluation ser-
vice. Obviously, the longer is an AFP, the less number of AFR crossing checks will be
performed and thus less alarm evaluations for m.

Given that most of mobile users travel on a spatially constrained road network or
walk path with a destination in mind, we know the approximate travel direction for
these mobile users. Under such steady motion assumption, we can utilize the moving
direction of a mobile user to compute the extended AFR such that the alarm free period
(AFP) computed using this extended AFR will be maximized.

Recall the example in Figure 11, if user m is moving northwest, then all spatial
alarms located in the south of m’s current location are no longer relevant. Thus, the
best extended AFR for m in this case is the extended AFR computed using MPAT,
shown in Figure 11(c). This is because by utilizing the steady motion ofm, the extended
AFR in Figure 11(c) maximizes the AFP for m.

This motivates us to develop a motion-aware patch and trim algorithm that can
compute the extended AFR for each mobile user m based on her motion behavior,
aiming at maximizing the AFP for m.

5.2.2. Motion-Aware Patch and Trim (MPAT). The motion-aware patch and trim algorithm
for extending AFR consists of five steps. Due to space limit, we omit the pseudo code
in this paper and provide a walk-through of the algorithm using the example in Figure
13.

Step 1: Determine the relevant Quadrants. Under the steady motion assump-
tion (recall section 5.1), if a mobile user is heading towards the θ direction, then the
probability of m moving forward or turning left or right on its current location is much
higher than the probability of making a U-turn, as shown in Figure 10(a). Therefore,
spatial alarms in the downward direction of m are no longer relevant.

In order to make the best use of the steady motion behavior of the mobile user m,
we partition the universe of discourse into four quadrants using the current location
of m as the center such that only those quadrants that are relevant to computing the
extended AFR of m will be selected.

Figure 13(a) shows an example of four quadrants partitioned at o, the current loca-
tion of mobile user m. We determine the set Q of quadrants to be considered based on
the steady motion density function p(θ) of the mobile user m (recall Figure 10(a)). |Q|

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

o

III

III IV

S1

p1

p4

p2

p3
A

B

C
D E

(a) Corner Points

o

III

III IV

S1

q1p1

p4 q4

(b) Revising

o

III

III IV

(c) Revised Cor-
ner Points

o

III

III IV

d21 d11

d12

d13d22

(d) Dominant
Points

o

III

III IV

d21

d22

d11

d12

d13

(e) Patch and
Trim

o

III

III IV

d21

d22

d11

d12

d13

(f) Final AFR

Fig. 13. Computing a Motion-aware AFR

is at most 2. If θ is 100◦ and we use p(θ) with z = 8, then the range of moving direction
will be between 78.5◦ and 122.5 ◦. The range of direction overlaps with Quadrant I
and II. Therefore we consider two quadrants out of four. If the range of moving direc-
tion overlaps with only one quadrant (e.g., when θ is 30◦), then only one quadrant is
relevant and selected in this step.

Step 2: Find Candidate Corner Points. Let A be the empty region in which m
resides. In each selected quadrant, we first use the the function REGIONSEARCH to
find all neighboring empty regions of A, which are included in this quadrant. Then we
examine each of neighboring empty regions, and add its four corner points into the set
of candidate corner points. This set of candidate corner points will be used to determine
the component rectangle of the extended AFR in the selected quadrant. In our running
example, corner points in the quadrants I and II are represented by hollow circles as
shown in Figure 13(a).

Step 3: Find candidate component rectangle by revising corner points. For
each selected quadrant, we examine all candidate corner points and revise those that
may not form a component rectangle of the extended AFR. A component rectangle of
the extended AFR is the empty rectangle region that has o, the current position of m,
as one of the corner points. For example, we examine the four corner points of B in the
left top quadrant as shown in Figure 13(a). Consider a component rectangle consists
of p1 and o. This component rectangle overlaps with the spatial alarm S1 as shown in
Figure 13(b). Therefore the corner point p1 needs to be moved to q1 so that it avoids to
overlap with S1. Similary, a corner point p4 should be revised to move to q4 which has
the same x-value as S1 ’s right border. The new component rectangle formed with o and
q2 as two diagonal corner points will not overlap with any spatial alarms. The same
process runs iteratively until every candidate corner point is examined and revised.
The revised corner points are shown by dashed arrows in Figure 13(c).

Step 4: Find Dominating Points. Let Quadrant I denote the upper right quad-
rant, Quadrant II denote the upper left quadrant, Quadrant III denotes the bottom
left quadrant, and Quadrant IV denotes the bottom right quadrant. In each quadrant
we change the meaning of the dominant points for p1(x1, y1) and p2(x2, y2) as follows:

(a) Quadrant I: p1 dominates p2 if x1 ≥ x2 and y1 ≥ y2
(b) Quadrant II: p1 dominates p2 if x1 ≤ x2 and y1 ≥ y2
(c) Quadrant III: p1 dominates p2 if x1 ≤ x2 and y1 ≤ y2
(d) Quadrant IV : p1 dominates p2 if x1 ≥ x2 and y1 ≤ y2.

Based on the definition above, the set of dominating points are represented as solid
black dots in Figure 13(d), namely d21, which disregards two hollow points with the
same x values, d22, which disregards three hollow points, d11, which disregards one
hollow point with the same x-value, d12, which disregards two hollow points, one with
the same x-value and the other with the same y-value; and d13.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

All the hollow dots are dominated by the black dot corner points. An important prop-
erty of a dominating point is that the size of the component rectangle defined by the
current location o of m and a given black dot corner point is maximized, compared to
the component rectangle defined by the current location o of m and a hollow corner
point dominated by the given black dot. For example, the component rectangle with a
dominant black dot is larger than the component rectangle with a hollow corner point.

Step 5: Patch and Trim Component Rectangles. The set of dominating points
form corners of component rectangles in each quadrant. The final AFR is composed
by patching one component rectangle from each quadrant and trimming the patched
rectangle so that the distance from the current location to the border of resulting AFR
rectangle is maximized while m heading towards the θ direction. In Figure 13(e), there
are five component rectangles, each corresponds to one of the five dominating points
marked in black dot. In quadrant II, we select the component rectangle with o and d21
instead of the one with o and d22 because the former provides the longest distance to
the border. Similarly, in quadrant I we choose the component rectangle with o and d11,
because the distance to the border remains the longest. If we choose d12, then the final
AFR is wider but shorter and the distance to the border is shorter.

The time complexity for computing motion-aware AFR is O(n2), given that Step 1
finishes in O(1), step 2 in O(n log n), step 3 in O(n2), step 4 in O(n log n) by divide and
conquer, and step 5 takes O(n).

5.3. Distributed Mondrian Index
Given n mobile users subscribing to public and private spatial alarms, there are three
alternative ways of creating and maintaining Mondrian indexes. First, we can create
and maintain a single Mondrian tree for all mobile users and all their spatial alarms.
We call it the centralized approach. Alternatively, we can create n Mondrian tree in-
dexes, each is devoted for one mobile subscriber, which indexes all alarms subscribed
by this subscriber, including public, private, and shared alarms. We call it the dis-
tributed approach. The third alternative is to create one Mondrian index for all public
alarms, and n Mondrian tree indexes for all private and shared alarms, each is dedi-
cated to one of the n mobile subscribers. We call it the Hybrid approach.

Given the specific characteristics of spatial alarms, the approaches of creating and
maintaining individual Mondrian trees, one per client, can significantly minimize the
overhead of searching for relevant alarms and AFRs of a given mobile user.

For example, if Alice installed 10 spatial alarms and Bob installed 30 alarms, then
we create a single Mondrian tree with 40 alarms under the centralized approach and
two Mondrian trees, one for Alice with 10 alarms and the other for Bob with 30 alarms,
under the distributed approach. Then, the average size of AFRs in the centralized
approach will be much smaller than that of AFRs in the distributed approach because
the centralized approach inserts more alarms in a Mondrian tree. Furthermore, the
less nodes we have in a Mondrian tree, the faster it takes to find a leaf node because
the search conducted by Alice will not be affected by the spatial alarms installed by
another user Bob. In addition, three alternative system architectures can be used to
support spatial alarm processing: server-centric, client-centric, and distributed client-
server. Considering that the client-centric architecture is only applicable for processing
private spatial alarms [Murugappan and Liu 2008], we below focus on server-centric
architecture and distributed client-server architecture.

In the server-centric architecture, spatial alarms will be installed, subscribed and
processed at the server and mobile clients do not contribute directly to the spatial
alarm processing tasks. Mobile clients only receive alarm notification when entering
their alarm target regions.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

In the distributed client-server architecture, the server creates and maintains one
Mondrian index per mobile subscriber. Insertion of new public or shared alarms will
trigger the server to broadcast the newly installed alarms to those mobile clients whose
subscriptions match with this new alarms, so that each mobile client can insert the
newly added alarm into its local Mondrian tree. Insertion of a private alarm only in-
volves the insertion of this alarm to the local Mondrian tree of its owner. A spatial
alarm is removed from the system (client and server) upon reaching its expiration
time. Alarm expiration is checked at each alarm evaluation. Spatial alarm processing
is accomplished by the server and the mobile clients collectively. Several strategies
can be used for partitioning of spatial alarm processing tasks into server side and
client side processing. We below describe three possible strategies for implementing
the Mondrian tree approach under the distributed client-server architecture.

The first strategy will have the sever perform the following four tasks: (1) construct
and maintain the Mondrian tree for each mobile object m; (2) search the Mondrian tree
index to find AFRm for m; and (3) compute AFPm for m; and (4) send AFPm to m. In
this scenario, the client application checks if AFPm expires. If so, it sends a new AFPm
request message to the server.

The second strategy will have the server perform only the first two tasks and a
modified version of the 4th task. Concretely, the server sends the current AFRm to m
instead of the AFPm. Now the client computes AFPm locally using AFRm (task 3). The
client only reports to the server when it moves outside of AFRm or an alarm monitoring
region.

The third strategy will have each client build a Mondrian tree. Each client lookups
the index locally, finds its current AFR, and computes AFP accordingly. A client only
reports to the server if it arrives at an alarm monitoring region. All public, private and
shared alarms are installed at the server and distributed to clients by the server.

The choice of which strategy to use depends primarily on the capacity of mobile
clients. Some clients have limited capability in terms of battery power, computing and
storage capacity, whereas others are equipped with computing and memory capability
equivalent to a laptop computer such that it can store the Mondrian tree that indexes
all of its subscribed alarms locally. In this situation, a mobile subscriber who is capable
of storing its own Mondrian tree locally can also perform the Mondrian tree lookup and
AFP computation locally. Thus this strategy significantly reduces the amount of client
to server communication cost.

6. EXPERIMENTS AND EVALUATION
In this section we report our experimental evaluation of the performance and effec-
tiveness of the Mondrian tree approach to spatial alarm processing. Our experiments
are conducted with two objectives. First, we want to compare Mondrian index with a
set of popular spatial indexing techniques, such as R-tree, k-d tree, and Quadtree in
terms of multiple parameters, including total time, index lookup time, memory size,
AFR computation time, average size of AFR, and average client-to-server communi-
cation messages. Our experimental results show that Mondrian tree approach signif-
icantly outperforms R-tree, k-d tree, and Quadtree for spatial alarm processing, due
to faster AFR computation, longer AFP, and indexing of both alarms and AFRs with
Mondrian trees. Second, we conduct experiments to compare different design choices
for processing spatial alarms using Mondrian tree indexes, including (i) comparing
the basis AFP (alarm free period) and the steady motion based AFP with respect to
periodic evaluation; (ii) comparing the basic Mondrian tree with Mondrian-PAT and
Mondrian-MPAT in terms of total time, AFR computation, size of AFR, the number
of AFR crossing checks required, and average AFP interval length; (iii) comparing
centralized, distributed, and hybrid approach to creating and maintaining Mondrian

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

indexes in terms of AFR computation and average size of AFR , and (iv) comparing
basic Mondrian index and Mondrian* index in terms of memory, average depth of the
trees, average number of nodes per tree, and search time.

6.1. Experiment Setup
We extend GTMobiSim mobility simulator [Pesti et al. 2009] and generate a set of
traces of moving vehicles on a real world road network. The road network data are
obtained from the National Mapping Division of the U.S. Geological Survey[USG] in
the form of Spatial Data Transfer Format[SDT]. Vehicles are distributed randomly
on the road segments according to traffic densities determined from the traffic volume
data [Gedik and Liu 2005]. These vehicles move on the roads of metro Atlanta. The
number of spatial alarms and the number of vehicles vary from 1,000 to 10,000. The
default number of vehicles is 5,000 and the default number of alarms is 5,000.

Given that Mondrian tree is a memory based space partitioning index structure, we
modified other data structures so that they stored data in the main memory.

For R-tree, Quadtree, and k-d tree, the index structure does not provide a good
quality of AFR. In this experiments we compute AFRs by the safe region algorithm
in [Bamba et al. 2008] for distributed processing of spatial alarms. It consists of two
steps. First, it finds n nearest alarms and computes the AFR using a greedy approach
in O(n2). The parameter n is a system supplied parameter. When n is too small, AFR
is too small. On the other hand, if n is too big, the AFR computation is too expensive.

All the Mondrian trees used in this experimental evaluation are centralized Mon-
drian tree except in the experiment for performance of multiple Mondrian trees.

All experiments run on a Linux machine with Intel Core 2 Duo CPU 2.8GHz and
4GB RAM.

6.2. Effectiveness of Mondrian Tree Index

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

0.5

1

1.5

2

2.5

3

3.5

Number of Alarms

T
ot

al
 T

im
e

(m
in

)

Mondrian
QuadTree
k−d Tree
R−Tree

(a) Total Time

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

0.5

1

1.5

2

2.5

3

3.5

Number of Alarms

A
F

R
 C

om
pu

ta
tio

n
T

im
e

(m
in

)

Mondrian
QuadTree
k−d Tree
R−Tree

(b) AFR Computation

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

1

2

3

4

5

6

7
x 10

5

Number of Alarms

A
ve

ra
ge

 S
iz

e
of

 A
F

R
 (

m
2)

Mondrian
QuadTree
k−d Tree
R−Tree

(c) Average Size of AFR

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

50

100

150

200

Number of Alarms

A
ve

ra
ge

 #
 o

f A
F

R
 R

eq
ue

st
s

Mondrian
QuadTree
k−d Tree
R−Tree

(d) Average Message Cost

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

0.5

1

1.5

2

Number of Objects

T
ot

al
 T

im
e

(m
in

)

Mondrian
QuadTree
k−d Tree
R−Tree

(e) Total Time

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

0.5

1

1.5

2

Number of Objects

A
F

R
 C

om
pu

ta
tio

n
T

im
e

(m
in

)

Mondrian
QuadTree
k−d Tree
R−Tree

(f) AFR Computation

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

2

4

6

8

10
x 10

4

Number of Objects

A
ve

ra
ge

 S
iz

e
of

 A
F

R
 (

m
2)

Mondrian
QuadTree
k−d Tree
R−Tree

(g) Average Size of AFR

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
20

40

60

80

100

120

140

Number of Objects

A
ve

ra
ge

 #
 o

f A
F

R
 R

eq
ue

st
s

Mondrian
QuadTree
k−d Tree
R−Tree

(h) Average Message Cost

Fig. 14. Performance Results in Server-side

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

The first set of experiments is designed to compare the Mondrian tree against other
data structures in spatial alarm processing by measuring total time, index lookup time,
memory size, AFR computation time, average size of AFR, and average client-to-server
communication messages. In order to understand how the number of alarms and the
number of users impact the alarm process performance, we design two groups of ex-
periments, one with varying number of users from 1,000 to 10,000 and 5,000 alarms
(Figures 14(a) - (d)) and the other with varying the number of alarms from 1,000 to
10,000 and 5,000 vehicles (Figures 14 (e) (h)). Note that to be fair in the comparison
of centralized Mondrian tree with other index structures, all experiments reported in
this first set is using the basic Mondrian tree without AFR or AFP optimizations.

Figures 14(a) and 14(e) shows total time spent for alarm processing for varying num-
ber of alarms and varying number of users respectively. In both figures, although the
total time increases for all approaches as the number of alarms or users increases,
the rate of increase for Mondrian tree is significantly smaller comparing with R-tree
and k-d tree. The reason Quadtree has slightly slower than Mondrian tree is that com-
pared to other two data structures it only concerns a small leaf node and a set of spatial
alarms in it, which reduces the number of alarms to be considered for computing AFRs.

Figures 14(b) and 14(f) shows total AFR computation time. By comparing with Fig-
ures 14(a) and 14(e), we note that AFR computation takes up to 90% of total alarm
processing time. On each AFR request by mobile user m, the server looks up spatial
alarms with regard to m’s current location. Given a location, Mondrian tree approach
does not compute AFRs. It just looks up the relevant leaf node. However, R-tree and
k-d tree need to dynamically compute AFRs upon each user request in O(n2), so their
AFR computation costs are quadratic in comparison with Mondrian approach.

Figures 14(c) and 14(g) compares the average size of AFRs. The Mondrian tree parti-
tions the universe of discourse into relatively smaller size of rectangles on average and
thus smaller AFRs. Therefore the average size of AFRs in the Mondrian tree is smaller
than one in R-tree or k-d tree as shown in 14(c). Like Mondrian tree, Quadtree is also
a region partition tree. Therefore the average size of AFR is also small. As we increase
the number of alarms, the average size of AFRs decreases because more empty regions
are occupied by alarms. However, it is obvious that the average size of AFRs does not
change much while fixing the number of alarms and varying the number of users as
shown in Figure 14(g).

The message cost from client to server is shown in Figures 14(d) and 14(h). Due
to the smaller size of AFR in Mondrian tree, the average number of client-to-server
message for requesting AFRs is slightly larger than other data structures. Quadtree
also indexes smaller empty regions, but once it enters a region that has a spatial alarm,
then it needs to compute AFR. This makes users using Quadtree frequently cross the
border and compute AFRs. Therefore it has the biggest number of message cost as
shown in Figure 14(d). When we vary the number of mobile objects but fix the number
of alarms in Figure 14(h), the number of messages requesting AFRs barely changes
because average size of AFRs are similar for all mobile objects, and thus each has
similar probability of crossing AFRs.

6.3. Effectivenss of AFP
The second set of experiments compared the two AFP approaches against periodic
alarm evaluation approach. Figure 15(a) shows that the basic AFP and the steady-
motion AFP have much longer AFP interval compared to periodic approach and thus
reducing the amount of unnecessary alarm evaluations. Also steady-motion AFP out-
performs the basic AFP , though the difference is decreasing as the number of alarms
increases, because more alarms implies smaller AFRs. Figure 15(b) shows that the av-
erage amount of time for computing AFP is less than 1ms, compared to the average

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

AFP interval of 8 minutes and 30 seconds for 10,000 alarms. The experiment is the
simulation of 30-minute driving. If a user actually moves for 30 minutes as the simu-
lation, the spatial alarm processing can enter hibernation for about 8 minutes and 30
seconds, 28% of 30 minutes of driving. Also Figure 15(b) shows that although steady
motion AFP has the longest AFP interval, it takes more time to compute AFP because
it needs to compute the average of AFPs for more than one direction.

1K 2K 3K 4K 5K 6K 7K 8K 9K10K

0

2

4

6

8

Number of Alarms

A
ve

ra
ge

 A
F

P
 (

m
in

)

Periodic
Basic AFP
Steady Motion AFP

(a) Average AFP

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
−1

0

1

2

3

4

5

6

7

8
x 10

−3

Number of Alarms

A
ve

ra
ge

 A
F

P
 C

om
pu

ta
tio

n
T

im
e

(m
s)

Periodic
Basic AFP
Steady Motion AFP

(b) AFP Computation Time

Fig. 15. AFPs vs. Periodic Evaluation

6.4. Effectiveness of AFR Optimizations

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

10

20

30

40

50

60

Number of Alarms

T
ot

al
 T

im
e

(s
ec

)

Mondrian
Mondrian−MPAT
Mondrian−PAT

(a) Total Time

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

10

20

30

40

50

60

Number of Alarms

A
F

R
 C

om
pu

ta
tio

n
T

im
e

(S
ec

)

Mondrian
Mondrian−MPAT
Mondrian−PAT

(b) AFR Computation

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

0.5

1

1.5

2

2.5

3
x 10

5

Number of Alarms

A
ve

ra
ge

 S
iz

e
of

 A
F

R
 (

m
2)

Mondrian
Mondrian−MPAT
Mondrian−PAT

(c) Average Size of AFR

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
10

20

30

40

50

60

70

Number of Alarms

A
ve

ra
ge

 N
um

be
r

of
 A

F
R

 R
eq

ue
st

s

Mondrian
Mondrian−MPAT
Mondrian−PAT

(d) Average Message Cost

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

2

4

6

8

10

Number of Alarms

A
ve

ra
ge

 A
m

ou
nt

 o
f A

F
P

 (
m

in
)

Mondrian
Mondrian−MPAT
Mondrian−PAT

(e) Average Length of AFP

Fig. 16. Performance of AFR Optimizations

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

Figure 16 shows the comparison of the basic AFR with the two AFR optimizations.
In this set of experiments, Mondrian refers to the use of empty region from the ba-
sic Mondrian tree construction as AFRs (no optimization). Mondrian-MPAT refers
to Mondrian approach powered with MPAT, and Mondrian-PAT is the Mondrian ap-
proach powered by PAT. In all cases, we compute AFP based on AFRs for processing
spatial alarms.

Figures 16(a) and 16(b) measure the total time and AFR computation time with
varying number of alarms from 1,000 to 10,000. We can see that up to 28% of time is
used for AFR computation. Comparing to Mondrian, Mondrian-PAT takes slightly
more time to patch and trim than Mondrian. Mondrian-MPAT takes the longest
time because it performs series of operation to compute an extended motion-aware
AFR.

Figure 16(c) compares the basic Mondrian with optimized Mondrain in terms of the
size of AFR. We see that the size of AFR in Mondrian-PAT is on average larger than
in the size of AFR in Mondrian-MPAT. This is because motion-aware PAT enables
us to disregard about a half of empty regions that are irrelevant for a given mobile
user. However, as shown in Figure 16(d), the message cost of Mondrian-MPAT is
smaller than Mondrian-PAT because Mondrian-MPAT considers moving direction
and extends an AFR along the moving direction. Furthermore, extended AFRs based
on Mondrian-MPAT also provide longer AFP as shown in Figure 16(e).

6.5. Performance of Distributed Mondrian Trees
In this set of experiments, we compare the performance of distributed Mondrian trees
against the performance of centralized Mondrian index and hybrid Mondrian index.
We set the number of users to be 5,000, the number of public alarms to be 100, and in-
crease the number of private alarms per user from 0 to 10. Therefore the total number
of alarms vary from 100, (5, 000 + 100), (10, 000 + 100), · · · , (50, 000 + 100).

Figure 17(a) shows that Centralized Mondrian tree takes the longest time for
computing AFR. If we add one additional private alarm to for all users, then Cen-
tralized Mondrian index needs to add 5,000 (1 alarm × 5,000 users) more alarms
in the tree. On the other hand, the Hybrid and Distributed Mondrian indexing in-
crease only 1 alarm. Similarly, when we add 10 additional private alarms per user,
then the Centralized Mondrian will add 50,000 (10 alarms × 5,000 users) more
alarms. Therefore Centralized Mondrian has the worst performance. When there
are 100 percent of public alarms, then there is no difference in each approach. Hybrid
needs to check two trees: one for public alarms and the other for private alarms. Hence
it takes more time than Distributed.

Figure 17(b) shows that Centralized Mondrian approach has the smallest av-
erage AFR size. On 100 percent public alarms, the size of AFR is the same because
each approach has the same alarms. When we assign one additional private alarms
to each user, then Centralized Mondrian will have 5,000 more alarms while dis-
tributed or Hybrid Mondrian approaches will an increase by only 1 alarm. Therefore
as we increase the number of private alarms per user, the average size of AFR in the
centalized Mondrian tree decreases dramatically.

6.6. Effectiveness of Mondrian*
We presented Mondrian*, an optimized Mondrian tree, in Section 4. We performed a
set of experiments to measure the performance of Mondrian* against Mondrian basic
in terms of memory size and average depth of the tree. Figure 18(a) shows the average
depth of Mondrian and Mondrain* by varying the number of spatial alarms from 1K to
10K. Clearly, Mondrian* has the shorter depth on average for a couple of reasons. First,
the number of children nodes that a non-leaf node may have in Mondrian* tree is four,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

0.1K5K10K15K20K25K30K35K40K45K
10

−1

10
0

10
1

10
2

Number of Alarms

A
F

R
 C

om
pu

ta
tio

n
T

im
e

(s
ec

)

Centralized
Hybrid
Distributed

(a) AFR Computation

0.1K5K10K15K20K25K30K35K40K45K
10

−2

10
0

10
2

10
4

10
6

10
8

Number of Private Alarms Per User

A
ve

ra
ge

 S
iz

e
of

 A
F

R
 (

m
2)

Centralized
Hybrid
Distributed

(b) Average Size of AFR

Fig. 17. Server-centric vs Distributed Approach

whereas it is two in the Mondrian tree. Second, in batch construction of Mondrian*
tree, it chooses an alarm that is approximately located in the center of all alarms as
the next alarm to be inserted so that we can distribute remaining alarms into the four
children evenly. Figure 18(b) shows the memory size. Recall Figure 5(d), Mondrian tree
needs 9 nodes for one spatial alarm as shown in Figure 5(d) while Mondrian* tree only
needs five as shown in Figure 7(b). Hence, Mondrian* tree takes shorter time to lookup
and needs less memory.

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

5

10

15

20

25

Number of Alarms

A
ve

ra
ge

 D
ep

th

Mondrian*
Mondrian

(a) Average Depth

1K 2K 3K 4K 5K 6K 7K 8K 9K10K
0

2

4

6

8

10

Number of Alarms

M
em

or
y

S
iz

e
(M

B
yt

es
)

Mondrian*
Mondrian

(b) Memory Size

Fig. 18. Mondrian* vs. Mondrian

7. CONCLUSION
In this paper, we have presented the design and implementation of the Mondrian tree
index, a fast index structure for scalable processing of spatial alarms. Compared with
conventional spatial indexes, such as R-tree, Grid, and k-d tree, the main distinguish-
ing feature of Mondrian tree, is that the Mondrian tree approach indexes not only
spatial alarms but also empty regions, which enables us to look up AFRs fast com-
pared to other data structures. Another novelty of the Mondrian tree index is its abil-
ity to utilize the characteristics of spatial alarms to create and maintain one Mondrian
tree for each mobile subscriber, which is particularly effective when there is relatively
small number of public alarms compared to the total number of private alarms in
the system. We also provide a set of optimization techniques for scaling spatial alarm
processing based on Mondrian index, such as motion-aware AFP extended AFRs using

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

PAT and MPAT. Our experiments show that Mondrian tree can dramatically minimize
the amount of unnecessary AFR and scale the spatial alarm processing, compared to
R-tree, Grid, and k-d tree.

REFERENCES
Spatial data transfer format. http://www.mcmcweb.er.usgs.gov/sdts/.
Us geological survey. http://www.usgs.gov/.
BAMBA, B., LIU, L., YU, P. S., ZHANG, G., AND DOO, M. 2008. Scalable processing of spatial alarms. In

Proc. HiPC.
BENTLEY, J. L. 1975. Multidimensional binary search trees used for associative searching. In SIGMOD.
CHAZELLE, B., DRYSDALE, R., AND LEE, D. 1984. Computing the largest empty rectangle. In STACS 84.
FINKEL, R. A. AND BENTLEY, J. L. 1974. Quad trees a data structure for retrieval on composite keys. Acta

Informatica.
GEDIK, B. AND LIU, L. 2004. Mobieyes: Distributed processing of continuous moving queries on moving

objects in a mobile system. In LNCS.
GEDIK, B. AND LIU, L. 2005. Location privacy in mobile systems: A personalized anonymization model. In

Proc. IEEE ICDCS.
GROVE, J. V. 2010. Morbile marketer. http://mashable.com/2010/08/18/shopalerts.
GUTTMAN, A. 1984. R-trees: A dynamic index structure for spatial searching. In SIGMOD.
HASAN, M., CHEEMA, M., LIN, X., AND ZHANG, Y. 2009. Efficient construction of safe regions for moving

knn queries over dynamic datasets. In Advances in Spatial and Temporal Databases. Springer.
HENRICH, A., SIX, H.-W., AND WIDMAYER, P. 1989. The lsd tree: spatial access to multidimensional point

and non-point objects. In Proc. VLDB.
HU, H., XU, J., AND LEE, D. L. 2005. A generic framework for monitoring continuous spatial queries over

moving objects. SIGMOD.
MURUGAPPAN, A. AND LIU, L. 2008. Energy-efficient processing of spatial alarms on mobile clients. In Proc.

ICSDE.
NIEVERGELT, J., HINTERBERGER, H., AND SEVCIK, K. C. 1984. The grid file: An adaptable, symmetric

multikey file structure. In TODS.
PESTI, P., BAMBA, B., DOO, M., LIU, L., PALANISAMY, B., AND WEBER, M. 2009. Gtmobisim: A mobile

trace generator for road networks. Tech. rep.
PESTI, P., LIU, L., BAMBA, B., IYENGAR, A., AND WEBER, M. 2010. Roadtrack: Scaling location updates

for mobiles on road networks with query awareness. In VLDB.
PRABHAKAR, S., XIA, Y., KALASHNIKOV, D. V., AREF, W. G., AND HAMBRUSCH, S. E. 2002. Query indexing

and velocity constrained indexing: Scalable techniques for continuous queries on moving objects. In
IEEE Transactions on Computers.

SEEGER, B. AND KRIEGEL, H. P. 1988. Techniques for design and implementation of efficient spatial access
methods. VLDB.

SOHN, T., LI, K. A., LEE, G., SMITH, I., SCOTT, J., AND GRISWOLD, W. G. 2005. Place-its: A study of
location-based reminders on mobile phones. UBICOMP.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

