
Probabilistic Slicing for Predictive Impact Analysis

Raul Santelices and Mary Jean Harrold
College of Computing, Georgia Institute of Technology

E-mail: {raul|harrold}@cc.gatech.edu

ABSTRACT
Program slicing is a technique that determines which statements in
a program affect or are affected by another statement in that pro-
gram. Static forward slicing, in particular, can be used for impact
analysis by identifying all potential effects of changes in software.
This information helps developers design and test their changes.
Unfortunately, static slicing is too imprecise—it often produces
large sets of potentially affected statements, limiting its usefulness.
To reduce the resulting set of statements, other forms of slicing
have been proposed, such as dynamic slicing and thin slicing, but
they can miss relevant statements. In this paper, we present a new
technique, called Probabilistic Slicing (p-slicing), that augments a
static forward slice with a relevance score for each statement by
exploiting the observation that not all statements have the same
probability of being affected by a change. P-slicing can be used,
for example, to focus the attention of developers on the “most im-
pacted” parts of the program first. It can also help testers, for exam-
ple, by estimating the difficulty of “killing” a particular mutant in
mutation testing and prioritizing test cases. We also present an em-
pirical study that shows the effectiveness of p-slicing for predictive
impact analysis and we discuss potential benefits for other tasks.

1. INTRODUCTION
Software is constantly modified during its life cycle, resulting in

many challenges for developers because changes might not behave
as expected or may introduce erroneous side effects. Whenever
software must be modified to achieve some goal (e.g., fix errors,
add new functionality, or improve the quality of the code), devel-
opers must assess the parts of the software potentially impacted by
planned changes. This change-planning task is particularly deli-
cate in large and complex software where developers do not fully
understand the consequences that a change might have. Also, after
software is modified, developers must identify the parts affected by
changes so that they can retest those parts. To help accomplish
these tasks, developers use change impact analysis (or, simply,
impact analysis), which determines, for some level of granularity
(e.g., statements, modules, features), which entities in the software
can be affected by changes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright Georgia Institute of Technology. November, 2010..

Program slicing is a well-known technique that can be used for
various software-quality tasks, including impact analysis. Program
slicing was originally developed as a backward analysis of program
code to aid in its comprehension and debugging [22]. Its coun-
terpart, forward slicing, is used for change-related tasks, such as
impact analysis [4], regression testing [15], and program integra-
tion [3,18]. These techniques, collectively called static slicing, use
the control and data dependencies in the code to identify the set of
all statements that can affect or be affected by another statement.
Unfortunately, static slicing is often too imprecise for practical use
because it tends to produce very large sets of statements. To reduce
the resulting set of statements, other forms of slicing have been de-
veloped, such as dynamic slicing [10] and thin slicing [20], but they
are incomplete and can miss important parts of the code.

To address the limitations of previous slicing techniques for use
in impact analysis, we developed, and present in this paper, a new
technique, called Probabilistic Slicing (p-slicing), that augments a
forward slice with a relevance score for each statement. P-slicing
exploits the observation that not all statements have the same prob-
ability of being affected by a change. Intuitively, a forward slice
only indicates ”whether” a statement s is affected by a change C
no matter how small that influence might be, whereas the relevance
score indicates “how much” s is affected by C. The relevance score
is computed by statically analyzing the probability that (1) an ex-
ecution reaches s after executing C, (2) a sequence of data and
control dependencies is exercised between C and s, and (3) a mod-
ification of the program state (an infection [21]) propagates from C
to s through that sequence of dependencies. If these three events
occur, then either the execution history of s (i.e., the number of
occurrences of s during an execution) or the values computed or
branching decisions taken at s are modified due to C, and, thus, s
is impacted by C.

Our new technique exploits two important insights not fully con-
sidered in existing program-slicing research:

1. Our technique recognizes that some data dependencies are less
likely to be covered than other data dependencies because the
conditions to reach a use from a definition can be more com-
plex and difficult to satisfy in some cases. To incorporate this
factor, p-slicing uses an interprocedural reachability analysis to
estimate the probability that a use is reached by a definition.

2. Our technique not only recognizes that data dependencies are
more likely to propagate infections than control dependencies [8,
12, 20], but, unlike techniques that discard some or all control
dependencies [20], our technique includes control dependencies
from the beginning and gives them a lesser propagation proba-
bility than for data dependencies.

To perform forward slicing and compute the probabilities (rele-
vance scores) for each statement, p-slicing annotates the interproce-

1

dural dependence graph [9] used for slicing so that each data or con-
trol dependence is labeled with the probability that the dependence
will both be covered and propagate an infection after the source
point of the dependence—the definition or branching statement—
is reached. In this weighted graph, every path between a change
location C and a statement s has a probability of propagating an
infection from C to s that results from composing the probabili-
ties of the individual edges (dependencies). To compute the prob-
ability that C affects s through any path between them, p-slicing
performs a simplified data-flow analysis of the graph by leveraging
the probabilities of individual dependencies to compute the transi-
tive propagation probabilities from C to any other statement in the
graph—the statements in the forward slice.

To the best of our knowledge, only one existing technique, called
dynamic impact analysis [8], assigns probabilities to statements
in a slice. However, this technique works only on the backward
dynamic slice for a particular execution and is designed to assess
which executed components contributed to the success or failure of
that execution. Our new technique, instead, works on static slices
that represent all possible executions (not just observed executions)
to predict the impact of changes. Also, dynamic impact analy-
sis considers only the dependence path (i.e., dependence sequence)
with the highest propagation probability and does not consider the
coverage probability of each component. In contrast, our technique
composes the propagation probabilities for all dependence paths
between two components and does consider the coverage probabil-
ity of each component. (Individual paths might have a low impact
probability but, if many paths exist, the cumulative impact proba-
bility of a change can be much higher.)

P-slicing has a number of applications related to changes in soft-
ware. For example, it can be used to initially focus the attention of
developers on the “most strongly impacted” parts of the program—
the parts with the greatest relevance scores. For another example, it
can help testers estimate the most vulnerable areas of the program
that need to be carefully re-tested. For a third example, it gives
testers an estimate of the difficulty of exercising the impact of a
change on a particular statement or the program’s output. For muta-
tion testing [5], in which the cost of “killing” all mutants is usually
prohibitive, testers can first target those mutants with the highest
probability of being killed and discard as “likely equivalent” those
mutants with a propagation probability below some threshold.

The main benefit of our work is the usefulness of p-slices over
existing techniques for change-related tasks. P-slices are more use-
ful than simple forward slices for two reasons: (1) they indicate not
only which statements are affected by changes, but also how much
each statement is affected, and (2) unlike dynamic techniques, which
provide information on what has been observed, the relevance scores
reflect all possible behaviors of the software, and thus, can be used
for predictive purposes (e.g., identifying potential impacts that have
not yet been observed). A second benefit of our introduction of p-
slicing is that existing backward slicing techniques for program de-
bugging and comprehension can potentially benefit from our prob-
abilistic infection-propagation analysis.

In this paper, we present an empirical study of the effective-
ness of p-slicing for predicting the actual impact that changes have
within a slice when the changed programs are executed. The results
indicate that p-slicing can drive the developer’s attention to im-
pacted statements more effectively than simply using a slice with-
out probabilities. The results show, in particular, that for the 25%
or so of the statements with the highest p-slice scores, the chances
of finding statements that are actually impacted are the greatest.
Thus, our results suggest that p-slicing should be used to predic-
tively identify a large number of impacted statements quickly.

The main contributions of this paper are

• The concept of p-slice that distinguishes statements in forward
slices by their probability of being impacted by changes.
• A new technique, p-slicing, that computes this probability for

each statement in the program.
• An empirical study that shows, for the subjects we used, the

effectiveness of p-slicing for predicting the actual impact that
changes have at runtime.

2. FUNDAMENTAL CONCEPTS
This section first describes an example used to illustrate various

concepts in this paper and then presents the core concepts for the
rest of the paper.

2.1 Example
Figure 1 presents the example that we use throughout this paper.

The first two columns in the figure list the program, consisting of
four classes M, B, P, and Q, where P and Q are subclasses of B that
override the method B.foo. The entry point of the program is the
method M.main. In lines 1 and 2, the program creates instances of
P and Q that are assigned to references p and q, respectively. Indi-
rectly, in each case, the constructor of B is invoked with arguments
a and b. At line 3, the program checks a condition that determines
whether it continues to line 4 or exits. At line 4, one of the two
references is assigned to r, depending on the value of c. At lines
5–9, conditions on the value of the field x of the instances of P and
Q determine which call to foo is performed—the call at 7, 8, or 9.
Finally, a loop at lines 10–11 decrements the field x of q until it is
no longer greater than c.

Method B.foo performs an update of x depending on the condi-
tion at line 13. This method is overridden by P and Q at lines 17 and
18, respectively, so B.foo is never called directly. Instead, P.foo
invokes B.foo.

The right of Figure 1 shows an almost complete Program De-
pendence Graph (PDG) [7] for this program. (We use an interpro-
cedural form of the PDG [9, 19].) The nodes in this PDG are the
statements of the program and two special nodes: START for the
entry of the program and EN for the entry of M.main. In this PDG,
we omit the constructor of B and parts of B.foo.

2.2 Control and Data Dependencies
A solid edge in the PDG represents the control dependence of

the target node of the edge on the source node of the edge. Node
n1 is control dependent [7] on node n2 if the decision taken at n2

determines whether n1 is necessarily executed. Control dependen-
cies are created by the presence of branches and by other control
decisions including virtual calls for which there is more one target
method [19]. In Figure 1, an example of the former type is node 8,
which is control dependent on node 6 taking the false branch. An
example of the latter type is the call to foo at line 8, which decides
at runtime whether P.foo (node 17) or Q.foo (node 18) is called.
In the PDG, the special node START and its outgoing edges repre-
sent the decision of executing the program. The bottom right part
of this figure shows, separately, the control-dependence edges for
B.foo, including the interprocedural control dependences of nodes
13 and 16 on nodes 6, 8, and 9.

A dashed edge in the PDG represents a data dependence of the
target node on the source node, indicating that a variable defined
at the source node is used at the target node and that there is a
definition-clear path in the program (i.e., a path that does not re-
define the variable) between the source and target nodes. For ex-
ample, in Figure 1, node 6 is data dependent on node 4 because 4

2

class M {
void main(int a, b, c) {

1: B p = new P(a); // ch1: a -> -a
2: B q = new Q(b); // ch2: b -> b+1
3: if (a+b+c < p.x) {
4: B r = (c%2==0)? p : q;
5: if (p.x > 0) {
6: if (r.x > 0)
7: p.foo(q.x);

else
8: r.foo(q.x);

}
else

9: print r.foo(0);

10: while (q.x > c)
11: q.x--;

}}}

class B {
int x;

12: B(_x) { x = _x; }
int foo(y) {

13: if (x > y)
14: x -= 100*y;

else
15: x++;
16: return -y;

}
...

}
class P extends B {

17: int foo(y) { P.foo(y+1); }
...

}
class Q extends B {

18: int foo(y) { return y*2; }
...

}

1EN 2

START

3

4 105

M.main

6

78

9 11

17

18

Q.foo

P.foo
16

6

8

9

15

14

13

B.foo

Figure 1: Example program consisting of classes M , B, P , and Q. M has two changes. On the right, a partial PDG for this program.

defines r, 6 uses r, and there is a path (4,5,6) that does not redefine
r after 4. For space reasons, in this figure, we omitted the interpro-
cedural data dependencies, and, instead, treated each definition and
use from methods other than M.main as occurring inside the node
in M.main where those methods are called. For example, we treat
nodes 1 and 2 as definitions of the field x.

2.3 Slicing
Program slicing [22], also called static slicing, determines which

statements of the program may affect or be affected (impacted)
by another statement. A static forward slice (or, simply, forward
slice) from node n is the set containing n and all nodes transitively
affected by n along control and data dependencies, which corre-
sponds to the set of all nodes reachable from n in the PDG. (To
avoid unrealizable interprocedural paths, a solution by Horwitz,
Reps, and Binkley [9] can be used.) For example, the forward slice
from node 2 that indicates the potential impact of a change at that
node (e.g., ch2) is the set {2,4,6,7,8,10,11,12,13,14,15,16,17,18}.
This set contains all nodes in classes B, P , an Q because the con-
structor of B is implicitly invoked at 2 and because r might point
to the same object as q. Also, the condition at node 6 controls the
call to P.foo at 7 and, if r also points to the same object as q at 8,
the call to Q.foo at 8 as well.

2.4 Change Impact
The impact of a change has been defined in the literature at vari-

ous levels of granularity and precision [2,4,11,14]. Often, the pres-
ence of a statement in a static or dynamic forward slice is consid-
ered as indicative that the statement is affected or impacted. How-
ever, we are interested in the most precise definition of impact at
the statement level, which implies a semantic dependence [13] of
an impacted statement on a changed statement. In previous work,
we used the concept of semantic dependence to define the impact
of changes on other statements and changes [18]. In this paper, we
use that definition.

Essentially, a statement s is impacted by a change C if applying
C causes s to change its behavior for some execution. The be-
havior of a statement s in an execution is the augmented execution
history [18] of s, which consists of the sequence of pairs (si,Vsi)
where si is the ith occurrence of s in that execution and Vsi is the
set of values computed and stored by si.

3. TECHNIQUE
P-slicing is a predictive technique that enriches the static forward

slice from a statement C with a relevance score for each statement
s in that slice. The score for statement s is an estimate of the prob-
ability that s is impacted by change C for any execution of the pro-
gram. In this section, we first present an overview of p-slicing (Sec-
tion 3.1) followed by the probabilistic model on which p-slicing is
based (Section 3.2), the coverage and propagation probabilities of
individual dependencies as required by the model (Sections 3.3 and
3.4), and the approximations made by p-slicing to compute these
probabilities in practice (Section 3.5).

3.1 Overview
The probability that a change in a statement C impacts a state-

ment s has two factors: (1) the coverage of a sequence of depen-
dencies from C to s and (2) the propagation of an infection (i.e.,
state modification) from C to s along that sequence.

3.1.1 Coverage Probability
The motivation for considering the first factor in our technique

is that not only it is necessary that a statement s be in the forward
slice of a change C to be impacted by C, but s must actually be
reached along some sequence of dependencies after C is executed.
In general, different statements in a slice have different probabil-
ities of being reached along some sequence of dependencies (i.e.,
path in the PDG). Thus, a statement that is more likely to be reached
along a dependence sequence than another statement has a greater
chance of being impacted by a change during an execution (if all
other impact factors are the same for both statements).

For example, for change ch1 in Figure 1, which modifies the
field x of the object instantiated at line 1, the forward slice includes
statements 3 and 5, both of which use the field x of that object. Both
data dependencies look identical—they use the same field before it
has a chance of being overwritten. However, p-slicing recognizes
that statement 3 is more likely to be impacted by the change than
statement 5 because statement 3 is always reached, whereas reach-
ing statement 5 depends on a branching decision (at statement 3).

P-slicing performs a reachability analysis to compute the proba-
bility that each dependence in the slice is covered after the source
of the dependence is reached. For a control dependence (s,s′), this
analysis simply assigns to the dependence a probability 1

N
of being

covered, where N is the number of branches or decision outcomes
that s can take. For example, the coverage probability for control
dependence (3,10) in Figure 1 is 0.5 because N is 2 for statement 3.

3

For a data dependence (d,u), p-slicing performs a data-flow anal-
ysis that considers all definition-clear paths between d and u and
propagates along each control-flow edge1 the probabilities for all
reachable uses [1] from that edge.2 For example, the probability
that the definition of p.x at 1 reaches its use at 3 is 1.0, whereas
the probability that the same definition reaches its use at 5 is 0.5.
Another example is the use of p at 7, which is reached by the def-
inition of p at 1 after the conditions at 5 and 6 evaluate to true; its
coverage probability is, therefore, 1

2
× 1

2
, or 0.25. Note that the

coverage probability for this dependence is less than for the other
two examples simply because more conditions are required for the
use to be reached.

P-slicing also accounts for aliasing as a factor in the probability
that a data dependence is covered. For such a dependence to be
covered, not only it is necessary that the use is reached along some
path from the definition, but also, if the variable at the definition
or the use can be aliased with more than one object, the depen-
dence might not be covered. For example, the object pointed to
by variable r in Figure 1 can be aliased with the objects pointed
to by p and q. Thus, the coverage probability between the defini-
tion of p.x at line 1 and the use r.x at line 6 is not just 0.25, but
it must be reduced because r.x might be aliased with q.x rather
than p.x. Thus, p-slicing incorporates into the coverage probabil-
ity of this data dependence the probability that r.x is aliased with
p.x at line 6, which p-slice estimates as 0.5. Hence, the coverage
probability for this dependence is 0.25 × 0.5, or 0.125.

3.1.2 Propagation Probability
The coverage of a dependence sequence from a change C to a

statement s is a necessary but not sufficient condition for C to im-
pact s. Thus, p-slicing not only computes the probability that s is
reached from C along some dependence sequence, but also incor-
porates the probability that an infection at C propagates from each
dependence to the next in a covered sequence.

It has been shown that control dependencies are, in general, less
likely than data dependencies to propagate an infection from its
source to its target [12, 20]. For example, if the condition at line
5 in Figure 1 changes to p.x > -10, then this change will have
an impact on the rest of the program for only some values of the
input a. However, the influence of a control dependence cannot be
discarded altogether. Frequently, changes modify parts of the path
taken by a program, such as the number of iterations in a loop. Thus
p-slicing uses a measure for the infection-propagation probability
of control dependencies that is less than for data dependencies but
that still contributes to the overall propagation probability between
two points in the dependence graph.

In general, it is not possible to compute with full accuracy the
probability that a dependence will propagate an infection from its
source to its target. For example, for the change of the condition
at line 5 to p.x > -10, this probability depends on the input dis-
tribution of a. Therefore, p-slicing makes the simplifying assump-
tion that, after a branching statement is infected, there is an equal
chance that any of the N outcomes of that statement can be the re-
sult of evaluating the infected condition. Thus, the probability that
an infected branching condition switches to another outcome (i.e.,
infects the target of each control dependence associated to the new
outcome) is N−1

N
. In our example, p-slicing assigns to each control

dependence from statement 5 the infection-propagation probability

1A control-flow edge represents the execution-successor relationship among state-
ments in a program. Control-flow edges, along with the nodes representing the state-
ments, form the control-flow graph (CFG) of the program.
2In fact, one data-flow analysis is sufficient to compute the coverage probabilities for
all data dependencies in a slice or program.

0.5 because N is 2 in this case.
For data dependencies, consider an infected operand in an ex-

pression used to define a variable. The infection of that operand
will, in most cases, be transferred to the defined variable and then
will reach its uses.3 Therefore, p-slicing makes the simplifying as-
sumption that the propagation probability for a covered data depen-
dence is 1.0 (note that aliasing was handled in the coverage proba-
bility). For example, if r is infected at line 4 in Figure 1, then the
propagation probability to its uses at 6, 8, and 9 is 1.0.

3.1.3 Impact Probability
Given the coverage and propagation probabilities for individual

dependencies, p-slicing computes the product of these two proba-
bilities to obtain the impact probability for each dependence—the
probability that, after an infection reaches the source of the depen-
dence, the target of the dependence is impacted (i.e., reached and
infected). For example, a control dependence whose source has
two branches has an impact probability of 0.5×0.5, or 0.25.

After the impact probabilities for dependencies have been com-
puted, p-slicing performs another data-flow analysis, this time on
the PDG, composing (multiplying) the impact probabilities of con-
secutive dependencies for all dependence paths between two state-
ments s and s′ in the slice to determine the probability that s′ is
impacted along some dependence sequence from s. Like the data-
flow analysis from Section 3.1.1, this data-flow analysis obtains the
impact probabilities from the change to not just one, but all state-
ments in the forward slice.

For example, in Figure 1, consider change ch2 and statement 6,
which is affected by q (defined at 2) through a sequence of two
data dependencies: (2,4) and (4,6).4 The coverage probability for
q being used at 4 is 0.25 because it requires the condition at 3 to
be true and the inlined condition at 4 to be false. After that use is
reached and q is assigned to r, the coverage probability for (4,6)
is 0.5 because it only requires the condition at 5 to be true. Hence,
the coverage probability that node 6 is reached from ch2 via de-
pendencies is 0.125. Note that this is only half the probability that
an execution reaches 6 from 2 through any path (i.e., 0.25). Thus,
unlike a simple forward slice that lists the affected statements, p-
slicing identifies how a statement is reached within a slice and as-
signs probabilities accordingly. Meanwhile, the propagation proba-
bilities for these two data dependencies is simply 1.0, so the impact
probability of change ch2 on statement 5 is 0.125.

Another example is the impact of ch1 on statement 6, which in-
volves both control and data dependencies and is affected through
more than one dependence sequence. (As in the previous exam-
ple, assume that ch1 impacts both the reference p and the field x.)
Statement 6 uses r and the field x of the object that r references,
which is one of the instances created at lines 1 and 2. In this case,
both r and x can be impacted by the dependence sequence q1 =
((1,3),(3,5),(5,6)) consisting of one data dependence and two con-
trol dependencies. The impact probabilities for these dependencies
are, respectively, 1.0, 0.25, and 0.25. Thus, the impact probability
of ch1 on statement 6 through this sequence is 1.0 × 0.25 × 0.25,
or 0.0625. There are, however, three other sequences connecting
ch1 and the variables used at statement 6: q2 = ((1,3),(3,4),(4,6)),
q3 = ((1,4),(4,6)), and q4 = ((1,6)), where (1,3), (1,4), (1,6), and
(4,6) are data dependencies. The impact probabilities for those se-
quences are 0.125, 0.125, and 0.125, respectively. If ch1 does not

3The other source of infection of a definition is a branching statement on which the
definition depends. An infection in that statement propagates to the definition if it
makes the definition execute when, otherwise, it would not execute (or vice versa).
4For the sake of the argument, assume for this example that ch2 modifes both the
field x and the object assigned to q at line 2.

4

impact statement 6 via q1, ch1 can still impact that statement via
q2, q3, or q4. Thus, p-slicing combines these probabilities using the
data-flow algorithms induced by the system of equations presented
in the next sections, which guarantees that the overall impact prob-
ability of ch1 on statement 6 reflects the three sequences through
which that impact can occur.

3.2 Probabilistic Model of a Slice
This section formally presents our probabilistic model used to

compute the probabilities (relevance scores) for p-slicing.
Let C be the statement denoting the location where a change

is planned or has already been performed. P-slicing computes the
p-slice for C, which consists of the forward static slice from C
and, associated with each statement s in the slice, a relevance score
denoting the probability that C impacts s.5

The probability that a change C affects a statement s is given by

P (C→s) =

1 if C = s;

P (d
→) if src(d)=C ∧ tgt(d)=s;

P

∨
d ∈

out(C)

d
→ ∧ tgt(d)→s

 otherwise.

(1)
where P (x) is the probability of event x, s→t is the coverage of
s and t such that an infection propagates from s to t, src(d) and
tgt(d) are, respectively, the source and target statements of depen-

dence d, d
→ is the coverage of dependence d (implicitly assuming

that the source of d has been reached) such that an infection propa-
gates from src(d) to tgt(d) through d, and out(s) is the set of data
and control dependencies d such that src(d)=s.

Equation 1 has three cases for P (C→s). If s is the change loca-
tion, then the probability is trivially 1. Else, if s is directly depen-
dent on C (i.e., a dependence d exists from C to s), then P (C→s)
is the probability that the dependence between them is both cov-
ered and an infection propagates through it. Otherwise, P (C→s)
is the probability of the disjunction of |out(d)| events, each corre-
sponding to (1) the coverage of a dependence d whose source is C,
(2) the propagation of an infection through d, and (3) that the target
of d affects s. The last part of this event makes the computation of
P (C→s) recursive.

In our model, the probability of d
→ can be expressed as the joint

probability of its two components

P (d
→) = P (d

→cov
)× P (d

→prop
) (2)

where d
→cov

is the event that d is covered (assuming that src(d)

has been reached) and d
→prop

is the event that d propagates an
infection from its source to its target (assuming that d has been
covered).

3.3 Coverage Probability
In this section, we discuss the coverage probabilities of control

and data dependencies, respectively, as computed by p-slicing.

3.3.1 Control Dependencies
Given a branching statement s that has N branches (N > 1), we

denote the probability that s takes the ith branch by P (s branches to i).
Therefore,
5See Section 2.4 for the definition of impact.

N∑
i=1

P (s branches to i) = 1

P (s branches to i) is the coverage probability for all control de-
pendencies cdi from s labeled with branching decision i. Without
assuming anything about the condition evaluated at s, the proba-
bility for each branch i (and for any associated control dependence
cdi) can be reduced to

P (cdi→cov
) = P (s branches to i) =

1

N
(3)

3.3.2 Data Dependencies
The coverage probability for data dependencies is a more com-

plicated matter. Necessarily, a data dependence is covered if, after
its definition has been reached (assumed to be already true), some
definition-clear path to its use is then executed. However, for ob-
jects such as instance fields and array elements, aliasing must also
be considered. Thus, an additional condition for the coverage of
such data dependencies is that the memory location written at the
definition must be aliased to the memory location written at the use
and that no memory location written along the path between defini-
tion and use can be aliased to the defined memory location. There-
fore, the coverage probability for a data dependence du (where d is
the definition and u is the use) can be expressed as

P (du
→cov

) = P

∨
p ∈

paths(du)

p covered∧ alias(d, u) ∧
@s : s ∈ p ∧ s 6= d, u∧

alias(def(s), d)

 (4)

where paths(du) is the set of all definition-clear paths between
definition d and use u, alias(d, e) indicates whether the memory
locations defined or used at d and e are the same, s ∈ p represents
a statement instance6 in path p, and def(s) is the definition (if any)
occurring at statement instance s.

Equation 4 reflects all the factors involved in the coverage of a
data dependence but it cannot be implemented directly because the
number of paths between definition and use can be infinite. Instead,
our technique uses a slightly simpler equation pair:

P (du
→cov

) = P

∨
s ∈

succ(d)

s succeeds d ∧
s reaches u

× P (alias(d, u))

(5)

P (s reaches u) =

1 if s = u;

0 if u /∈ ru(s)

P

∨
s′ ∈

succ(s)

s′ succeeds s ∧
s′ reaches u

 if u ∈ ru(s)

(6)
where succ(s) is the set of all control-flow successor statements of
the statement or definition s, “s succeeds d” is the event that the
immediate successor of definition or statement d in an execution is
s, “s reaches u” is the event that u is reached along some definition-
clear path from s, alias(d, u) is the event that the variable defined
at d is the same one used at u, and ru(s) is the set of reachable
uses [1] from statement s.
6A statement instance is a particular occurrence of a statement in a path; a statement
can occur many times in the same path.

5

Because the events in the disjunctions in equations 5 and 6 are
exclusive—exactly one of the control-flow successors of a state-
ment succeeds it—and because the “succeeds” and “reaches” events
are independent, the probability of each of these disjunctions is

P

∨
si ∈

succ(s)

si succeeds s ∧
si reaches u

=

|succ(s)|∑
i = 1

i−1∏
j=1

(1−P (sj succeeds s))

× P (si succeeds s)
× P (si reaches u)

(7)
To compute an estimate of the probability that two variables are

aliased (i.e., the references or pointers used to access them refer to
the same memory location), our technique considers the points-to
sets—found by a pointer analysis [1]—of the two references and
uses the probability that an element of one set is in both sets:

P (alias(a, b)) =
| PointsToSet(a)

⋂
PointsToSet(b) |

| PointsToSet(a)
⋃

PointsToSet(b) | (8)

where a and b are references and PointsToSet(r) is the points-to
set of reference (pointer) r. The alias(., .) terms in equations 4
and 5 translate directly into alias(a, b), where a and b are the ref-
erences to the variables involved in those definitions and uses.

3.4 Propagation Probability
Given a dependence d that is covered, the probability that d also

propagates an infection if an infection arrives at the source of d is

P (d
→prop

)=

P (rhs(src(d)) propinf lhs(src(d))) if d is a data

dependence;

P (cond(src(d)) switches branch) if d is a control
dependence.

(9)
where rhs(s) is the right-hand side of an assignment s (i.e., a state-
ment that defines a variable), lhs(s) is the variable assigned at
s, cond(s) is the condition evaluated at a branching statement s,
e propinf v indicates that an infection in some variable used by ex-
pression e causes e to infect variable v, and “c switches branch”
means that an infection in some variable in condition c causes the
corresponding statement to take a different branch.

The probability that a dependence propagates an infection de-
pends on the semantics of the source statement of the dependence
and the distribution of the values used in that statement. Because
the effect of the first factor can be complex and the second factor
is, in general, undecidable, our technique uses a simpler equation
for this probability:

P (d
→prop

) =

{
1 if d is a data dependence;
N−1
N

if d is a control dependence.
(10)

where N is the number of branches coming out of src(d). This
approach assumes that, for a data dependence, an infection in any
operand propagates to the defined variable (which is almost always
the case) and, for a control dependence, the probability of switching
from one branch to another is the probability of randomly picking
any of the other N−1 branches.

3.5 Practical Approximations
Two more issues must be addressed to make an implementation

of these equation systems practical: the unknown degree of inde-
pendence among events in the disjunction of Equation 1 and the
complications caused by loops.

3.5.1 Independence of Disjuncts
Recall that Equation 1 defines the probability that a change at

node C in the program dependence graph impacts a statement s
directly or transitively along any dependence sequence. Although
that equation defines the change-impact probabilities to all state-
ments, the problem of computing the probability of the disjunction
in Equation 1 must be solved. Unlike the coverage of control-flow
successors of a node, which are exclusive events, the coverage and
infection propagation through a data dependence emanating from
a node is, in general, neither exclusive nor inclusive with the cov-
erage and propagation for the other (control and data) dependen-
cies from that node. Because computing the degree of dependence
among events in that disjunction is, in general, too complex and ex-
pensive, our technique uses an approach that follows two criteria:

1. Every term in the disjunction should add to the total probability—
the probability of the disjunction should be greater than the prob-
ability of each individual term. Intuitively, the more dependen-
cies emanating from a node, the greater the chances are that an
infection will propagate through any of those dependencies.

2. The independence of the terms (dependencies from a node) in the
disjunction should decrease with the number of terms. The more
dependencies emanating from a node, the more overlap there is
in their coverage probabilities.

Based on these criteria, our technique uses the following formula
for the probability of the disjunction of events whose degree of
independence is unknown:

P

 ∨
e ∈ E

e

 =

|E|∑
i = 1

i−1∏
j=1

(1−P (ProbSort(E, j))
j))

× P (ProbSort(E, i))
i

(11)
where E is a set of events whose independence from each other is
unknown and ProbSort(E, i) provides the ith event of set E in de-
scending order of probability: e is in position i if there are exactly
i−1 events in E with higher probabilities than e. Tied events are
ordered randomly—their exact order does not affect the result.

Equation 11 satisfies our criteria because it guarantees that the
result is not less than the probability of the individual terms, each
term adds to the final probability, and the result does not grow un-
controlled thanks to the i divider that grows with the number of
events.

3.5.2 Loops
When solving our equations iteratively (e.g., using a data-flow-

style algorithm), the presence of loops in both the control-flow
graph and the PDG causes an undesired effect: no matter how small
the probability that a graph node s′ is reached (or receives an infec-
tion) from a node s is for one iteration of a loop containing both s′

and s, for a sufficiently large number of iterations of the loop, the
probability will converge to 1. Not only this effect is unrealistic (in
practice, loops do not iterate infinite times), but it also highlights
that a prohibitively large number of iterations is needed to solve
this system of equations. (On each iteration, the probability of an
event is incremented by only a fraction.)

Our solution to the loop problem is to fix the number of times that
the backedges7 in a loop are used. Essentially, this is equivalent to
unrolling each loop a certain number of times. However, because
7A backedge is an edge whose target has already been visited during a pre-order depth-
first search when that visit reaches the source of the edge.

6

of the potentially prohibitive size of the unrolled control-flow or
dependence graph, our technique first identifies all the backedges
in the graph and then performs the following steps K times (a pa-
rameter of the technique):

1. Disable all backedges, making the graph acyclic.
2. Solve the equations for the acyclic graph in depth-first post order.
3. Enable the backedges, returning the graph to its original form.
4. Solve the equations for the graph in depth-first post-order.

In Steps 1 and 2, when backedges are disabled, the probabilities
from one node to another incorporate only one new iteration of
each loop. In Steps 3 and 4, when backedges are enabled (used
only once each), the probabilities from nodes inside loops to nodes
outside their containing loops (which in Steps 1 and 2 might have
been unreachable) are updated. In all, the effect of performing these
four steps K times is similar to unrolling the loops K times but
without the extra memory costs. More importantly, using a limited
value of K (e.g., 5 or 10) lets our technique obtain probabilities that
take loops into account (i.e., an event inside a loop is more likely to
occur than an identical event outside a loop) without suffering from
the problem of infinite loops already described.

4. EMPIRICAL EVALUATION
The goal of our evaluation is to assess the developer effort that

can be saved by using p-slices instead of simple forward slices.
These savings can be determined by how accurately the relevance
scores of p-slices reflect the real impacts of changes on software
running in typical operational conditions (e.g., in the field after de-
ployment) with respect to using simple slicing. The closer the p-
slice scores approximate the observed impacts, the better p-slicing
is for estimating the impacts that changes have.

4.1 Research Questions
To investigate the predictive accuracy of p-slicing with respect

to simple forward slicing for identifying impacted statements, we
addressed the following research questions:

RQ1: How effective is p-slicing for finding impacted statements?

RQ2: How effective is p-slicing for different cost intervals? (How
fast can the developer find impacted statements using p-slicing?)

RQ3: What is the cost of computing p-slices?

4.2 Experimental Setup
We implemented p-slicing in Java as an extension of our DUA-

FORENSICS dependence analysis and instrumentation tool [17] that
uses Soot8 to analyze Java-bytecode programs. We set the parame-
ter K for the number of data-flow iterations (Section 3.5.2) to 5.

To run our experiments, we used a quad-core Intel machine with
12 GB RAM running Linux and Sun’s JVM 6.

For the study, we used the subjects listed in Table 1. The table
provides the name, description, size in Java lines of code (non-
comment, non-blank), number of tests, and number of changes
studied. The first subject, Schedule1, is part of the Siemens suite
that we translated to Java and can be considered as representative of
small software modules. The next two subjects were obtained from
the SIR repository [6]. NanoXML is a lean XML parser designed
for a small memory footprint and XML-security is the signature
and encryption component of the Apache project.

To simulate typical operational conditions, we used the test suite
provided with each subject and changes provided with the subjects.
8
http://www.sable.mcgill.ca/soot

Table 1: Subjects, test suite sizes, and changes.
Subject Description Lines of Code Tests Changes
Schedule1 priority scheduler 290 2650 7
NanoXML XML parser 3497 214 7
XML-security encryption library 21613 92 7

Figure 2: Examination costs for the changes in Schedule1.

4.3 Experiment Design
To measure the effort (cost) it takes to find the impacted state-

ments within a slice, we considered a scenario in which the devel-
oper examines the statements in the forward slice in different orders
(e.g., the order induced by the relevance scores of p-slicing). For
each order, we computed the examination cost of identifying the
actually impacted statements9 as the average of the cost of reach-
ing each of those statements when examining the slice in that order.
The cost of reaching a statement s is the percentage of statements
in the slice that must be examined before reaching s. For example,
if a slice contains 1000 statements and, for some order, an impacted
statement s is in the 50th position, then the cost of reaching s in that
order is 5%. If, in that order, only three statements were actually
impacted with costs 5%, 7.3%, and 18.9%, then the cost of using
this order is 10.4% (i.e., the average of the three individual costs).

For each subject and change, we computed the p-slice and in-
strumented both the original and modified subjects to collect the
augmented execution histories of the statements in the p-slice. We
then ran the test suite for that subject and compared the collected
augmented execution histories to identify the subset of statements
from the p-slice that were impacted.10

The orders that we studied were:

1. Ideal: we ordered the statements by placing first those statements
that were actually impacted. Of course, this order is not predic-
tive but it helps identify the lowest possible cost that can be at-
tained by any ordering strategy. We use this strategy to compare
the costs of the other strategies by measuring how close to the
best (ideal) case those strategies are for each subject.

2. P-slice: we ordered the statements by decreasing relevance score.
When two or more statements have the same score, we used their
worst-case cost,11 which is consistent with the literature on fault-
localization costs.

3. Random: we created 100 random orderings of the statements,
and averaged their examination costs.

9The actually impacted statements are those that are impacted by a change in some
execution.

10A statement is impacted by a change during the execution of the test suite if its
augmented execution histories on the original and modified subject differ.

11For example, for a slice of size 100, if 10 statements are located at the same distance
and they occupy positions 11–20 in this order, then the cost of each statement is 20%.

7

Figure 3: Examination costs for the changes in NanoXML.

Figure 4: Examination costs for the changes in XML-security.

4.4 Results and Analysis

4.4.1 RQ1: Effectiveness of p-slicing
Figures 2, 3, and 4 present the results for the costs of the order

strategies applied to the changes in our subjects. On each graph, the
horizontal axis represents the results for each change; changes are
numbered from 1 to 7. The vertical axis represents, for each change
and order strategy, the examination cost of the impacted statements
as a percentage of the slice size. For each change, the first bar is
the cost of ideal, the second bar is the cost of p-slice, and the third
bar is the cost of random. The third column of Table 2 shows the
average sizes of the slices per subject as percentages of the subject
sizes (Lines of Code, second column).

Naturally, the ideal cost was always the least cost because no
other ordering can have a lesser cost. The ideal cost was also
considerably less than the other two in some cases. Also, as ex-
pected, the random order cost around 50% in all cases because, for
all positions in that order, every impacted statement has the same
chance of being located in that position. P-slicing, meanwhile, per-
formed consistently better than the random order. For example,
for Change 1 in NanoXML, p-slicing cost 32.6% of the slice, or
just 13.5 percentage points more than the ideal (best possible) case.
The random order, however, cost 30.8 points more than the ideal
for this change. On average, for NanoXML, p-slicing cost 17.2
percentage points more than the ideal, whereas the random order
cost 40.2 points more. This means that, on NanoXML, p-slicing
was considerably better in identifying the statements that are actu-
ally impacted than randomly examining the slice.

For all changes in XML-security, p-slicing was also clearly better
than the random order. On average, p-slicing cost 24.6 percentage
points more than the ideal case, while the random order cost 40.1

Figure 5: Impacted statements found versus cost for Schedule1.

Figure 6: Impacted statements found versus cost for NanoXML.

points more.
For Schedule1, which is a much smaller subject, the ideal cost

was much greater (as a percentage of the slice size) than for the
other subjects because the slices have few statements and those
statements are more closely related to each change—half of the
statements or more in each slice were actually impacted. Hence,
as expected, the average cost of using p-slicing was also greater
than for the other subjects because a greater percentage of impacted
statements in each slice must be reached. Also, p-slicing was not
as superior to the random order as in the other two subjects, with
a noticeable advantage for changes 2, 3, and 4 only. The average
costs of p-slicing and the random order for this subject were 17.2
and 22.8 points over the ideal cost, respectively.

In all, the results show that p-slicing can achieve an important
reduction in the effort of the developer for identifying the actually
impacted statements within a slice. In particular, for the realistic
subjects, NanoXML and XML-security, p-slicing resulted in an or-
dering that reduced, with respect to simple slicing (random order),
the difference with the ideal case to almost one half.

4.4.2 RQ2: Effectiveness vs. cost intervals
Developers cannot always afford to inspect an entire slice, but

they can benefit from an ordering that is cost-effective for their in-
spection budget. Thus, an important question is how soon impacts
are found during their inspection. Figures 2–4 show the average
inspection costs per change, but for RQ2 we need to visualize each
cost interval separately. The graphs of Figures 5, 6, and 7 provide
this information for our three subjects, respectively, as an average
for all changes in each subject. In the graphs, the horizontal axes

8

Figure 7: Impacted statements found versus cost for XML-security.

represent the cost (i.e., the percentage of the slice examined) and
the vertical axes represent the percentage of the impacted state-
ments found. The curves in the graphs represent the percentage
of impacted statements found for each point in the cost line for p-
slicing and simple slicing (random order). The curve for the ideal
ordering is also included to provide a perspective on the greatest
cost-effectiveness that can be attained.

For example, the curves in Figure 6 show that, after examining
4% of the slice, p-slicing has covered about 20% of the impacted
statements, whereas the random order has found one fifth of that
number. The ideal case at that cost point is about 50%. After 4%
of the slice has been visited, the slope of the p-slice curve remains
greater than the slope of the random order until about 30%. After
30%, p-slicing remains on top of the random order but the differ-
ence decreases as the exploration reaches the end of the slice. The
ideal curve, meanwhile, shows that the maximum effectiveness can
be achieved, at best, at 38% of the slice.

For any predictive technique such as slicing (random order) or
p-slicing, it is clear that 100% effectiveness will be reached only
when about 100% of the slice has been examined—every statement
in a slice, no matter how small its probability, has a chance of be-
ing impacted. In fact, the graphs confirm that there are impacted
statements that received the lowest scores. However, the graphs
also strongly confirm that the statements with the highest p-slice
scores, especially those in the first 25% of the p-slice, are much
more likely to be impacted than the rest of the statements. This is
a strong indicator that p-slicing discriminates effectively the most
relevant statements by locating 40–55% of the impacted statements
in the top 25% of the p-slice. The random order, in contrast, locates
only 25% of the impacted statements in that same initial cost range.

The ideal curves emphasize the benefit of using p-slicing over
a random order. If the difference between the areas under the p-
slice and random-order curves12 is already considerable for the first
25% or 50% of the slice (depending on the subject), this difference
is even more important because the best-case area is not the entire
area under the 100% horizontal line, but the area under the ideal
curve, which reaches 100% effectiveness only after 31% to 80% of
the slice has been examined.

An interesting case is that of Schedule1. Even though, on aver-
age (see Figure 2), p-slicing does not provide a significant improve-
ment, the ideal curve on Figure 5 reveals that p-slicing performs
very close to the ideal case until about 20% of the slice and still
closer to the ideal than to the random order until about 28%. This

12The area under a curve reflects the accumulated effectiveness between 0% and the
current point in the slice.

Table 2: Average analysis costs in seconds.
Subject Lines of Slice Dependence P-slicing

Code Size Analysis Analysis
Schedule1 290 42.2% 12 1
NanoXML 3497 56.9% 16 52
XML-security 21613 64.1% 701 5796

is another indication that p-slicing is very effective, considering its
predictive nature, for the part of the slice with the greatest scores.

In all, the curves for p-slicing in these graphs confirm the hypoth-
esis of RQ2: p-slicing finds more impacted statements faster than
the random ordering and it is especially fast in the first 20–25% of
the slice. Thus, the results suggest that developers will experience
the greatest cost-effectiveness during the inspection of the top 25%
or so of the p-slice, if their budget permits.

4.4.3 RQ3: Cost of computing p-slices
Table 2 shows, for each subject, the average time in seconds, for

all changes, required to perform the dependence and p-slicing anal-
yses (last two columns) using our setup described in Section 4.2.
The p-slicing analysis corresponds to the computation of the impact
probabilities for the statements in the slice. To put these numbers
in perspective, the second and third columns show the size of the
subjects in lines of code and the average size of the slices relative
to the subject size.

The cost of both analyses is proportional to the size of the sub-
ject. The dependence analysis, which includes the parsing, slic-
ing, and instrumentation (to find the real impacts for our study), is
small compared with the cost of p-slicing on NanoXML and XML-
security. In the worst case, XML-security, this cost was slightly
more than 10 minutes on average. On Schedule1, however, this cost
was greater than p-slicing because of the small size of this subject
and the comparatively higher cost of initializing our toolset. On
NanoXML, p-slicing took less than a minute on average and less
than two minutes in the worst case (not shown). On XML-security,
however, p-slicing took between 1 and 2 hours per change. This re-
sult is not unexpected because p-slicing performs a data-flow anal-
ysis on the interprocedural dependence graph and such an analysis
usually has a time complexity between linear and quadratic in prac-
tice. This tendency can represent a problem for p-slicing of larger
subjects, although our current implementation does not include yet
optimizations of data-flow analysis extensively studied in the liter-
ature, which can dramatically reduce the cost of this analysis and
our technique.

4.5 Threats to Validity
The main internal threat to the validity of our study is the pos-

sibility of implementation errors in our p-slicing, instrumentation,
monitoring, and reporting infrastructure. This threat is reduced by
the maturity of DUA-FORENSICS, which has been in development
for years. We also carefully tested, inspected, and manually val-
idated the results of our p-slicing module for small examples and
parts of the subjects used in the study.

The main external threat to our conclusions is the limited vari-
ety and nature of the subjects and changes we studied. These sub-
jects, however, have been used extensively in previous research.
Moreover, NanoXML and XML-Security are real-world programs.
Thus, although we cannot generalize our conclusions, our study in-
dicates that p-slicing can be cost-effective for predicting the real
impacts that changes have.

5. RELATED WORK
Program slicing was introduced as a backward analysis for pro-

gram comprehension and debugging [22]. Static forward slicing [9]

9

was then proposed for identifying the statements affected by other
statements, which can used for change-impact analysis [4]. Un-
fortunately, static slices are often too big to be useful. Our work
alleviates this problem by recognizing that not all statements are
equally relevant in a slice and that a static analysis can estimate
their relevance to improve the effectiveness of the forward slice.

Other forms of slicing have been proposed, such as dynamic slic-
ing [10] and thin slicing [20], that produce smaller backward slices
but can miss important statements for many applications. Our tech-
nique, in contrast, is designed for forward slicing and does not drop
statements but scores them instead. It remains to be seen how p-
slicing performs for backward slicing.

Also, in thin slicing [20], missing control dependencies can be
added on demand as the user searches for the desired statement
(e.g., the location of an error), but this expansion is guided by the
user. Our technique, instead, starts with all statements in the static
slice (which is a safe approach) and automatically estimates their
relevance to help the user. Furthermore, our technique incorporates
the differences in the coverage probabilities of dependencies.

Dynamic impact analysis techniques [2, 11, 14], which collect
execution information to assess the impact of changes, have also
been investigated. These techniques, however, work at a coarse
granularity level (e.g., methods) and their results are subject to the
executions observed. Our technique, in contrast, works at the state-
ment level and analyzes the program statically to predict the im-
pacts of changes for any execution, whether those impacts have
been observed yet or not. In other words, our technique is predic-
tive, whereas dynamic techniques are descriptive. Yet, in general,
static and dynamic techniques complement each other; we intend
to investigate that synergy in the future.

As already discussed in the Introduction, we are aware of only
one other technique [8] that assigns probabilities to statements in
a slice. This technique, however, works only on the backward dy-
namic slice to assess the possible contribution of components to
the output in a particular execution and considers only the strongest
dependence sequence from those executed. Also, the probabilities
computed by this technique do not include the coverage probabili-
ties of dependencies like our technique does.

6. CONCLUSION
In this paper, we presented Probabilistic Slicing (p-slicing), a

novel technique that computes and assigns relevance scores to the
statements in a static forward slice. These scores improve the in-
formation provided by a slice to developers by indicating which
statements are more likely to be impacted by a change during any
execution. Our technique exploits two main insights: (1) control
dependencies contribute less than data dependencies to the propa-
gation of infections (state modifications) but their contribution can-
not be ignored and (2) the coverage probability of a dependence
contributes directly to the probability that an infection is propa-
gated through that dependence.

We also presented a study showing that, for a set of subjects and
changes, p-slicing is more effective than pure slicing at predict-
ing which statements are actually impacted during the execution of
these subjects. This effectiveness is especially significant for those
statements with the highest scores, indicating that many impacted
statements are quickly isolated by p-slicing and that even a limited
inspection of a forward slice by a developer can benefit consider-
ably from using these scores.

We are currently investigating better ways to estimate coverage
and propagation probabilities and more efficient implementations
of our technique. In addition, we are exploring other applications
of p-slicing, including test-suite augmentation [16] and debugging.

7. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques and Tools. Addison-Wesley, 1986.
[2] T. Apiwattanapong, A. Orso, and M. J. Harrold. Efficient and

precise dynamic impact analysis using execute-after
sequences. In Proc. of Int’l Conf. on Softw. Engg., pp.
432–441, May 2005.

[3] D. Binkley, S. Horwitz, and T. Reps. Program integration for
languages with procedure calls. ACM Trans. on Softw. Eng.
and Methodology, 4(1):3–35, Jan. 1995.

[4] S. A. Bohner and R. S. Arnold. An introduction to software
change impact analysis. In Software Change Impact
Analysis, Bohner & Arnold, Eds. IEEE Computer Society
Press, pp. 1–26, June 1996.

[5] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer.
Computer, 11(4):34–41, Apr. 1978.

[6] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact. Emp. Softw. Eng., 10(4):405–435,
2005.

[7] J. Ferrante, K. Ottenstein, and J. Warren. The program
dependence graph and its use in optimization. ACM Trans.
on Prog. Lang. and Systems, 9(3):319-349, July 1987.

[8] T. Goradia. Dynamic impact analysis: a cost-effective
technique to enforce error-propagation. In ISSTA 93, pp.
171–181, July 1993.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Trans. on Prog. Lang. and
Systems, 12(1):26-60, Jan. 1990.

[10] B. Korel and J. Laski. Dynamic program slicing. Inf.
Process. Lett., 29(3):155–163, 1988.

[11] J. Law and G. Rothermel. Whole program path-based
dynamic impact analysis. In Proc. of Int’l Conf. on Softw.
Engg., pp. 308–318, May 2003.

[12] W. Masri and A. Podgurski. Measuring the strength of
information flows in programs. ACM Trans. Softw. Eng.
Methodol., 19(2):1–33, 2009.

[13] A. Podgurski and L. Clarke. A formal model of program
dependences and its implications for software testing,
debugging, and maintenance. IEEE Transactions on Softw.
Eng., 16(9):965–979, 1990.

[14] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: a tool for change impact analysis of java programs.
In Proc. of ACM Conf. on Obj. Oriented Prog. Syst., Lang.,
and Appl., pp. 432–448, Oct. 2004.

[15] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Trans. on Softw. Eng. and
Methodology, 6(2):173–210, Apr. 1997.

[16] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso,
and M. J. Harrold. Test-suite augmentation for evolving
software. In Proc. of Int’l Conf. on Autom. Softw. Eng., pp.
218–227, Sept. 2008.

[17] R. Santelices and M. J. Harrold. Efficiently monitoring
data-flow test coverage. In Proc. of Int’l Conf. on Automated
Softw. Eng., pp. 343–352, Nov. 2007.

[18] R. Santelices, M. J. Harrold, and A. Orso. Precisely detecting
runtime change interactions for evolving software. In Proc.
of Third IEEE Int’l Conf. on Softw. Testing, Verification and
Validation, pp. 429–438, Apr. 2010.

[19] S. Sinha, M. J. Harrold, and G. Rothermel. Interprocedural
control dependence. ACM Trans. Softw. Eng. Method.,
10(2):209–254, 2001.

[20] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In Proc.
of Conf. on Prog. Lang. Design and Impl., pp. 112–122, June
2007.

[21] J. Voas. PIE:A Dynamic Failure-Based Technique. IEEE
Trans. on Softw. Eng., 18(8):717–727, Aug. 1992.

[22] M. Weiser. Program slicing. IEEE Trans. on Softw. Eng.,
10(4):352–357, July 1984.

10

