
Applying Aggressive Propagation-based Strategies for Testing Changes

Raul Santelices and Mary Jean Harrold
College of Computing

Georgia Institute of Technology, Atlanta, USA
e-mail: {raul|harrold}@cc.gatech.edu

Abstract—Test-suite augmentation for evolving software—
the process of augmenting a test suite to adequately test
software changes—is necessary for any program that undergoes
modifications as part of its development and maintenance
cycles. Recently, we presented a new technique for test-suite
augmentation based on leveraging the propagation conditions
for the effects of changes. Although empirical studies show that
this technique can be quite effective for testing changes, the
experiments have been limited because of the complexity of
the implementation. In this paper, we present a new and more
efficient approach for propagation-based testing of changes that
can reach much longer propagation-distances and can focus the
testing more precisely on those behaviors of changes that can
actually affect the output. Using an implementation of this new
approach, we performed a study on a set of changes on Java
programs for which we compared, to a much larger extent,
our propagation-based strategy with other existing techniques
for testing changes. The results of the study not only confirm
the superior effectiveness of propagation-based strategies over
these other techniques for testing changes, but also quantify
that superiority and clarify the conditions under which our
approach is most effective.

I. INTRODUCTION

Changes to software are problematic for developers and
testers because the changes might not behave as expected
or may introduce erroneous side effects. After each change
cycle, regression testing is used to find errors introduced by
changes and gain confidence that the changes and the parts
of the program affected by those changes behave correctly.
Typically, in regression testing, developers reuse an existing
test suite T to test the modified program. However, the
new functionality or side effects introduced by changes are
not necessarily tested adequately by T , so developers must
augment T (i.e., add new test cases to T) to exercise those
untested or undertested behaviors of changes, obtaining a
new test suite T ′. In previous work, we called this process
test-suite augmentation for evolving software.

Existing techniques for test-suite augmentation address
this problem by identifying program entities potentially
affected by changes and requiring their coverage by the
augmented test suite. Early techniques [3] [14] use control-
and data-dependence analysis [5] [20] to identify entities
such as branches and definition-use pairs (du-pairs) that must
be covered in the modified program because their execution
behavior may be affected by the changes. These techniques,
which we call coverage-based strategies, resemble typical

testing criteria for programs in which entities of a certain
type need to be covered. Recent approaches for test-suite
augmentation capture the conditions (or a subset) under
which the state modifications caused by executing a change
propagate and affect other parts of the program [2] [15]
by using symbolic execution [9] in addition to dependence
analysis. These approaches, which we call propagation-
based strategies, give testers stronger guarantees than earlier
techniques that an adequate variety of effects of changes will
be exercised and that those effects will be observed at the
output and other points of interest to let testers assess the
correctness of changes in different scenarios.

Unfortunately, however, only limited empirical studies
have been performed to evaluate the effectiveness of test-
suite augmentation strategies, in general, and the improve-
ments achieved by these strategies over coverage-based
strategies, in particular. For propagation-based strategies, a
major reason for this limitation is the implementation and
runtime complexity of combining dependence analysis and
symbolic execution. Whereas promising results have been
obtained for such strategies [15] [17], the extent of the
propagation conditions that can be computed in practice
using the current formulations of these techniques is limited
to a few dependencies away from each change location.

To evaluate and analyze the real strength of propagation-
based strategies for testing changes, we developed, and
present in this paper, a new, more aggressive, and more effi-
cient approach for augmenting test suites. Our new approach
is equivalent in power to existing propagation-based ap-
proaches [2] [15] but achieves much longer propagation dis-
tances in practice by using dynamic slicing and monitoring
state changes on demand rather than computing propagation
conditions beforehand. Using this new approach, we also
present in this paper a study of test-suite augmentation on
a number of changes in different Java programs. This study
evaluates and compares propagation-based strategies with
coverage-based strategies to a much larger and conclusive
extent than the limited data reported in the literature.

The results of this study let us confirm the superiority of
propagation-based strategies over coverage-based strategies
for testing changes in overall effectiveness (i.e., number of
observable differences revealed by the resulting test suites)
and cost-effectiveness (i.e., effectiveness per test added to
the test suite). These results also quantify that superiority

and describe the conditions under which propagation-based
strategies are most cost-effective. For example, for test suites
of size 10, our results show that, on average for the studied
subjects, our propagation-based strategy reveals two times
more differences per change than randomly creating 10 test
cases that cover the change and about twice the differences
found by using coverage of affected branches and du-pairs.
In terms of cost-effectiveness, our results also show that,
on average, any test case in a test suite of any size for
our approach is 91% more likely to reveal a difference than
randomly testing that change and 70–90% more likely than
for branch and du-pair coverage.

Another important result of this study is that the cost-
effectiveness of using our new propagation-based strategy,
in terms of differences revealed per test case added, is espe-
cially superior to the other techniques when the probability
that executing a change will cause a difference in the output
is the lowest. In other words, we found that our approach is,
comparatively, even more effective when it is most needed—
when random testing of the change or even branch or du-pair
coverage are unlikely to find differences.

One benefit of our work is that it provides a new
propagation-based approach to test changes that is com-
putationally more efficient than existing approaches that
analyze all possible behaviors of changes, most of which
are not tested in practice. For that reason, our approach can
analyze longer propagation distances than was previously
possible for the same program-analysis budget. Thus, testers
can achieve a greater effectiveness in revealing observable
differences when augmenting their test suites by using this
new approach. Another benefit of our work is the first
comprehensive empirical study of test-suite augmentation
strategies of any kind, including propagation-based strategies
that reach greater distances than in previous studies. This
study provides testers with quantitative information about
the effectiveness they can expect of different strategies for
test-suite augmentation and the kinds of changes for which
these strategies are most effective.

The main contributions of this paper are:
• A comparative analysis of existing test-suite augmen-

tation strategies for evolving software.
• A new approach for performing propagation-based test-

ing of changes that makes this testing strategy more
efficient and able to reach greater propagation distances.

• A comprehensive study of coverage-based and
propagation-based strategies for testing changes that
shows that our propagation-based strategy:

– reveals more differences caused by changes than
coverage-based strategies and is also more cost-
effective (more differences per test case) and

– is particularly superior to the alternatives when the
difficulty of making changes cause output differ-
ences is low.

II. INITIAL CONCEPTS AND EXAMPLE

In this section, we discuss the relationship between cov-
erage criteria and testing strategies (Section II-A) and intro-
duce an example used in the rest of the paper (Section II-B).

A. Test Adequacy Criteria and Testing Strategies

Many researchers have addressed the adequacy levels for
testing programs based on coverage criteria. These criteria
define which kinds of entities in the program must be
covered (i.e., executed at least once) during testing [6]. Some
of these criteria require that control-flow entities such as
statements or branches are covered, whereas other criteria
require the coverage of data-flow entities such as definition-
use pairs (du-pairs) (see PDG in Section II-B).

For modified programs, the emphasis is not on testing for
faults hidden anywhere in the program, but on finding faults
caused or uncovered by changes. To assess the correctness
of changes, developers and testers must sample an adequate
set of differences in the behavior space of the modified
program. The measure of success for this testing, in addition
to the number of regression faults detected, is the number
and variety of differences in behavior exercised—the more
and better-distributed kinds of differences detected by testing
changes are, the more likely it is that faults related to specific
behaviors of changes are detected. For testing modified
programs, coverage-based and propagation-based adequacy
criteria for test-suite augmentation [14] [15] have been
defined (we discuss them in Section III).

One problem with adequacy criteria is that it is often
impossible to achieve 100% satisfaction because some test
requirements are either infeasible (i.e., not coverable by any
execution) [6] or too difficult and expensive to cover. Thus,
in reality, testers must balance software-quality needs with
budget constraints. In practice, we have observed through
our industrial partners that rarely, if ever, are “white-box”
coverage criteria used. However, it is still crucial to provide
testers with guidance that distributes well the testing effort
over the space of all behaviors of the program, even if a
complete sample for some criterion is not possible. For that
reason, in this paper, we use the term testing strategy to refer
to the use of a test-adequacy criterion (based on coverage
or propagation) to guide the creation of new test cases that
augment test suites in a well-distributed way.

B. Example Program with Changes

Figure 1 presents the example that we use throughout this
paper. The first two columns in the figure list the program,
consisting of classes M, B, P, and Q, where P and Q are
subclasses of B. The entry of the program is the method
M.main. In lines 1 and 2, the program creates instances of P
and Q that are assigned to references p and q, respectively. In
each case, the constructor of B receives arguments a and b.
At line 3, the program decides whether it continues to line 4
or exits. At line 4, one of the two references is assigned to

2

class M {
void main(int a, b, c) {

1: B p = new P(a); // ch1: a -> -a
2: B q = new Q(b); //

3: if (a < c || b < p.x) {
4: B r = (c%2==0)? p : q;
5: if (p.x > 10) {
6: if (r.x > 5)
7: p.foo(q.x);

else
8: r.foo(q.x);

}
else

9: print r.foo(0);

10: while (q.x > c)
11: print q.x--;

}}}

class B {
int x;

12: B(_x) { x = _x; }
int foo(y) {

13: if (x > y)
14: x -= 100*y;

else
15: x++;
16: return -y;

}
...

}
class P extends B {

17: int foo(y) { P.foo(y+1); }
... }

class Q extends B {
18: int foo(y) { return y*2; }

... }

1EN 2

START

3

4 105

M.main

6

78

9 11

17

18

Q.foo

P.foo
16

6

8

9

15

14

13

B.foo

Figure 1. Example program consisting of classes M , B, P , and Q. M has two changes. On the right, a partial PDG for this program.

r, depending on the value of c. At lines 5–9, conditions
on the value of the field x of the instances of P and Q
determine which call to foo is performed—the call at 7, 8,
or 9. Finally, a loop at lines 10–11 prints and decrements
q.x until it is no longer greater than c.

The right of Figure 1 shows an almost complete Program
Dependence Graph (PDG) [5] for this program. (In general,
an interprocedural form of the PDG is needed [7].) The
nodes in this PDG are the statements of the program and
two special nodes: START for the entry of the program and
EN for the entry of M.main. In this PDG, we omit the
constructor of B and parts of B.foo.

A solid edge in the PDG represents the control depen-
dence of the target node on the source node. Node n1 is
control dependent [5] on node n2 if the decision taken at
n2 determines whether n1 is necessarily executed. Control
dependencies are created by the presence of branches and
other control decisions such as virtual calls. In Figure 1, an
example is node 8, which is control dependent on node 6
taking the false branch. In the PDG, the edges coming out of
START represent the decision of executing the program. The
bottom right part of this figure shows, separately, a partial
view of the control-dependencies for B.foo.

A dashed edge in the PDG represents a data dependence
of the target node on the source node, indicating that a
variable defined at the source node is used at the target
node and that there is a definition-clear path in the program
(i.e., a path that does not re-define the variable) between
the source and target nodes. Such a pair of nodes, including
the variable, is called du-pair. For example, in Figure 1,
node 6 is data dependent on node 4 because 4 defines r,
6 uses r, and there is a path (4,5,6) that does not redefine
r after 4. For space reasons, in this figure, we omitted the
interprocedural data dependencies.

III. EXISTING CHANGE-TESTING STRATEGIES

In this section, we compare change-testing techniques
proposed in the literature, which we classify as coverage-

based (Section III-A) or propagation-based (Section III-B).

A. Coverage-based Strategies

Researchers have proposed to test the effects of changes
by conservatively identifying entities, such as du-pairs, that
might be affected by those changes, and requiring the
coverage of those entities by a test suite [3] [14]. These
techniques identify the affected entities using forward traver-
sal of control and data dependencies from the locations
of the changes, which is essentially performing forward
slicing [7] [20] from the changes. For example, in Figure 1,
and following the approach of Reference [14], the test
requirements for change ch1 at line 1 are the du-pairs in the
forward slice for variable a at that line. This slice is obtained
by traversing the PDG forward from node 1 through both
solid and dashed edges and identifying as test requirements
the reachable dashed edges—the du-pairs. (From node 1,
only the dashed edges for variable a are considered.) In
this example, the test requirements for ch1 include du-pairs
〈(1,a),(12,_x)〉 (i.e., the definition of a at 1 and its use as
_x at 12), 〈(12,p.x),(3,p.x)〉, and 〈(4,r),(6,r)〉—this du-
pair is affected through the control dependence of 4 on 3,
which is the target of 〈(12,p.x),(3,p.x)〉.

In this paper, we use DU to denote the testing strategy
of covering du-pairs affected by a change until all du-pairs
are covered or testing reaches a budget limit (e.g., no more
coverage is achieved after creating 10 candidate test cases
for the test suite). Similarly, we denote by BR the strategy
of covering branches affected by changes. Note that the
techniques in the literature do not require that the affected
entities be covered after the change has been executed, but
we will assume in this paper, as a basic condition for BR
and DU, that they must be covered after the change. For
completeness, we also introduce the RANDOM strategy that
simply requires the execution of all changed statements.1

1RANDOM indicates “random testing of the change”—after reaching the
change, the execution characteristics of the test cases are left to chance.

3

To analyze change-testing strategies, including BR, DU,
and the strategies presented in the next section, we use the
PIE model [19] adapted for changes [15]: a change reveals
a difference in the output if and only if the change executes,
infects the state (i.e., creates an infection—a difference in the
program state), and the infection propagates to the output.
In the example of Figure 1, change ch1 is executed always
(satisfying the execution condition), the state is infected if a
does not equal 0, and the infection propagates to the output
if, for example, line 9 is reached such that r equals p (i.e.,
when c is even), so that line 9 prints -a instead of a.

The goal of coverage-based strategies is to execute
potentially-faulty entities—satisfying the first condition of
the PIE model—and hope that, if the entity is faulty when
affected by the change, it will infect the state and the
infection will propagate to the output. It is also expected
that the change itself is executed first, that it infects the
program state, and that this infection propagates to the entity.
(Otherwise, assuming that the program was correct before
the changes, if no infection from the change reaches the
entity, the entity cannot cause an error.) Thus, one limitation
of coverage-based strategies is that they satisfy only the
execution conditions for changes and entities, leaving to
chance the infection and propagation conditions needed to
reveal potentially-faulty differences. In other words, these
strategies satisfy some necessary but not sufficient conditions
for revealing the effects of changes.

Another limitation of existing research on coverage-based
strategies is that only subsets of the test requirements they
identify have been studied and that those studies are small
in scale [15]. In Section V, we remedy this situation.

B. Propagation-based Strategies

To address the limitations of coverage-based strategies,
propagation-based techniques have been developed [2] [15].
The method, called MATRIX, computes test requirements
in two phases. These requirements are propagation-based
because they contain not only the execution condition of
the PIE model for each change, but also represent at least
some of the infection and propagation conditions from this
model. Next, we analyze the two phases of MATRIX.

1) Phase 1: This phase of MATRIX identifies, for each
change, all dependence chains (i.e., sequences of consecutive
dependences in the PDG) starting at that change and uses
these chains as test requirements. Each of these chains
represents a “propagation path” in the PDG from the change
to the output because dependencies are the means through
which infections propagate from statement to statement until
they reach the output. However, in practice, the number and
length of these chains can be too great or even infinite.
For that reason, MATRIX uses a length limit d for the
chains (the “distance from the change”). Despite this limit,
executing a chain guarantees that a propagation path is
taken at least up to distance d, which prevents cases in

which infections stop propagating before d because a non-
propagating path is taken (e.g., a path that re-defines an
infected variable before it is used). Thus, chains increase
the chances that a propagation path is covered to the output.
In this paper, we use CHAINd to represent the strategy of
satisfying chain requirements for a distance d.

For example, in Figure 1, one dependence chain
from ch1 consists of the PDG edge sequence q1=
〈1,12〉,〈12,3b〉,〈3b,4〉,〈4,4p〉,〈4p,9〉2 where 〈3b,4〉 and 〈4,4p〉
are control dependencies and the rest are data dependencies.
A necessary condition for an infection in p.x at line 1
to propagate to line 9 through r is to execute this chain
because it reaches line 9 and its subsequence 〈4,4p〉,〈4p,9〉
guarantees that r is the same as p at 9. Using DU, in
contrast, does not guarantee that du-pairs 〈12,3b〉 and 〈4p,9〉
are covered by the same execution—a test t1 might cover
〈12,3b〉 but take the false branch at 3b whereas, in another
test t2, 3 might be true because a<c (i.e., p.x at 3b is not
reached), so 〈4p,9〉 is covered but not infected.3

Note that, whenever chain q1 is covered, the infection
from ch1 will propagate to the output in line 9, so q1 is a
sufficient condition for that propagation. However, this is
not the case for all chains. For example, covering chain
q2=〈1,12〉,〈12,3b〉,〈3b,5〉,〈5,9〉 with inputs a=3, b-10, and
c=-10 results in the same output for the original and the
modified program (P and P ′, respectively) because, in both
cases, line 3 evaluates to true, line 5 evaluates to false,
and r is q at line 9 (q.x is not infected). Thus, while
being a necessary condition for a propagation through those
dependencies, covering q2 is not sufficient.

2) Phase 2: To obtain the sufficient conditions for prop-
agating an infection along a dependence chain, Phase 2
of MATRIX adds to each chain from Phase 1 a set of
propagation constraints computed using partial symbolic ex-
ecution [2] [15] [17] which starts at the change instead of the
program’s entry. These constraints are divided into two parts,
one for each of the two cases in which a chain propagates an
infection. In the first case, an infection propagates through
a chain if, for the same input, the chain is covered in P
or P ′, but the end point of that chain is not reached in the
other version of the program. In the second case, the chain
is covered in one version and its end point is reached in the
other version, but the state of the program computed along
this chain differs between the two versions.

Despite the limit in distance for the propagation con-
straints of Phase 2, satisfying these constraints for a chain
guarantees that an infection propagates through that chain
at least up its end at distance d, which prevents cases in
which the infection stops propagating somewhere in this
chain. Thus, Phase 2 increases the chances that the infection

23b is the second clause in line 3 and 4p is the subexpression of 4 that
contains p, which is reached when the condition at 4 evaluates to true.

3CHAINd, however, does not subsume DU or BR because there can be
affected du-pairs or branches beyond distance d from the change.

4

will propagate all the way to the output. In this paper, we
use PROPd to represent the strategy that enhances CHAINd

by adding to each chain these Phase-2 constraints.
For example, whenever the chain q2 (defined above) is

covered in P ′, an infection propagates through q2 only if
the condition for any of the two control dependencies in
this chain evaluates differently in P . Thus, for q2 and the
condition at clause 3b, the Phase-2 requirement is that b<-a
and b≥a, in which symbolic execution replaced p.x with
a for P and p.x with -a for P ′. For the condition at line 5
in this chain, the requirement is that a≤10 and -a>10.

A limitation of existing research on propagation-based
strategies is that, like coverage-based strategies, they have
been studied only to a limited extent [15] [17]. The main
obstacle for such studies is the cost of computing these
requirements. Thus, to address this problem, in the next
section (Section IV), we define a new approach that enables
the comprehensive study presented later in Section V.

IV. NEW PROPAGATION-BASED APPROACH

In this section, we present our new approach for
propagation-based strategies that addresses the main lim-
itation that hampers their effectiveness and applicability:
the short distance limits they achieve in practice [15] [17].
Section IV-A analyzes the causes for this limitation and
Section IV-B presents our solution.

A. Causes of Current Limitations

The distance limit d discussed in Section III-B for
propagation-based strategies addresses two practical con-
cerns: (1) the great computational costs of computing these
test requirements and (2) the need to contain the number
of chains and constraints presented to testers. The current
formulation of the MATRIX requirements has its benefits—
it specifies a comprehensive set of test requirements as
constraints that can be evaluated by executing only one of
the programs and can be extended backward for solving and
generating inputs for them. However, this formulation is also
problematic for two reasons:

1) Symbolic execution does not scale well. Advances for
multiple paths [17], compositionality [1], and other
optimizations [11] have extended the boundaries of
symbolic execution, but it remains intractable and,
therefore, the distances for Phase-2 are still limited.
Moreover, within the distance limits currently reached,
for many chains, some paths that cover them cannot
be analyzed because of their great length.

2) A large fraction of the testing requirements, identified
by the static analysis of P and P ′ to find all potential
effects of a change, are either infeasible or too difficult
to satisfy with any reasonable budget. Thus, many
requirements are not satisfied in practice, and the effort
spent in computing them is wasted.

B. The New Approach

To address these problems, we developed a new and more
efficient approach for CHAINd and PROPd that circumvents
the complexities of the current version of MATRIX. In-
stead of computing all test requirements beforehand (i.e.,
statically), our new approach checks for dependencies and
state differences during execution, identifying the satisfac-
tion of requirements on demand without computing them
beforehand. This new approach preserves the precision of
MATRIX while avoiding the cost of symbolic execution
and avoiding most of the effort that is wasted when a full
static analysis is performed for requirements that are not
satisfied later. Although our new solution does not directly
compute constraints for solving, the significant efficiency
improvements of the new approach justify this compromise.

Our new approach consists of the following steps:
1) Initialize the accumulated set of satisfied requirements,

Accum, to the empty set.
2) Compute a static forward slice from the location of

each change, on both P and P ′.
3) Instrument P and P ′ to detect the coverage of the

dependencies in the slice, including the values written
to the program state at the source of each dependence
and, for control dependencies, the branch taken.

4) Receive a new test input t from the tester and execute
P and P ′ for that input.

5) During execution, collect the information reported by
the instrumentation including, for each of P and P ′,
which dependencies are covered, which other depen-
dencies they succeed when covered, and which values
are computed at the source of those dependencies.

6) After execution, for P and P ′, find which chains were
executed by determining which dependencies from the
change were covered and, transitively, which other
dependencies succeeded those dependencies. Also,
determine which computed values differed between P
and P ′ at the source of each dependence in each chain.

7) Update Accum with the new chains covered and the
new infection-propagations found, if any.

8) Inform the tester whether t satisfied new requirements
and, if so, the new status of Accum. Also, notify the
tester if all requirements for the chains in the static
forward slice have been satisfied.

9) Go back to Step 4 if the tester wants to continue.
In a typical usage scenario for this approach, the tester

will first reuse the test cases from a regression test suite T
and input them in Step 4 to find the requirements already
satisfied by T . Then, the tester will iteratively create new
test cases t for Step 4, adding each t to T if it satisfies new
requirements, until all requirements are satisfied or a testing
budget limit is reached (e.g., number of test cases generated
that do not satisfy new requirements, person-hours spent, or
number of new test cases whose outcome must be inspected).

5

Table I
SUBJECTS, TEST SUITE SIZES, AND CHANGES.

Subject Description LOC Tests Changes
Tot info information measure 283 1052 8
Schedule1 priority scheduler 290 2650 8
Schedule2 priority scheduler 317 2710 8
Print tokens lexical analyzer 478 4130 9
NanoXML XML parser 3497 214 7

This new approach requires only static and dynamic
dependence analysis (i.e., slicing [7] [20] with some re-
finements) and runtime state monitoring, in contrast with
MATRIX, which, in addition, requires symbolic execution
for all paths that can propagate the changes.4 The efficiency
improvements of the new approach significantly increase
the distances that can be analyzed for CHAINd and PROPd,
as our study in Section V shows. Also, our approach
removes the burden from the tester of handling a large
number of short-distance requirements and, instead, provides
the tester with information focused on those long-distance
requirements that are actually satisfied.

V. STUDY OF CHANGE-TESTING STRATEGIES

In this section, we present our evaluation and comparison
of the effectiveness and cost-effectiveness of the change-
testing strategies discussed in Sections II–IV.

A. Empirical Setup

In this section, we describe our toolset and the subjects
used in our study.

1) Implementation: To evaluate all five change-testing
strategies, we used the DUA-FORENSICS dependence-
analysis and instrumentation framework [16] which is based
on Soot [18] and analyzes Java-bytecode programs. To
implement strategies RANDOM, BR, and DU, we reused the
existing functionality in DUA-FORENSICS to monitor the
coverage of statements, branches, and du-pairs, which we
modified for BR and DU so that only branches and du-pairs
affected by a change are monitored. Covered branches and
du-pairs are reported only after the change has executed.

For our new CHAINd and PROPd strategies, we extended
the dynamic forward slicer provided by DUA-FORENSICS
to not only identify which entities (i.e., statements and
dependencies) are covered after a change but also identify
which dependencies precede which other dependencies—
this ability lets us precisely monitor the dependence chains
within each dynamic forward slice. In addition, to imple-
ment PROPd we used the ability of DUA-FORENSICS to
identify state modifications performed by each statement in
a dependence chain.

4In our new approach, we could remove the static-slicing and
dependence-monitoring steps altogether and, instead, analyze the traces of
the programs for dependencies and state differences. This alternative would
eliminate the need for most of the static analysis, but it would increase the
time and space overhead during execution and post-processing. We intend
to explore this alternative design in the future.

2) Subjects: For our study, we considered subject pro-
grams for which a large number of test cases are available
(to properly simulate the creation of new test cases by a
tester) and that include changes seeded by other researchers.
Therefore, we decided to start our investigation on a number
of subjects from the Siemens suite [8] that we translated
from C to Java. These subjects are listed in Table I, where the
columns show, respectively, the name of the subject, a short
description, the size in lines of code (LOC), the number of
test cases available, and the number of changes used in our
study. The Siemens subjects can be seen as representative
of small programs as well as modules from larger programs
that are tested as units. In addition, as Table I also shows,
we studied NanoXML, a small XML parser used in real-
world scenarios and whose coding style and complexity
are representative of modern object-oriented programs. We
obtained NanoXML from the SIR repository [4].

3) Execution environment: To run our experiments, we
used a machine with two quad-core Intel CPUs and 12 GB
RAM running 32-bit Linux and the Hotspot 6 Java Virtual
Machine.

B. Goals and Design

The goal of our study was to evaluate both the effective-
ness and the cost-effectiveness (i.e., effectiveness per cost
unit) of the change-testing strategies discussed in sections III
and IV and compare these strategies against each other. Our
measure of effectiveness for a test suite is its difference-
detection—the number of test cases whose outputs in the
original and modified versions of the program differ. Our
measure of cost-effectiveness, or quality, of the test suite is
the ratio of difference-detection to the size of the test suite,
which we call ds-ratio. The greater the ds-ratio, the better
the strategy that created the test suite is at sampling and
discriminating test cases that can cause differences.

To achieve this goal, we sought to answer the following
three research questions:
RQ1. How (cost-)effective are our propagation-based strate-
gies with respect to existing techniques for testing changes?
RQ2. Which factors affect the effectiveness of change-
testing strategies?
RQ3. What is the cost of using propagation-based strategies?

For our study, we designated RANDOM as our baseline
strategy because we consider useless any strategy that is
less effective than randomly testing a change (i.e., creating
tests that just cover the change without regard for any other
requirement). Also, because only one test case suffices to
satisfy RANDOM for each change in our study, we used
RANDOM repeatedly to create test suites of the same sizes
as those obtained by the other strategies with the purpose of
assessing the cost-effectiveness of those test suites.

To evaluate BR, DU, CHAINd, and PROPd, for each
change in each subject, we used the following method for

6

Table II
AVERAGES FOR DIFFERENCES DETECTED, TEST-SUITE SIZES, AND DS-RATIOS FOR CHANGE-TESTING STRATEGIES.

Strategy RANDOM BR DU CHAINd PROPd
d1 d2 d3 ... d8 d9 d10 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

differences .24 1.35 6.81 .39 .45 .69 ... 4.28 6.08 8.15 .93 1.54 2.81 4.11 5.73 7.45 9.17 11.35 14.31 17.98
size 1.00 6.69 39.71 1.32 2.42 3.67 ... 47.31 54.76 71.11 2.50 4.51 7.33 11.33 21.09 33.15 44.04 59.88 69.89 89.11
ds-ratio .24 .24 .26 .31 .29 .3131 .31 .30 .42 .45 .48 .49 .48 .47 .45 .43 .42 .41

each of these strategies:
1) For all test cases available for that subject, use DUA-

FORENSICS on P and P ′ (i.e., the original and modi-
fied versions) to perform the analysis, monitoring, and
reporting of covered (i.e., satisfied) test requirements
(e.g., affected branches, chains from the change) as
described in the approach of Section IV-B.

2) Using this coverage information, construct 100 unique
test suites by randomly selecting one test case t at
a time from the pool and adding t to the test suite
if that increases the accumulated coverage of the
requirements by that test suite. Stop when the pool
contains no more test cases with additional coverage.
After each test suite is completed, place back in the
pool the selected test cases.

3) Compute the average difference-detection (i.e., number
of test cases that reveal an output difference), average
size, and average ds-ratio of the 100 test suites.

For RANDOM, instead of performing this process, we
analytically computed its ds-ratio for each change by de-
termining the number of test-cases in the pool that produce
a different output between P and P ′ and dividing it by the
number of test cases in that same pool that cover the change.
We then used this ratio to assess each test suite T created for
the other strategies by computing the product of this ratio
and the size of T , and then comparing this product with the
difference-detection achieved by T .

In this study, to support our analysis of factors af-
fecting the effectiveness of our strategies, we defined the
detectability of a change C as the ds-ratio for RANDOM
on that change, which represents the empirically-estimated
probability that a test case that covers the change also reveals
a difference in the output. The lower the detectability of a
change, the less likely it is that any test case will reveal a
difference for that change and thus, the more difficult it is
to test that change.

C. Results and Analysis

For CHAINd and PROPd, we experimented with all dis-
tances (values of d) that our implementation was capa-
ble of analyzing for each change, which in some cases
reached dozens of dependencies from the change. However,
to compute overall results per distance, we used as the
maximum value for d the shortest distance reached for all
studied changes, which in our experiments was 10. This is a
considerable improvement over the original formulation of

propagation-based strategies, which could reach distances of
about four dependencies only in similar subjects.

In the rest of this section, we address our three research
questions:

1) RQ1: Cost-effectiveness of strategies: Table II presents
the average results for all strategies. In this table, the header
row shows the strategy, including all distances for PROPd
and distances 1–3 and 7–10 only for CHAINd for space
reasons. The rest of the table shows three results for each
strategy—one result per row—which are the average number
of differences for all tests suites created for all changes using
that strategy, the average size of the test suites for all changes
in that strategy, and the average of the ds-ratios (differences-
to-size ratios) for the test suites for all changes in that
strategy. For example, for strategy DU, for all changes and
all 100 test suites created for each change using this strategy,
the average number of differences in the output detected was
6.81, the average size of the test suites was 39.71, and the
average of the ds-ratios for those test suites was 0.26. Note
that 0.26 is not the result of dividing the average number of
differences by the average size of the test suites—the average
of the ratios is not the same as the ratio of the averages.

The results in Table II show that, for existing coverage-
based strategies, every change required only one test case
to cover it using RANDOM, which was expected due to
the small size of the studied changes (a few lines of code,
at most). The detectability of the changes (ds-ratios for
RANDOM) ranged from 0.001 to 1.0, with an average of
0.24—for any set of 100 test cases, on average for all
changes, 24 test cases detect an output difference.

For BR and DU, somewhat surprisingly, the average ds-
ratio was indistinguishable from that for RANDOM. Despite
results in the literature for the Siemens subjects showing
that the whole-program counterparts of BR and, especially,
DU, perform better than random testing [8], these strategies
were not useful for the parts of the program affected by
each change. This result can be explained by the low
coverage levels attained for BR and DU in these subjects,
which ranged approximately between 50–90%, and which
were lower than for whole-program testing for which 100%
coverage was often achieved in the same subjects. It is
worth noting, however, that for du-pair coverage in the
Siemens subjects, the effectiveness over random testing
was unequivocably higher only for coverage levels of 93–
100% [8]. Another interesting result is the much greater av-
erage number of differences detected and test-suite sizes for
DU than for BR, which indicates that DU is more expensive

7

8

10

12

14

16

18

20

Rand_ch

CHAIN_d

Rand_pr

d
if
fe
re
n
t
o
u
tp
u
ts

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

Rand_ch

CHAIN_d

Rand_pr

PROP_d

d
if
fe
re
n
t
o
u
tp
u
ts

distance

Figure 2. Effectiveness of strategies per propagation distance.

to satisfy but it also provides a greater effectiveness, at about
the same ds-ratio as BR.

For our propagation-based strategies CHAINd and PROPd,
at all distances, the ds-ratios were much better, especially for
PROPd. CHAINd consistently achieved a ds-ratio of at least
.29, although a paired t-test did not show sufficient statistical
significance—the p-values with respect to RANDOM, BR,
and DU were .065 (i.e., 6.5% probability that CHAINd is not
really better than RANDOM), .022, and .188, respectively.
PROPd, however, performed best of all strategies for all
distances with a ds-ratio between .41–.49, whose superiority
over RANDOM, BR, DU, and CHAINd was statistically
significant with a p-value of less than .000002 in all cases.
Also, the results show that, on average, CHAINd and PROPd
detected more differences than DU at distances 10 and 7–10,
respectively. These results for detected differences highlight
the importance of our new approach for reaching longer
distances in propagation-based strategies that can achieve an
effectiveness that surpasses that of existing coverage-based
approaches.

An apparent inconsistency can be observed in the average
differences and test-suite sizes for CHAINd with respect
to DU. For distances 8 and 9, although not statistically
significant, the average number of differences detected by
CHAINd was less than for DU whereas the average test-suite
size was greater, despite the greater ds-ratio—the test-suite
quality—for CHAINd. This phenomenon is explained by the
distortion introduced by several changes for which CHAINd

required large test suites but only found a small number
of differences. In contrast, for those same changes, both
DU and BR were usually more cost-effective. Thus, such
cases magnified the average number of test cases needed
by CHAINd for all changes, which explains the apparent
inconsistency between these statistics and the greater average
ds-ratio observed for CHAINd over DU and BR.

Figures 2 and 3 provide a view, on average for all changes,
of the effectiveness of our propagation-based strategies per
distance and per test-suite size, respectively, with respect to
coverage-based strategies. (In Figure 3, CHAINd is omitted
for reasons explained below.) The bar graph in Figure 2
shows, for each distance (horizontal axis), the average

8

10

12

14

16

18

20

PROP_d

BR

DU

d
if

fe
re

n
t

o
u

tp
u

ts

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80

PROP_d

BR

DU

Random

d
if

fe
re

n
t

o
u

tp
u

ts

test suite size

Figure 3. Effectiveness of strategies per test-suite size.

number of differences detected (vertical axis) by test suites
created using CHAINd and PROPd. In this graph, categories
Rand ch and Rand pr show the average effectiveness ob-
tained by using RANDOM for test suites of identical size
to those obtained by CHAINd and PROPd, respectively. This
figure illustrates that, for all distances, and especially for
the greatest distances, both propagation-based strategies are
quite useful (i.e., considerably better than RANDOM).

The chart in Figure 3 shows the projected curves, for
all test-suite sizes observed (horizontal axis), of the effec-
tiveness (vertical axis) for PROPd and all three coverage-
based strategies, where BR and DU were applied repeatedly
in a fashion similar to RANDOM to match each observed
test-suite size. We omitted the curve for CHAINd from this
chart because it overlaps with the coverage-based strategies,
making it difficult to visualize. In other words, despite
exhibiting a greater probability per test case of revealing an
output difference (ds-ratio), CHAINd did not have a better
average difference-detection effectiveness per test-suite size
than the coverage-based strategies, the reason for which
is, again, that data points with great difference-detection
values dominated the average effectiveness. Also, for similar
reasons, BR was slightly better than RANDOM and DU in
this comparison. PROPd, in contrast, found a statistically-
significantly (for p-values of .001 or less) greater number of
differences than the other strategies for all test-suite sizes.

In all, for RQ1, we can conclude that, for these changes
and subjects:
• PROPd produces, overall, significantly higher-quality

test suites than the other strategies. In other words,
PROPd discriminates and distributes test cases over the
behavior space of changes better than the alternatives.

• CHAINd provides, overall, a less effective but po-
tentially simpler alternative of greater quality than
coverage-based strategies (although not statistically sig-
nificantly). When large test suites are required, how-
ever, CHAINd may not perform better than DU or BR.

• The longer distances achieved for propagation-based
strategies using our new approach allow this kind of
strategies to be more effective, in number of differences
detected, than DU or BR.

8

Table III
CLASSIFICATION OF CHANGES BY DETECTABILITY LIMIT.

Det. limit 1.0 .8 .6 .4 .2 .05 .03 .01 .005
Changes 40 33 32 30 27 18 16 7 6

500%

5000%

PROP_d

CHAIN_d

BR

ra
ti

o
 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
R

a
n

d
o

m

5%

50%

500%

5000%

PROP_d

CHAIN_d

BR

DU

change detectability limit

d
s-

ra
ti

o
 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
R

a
n

d
o

m

Figure 4. Cost-effectiveness improvement over RANDOM, in a logarithmic
scale, of all other strategies per detectability limit.

• DU and BR are virtually indistinguishable from RAN-
DOM, for the coverage levels achieved.

2) RQ2: Factors that affect effectiveness: For RQ1, we
discussed the average results of the strategies for all changes,
without distinguishing the difficulty of detecting differences
(i.e., the detectability) for each change. For RQ2, we inves-
tigated how detectability influences the cost-effectiveness of
all strategies. Table III shows the number of changes for
different detectability limits (i.e., the maximum detectability
of all changes in a set) in decreasing order of limits. For
example, all 40 changes have a detectability limit 1.0 (i.e.,
detectability of at most 1.0), whereas 30 changes have a
limit of 0.4 (i.e., detectability of at most 0.4).

Figure 4 illustrates how much more cost-effective PROPd,
CHAINd, BR, and DU are over RANDOM when we remove
from the set of studied changes those whose detectability is
above some limit. In this graph, the horizontal axis repre-
sents the detectability limit in decreasing order and the ver-
tical axis is the improvement in ds-ratio (cost-effectiveness)
over RANDOM, in a logarithmic scale. For example, for
detectability limit 1.0 (which includes all changes), PROPd
is, on average over RANDOM, 91% more cost-effective,
CHAINd is 30% more cost-effective, DU is 8% more cost-
effective, and BR is 2% less cost-effective (points below 1%
are not shown). However, as the detectability limit decreases,
the cost-effectiveness superiority over RANDOM of the other
strategies grows considerably. Considering that the graph
is in a logarithmic scale, the improvement of CHAINd

and, especially, PROPd over coverage-based strategies is
dramatic. At detectability limit 0.15, PROPd is already more
than 5 times more cost-effective than using RANDOM, and
for limits of 0.05 or less, PROPd is 18–28 times more cost-
effective. The other three strategies exhibit a lower but still
considerable improvement over random testing. CHAINd is

twice as effective as RANDOM at detectability 0.7 or less,
whereas BR and DU achieve the same improvement but
only for detectability 0.1 or less. Note that, the lower the
detectability limit is, the fewer changes are considered and
thus the lesser is the confidence for the reported data points.

In all, for RQ2 on these changes and subjects, we can
conclude that:
• PROPd improves cost-effectiveness significantly over

the other strategies for all changes and this improve-
ment grows dramatically as detectability decreases,
demonstrating that PROPd is clearly the best strategy
for testing changes of all the strategies presented in
this paper and in the literature.

• Some changes are “easy” to detect, but about half
the changes are quite difficult to detect (detectability
0.05 or less). Hence, RANDOM is insufficient for test-
ing changes. Moreover, the easy-to-detect changes are
likely to be detected by an existing regression test suite
that already covers them, so the real need for testers is a
good strategy (e.g., PROPd) for hard-to-detect changes.

3) RQ3: Cost of propagation-based strategies: Comput-
ing propagation constraints in previous work often took one
hour for small distances [17]. Our new approach, in contrast,
for any distance, usually took a few minutes, whereas the
runtime overhead for the test cases was about 600%. This
overhead was not as high as we expected, considering than
the overhead of monitoring just du-pairs can be 100% or
more [16]. Moreover, we expect that our toolset can be
optimized considerably to reduce this overhead.

D. Threats to Validity

The main internal threat to the validity of our results is
the potential presence of errors in our toolset that can distort
the coverage measured for each test. To minimize this threat,
we inserted sanity checks at different points in the toolset
and manually inspected the results for several changes.

The main external threat is the representativity of our sub-
jects and changes. More changes of different types and size
must be studied and greater coverage levels for all strategies
should be reached to further generalize our conclusions.

VI. RELATED WORK

Two coverage-based techniques that identify test require-
ments for modified software [3] [14] have been presented.
These techniques define coverage criteria for entities poten-
tially affected by changes. Our analysis in this paper, how-
ever, indicates that they can be inadequate for this task. Also,
these techniques have been only partially evaluated [15]. In
this paper, we presented the first complete study of these
techniques, showing that they are not the most effective.

Propagation-based techniques for augmenting test suites
have also been presented [2] [15]. These techniques use
dependence analysis and symbolic execution to identify
all possible paths along which the effects of changes can

9

propagate and the conditions for that propagation—up to
a distance limit. Although the cost-effectiveness of this
analysis has been further improved [17], we showed in this
paper a new and much more efficient approach to implement
these techniques that reaches longer distances for a greater
effectiveness.

Other techniques have been proposed for test-suite aug-
mentation that attempt to generate a test case that exposes
a difference in the output [12] or improves program cover-
age after the program changes [21]. These test-generation
techniques are mostly complementary to ours—they can
potentially be used to create test cases that satisfy the
requirements that our approach identifies. Our approach,
however, distinguishes and distributes test cases that achieve
different kinds of propagations of the effects of changes, pro-
ducing more effective test suites than random or coverage-
based test suites, as shown in our study.

At a fundamental level, our approach is related to
works by Richardson and Thompson [13], Morell [10],
and Voas [19] that describe the conditions under which
faults create erroneous states, propagate, and manifest in the
output. Our work applies these models to changes instead
of faults. In particular, we used the PIE model [19] in this
paper to analyze and compare change-testing strategies.

VII. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the existing change-testing
techniques for test suite augmentation, comparing coverage-
based with propagation-based strategies, and presented a
new and more efficient approach for applying propagation-
based strategies more aggressively than previous formula-
tions, reaching longer propagation distances as a result.

We also presented in this paper, using our new ap-
proach, the first complete study of both coverage-based and
propagation-based strategies for testing changes. The results
of this study suggest that coverage-based strategies are not
significantly better than randomly testing changes, whereas
propagation-based strategies, boosted by our new approach
that reaches long distances, are considerably better than
existing techniques.

We are currently extending our toolset and our studies
of change-testing techniques for more and larger changes
to generalize and better characterize the results observed
in this paper. We also plan to incorporate techniques such
as abstraction (e.g., [17]) to further improve the ability of
requirements to identify a larger and more diverse set of
behavioral differences caused by changes.

REFERENCES
[1] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven

compositional symbolic execution,” in Proc. of Tools and Alg.
for the Constr. and Analysis of Syst., Mar. 2008, pp. 367–381.

[2] T. Apiwattanapong, R. Santelices, P. K. Chittimalli, A. Orso,
and M. J. Harrold, “MATRIX: Maintenance-oriented testing
requirement identifier and examiner,” in Proc. of TAIC PART,
Aug. 2006, pp. 137–146.

[3] D. Binkley, “Semantics guided regression test cost reduction,”
IEEE Trans. on Softw. Eng., 23(8):498–516, Aug. 1997.

[4] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact,” Emp. Softw. Eng., vol. 10, no. 4,
pp. 405–435, 2005.

[5] J. Ferrante, K. Ottenstein, and J. Warren, “The program
dependence graph and its use in optimization,” ACM Trans.
on Prog. Lang. and Systems, vol. 9, no. 3, pp. 319–349, 1987.

[6] P. Frankl and E. J. Weyuker, “An applicable family of data
flow criteria,” IEEE Trans. on Softw. Eng., 14(10):1483-1498,
Oct. 1988.

[7] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” ACM Trans. on Prog. Lang. and
Systems, 12(1):26-60, Jan. 1990.

[8] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experi-
ments of the effectiveness of dataflow- and controlflow-based
test adequacy criteria,” in Proc. of Int’l Conf. on Softw. Eng.
(ICSE 94), 1994, pp. 191–200.

[9] J. C. King, “Symbolic execution and program testing,” Com-
munications of the ACM, 19(7):385–394, Jul. 1976.

[10] L. Morell, “A Theory of Fault-Based Testing,” IEEE Trans.
on Softw. Eng., 16(8):844-857, Aug. 1990.

[11] S. Person, M. Dwyer, S. Elbaum, and C. S. Păsăreanu,
“Differential symbolic execution,” in Proc. of Symp. on Foun-
dations of Softw. Eng., Nov. 2008, pp. 226–237.

[12] D. Qi, A. Roychoudhury, and Z. Liang, “Test generation to
expose changes in evolving programs,” in Proc. of Int’l Conf.
on Automated Softw. Eng., Sep. 2008.

[13] D. Richardson and M. C. Thompson, “The RELAY model of
error detection and its application,” in Proc. of Workshop on
Softw. Testing, Analysis and Verif., Jul. 1988, pp. 223–230.

[14] G. Rothermel and M. J. Harrold, “Selecting tests and iden-
tifying test coverage requirements for modified software,” in
Proc. of Int’l Symp. on Softw. Testing and Analysis, Aug.
1994, pp. 169–184.

[15] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso,
and M. J. Harrold, “Test-suite augmentation for evolving
software,” in Proc. of Int’l Conf. on Automated Softw. Eng.,
Sep. 2008, pp. 218–227.

[16] R. Santelices and M. J. Harrold, “Efficiently monitoring data-
flow test coverage,” in Proc. of Int’l Conf. on Automated
Softw. Eng., Nov. 2007, pp. 343–352.

[17] ——, “Exploiting program dependencies for scalable
multiple-path symbolic execution,” in Proc. of Int’l Symp. on
Softw. Testing and Analysis, Jul. 2010, pp. 195–206.

[18] “Soot: a Java Optimization Framework,” http://www.sable.
mcgill.ca/soot/, Sable Project, McGill University.

[19] J. Voas, “PIE:A Dynamic Failure-Based Technique,” IEEE
Trans. on Softw. Eng., 18(8):717–727, Aug. 1992.

[20] M. Weiser, “Program slicing,” IEEE Trans. on Softw. Eng.,
10(4):352–357, Jul. 1984.

[21] Z. Xu, Y. Kim, M. Kim, M. Cohen, and G. Rothermel,
“Directed test suite augmentation: Techniques and tradeoffs,”
in FSE, Nov. 2010.

10

