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Abstract—Virtualization services permit I/O subsystems and
peripheral devices to be virtualized by placing select functionality
on specialized cores and/or on cores situated ‘closer’ to devices.
The approach is used to implement self-virtualized I/O (SV-
IO), which off-loads certain virtualization functionality onto the
cores available on the I/O device, accelerating I/O functions,
efficiently using key performance-limiting resources in multi-
core systems, i.e., memory and I/O bandwidth, and exploiting
the parallelism inherent in multi-core architectures. This paper
evaluates a concrete instance of self-virtualized I/O, a self-
virtualized network interface (SV-NIC), targeting the high end
NICs used in datacenters. Experimental evaluations of the SV-
NIC in a prototyping environment using an IXP2400-based
ethernet board show high scalability in terms of the numbers
of virtual interfaces (VIFs) offered to guests, and up to ∼77%
improvements in throughput and ∼53% reductions in latency,
compared to the current standard virtualized device implemen-
tations on hypervisor-based platforms. Beyond such performance
advantages, the generality of virtualization services and their
use for implementing enhancements to standard services are
demonstrated with a storage service that provides location
transparent access to block devices for guest VMs, and with
enhancements to a network service that provide per-VM, priority-
based servicing of virtual network devices.

I. INTRODUCTION

Virtualization technologies are making it possible to map
the concurrent computing workloads of multiple and often
highly diverse applications to multi-core platforms that range
from server systems to lower end desktops, laptops, and even
handheld devices. For such platforms, virtualization must deal
with the potential overheads both of using multiple cores and
of platform heterogeneity in terms of performance differences
in communication paths, e.g., inter-core communication chan-
nels, memory buses, and I/O buses as well as differences
across computational cores in their speeds or capabilities or
even their instruction set architectures (ISAs) [1], [2]. For in-
stance, the overheads of scheduling multiple virtual machines
may severely limit the performance of virtualized I/O [3]. An-
other basic question that virtualization solutions must address
is the right level of abstraction - whether or not we should
continue to virtualize multi-core platforms at the low levels of
abstraction imposed by the dictate of ‘hardware emulation’.
Para-virtualization has already established that performance
can be improved if a virtual device does not export to guest
VMs the same API as its corresponding physical device [4],
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and researchers are exploring new approaches to organize the
device interfaces used by guests [5], [6].

The research goal of this work is to better understand
virtualization mechanisms and implementations on multi-core
platforms. Focusing on I/O virtualization, we take a step
in these directions that develops principles and associated
software methods using which devices can be virtualized
efficiently and in ways that can take advantage of the relative
computational abilities of general purpose cores, of specialized
cores, and of the diverse platform-level connectivities between
cores and devices. Our approach uses notions from the domain
of Service Oriented Architecture (SOA) to describe each
resource exposed to guest VMs as a virtualization service
(VS). Service consumers, which are guest virtual machines
(VMs, also referred to as guest domains), use collections
of such services to gain access to architectural resources
like CPUs, memory, or I/O devices. More importantly, the
services used by guests can extend beyond physical resources
to provide new logical [7], [8] or enhanced physical resources,
where enhancements may concern improved performance or
platform scalability and/or additional value-added attributes
and functionalities useful to VMs or required by underlying
platforms. For example, a useful storage virtualization service
is one that provides a virtual disk with additional reliability
properties for the data stored on it, with costs commensurate
with the degree of reliability offered.

The virtualization services approach advocated in this paper
is guided by several implementation principles:

• partitioning the computational cores available on the plat-
form across different services in ways that minimize the
costs of scheduling and context switching when services
are invoked;

• minimizing inter-core communication, to attain low la-
tency for service execution by minimizing data copying
and inter-core signaling;

• specializing service implementation, to better exploit the
functionality of the underlying platform, e.g., network
processing engines for processing network I/O; and

• using service-specific abstractions, that is, exploiting ser-
vice semantics for gaining improved performance, rather
than operating at the abstraction levels presented by
physical devices.

These principles enable efficient virtualization services in
multiple ways: (1) by creating per-resource, custom virtualiza-
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tion solutions, including those that (2) exploit the considerable
power of future off-the-shelf, many-core hardware platforms,
and (3) by judiciously mapping service components to select
computational cores. An example described in detail in this
paper is a self-virtualized network interface (SV-NIC) that
efficiently exploits specialized communication cores. Further,
(4) virtualization services can go beyond simply virtualizing
hardware to also providing semantically meaningful, novel
functionality to guest VMs, an example being the enhanced
storage service mentioned above. (5) Another interesting at-
tribute of the virtualization services approach is that it can
be used to deal with the hardware-imposed limits on memory
and I/O bandwidths present in many-core machines. This is
because due to its self-contained nature, each virtualization
service’s functionality can be mapped to platform resources
so as to optimize bandwidth use, e.g., by reducing or remov-
ing the needs for data copying. Examples include the SV-
NIC’s use of bandwidth-conscious communication methods to
communicate directly with VMs (i.e., using hypervisor-bypass
methods), and a storage service built on top of the SV-NIC
in ways that optimize data copying between the networking
stack and storage stack.

This paper makes several novel contributions:

• It defines virtualization service as a fundamental con-
struct for composing system-level virtualization solutions.

• Focusing on I/O, virtualization services offer a flexible
implementation vehicle for I/O virtualization functional-
ity. In particular, these services (i) encapsulate all of the
tasks associated with virtualizing an I/O device, providing
management APIs to the hypervisor (also referred to
as the virtual machine monitor (VMM)) and virtual
devices and associated access APIs to guest VMs, and (ii)
offer flexibility in how I/O virtualization is implemented,
allowing both device-centric realizations (also referred to
as Self-Virtualized I/O, or SV-IO in brief) that use pro-
cessing capabilities present close to the peripheral device
as well as the more traditional host-centric realizations.
In other words, a virtualization service constitutes an
evolutionary approach to I/O virtualization – it encap-
sulates currently prevalent host-based I/O virtualization
approaches, and it allows a more decentralized approach
by using specialized cores and functional partitioning,
such as those provided by future virtualization enhanced
devices [9].

• The notion of virtualization services can be used to raise
the level of abstraction at which platform resources are
presented to guest VMs. I/O-centric examples are (i)
a storage service offering transparent local vs. remote
data storage, assisted by the SV-NIC, and (ii) a QoS-
enhanced SV-NIC that provides varying degrees of be-
havior isolation among guest VMs via prioritization of
virtual network devices. Such logical devices not only
efficiently implement the data movements between virtual
machines (VMs) and the virtualized platforms on which
they run, but also capture semantic information about
VM-device interactions that are then used to implement
additional device functionality like that pertaining to the

fair or efficient sharing of underlying physical devices.
The virtualization services approach is evaluated experimen-

tally. An I/O service implementation for a gigabit network
interface with on-board processing resources, demonstrates
that a device-centric realization (SV-NIC) exhibits improved
performance (∼ 2X better throughput, higher scalability, and
∼ 50% less latency) than a host-centric realization (also
referred to as HV-NIC). Partitioning virtualization processing
actions across multiple cores on a per service basis is also
shown useful for interrupt virtualization, where dedicating a
specific host core to this task along with using the SV-NIC
implementation provides an up to 50% latency reduction for
32 guest VMs vs. the case when the interrupt virtualization
task is shared by all cores. Other services able to benefit
from partitioning include those providing page table updates
or facilitating VM-VMM communication in VT-enabled [10]
systems [11].

The remainder of this paper is organized as follows. Sec-
tion II describes virtualization services for I/O as well as
the device- and host-centric realizations. Section III presents
the design and implementation of a network virtualization
service for a high-end gigabit network interface, followed by
a detailed description of the device-centric realization, termed
SV-NIC, in Section IV. SV-NIC can further take advantage
of the core partitioning ‘sidecore’ approach in a multi-core
system, as described in Section V. Section VI presents new
functionality provided by virtualization services, the example
being a storage service that offers location transparent access
to block devices for guest VMs. The section also describes
interesting service enhancements, such as a network service
that offers per-VM, priority-based servicing of virtual network
devices. Both of these services are built on top of the SV-NIC.
Detailed experimental evaluation of network virtualization
service realizations is presented in Section VII, followed by
related work in the areas of I/O virtualization and composing
services in virtualized environments. Section IX concludes the
paper with a summary of its contributions and explores future
directions.

II. VIRTUALIZATION SERVICES: TOWARD EFFICIENT
VIRTUALIZED I/O

To enable efficient and high performance virtualized I/O,
the virtualization services abstraction must describe the re-
sources used to implement device virtualization. These re-
sources include (1) some number of processing components
(cores), (2) communication media connecting these cores to
the physical device, and (3) the physical device(s) itself. With
these resources, a host-centric service implementation, for
instance, demands that all virtualization functionality run on
host processing cores, including using a driver domain per
device [12], using a driver domain per one set of devices [13],
or running driver code as part of the hypervisor [4]. In
contrast, alternative device-centric realizations, SV-IO, imple-
ment selected virtualization functionality on the device itself,
resulting in less host involvement and potential performance
or isolation benefits. With virtualization services, therefore,
system developers have the flexibility to make choices suitable
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for specific target platforms. Factors to be considered in such
choices include actual host vs. device hardware, host- vs.
device-level resources, the communication link between them,
and system and application requirements. In fact, evidence
exists for both host- and device-centric solutions. The former
represents a current industry trend that aims to exploit general
multi-core resources. The latter is bolstered by substantial
prior research, with examples including intelligent network
devices [14]–[16], smart disk subsystems [17], [18], and even
active network routers [19] with recent work focusing on
network virtualization [20].

Functionally, a virtualization service (VS) for I/O must:
• multiplex/demultiplex a potentially large number of vir-

tual I/O devices mapped to a set of physical devices in
a scalable manner, Examples of virtual devices include
virtual network interfaces, virtual block devices (disk),
virtual camera devices, and others. Each such device is
represented by a virtual interface (VIF) which exports a
well-defined interface to the guest OS, such as ethernet
or SCSI. The virtual interface is accessed from the guest
OS via a VIF device driver.

• provide a lightweight API to the hypervisor for managing
virtual devices,

• efficiently interact with guest domains via simple APIs
for accessing the virtual devices, and

• harness the compute power of many, potentially diverse
processing cores.

Before we describe the different components of the VS
abstraction and their functionalities, we briefly digress to
discuss the virtual interface (VIF) abstraction provided by a
VS and the associated API for accessing a VIF from a guest
domain.

A. Virtual Interfaces (VIFs)

At an abstract level, each VIF has a unique ID, and it con-
sists of two message queues, one for outgoing messages to the
device (i.e., send queue), the other for incoming messages from
the device (i.e., receive queue). The simple API associated
with these queues is as follows:

boolean isfull(send queue);
void send(send queue, message m);
boolean isempty(receive queue);
message recv(receive queue);

Additionally, a pair of signals is associated with each queue
for event-driven I/O. For the send queue, one signal is intended
for use by the guest domain, to notify the VS that the guest has
enqueued a message in the send queue. The other signal is used
by the VS to notify the guest domain that it has received the
message. The receive queue has signals similar to those of the
send queue, except that the roles of guest domain and VS are
interchanged. A particular implementation of VS need not use
all of these defined signals. For example, if the VS polls the
send queue to check the availability of message from the guest
domain, it is not required to send the signal from guest domain
to the VS. Furthermore, queue signals are configurable at
runtime, so that they are only sent when expected/desired from
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Fig. 1. Virtualization Service (VS) abstraction for I/O virtualization.

the other end. For example, a network driver using NAPI [21]
does not expect to receive any interrupts when it processes the
receive operation for a bunch of incoming network packets.

B. Virtualization Services: Design and Implementation

The VS abstraction has four logical components, as depicted
in Figure 1. The processing component consists of one or more
cores. This component is connected to the physical I/O device
via the peripheral communication fabric. Guest domains com-
municate with the VS using VIFs via the messaging fabric.

The two main functions a virtualization service are manag-
ing VIFs and performing I/O. Management involves creating
or destroying VIFs or reconfiguring various parameters asso-
ciated with them. These parameters define VIF performance
characteristics, and in addition, they can be used by guest
domains to specify QoS requirements for the virtual device.
When performing I/O, in one direction, a message sent by
a guest domain over a VIF’s send queue is received by the
VS’s processing component. The processing component then
performs all required processing on the message and forwards
it to the physical device over the peripheral communication
fabric. Similarly, in the other direction, the physical device
sends data to the processing component over the peripheral
communication fabric, which then demultiplexes it to one of
the existing VIFs and sends it to the appropriate guest domain
via the VIF’s receive queue. A key task in processing message
queues is for VS to multiplex/demultiplex multiple VIFs on
a single physical I/O device. The scheduling decisions made
as part of this task must enforce performance isolation among
different VIFs. While there are many efficient methods for
making such decisions, e.g. DWCS [22], the simple scheduling
method used in experimentation presented in this paper is
round-robin scheduling.

The VS prototypes evaluated in this paper are implemented
for the Xen hypervisor [4]. In Xen, the standard implemen-
tation of device I/O uses driver domains, which are special
guest domains that are given direct access to physical devices
via some physical interconnect (e.g., PCI). The driver domain
provides the virtual interfaces to other guest domains. The
driver domain also implements the multiplex/demultiplex logic
for sharing the physical device among virtual interfaces, the
logic of which depends on the properties of each physical
device. For instance, time sharing is used for the network
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interface, while space partitioning is used for storage. The
hypervisor schedules the driver domains to run on general
purpose host cores. The virtualization functionality provided
by the driver domain for each physical device being virtualized
is equivalent to that of a host-centric realization of a virtual-
ization service. Host cores belonging to the driver domain are
the VS’s processing components, and they are architecturally
homogeneous to the cores running guest domains. Host cores
also run the VS components that provide its management
and I/O functionality. The peripheral communication fabric
is implemented via the peripheral interconnect, e.g., PCI.
The messaging fabric to communicate between cores running
the driver domain and guest domains is implemented via
shared memory. The sharing of cores used by the processing
component is dependent on the hypervisor’s scheduling policy.

The device-centric realization of a virtualization service,
SV-IO, exploits the processing elements ’close to’ the physical
device [23]. In this case, the interconnect between the physical
I/O device and on-device processing elements form the periph-
eral communication fabric, while the interconnect between the
host system and the high end I/O device forms the messaging
fabric, e.g., PCIe. Performance and/or scalability for SV-IO
are improved when it is possible to better exploit the device’s
processing resources, so as to improve device behavior due
to ‘fabric near’ control actions [14], or to shorten the path
from device to guest domain. A specific example of a SV-IO
is presented in the next section.

Note that we use the terms device- or host-centric to refer
to the location(s) of the majority rather than the entirety of
the processing functionality in a VS. Our device-centric SV-IO
implementation for network virtualization service, for instance,
requires host assistance for certain control plane device/guest
interactions. Similarly, host-centric realization will require
some degree of device-level support, e.g., the capability to
perform I/O.

III. NETWORK VS: REALIZATIONS FOR NETWORK
INTERFACE VIRTUALIZATION

A. Hardware Platform and Basic Concepts

The communication device used is an IXP2400 network
processor(NP)-based RadiSys ENP2611 board [23]. This
resource-rich network processor features a XScale processing
core and 8 RISC-based specialized communication cores,
termed micro-engines. Each micro-engine supports 8 hard-
ware contexts with minimal context switching overhead. The
physical network device on the board is a PM3386 gigabit
ethernet MAC connected to the network processor via the
Media and Switch Fabric (MSF) [24]. The board also contains
substantial memory, including SDRAM, SRAM, scratchpad
and micro-engine local memory (listed in the order of de-
creasing sizes and latencies, and increasing costs.) The board
runs an embedded Linux distribution on the XScale core,
which contains, among others, some management utilities to
execute micro-code on the micro-engines. This micro-code is
the sole execution entity that runs on the micro-engines. This
network device is attached to a x86-based host platform via
PCI interconnect.

Fig. 2. Host-NP platform.

The combined host-NP platform represents one point in
the design space of future multi-core systems, offering het-
erogeneous cores for running applications, guest OSes, and
I/O functionality. As shown later, the platform is suitable for
evaluating and experimenting with the scalability and with
certain performance characteristics of the VS abstraction, but
it lacks the close coupling between host and NP resources
likely to be found in future integrated multi-core systems.
Specifically, in our case, the NP resides in the host system
as a PCI add-on device, and it is connected to the host PCI
bus via the Intel 21555 non-transparent PCI bridge [25]. This
bridge allows the NP to only access a portion of host RAM
resources via a 64MB PCI address window. In contrast, in the
current configuration, host cores can access all of the NP’s
256MB of DRAM.

The following details about the PCI bridge are relevant to
some of our performance results. The PCI bridge contains
multiple mailbox registers accessible from both host- and NP-
ends. These can be used to send information between host
cores and NP. The bridge also contains two interrupt identifier
registers called doorbell, each 16-bit wide. The NP can send
an interrupt to the host by setting any bit in the host-side
doorbell register. Similarly, a host core can send an interrupt
to the XScale core of the NP by setting any bit in the NP-side
doorbell register. Although the IRQ asserted by setting bits in
these registers is the same, the IRQ handler can differentiate
among multiple “reasons” for sending the interrupt by looking
at the bit that was set to assert the IRQ.

Another notable feature of the host-NP platform is the
limitation on PCI read bandwidth. Micro-benchmark results
presented in Figure 3 demonstrate the available throughput of
the PCI path between the host and the NP for read (write), by
reading (writing) a large buffer across the PCI bus both from
the host and from the NP. In order to model the behavior
of network packet processing, the read (write) was done
1500 bytes at a time. Also, aggregate throughput for NP to
host read/write is computed for a single micro-engine doing
programmed I/O using all of its 8 available hardware contexts,
where the contexts are copying data without any ordering
requirement among them (as shown by results presented
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Fig. 3. Throughput of the PCI interconnect between the host and the NP.

elsewhere [26], ordering does not adversely impact the NP
to PCI write throughput).

The results show the asymmetric nature of the PCI inter-
connect, favoring writes over reads. These results motivate
our design choice for implementing message queues in NP
SDRAM and host memory in a manner such that writes by a
core are performed to the remote memory (across PCI bus),
while reads by a core are performed to the local memory. This
way, I/O is performed mostly via writes to PCI address space
from both host and NP cores, thereby effectively utilizing the
I/O communication bandwidth.

B. HV-NIC: Host-Centric Implementation of the Network VS

In the host-centric realization, the network interface’s virtu-
alization logic runs in the driver domain (or controller domain,
Dom 0) on host cores. The processing power available on
the NP is used to tunnel network packets between the host
and the gigabit ethernet interface residing on the board. This
provides to the host the illusion that the ENP2611 board is
a gigabit ethernet interface. In fact, this tunnel interface is
almost identical to a VIF. It contains two queues, a send-
queue and a receive-queue, and it bears the ID of the physical
ethernet interface. These queues contain a ring structure for
queue maintenance and the actual packet buffers. Figure 4
shows the architectural diagram of HV-NIC.

The NP’s XScale core is not involved in the data fast
path. Its role is to carry out control actions, such as starting
and stopping the NP’s micro-engines. The data fast path, i.e.,
performing network I/O, is solely executed by micro-engines.
In particular, a single micro-engine thread polls the send-queue
and forwards packets queued by the device driver running in
the driver domain to the network I/O logic, which sends it
out to the physical port. In case the driver domain fills up
the entire queue before the micro-engine thread services it,
the driver domain requests a signal to be sent when further
space in the send-queue is available. The micro-engine thread
sends this signal after it has processed some packets from the
send-queue.

A second micro-engine’s execution contexts are used for
receive-side processing – they select the packets received from
the network I/O logic and enqueue them on the receive-queue,
in order. For each packet enqueued, a signal is sent to the
driver domain, if required. The host side driver for the tunnel
interface uses NAPI, which may disable this signal to reduce
the signal processing load on the host in case the packet arrival
rate is high. Thus, the signals are only sent by the NP to driver
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Fig. 4. HV-NIC: Host-centric network virtualization service for host-NP
platform

domain. Both signals are implemented as different identifier
bits of the host-side doorbell register; the IRQ handler running
in the driver domain determines the type of signal based on
the identifier bit.

Software ethernet bridging, virtual network interfaces, front-
end device drivers in guest domains, and back-end device
drivers in the driver domain are used to virtualize this tunnel
device. For a detailed description of Xen’s network interface
virtualization, we refer the reader to [13].

C. SV-NIC: Device-Centric implementation of the Network VS

In our device-centric SV-IO implementation, termed SV-
NIC, most of the processing component, the peripheral com-
munication fabric, and the physical I/O device components
of the VS abstraction are situated on the ENP2611 board
itself. Specifically, the processing component is mapped to
the XScale core and the micro-engines available on the board,
along with one or more host processing cores. The processing
component situated on the device performs the key tasks of
network I/O, and its multiplexing/de-multiplexing to various
guest VMs, as depicted in Figure 5. The peripheral com-
munication fabric consists of the Media and Switch Fabric
(MSF) [24]. The physical I/O device, the PM3386 gigabit
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ethernet controller, connects to the network processor via
MSF. The processing component uses PCI as the messaging
fabric to communicate with the guest domains via the virtual
interface (VIF) abstraction. The SV-NIC directly exports its
VIF abstraction to guest domains as virtual network devices.
A detailed description of the functionality breakdown of
various SV-NIC processing components is presented in the
next Section.

IV. SV-NIC: IMPLEMENTATION DETAILS

In this section, we describe how we map the design and
implementation principles presented earlier to the SV-NIC
realization. In particular, we utilize the principles of partition-
ing and specialization to use the NP cores for network I/O
virtualization. The SV-NIC realization is also a low latency
design, since it effectively uses the parallelism provided by
multiple hardware contexts of NP cores and implements a fast
path for I/O to guest VMs by providing them with safe, direct
access to the network card.

A. Management

Management functionality includes the creation of VIFs,
their removal, and changing the attributes and resources as-
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Fig. 6. Management interactions between SV-NIC, hypervisor and the
guest domain to create a VIF. Shaded region depicts the boundary of SV-
IO abstraction.

sociated with them. This functionality is realized via two
management drivers that execute on different processing com-
ponents of the SV-NIC. The host-side driver is part of the
OS running in the controller domain (Dom0) and executes
on the host core(s). The device-side driver is part of the
embedded OS running on the NP-based board and It runs
on the XScale core. Management requests are generated by
the VIF driver in guest domains or the hypervisor itself.
The interactions among VIF driver and host-side management
driver are carried out over a xenbus channel, a shared memory,
message-based, inter-VM communication mechanism in Xen.
The hypervisor communicates with the host-side management
driver using a shared memory buffer as well. All management
related decisions are made by the host-side management driver,
which in turn forwards relevant parameters to the device-side
driver via the 21555 bridge’s mailbox registers. The device-
side driver appropriates the resources for VIFs, which includes
assigning micro-engines for network I/O and messaging fabric
space for send/receive queues. The device-side driver then
communicates these changes to the host-side driver, via the
bridge’s mailbox registers, and to the micro-code running
on the micro-engines, via SRAM. Figure 6 depicts various
management interactions between the SV-NIC’s processing
components and the guest domain to create a VIF. The figure
also shows the I/O and signaling paths for the VIF between
the SV-NIC and the guest domain (via the messaging fabric).

Other management functionality includes the destruction of
VIFs and changing attributes of a VIF or of the SV-NIC.
Destruction requests are initiated by the hypervisor when a
VIF has to be removed from a guest. This might be the result
of a guest VM shutdown, or for security reasons (e.g., when
a VM is compromised, its VIFs can be torn apart.)

Certain attributes can be set at VIF creation time or later to
change VIF properties. For example, the throughput achievable
by a VIF directly depends on the buffer space provided for the
send- and receive-queues. Throughput and latency also depend
on the scheduling algorithm used at the NP for the processing
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of packets corresponding to different VIFs. Hence, changing
these attributes will affect runtime changes in VIF behavior.

The hypervisor plays a key role of privilege management
to enable safe direct access of SV-NIC resources to guest
domains. In particular, for a guest domain to utilize the VIF
provided by the SV-NIC for network I/O, it must be able to:

• write messages in the NP SDRAM corresponding to the
VIF send queue; and

• read messages from the host RAM corresponding to the
VIF receive queue.

The NP’s SDRAM is part of the host PCI address space.
Access to it is available by default only to privileged domains,
e.g., the controller domain. In order for a (non-privileged)
guest domain to be able to access its VIF’s send queue in this
address space, the management driver uses Xen’s grant table
mechanism to authorize write access to the corresponding I/O
memory region for the requesting guest domain. The guest
domain can then request Xen to map this region into its page
tables. Once the page table entries are installed, the guest
domain can safely inject messages into the send queue. For
security reasons, the ring structure part of this region is read-
only mapped for the guest, while the other part containing the
packet buffers is mapped read-write. This is necessary because
if the ring structure was writable, a malicious guest could
influence the NP to read from arbitrary locations and inject
bogus packets on the network.

The host memory area accessible to the NP is owned by the
controller domain. The management driver grants access of the
region belonging to a particular VIF to its corresponding guest
domain. The guest domain then asks Xen to map this region
into its page tables and can subsequently receive messages
directly from the VIF’s receive queue. The part of this region
containing the ring structure is mapped read-only, while the
part containing actual packet buffers is mapped read-write. The
above mappings are created once during VIF creation time and
remain in effect for the life-time of the VIF (usually the life-
time of its guest domain). All remaining logic to implement
packet buffers inside the queues and the send/receive opera-
tions is implemented completely by the guest domain driver
and on the NP micro-engines.

The grant table mechanism described above enforces se-
curity isolation – a guest domain cannot access the memory
space (neither upstream nor downstream) of VIFs other than
its own. Also, since a guest domain cannot directly perform
any management related functionality, it cannot influence the
NP to perform any illegal I/O to a VIF that it does not own.

B. Network I/O

A guest domain performs network I/O via a VIF. It enqueues
packets on the VIF’s send-queue and dequeues packets from
the VIF’s receive-queue. It is the responsibility of the SV-NIC
to:

• egress: multiplex packets in the send-queues of all VIFs
on to the physical device; and

• ingress: demultiplex the packets received from the physi-
cal network device onto appropriate VIFs’ receive queues.

Since VIFs export a regular ethernet device abstraction to the
host, this implementation models a software layer-2 (ethernet)
switch.

Egress is managed by one micro-engine context per VIF.
For simple load balancing, this context is selected from a pool
of contexts belonging to a single micro-engine (the egress
micro-engine) in a round robin fashion. Hence, the lists of
VIFs being serviced by the contexts of the egress micro-engine
are mutually disjoint. This allows for lock free operation of
all contexts. The contexts employ voluntary yielding after
processing every packet and during packet processing for I/O,
to maintain a fair-share of physical network resources across
multiple VIFs.

Ingress is managed for all VIFs by a shared pool of
contexts belonging to one micro-engine (the ingress micro-
engine). Each context selects a packet from the physical
network, demultiplexes it to a VIF based on MAC address,
locks the VIF, obtains a sequence number to perform “in-
order” placement of packets, unlocks the VIF, and signals
the next context to run. Next, it performs the I/O action of
moving the packet to the VIF receive-queue, during which
it voluntarily relinquishes the micro-engine to other contexts
that are either performing I/O or waiting for a signal from
the previous context in order to get a chance to execute. After
a context is done performing I/O, it waits for the expected
sequence number of the VIF to match its sequence number,
yielding the micro-engine voluntarily between checking for
this condition to become true. Once this wait operation is
complete, the context atomically adjusts the VIF’s receive-
queue data structures to signify that a packet is successfully
queued. Also, a signal to the guest domain is sent if required
by the guest domain driver.

In our SV-NIC implementation, only some of the signals
associated with VIFs are needed: those sent from the SV-
NIC to the guest domain. In particular, the SV-NIC sends
signals to guest domains related to status of send and receive
queues, and its micro-engines poll these queues for informa-
tion from host. There are multiple reasons for this design:
(1) an ample number of micro-engines and fast switchable
hardware contexts make it cheaper to poll for information
than to wait for an asynchronous signaling mechanism like
an interrupt; (2) hardware contexts running on micro-engines
are non-preemptible, thus the context must explicitly check for
the presence of interrupt signal anyway; and (3) there exists
no direct signaling path from host cores to micro-engines, so
that such signals would have to be routed via the XScale core,
resulting in high latency. These two signals work as transmit
and receive interrupts, respectively, similar to what is needed
for physical network devices. Both signals are configurable
and can be disabled/enabled at any time by the guest domain
VIF driver, as required. For example, the send code of the
guest domain driver does not enable the transmit interrupt
signal till it finds that the send queue is full (which will
happen if NP cores process packets at a rate slower than
the rate at which the host core(s) enqueue them). Similarly,
the receive code of the guest domain driver uses the NAPI
interface and disables receive interrupt signal when processing
a set of packets. This reduces the interrupt load on the host
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processor when the rate of incoming packets is high.
Signaling is achieved by assigning to every VIF two differ-

ent bits in the host-side interrupt identifier register (one each
for the send and receive directions). The bits are shared by
multiple VIFs in case the total number of VIFs exceeds 8.
The implementation, uses a simple round robin assignment
policy, where the identifier assigned to a guest VM, IDvm, is
computed as IDvm = ID++ mod 8, where ID is set to 0 at
SV-NIC initialization. Setting any bit in the identifier register
causes a master PCI interrupt to be asserted on the host core(s)
of SV-IO’s processing component. Using the association be-
tween bits and VIFs, the SV-NIC can determine which VIF (or
potential set of VIFs in case of sharing) generated the master
interrupt, along with the reason, by reading the identifier
register. Based on the reason (send/receive), an appropriate
signal is sent to the guest domain associated with the VIF(s).
This signal demultiplexing functionality is implemented as
part of the Xen hypervisor itself. In particular, The master
PCI interrupt generated by the SV-NIC is sent to a specific
host core that runs the signal demultiplexing and forwarding
logic for interrupt virtualization in hypervisor context. Thus,
the set of host cores, which is a part of SV-IO’s processing
component, includes the cores assigned for the controller
domain and the core performing interrupt virtualization.

In summary, the SV-NIC realization incorporates the VS
design principle of low latency to exploit the parallelism
inherent in NP cores and implements efficient VMM-bypass
I/O. SV-NIC also employs specialization provided by the
NP cores to better match networking related tasks to the
capabilities provided by the platform. Coupling this with the
principle of partitioning, SV-NIC provides an efficient and
scalable network I/O virtualization solution that effectively
utilizes the heterogeneous multi-core platform. In the next
section, we provide another example of how SV-NIC employs
core partitioning to support I/O virtualization.

V. ENHANCING SV-NICS WITH HOST-CORE
PARTITIONING: THE ’SIDECORE’ APPROACH

To generalize the core-partitioning approach, we next ex-
plore structuring a hypervisor itself as multiple components.
These components are responsible for certain virtualization
functionality, are internally implemented to best meet their
obligations, and are mapped to different sets of cores. In
multi- and many-core systems, components can even exe-
cute on cores other than those on which their functions
are called. Furthermore, it becomes possible to ‘specialize’
cores, permitting them to efficiently execute certain subsets
of rather than complete sets of hypervisor functionality. A
similar componentization approach in multi-processor systems
is taken by the K42 operating system [27].

We evaluate this implementation principle by experimen-
tally dedicating a single core, termed sidecore, to perform
specific hypervisor functions. This sidecore differs from nor-
mal cores in that it only executes one or a small set of
hypervisor functionality, whereas normal cores execute generic
guest VM and hypervisor code. A service request to any such
sidecore is termed a sidecall, and such calls can be made

from a guest VM or from a platform component, such as an
I/O device. The result is a hypervisor that attains improved
performance by internally using the client-server paradigm,
where the hypervisor (server) executing on a different core
performs a service requested by VMs or peripherals (clients).
We demonstrate the viability and advantages of the sidecore
approach by using it with the SV-NIC, in order to enhance the
I/O virtualization capabilities via efficient interrupt virtualiza-
tion. Other use cases are described in detail elsewhere [11].

As described earlier in Section IV, in the egress path, the
micro-engines poll for packets in the guest VM’s send-queue,
which obviates the need of any involvement of the VMM
or the driver domain. However, in the ingress path, the SV-
NIC needs to signal the guest VM when packets are available
for processing on the receive queue. Since the SV-NIC is a
PCI device, it does so by generating a single master PCI
interrupt, which is then routed to a host core by the I/O APIC.
The master interrupt is intercepted by Xen, and based on the
association between bits in the identifier register and VIFs, a
signal is routed to the appropriate guest VM(s). Specifically,
the master PCI interrupt is generated by the SV-NIC via a
8-bit wide identifier register – setting any bit in this register
generates the master interrupt on the host. Hence, the SV-NIC
can uniquely signal guest VMs for up to 8 VIFs. However,
when the number of VIFs exceeds 8, these bits are shared
by multiple VIFs, which may result in redundant signaling of
guest VMs and may cause performance degradation.

In the sidecore approach, we use a host core to carry out
the interrupt virtualization task. We establish a separate mes-
saging channel between the micro-engines and the sidecore.
This messaging channel is created in host-memory accessible
via PCI I/O to micro-engines and local memory I/O to the
sidecore. In the ingress path, micro-engines enqueue a message
containing the ID of the VM that requires signaling. The
sidecore continuously polls this messaging channel, and based
on the ID contained in the message, sends a signal to the
corresponding VM, signifying that one or more packets are
available in the receive queue of the VIF. This approach not
only improves performance, by avoiding the need for explicit
interrupt routing, but it also improves performance isolation
between multiple guest VMs. One example is a signal sent
by SV-NIC for a VIF whose corresponding guest VM is not
currently scheduled to run on the host core where the master
interrupt is delivered. In our current implementation without
sidecore, such a signal unnecessarily preempts the currently
running guest VM to the hypervisor context for interrupt
servicing. In contrast, the sidecore approach uses one host
core exclusively for interrupt virtualization and hence, does
not interrupt any guest VM unnecessarily. Further, we abandon
signaling via PCI interrupts altogether, which reduces the
latency of the signaling path by avoiding redundant signaling.
A negative element of the approach is that all signals must
always be forwarded by the sidecore to the core running the
guest domain as an inter-processor interrupt (IPI). That is,
in this case, it is not possible to opportunistically make an
upcall from the host core processing master interrupt to the
guest domain in case the intended guest domain is currently
scheduled to run on the same host core. Evaluation of SV-NIC
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implementation with sidecore support is presented alongside
SV-NIC without sidecore and HV-NIC in Section VII.

VI. LOGICAL DEVICES: ENHANCED I/O VIRTUALIZATION
SERVICES

In virtualized environments, VM communication perfor-
mance is an important aspect of overall system performance.
Focusing on VM communications related to I/O and leveraging
the fact that modern systems already have to virtualize the
physical devices used by VMs, this section describes the
performance advantages derived from extending virtual device
interfaces, that is, from raising the level of abstraction offered
to guest VMs by virtual devices by presenting them as logical
instead of physical devices.

Constituting the fourth design principle of a virtualization
service presented earlier, i.e., service-specific abstractions,
logical devices take an information-centric view of how
communication happens in the end systems. In this view,
virtual machines executing on different CPU cores (and the
applications they run) use the data sent and received for
certain tasks and when doing so, extract or derive semantically
meaningful information from such data. In fact, past work has
already demonstrated many useful methods for accelerating
such derivations by providing semantic information at lower
levels, e.g., with active disks [28] or with enriched network
interfaces [15]. Leveraging these methods, our approach is
to permit end systems to associate with VMs’ data commu-
nications the information extraction, annotation, and/or data
conversion tasks they wish to have performed on said data.
The goal of such associations is to improve certain end system
characteristics, such as performance, scalability, and reliability,
and to provide VMs with additional functionality at no or
minimal cost. Performance improvements are derived from
dealing with impediments in the critical paths of information
exchanges. The aforementioned data conversions to correct
for differences in endian-ness constitute one such impediment.
Others include dealing with how I/O is handled in virtualized
systems, e.g., by OS/VMM bypass, or how I/O resources
are allocated among VMs to meet their QoS requirements.
Examples of services related to scalability and reliability
include online monitoring to help a virtual machine better
manage a platform’s resources, such as memory [29], and
online monitoring to isolate misbehaving VMs.

Focusing on virtualized I/O, the platform associates some
computation with a device I/O path. This association provides
the VM with an enhanced virtual device, termed a logical
device, with additional attributes/functionality which may not
be natively supported by the corresponding physical device.
Before continuing, we note that it is difficult to cleanly
distinguish ‘data’ from ‘information’. This is because the
same unit may be treated as data by some software modules
and as information by others. A concrete example is a unit
of block device data handled by the device driver layer. It
may contain file system specific directory information, i.e.,
information from the point of view of the file system, or
data in a memory page from the operating system’s point,
or a structure implementing a binary search tree from an

application’s point of view. Virtualization services, therefore,
leave it up to the end systems that handle these units to state
and implement their information-centric views.

We leverage the virtualization services framework based
on Xen virtualized environment presented earlier for building
logical devices. For a host-centric virtualization service imple-
mentation, additional functionalities and properties required
to implement logical devices are implemented inside the
driver domain. Alternatively, using ‘smart’, self-virtualized
devices, these functions are executed by the device itself. For
the former host-centric virtualization service, the overall I/O
path (and hence the latency) experienced by data to proceed
from the physical device to the VM is longer, since the VP
must schedule and run multiple VMs for each interaction.
However, the cost of implementation is low due to the ease of
programmability on standard x86 hardware. For the latter SV-
IO based approach, the latency experienced by data movement
is reduced, since data moves directly from device to guest VM,
as described in Section IV. However, with more functionality
desired from logical devices, the cost of building a solution
with this approach may increase due to the increased complex-
ity and cost of software development on a specialized platform.
In this paper, we focus on logical devices for device-centric
virtualization services. Realizations based on the host-centric
approach are presented elsewhere [7], [30].

This section presents two concrete examples of enhanced
virtualization services that provide logical devices: a network
virtualization service that provides virtual NICs with priority-
based QoS-support, and a storage virtualization service which
permits a VM to access a block device regardless of whether
such a device is physically located locally or must be accessed
at a remote location. Xen-based implementations of these
services demonstrate substantial performance improvements
and additional functionality derived from the corresponding
logical devices at a minimal cost to VMs, in part because
virtualization services can utilize additional computational
resources and can take better advantage of certain underlying
platform capabilities.

A. QoS Enhanced Self-Virtualized NIC

Dynamic VM/application behaviors and consequent changes
in the resource needs of their data flows require that virtual-
ization services be aware of VMs’ quality requirements. These
requirements are either inferred implicitly by the VS [29], or
are explicitly communicated by VMs. In this work, we chose
the latter approach. In particular, for network I/O, we enhance
the self-virtualized NIC (SV-NIC) prototype described earlier
with priority-based QoS support, where flows from different
VMs can be assigned different priorities. The management
domain assigns a numeric priority between 1 and 100 to a VM
and communicates this value to the SV-NIC via management
driver (refer to Figure 6). The SV-NIC, then, uses the priority
information to compute scheduling policies and resource allo-
cation requirements for all VIFs corresponding to all VMs,
where resources include network processor resources, such
as IXP microengine contexts and interrupt identifier bits, and
memory resources available on the SV-NIC. A more detailed



10

description of how the QoS feature is implemented on the NP
board appears elsewhere [31].

B. SV-NIC based Remote Virtual Block Device (RVBD)

A simple logical functionality currently implemented by
guest operating systems is that of a network block device
(NBD) [32]. With NBD, block devices (e.g., disks) can
be accessed remotely by having the guest operating system
extract disk block information from the network packets it
receives. Enhanced virtualization services enable an alternative
approach that provide to guest VMs transparent remote device
accesses. In this approach, a remote virtual block device
(RVBD) provided by an enhanced network VS hides from the
VM the fact that the physical device is located remotely.

The potential advantages of this approach are multi-fold.
First, ‘lean’ functionality like that of RVBD can be imple-
mented by the hardware, in a manner similar to iSCSI [33].
This is not likely the case for file system based realizations of
remote data accesses. Second, there is already ongoing work
that aims to decouple the efficient remote data accesses real-
ized by approaches like RVBD from the complex semantics
of modern file systems. An example is the Light-Weight File
System (LWFS) created for the high performance domain [34]
which separates fast path file read and write operations from
operations used for meta-data purposes, such as file naming
or consistency. The extended VS approach makes it easy to
vary the placement of different elements of LWFS and/or
its back-end storage functionality (e.g., object stores [35])
into and/or outside the virtualized platforms being used for
their implementation. Third, decoupling the device access from
device location significantly helps in device consolidation in
large computing systems. Fourth, this approach removes the
requirement that the guest VM runs the networking stack
for disk access, thereby reducing the guest’s computational
resource needs. Finally, having transparent access facilitates
virtual device migration [36] while doing VM migration, i.e.,
it provides continued access to I/O devices during and after
the guest VM migration.

Before describing the RVBD implementation with SV-NIC,
we briefly outline the Netbus mechanism [36], an extension
of the basic shared memory based ‘xenbus’ communication
mechanism used for virtual device access in systems virtu-
alized with Xen. This mechanism utilizes a ‘split’ imple-
mentation of device driver stacks, consisting of a front-end
(FE) and a back-end (BE) driver. The VM executes the FE,
and the virtualization service executes the BE (either in the
driver domain or in the self-virtualized device). FE and BE
communicate with each other over Xenbus. To enable these
communications to extend across multiple machines, Netbus
extends Xen’s existing single-platform solution by further
splitting the BE into two components, local BE (LBE) and
remote BE (RBE). With this approach, when a virtual device
is added to a VM running on host M1 and if the corresponding
physical device is remote (present on M2), the LBE on M1
establishes a communication channel with the RBE on M2.
The LBE then tunnels data between the FE and the RBE. Both
LBE and RBE constitute the virtualization service, along with

any extensions required for logical functionality that can be
implemented either in LBE or in RBE.

The RVBD implementation follows the Netbus approach
described above, where the LBE implements the logical func-
tionality. In particular, the RVBD FE is similar to that of a
normal VBD FE. The RVBD FE inside the VM accesses the
virtual disk device by making block requests to its correspond-
ing RVBD LBE running at M1, which converts these requests
to remote access requests and forwards them to the RVBD
RBE, which runs at M2. The RVBD RBE then makes the
actual requests to the device and returns the responses to the
RVBD LBE over the network. The LBE performs the logical
translation of these responses to VBD responses, and in turn
returns the VBD information to the RVBD FE.

Previous work [36] has presented a host-centric virtualiza-
tion services based RVBD solution with performance compa-
rable to that of the NBD and with the added benefits described
above. In particular, the LBE runs in Dom0 and communicates
with the RBE on M2 over a TCP/IP connection. The RVBD FE
is a regular VBD FE which is connected to the LBE. LBE con-
verts the block requests and send them to RBE over the TCP/IP
connection. The SV-NIC based solution evaluated in this paper
takes the device-centric virtualization service approach, where
the LBE is implemented on the NP board itself. Since a TCP
offload solution is not available to us for the IXP-based NP
card, we developed an alternative realization that uses message
passing over ethernet to implement remote access. This ‘lean’
approach is in keeping with similar implementations done in
the past [37] and with ongoing work in the high performance
domain. In particular, the FE sends disk blocks as messages
to the LBE on the NP card, which converts these messages
to ethernet frames and sends them to the RBE. In the ingress
path, the FE extracts disk blocks from messages received by
the LBE and hands it over to the guest VM, without requiring
data to traverse the guest VM’s networking stack.

VII. PERFORMANCE EVALUATION

This section presents comparative experimental evaluation
of the host-centric network virtualization service implementa-
tion (HV-NIC), along with the device-centric (SV-NIC) real-
izations with, and without, sidecore. It also presents evaluation
of logical devices built using SV-NIC.

A. Experiment Basis and Description

The experiments reported in this paper use two hosts, each
with an attached ENP2611 board. The gigabit network ports
of both boards are connected to a gigabit switch. Each host
has an additional gigabit ethernet card, which connects it to a
separate subnet for developmental use.

Hosts are dual core hyper-threaded Pentium Xeon (a total
of 4 logical processors) 2.80GHz servers, with 2GB RAM.
The hypervisor used for system virtualization is Xen version
3.0 [13]. Dom0 runs a para-virtualized Linux 2.6.16 kernel
with a RedHat Enterprise Linux 4 distribution, while guest
VMs run a para-virtualized Linux 2.6.16 kernel with a small
ramdisk root filesystem based on the Busybox distribution.
The ENP2611 board runs a Linux 2.4.18 kernel with the
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MontaVista Preview Kit 3.0 distribution. Experiments are con-
ducted with uniprocessor guest VMs. Dom0 is configured with
512MB RAM, while each guest VM is configured with 32MB
RAM. For the SV-NIC implementation enhanced with sidecore
functionality, logical processor 0 is assigned to Dom0, while
logical processor 1 is used as the sidecore (both of these belong
to the same CPU core). For the SV-NIC without sidecore,
both logical processors 0 and 1 are assigned to Dom0. The
other two logical processors (2 and 3, belonging to the same
CPU core) run the guest VMs. These logical processors share
many architectural resources among them, such as caches and
execution units. However, each logical processor has its own
local APIC. Hence, an interrupt can be directed to a specific
logical processor, without impeding the other one sharing
resources with the target logical processor. The Borrowed
Virtual Time (bvt) scheduler with default arguments is the
domain scheduling policy used for Xen.

All experiments run on two hosts and use a ‘n,n:1x1’ access
pattern, where ‘n’ is the number of guest domains on each
host. Every guest domain houses one VIF. On one machine, all
guest domains on a machine run server processes, one instance
per guest. On the second machine, all guest domains run client
processes, one instance per guest. Each guest domain running a
client application communicates to a distinct guest domain that
runs a server application on the other host. Hence, there are a
total n simultaneous flows in the system. In the experiments
involving multiple flows, all clients are started simultaneously
at a specific time in pre-spawned guest domains. We assume
that the time in all guest domains is kept well-synchronized
by the hypervisor (with resolution at ‘second’ granularity).

B. SV-NIC vs. HV-NIC Performance Comparison

This section presents the results of two sets of experiments.
The first set uses the HV-NIC, where the driver domain
provides virtual interfaces to guest domains. Our setup uses
Dom0 (i.e., the controller domain) as the driver domain. Using
the host-centric approach as the base case, the second set
of experiments evaluates the device-centric SV-NIC realiza-
tion, both without and with the sidecore approach. The SV-
NIC vs. HV-NIC realizations, i.e., of their virtual interfaces
provided to guest domains, are evaluated with two metrics:
latency and throughput. These evaluations, presented next,
provide evidence for the design and implementation principles
advocated earlier for building high-performance and scal-
able virtualization services. In particular, experimental results
demonstrate that there are significant benefits of partitioning
network related functionality and moving such functionality
to specialized network processing cores, along with judicial
inter-core communication to achieve a low-latency design.

1) Latency: For latency, a simple libpcap [38] client server
application, termed psapp, is used to measure the packet round
trip times between two guest domains running on different
hosts. The client sends 64-byte probe messages to the server
using packet sockets and SOCK RAW mode. These packets
are directly handed to the device driver, without any Linux
network layer processing. The server receives the packets
directly from its device driver and immediately echoes them

back to the client. The client sends a probe packet to the server
and waits indefinitely for the reply. After receiving the reply,
it waits for a random amount of time, between 0 and 100ms,
before sending the next probe. The RTT serves as an indicator
of the inherent latency of the network path.

The latency measured as the RTT by the psapp application
includes both basic communication latency and the latency
contributed by virtualization. Virtualization introduces latency
in two ways: (1) a packet must be classified as to which VIF it
belongs to, and (2) the guest domain owning this VIF must be
notified. Based on the MAC address of the packet and using
hashing, classification can be done in constant time for any
number of VIFs, assuming no hash collision.

For the HV-NIC, step (2) above requires sending a signal
from the driver to the guest domain. This takes constant time,
but with increasing CPU contention, additional end-to-end
latency would be caused if a target guest were not immediately
scheduled to process the signal. Thus, with an increasing
number of VIFs, we would expect latency values to increase
and exhibit larger variances. Finally, since the driver domain
and guest domains are scheduled on different CPUs, sending a
signal to a guest domain involves an inter-processor interrupt
(IPI).

For the SV-NIC without sidecore, step (2) above requires
the hypervisor to virtualize the PCI interrupt and forward it
as a signal to the guest domain, as described in Section IV.
In case the host core responsible for interrupt virtualization is
being shared by the target guest domain, sending this signal is
done via a simple upcall, which is cheaper than performing an
IPI. Given that all guest domains are scheduled on two CPUs,
on the average, signal forwarding from one of these two cores
provides the performance optimization 50% of the time. As
with the HV-NIC case, if multiple guest domains are sharing
a CPU, the target guest domain may not be scheduled right
away to process the signal sent by the self-virtualized network
interface. Thus, with an increasing number of VIFs, we would
expect latency values to increase and exhibit larger variances.

Another source of latency for SV-NIC without sidecore is
the total number of signals that need to be sent per packet.
As mentioned earlier in Section IV, due to the limitations
on interrupt identifier size, a single packet may require more
than one guest domains to be signaled. In particular, the total
number of domains signaled, ns, is given by the following
formula:

⌊n
l ⌋ ≤ ns ≤ ⌈n

l ⌉, if n > l
1 otherwise

where n is the total number of domains and l is the interrupt
identifier size. Thus, the smaller the l, the more the number of
domains that will be signaled (all but one of which would be
redundant), and vice versa. Assuming these domains share the
CPU, the overall latency will include the time it takes to send a
signal and possibly the time spent for useless work performed
by a redundant domain; latter of which will be decided by
domain scheduling on the shared CPU.

For the SV-NIC with sidecore, step (2) requires sidecore to
receive a message from the NIC via a shared memory queue,
and send a signal to the appropriate VM. Hence in the sidecore
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Fig. 7. Latency comparison of HV-NIC, SV-NIC, and SV-NIC with sidecore.
Dotted lines represent the latency for Dom0 using the tunnel network interface
in two cases: (1) No virtualization functionality (i.e., without software
bridging), represented by fine dots, and (2) host-centric network virtualization
functionality (i.e., with software bridging), represented by dash dots.

case, there is no PCI interrupt generated by the device and no
redundant signaling of VMs.

Using RTT as the measure of end-to-end latency, Figure 7
shows the RTT reported by psapp for HV-NIC and SV-NIC.
On the x-axis is the total number of concurrent guest domains
‘n’ running on each host machine. On the y-axis is the
median latency and inter-quartile range of the ‘n’ concurrent
flows; each flow i ∈ n connects GuestDomainclient

i to
GuestDomainserver

i . For each n, we combine Ni latency
samples from flow i, 1 ≤ i ≤ n as one large set containing∑n

i=1 Ni samples. The reason is that each flow measures the
same random variable, which is end-to-end latency when n
guest domains are running on both sides.

We use the median as a measure of central tendency
since it is more robust to outliers (which occur sometimes
due to unrelated system activity, especially under heavy load
with many guest domains.) Inter-quartile range provides an
indication of the spread of values.

These results demonstrate that with the device-centric SV-
IO approach, it is possible to obtain close to a 50% latency
reduction for VIFs compared to a host-centric implementation.

Several factors contribute to the performance drop for the
HV-NIC, as suggested in [3], including high L2-cache misses,
instruction overheads in Xen due to remapping and page trans-
fer between driver domain and guest domains, and instruction
and scheduling overheads in the driver domain due to software
ethernet bridging code. The overhead for software bridging
is significant, as demonstrated by the difference between the
dotted lines in Figure 7.

In comparison, the SV-NIC adds overhead in Xen for
interrupt routing on ingress path and for overhead incurred
in the micro-engines for layer-2 software switching. In order
to better assess the costs associated with the SV-NIC, we
micro-benchmark specific parts of the micro-engine and host
code to determine underlying latency limitations. Figures 8(a)
and 8(b) show the latency results for the egress and ingress

 total  msg_recv  pkt_tx  
0

500

1000

1500

2000

2500

3000

cy
cl

es

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m
ic

ro
 s

ec
on

ds

#vifs = 1
#vifs = 8
#vifs = 32

(a) Egress Path

 total  pkt_rx  chn_demux  msg_send  
0

500

1000

1500

2000

2500

3000

cy
cl

es

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m
ic

ro
 s

ec
on

ds

#vifs = 1
#vifs = 8
#vifs = 32

(b) Ingress Path

Fig. 8. Latency micro-benchmarks for SV-NIC.

paths respectively on micro-engines for 64-byte packets.
The following sub-sections of the egress path are consid-

ered:

• msg recv – the time it takes for the context specific to
a VIF to acquire information about a new packet queued
up by the host side driver for transmission. This involves
polling the send queue in SDRAM.

• pkt tx – enqueueing the packet on the transmit queue of
the physical port.

For the ingress path, we consider the following sub-sections:

• pkt rx – dequeueing the packet from the receive queue
of the physical port.

• channel demux – demultiplexing the packet based on its
destination MAC address.

• msg send – copying the packet into host memory and
interrupting the host via PCI write transactions.

The time taken by network I/O micro-engine(s) for trans-
mitting the packet on the physical link and for receiving the
packet from the physical link is not shown, as we consider it
part of network latency.

When increasing the number of VIFs, the cost of the egress
path increases due to increased SDRAM polling contention by
micro-engine contexts for message reception from the host.
The cost of the ingress path does not show any significant
change, since we use hashing to map the incoming packet
to correct VIF receive queue. Also, the msg send cost in the
ingress path for both without and with sidecore cases is similar,
since both cases require a PCI bus transaction - to set a bit
in the doorbell register for the former vs. to set a bit in host
memory for the latter. The overall effect of these cost increases
on end-to-end latency is small.

To demonstrate the impact of host-side functionality on
overall SV-NIC latency, we measured the time for message
send (PCI write) and receive (local memory copy) by guest
domain for small packets, and for interrupt virtualization
(physical interrupt handler, including dispatching the signals
to appropriate guest domains) by Xen via the high-fidelity
timestamp counter. For #vifs = 1, the host takes ∼ 9.42µs
for a message receive, ∼ 14.47µs for a message send, and
∼ 1.99µs for interrupt virtualization, both with and without
sidecore. For #vifs = 8 and 32, the average cost of
interrupt virtualization increases to ∼ 3.24µs and ∼ 11.57µs,
respectively, for SV-NIC without sidecore while the costs
for message receive and send show little variation. The cost
of interrupt virtualization increases since multiple domains
might need to be signaled, even redundantly in the case when
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#vifs > 8. With sidecore, the cost of interrupt virtualization
shows insignificant variation.

Overall latency reduction results following the principles of
partitioning and specialization of cores. In this low latency
design, Dom0 is no longer involved in the network I/O path.
In particular, the cost of scheduling Dom0 to demultiplex the
packet, using bridging code, and sending this packet to the
front-end device driver of the appropriate guest domain is
eliminated on the receive path. Further, the cost of scheduling
Dom0 to receive a packet from guest domain front-end and to
determine the outgoing network device using bridging code is
eliminated on the send path. These networking specific tasks
are performed by NP-cores. Also, with SV-NIC, the latency
of using one of its VIFs in a guest VM is almost identical
to using the tunnel interface from Dom0. Our conclusion is
that the basic cost of the device-centric implementation is low.
Also demonstrated by these measurements is that the cost of
our SV-NIC implementation is fully contained in the device
and the hypervisor.

The median latency value and inter-quartile range increases
in all cases as the number of guest domains (and hence
the number of simultaneous flows) increases. This is mostly
because of increased CPU contention between guests. Also,
due to interrupt identifier sharing, the latency of SV-NIC
without sidecore optimization increases beyond that of HV-
NIC for 32 VIFs. In that case, every identifier bit is shared
among 4 VIFs, and hence, requires 1.5 redundant domain
schedules on the average before a signal is received by the
correct domain. On our system with only two CPUs available
for guest VMs, these domain schedules also require context
switching, which further increases latency. In comparison,
there is no redundant signaling for the SV-NIC with sidecore,
which significantly improves latency. In terms of variability
as depicted by the inter-quartile range, the sidecore approach
provides less variability since the cost of signaling for every
VM is similar - the sidecore always signals the core where the
target VM is executing via an IPI.

2) Throughput: For throughput, we use the iperf [39]
benchmark application. The client and the server processes
are run in guest VMs on different hosts. The client sends data
to the server over a TCP connection with buffer size set to
256KB (on guest VMs with 32MB RAM, Linux allows only
a maximum of 210KB), and the average throughput for the
flow is recorded. The client run is repeated 20 times. The
aggregate throughput achieved by n flows is the sum of their
individual throughputs. Figure 9 shows the throughput of TCP
flow(s) reported by iperf for SV-NIC and HV-NIC. The setup
is similar to the latency experiment described above. The mean
and standard deviation for the aggregate throughput of the ‘n’
simultaneous flows as computed above is shown on the y-axis.

Benchmark results clearly demonstrate the benefits of using
the device-centric SV-NIC approach over host-centric HV-
NIC, for similar reasons described earlier. Overall, these
results strongly advocate our implementation principles for
building virtualization services, specifically partitioning of
cores, and minimizing inter-core communication for cores
that are situated farther apart. Results also demonstrate the
effect sidecore has on throughput for smaller number of guest
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VMs, since polling and synchronization operations reduce
overall memory bus performance and negatively impact the I/O
throughput for guest VMs. For larger number of guest VMs,
this effect becomes secondary to the issue of core sharing
among multiple VMs.

C. QoS-Enhanced SV-NIC

Figure 10 shows the benefits derived from the QoS-
enhanced network virtualization service implemented by SV-
NIC. The experimental setup is similar to that of the through-
put experiment, except that three VMs, with one VIF each,
are used to perform network I/O. One VM is set at high
priority (HP), and the other two are set at lower priority (LP1
and LP2). The priority information is communicated to the
service as described earlier. Here, the QoS-enhanced service,
termed quality-aware (QA) service, correctly recognizes a
situation of high input rate for all three flows and switches
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TABLE I
LATENCY MICRO-BENCHMARK FOR PROVIDING A RESPONSE TO GUEST

VM VIA RVBD AND NBD. IN BOTH CASES, SV-NIC PROVIDES EITHER A
RVBD OR A VIF, RESPECTIVELY.

Latency
(ms)/response

Interpolated
latency (ms)

RVBD 0.323 0.323
NBD 2.01 0.89

to providing priority servicing to the HP VM, which results in
better throughput for this VM. In contrast, the quality-unaware
(QU) service, lacks the functionality which results in all flows
receiving a random percentage of the total egress throughput
at any point in time.

D. SV-NIC based RVBD

Table I shows latency results for this low latency SV-NIC
based RVBD solution and compares it to the NBD based
solution. In particular, we measure the time taken by SV-
NIC to provide a RVBD response to the guest VM’s FE
driver, which includes the time taken by the driver to copy the
data from the bounce buffers of network I/O to buffer cache
pages. This copy is required due to the limited host memory
accessibility of our current IXP-based board. In contrast, for
the VM-based implementation of this logical functionality,
provided by NBD, the network packet is copied to the socket
buffer from the bounce buffers by the network driver, and
the rest is handled by the guest VM’s networking stack.
The application used for this benchmark is standard hdparm
tool without prior caching of data, so as to measure the
sequential read performance of the virtual disk. The average
response size for NBD is 123570 bytes, while for RVBD, the
average response size is 37601 bytes. We interpolate NBD’s
latency to a similar response size as that of RVBD. Results
show that for response size of 37601 bytes, implementing
logical block device functionality via RVBD provides a 64%
latency reduction for a guest VM. The difference in latency
is attributed to the removal of an extra copy (no need for
movement via socket buffer to buffer cache) and the removal
of networking stack. The SV-NIC implements the functionality
by inspecting the packet header to identify the RVBD data, and
handing it over to the logical block device driver running in
guest VM. The cost incurred by the SV-NIC to implement this
functionality is negligible (∼ .3µs) compared to the latency
incurred at the host side.

VIII. RELATED WORK

This paper advocates the partitioning of a VMM’s func-
tionality when running on multi-core platforms. In particular,
device-centric SV-IO provide I/O virtualization to guest VMs
by utilizing the processing power of cores on the I/O device
itself. The sidecore approach further enhances this approach
to use partitioning when host core(s) carry out certain system
virtualization tasks. A similar approach is used in operating
systems, where processor partitioning is used for network pro-
cessing [40], [41]. Computation spreading [42] attempts to run
similar code fragments of different threads on the same core
and dissimilar code fragments of the same thread on different

cores. Another approach is to run hardware exceptions on a
different hardware thread (or core) instead of running it on
the same thread (core) [43]. While these solutions are targeted
for better utilization of the micro-architecture resources such
as caches, branch predictors, instruction pipeline etc., our
solution is targeted at improving VMM performance and scala-
bility for large scale many-core systems. Intel’s McRT (many-
core run time) [44] in ‘sequestered’ mode uses dedicated cores
to run application services in non-virtualized systems. This
approach requires major modifications in the application to
utilize the parallel cores. This is in contrast to the sidecore
approach, which requires only minor modifications to the guest
VM’s kernel and is aimed at improving the overall system
performance.

Heterogeneous multicore systems provide the opportunity
for task based componentization of modern computer systems,
since not all of the tasks are suitable for execution on general
purpose processors. A platform consisting of both general
purpose and specialized processing capability can provide
the high performance as required by specific applications. A
prototype of such a platform is envisioned by Hady et al [45]
where a CPU and a NP are utilized in unison. Our work uses a
similar heterogeneous platform, consisting of Xeon CPUs and
an IXP2400 NP communicating via a PCI interconnect. For
this platform, performance advantages are demonstrated for a
device-centric SV-IO realization of the network virtualization
service. This is in comparison to other solutions that use
general purpose cores for network packet processing and other
device-near tasks [41], [46].

At a high level, our work uses a ”multi-kernel” design akin
to that of new operating systems for many-core architectures,
like Barrelfish [47] and Helios [48]. However, the focus of our
work is different, in that we build virtualization services by
opportunistically using/modifying the available runtime (e.g.,
hypervisor based virtualized platform or runtime available
on the NP board) - in contrast with both Barrelfish and
Helios where the focus is on runtime itself. Also, in contrast
to Barrelfish, our experimentation focuses on heterogeneous
architectures, where virtualization services are designed to
exploit diverse core capabilities for specific hypervisor func-
tionality. Our service model is also different than Helios, where
the runtime exports a uniform high-level API (a variant of
.NET) to the service, agnostic of the architecture, and services
are targeted to use that API. Our model of service development
targets available runtime and/or architectures. The virtualiza-
tion services abstraction also bears resemblance to the virtual
channel processor abstraction proposed by McAuley et al [49].

In order to improve network performance for end user
applications, multiple configurable and programmable network
interfaces have been designed [50], [51]. These interfaces
could also be used to implement a device-centric SV-NIC.
Another network device that implements this functionality
for the zVM virtualized environment is the OSA network
interface [52]. This interface uses general purpose PowerPC
cores for the purpose, in contrast to the NP cores used by our
SV-NIC. Similarly, CDNA [53] uses a FPGA to implement
the device-centric SV-NIC functionality. We believe that using
specialized network processing cores provides performance
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benefits for domain specific processing, thereby allowing more
efficient and scalable network virtualization service implemen-
tation. Furthermore, these virtual interfaces can be efficiently
enhanced to provide additional functionality, such as packet
filtering and protocol offloading.

Our SV-NIC uses VMM-bypass in order to provide direct,
multiplexed, yet isolated, network access to guest domains
via VIFs. The philosophy is similar to U-Net [54] and
VMMC [55], where network interfaces are provided to user
space with OS-bypass. A guest domain can easily provide
the VIF to user space applications, hence SV-NIC trivially
incorporates these solutions. Similarly, new generation Infini-
Band [56] and ethernet [57] devices offer functionality that
is akin to the ethernet-based SV-NIC, by providing virtual
channels that can be directly used by guest domains. However,
these virtual channels are less flexible than our SV-NIC
in that no further processing can be performed on data at
the device level. Parallel to our work, PCI SIG developed
I/O virtualization specifications for virtualization-capable I/O
devices [9]. Although the SV-NIC currently does not adhere
to these specifications, it incorporates similar abstractions. For
example, our notion of virtual interface (VIF) is similar to PCI
SIG’s notion of virtual function (VF). The SV-NIC realization
also focuses on virtualization services besides the aspect of
sharing the I/O infrastructure. These virtualization services
can implement diverse software-based virtual functions using
logical devices on a programmable peripheral or general
purpose CPUs as described in this paper. A similar mechanism
for building flexible virtualization services is also advocated
by LeVasseur et al [6].

Past research has made multiple attempts at providing se-
mantically enhanced devices/interconnects in order to provide
useful functionality to applications. For example, semantic-
disks associate filesystem level information with the disk
drive [28] to provide better performance and functionality
to operating systems. The logical devices approach makes a
similar argument, albeit in a virtualized system, where guest
VMs’ interactions are semantically enhanced. This approach
is similar to Xen’s ‘soft’ devices [58]. However, our imple-
mentation also utilizes the underlying platform’s capabilities
for supporting efficient I/O in virtualized systems, such as
self-virtualized devices, and it could take advantage of other
computational resources such as accelerators [59].

The semantic information considered in specific instances
of logical devices described in this work is explicitly shared
by guest VMs with the virtualized platform. This is not
necessary though, since it is possible to implicitly infer limited
amounts of information by monitoring a guest VM’s behavior.
For example, a VMM can infer when memory pages are
added and removed from the guest OS page cache [29].
This implicit inference allows building VMM-level services
such as a working-set size estimator and better secondary
cache management. Similarly, it is possible to infer appli-
cation level communication topology in a VM-based grid
environment [60]. This topology information can be used to
adapt the environment itself, e.g., via VM migration or via
communication overlay adaptation, to provide performance
benefits to applications running inside guest VMs.

IX. CONCLUSIONS AND FUTURE WORK

New design and implementation principles are needed to
exploit future heterogeneous multi- and many-core platforms.
Targeting the specific topic of I/O virtualization, this paper
develops and experiments with the abstraction of virtualization
services. Using a virtualization service as a building block,
we are able to efficiently use the parallelism provided by
multiple computational cores and judiciously utilize memory
and I/O bandwidth to provide improved performance to guest
virtual machines. Virtualization services can also be used to
leverage semantic information available from guests, to pro-
vide them with enhanced functionalities. These enhancements
are services that generalize or specialize certain platform
capabilities, as well as those that offer entirely new, software-
realized functions. We expect the task-based componentization
methods implemented with virtualization services to become
increasingly important in future heterogeneous multi- and
many-core systems.

Implementations of a network virtualization service serve to
demonstrate the viability and advantages of the virtualization
service concept, in terms of improved performance, scalability,
and by providing entirely new functionality to guest VMs.
A specific example is a device-centric SV-IO realization as
a self-virtualized network interface device (SV-NIC) using
an IXP2400 network processor-based board. Performance of
the virtual interfaces provided by this realization is analyzed
and compared to a host-centric service realization on plat-
forms using the Xen hypervisor. Experimental results show
substantial improvements in performance (upto ∼ 2X better
throughput and ∼ 50% less latency) and scalability for device-
centric SV-NIC. The SV-NIC enables high performance in
part because of its ability to reduce HV and driver-domain
involvement in device I/O. In our solution, the HV and the
driver domain on the host are responsible for managing the
virtual interfaces presented by the virtualization service, but
once a virtual interface has been configured, most actions
necessary for network I/O are carried out without HV and
driver-domain involvement.

Performance improvements for both HV-NIC and SV-NIC
may be possible by further application of implementation
principles. Specifically, we can improve upstream throughput
by replacing engine programmed I/O with DMA to improve
upstream throughput. Further, by utilizing a NP-platform with
near-identical PCI read and write performance [61], we can
also replace programmed I/O performed by host cores with
DMA. This will reduce the host CPU utilization. Similarly,
a NP-platform with message signaled interrupts support and
large number of messages per devices (such as in MSI-X) will
alleviate the performance overhead due to interrupt ID sharing
for large number of VIFs. Architectural support for I/O virtu-
alization, such as virtualization aware I/O MMUs and interrupt
remapping support [10] will further improve the performance
and scalability of the SV-NIC. In particular, by integrating
the SV-NIC with an I/O MMU to create a separate device
domain per VIF [10], the cost of host CPU utilization for
software I/O MMU implementation and interrupt virtualization
functionalities will be reduced.
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An interesting attribute of virtualization services is that they
can also be used to functionally partition the hypervisor and
I/O functions present in multi-core platforms. This creates
an interesting future direction of research in which one can
consider dynamic core partitions based on current guest VM
behavior and available platform resources. This would entail
replacing our current static mapping of hypervisor components
to certain multi-core resources with dynamic mappings, pos-
sible based on current platform state (e.g., whether or not
certain cores are in certain states, including idle vs. active
states). Although the number of cores available in a system
are expected to increase, a virtualization service should be en-
hanced to handle dynamic changes in architectural resources,
in particular to the number and types of computational cores
available to it. In this manner, the utility of the overall system
can be optimized within changing platform or application en-
vironments. For example, if the guest VMs in a system do not
fully utilize computational cores, these cores could be utilized
by the virtualization services to provide enhanced functionality
to these VMs. However, if the demand for computational
cores from guest VMs increases, the system should be able
to reposition some of these computational resources away
from the virtualization service. Such dynamic repositioning
of resources should not disable a virtualization service – it
should continue functioning, albeit with possible performance
degradation. Such dynamic re-assignment of cores will depend
on the degree of heterogeneity in the system. For example, in
case of cores with different ISAs and/or with non-uniform
addressability to system memory, such as Cell- [1], NP-based
platforms [23], and GPUs [62], a virtualization service might
be limited to execute on a specific subset of cores [63]. On the
other hand, cores with minor differences in ISAs [64] and with
uniform addressability to memory (although there might be
performance issues in case of NUMA organization), will pro-
vide a larger set of cores to the service – although the selection
of cores may result in reduced/slower functionality provided
by the virtualization service. Such architectural heterogeneity
will also impact the task placement of a virtualization ser-
vice. For example, simpler functionality like sidecore may be
assigned to smaller cores without impacting the performance
and possibly with a side-benefit of energy efficiency.
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T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new
os architecture for scalable multicore systems,” in Proc. of SOSP, 2009.

[48] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt,
“Helios: heterogeneous multiprocessing with satellite kernels,” in Proc.
of SOSP, 2009.

[49] D. McAuley and R. Neugebauer, “A Case for Virtual Channel Proces-
sors,” in NICELI ’03: Proceedings of the ACM SIGCOMM workshop
on Network-I/O convergence, 2003.

[50] P. Willmann, H. Kim, S. Rixner, and V. Pai, “An Efficient Programmable
10 Gigabit Ethernet Network Interface Card,” in Proc. of HPCA, 2005.

[51] I. Pratt and K. Fraser, “Arsenic: A User Accessible Gigabit Network
Interface,” in Proc. of INFOCOM, 2001.

[52] “OSA-Express for IBM eserver zSeries and S/390,” www.ibm.com/
servers/eserver/zseries/library/specsheets/pdf/g2219110.pdf, accessed
October, 2005.

[53] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A. L. Cox,
and W. Zwaenepoel, “Concurrent Direct Network Access for Virtual
Machine Monitors,” in Proc. of HPCA, 2007.

[54] T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: a user-level
network interface for parallel and distributed computing,” in Proc. of
SOSP, 1995.

[55] C. Dubnicki, A. Bilas, K. Li, and J. Philbin, “Design and Implementation
of Virtual Memory-Mapped Communication on Myrinet,” in Proc. of the
International Parallel Processing Symposium, 1997.

[56] J. Liu, W. Huang, B. Abali, and D. K. Panda, “High Performance VMM-
Bypass I/O in Virtual Machines,” in Proc. of USENIX ATC, 2006.

[57] “Intel Virtualization Technology for Connectivity,” http:
//softwarecommunity.intel.com/isn/downloads/virtualization/pdfs/
20137 LAD VTc Tech Brief r04.pdf, accessed October, 2007.

[58] A. Warfield, S. Hand, K. Fraser, and T. Deegan, “Facilitating the
Development of Soft Devices,” in Proc. of USENIX ATC, 2005.

[59] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism
to program GPUs for general-purpose uses,” in Proc. of ASPLOS, 2006.

[60] A. I. Sundararaj, A. Gupta, and P. A. Dinda, “Increasing Application
Performance in Virtual Environments through Run-time Inference and
Adaptation,” in Proc. of HPDC, 2005.

[61] “NFE-i8000 Network Acceleration Card,” Information available
from http://netronome.com/web/guest/products/acceleration cards, ac-
cessed October, 2007.

[62] “The Cell Architecture,” en.wikipedia.org/wiki/Graphics processing
unit, accessed July, 2009.

[63] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar,
and P. Ranganathan, “Gvim: Gpu-accelerated virtual machines,” in
HPCVirt ’09: Proceedings of the 3rd ACM Workshop on System-level
Virtualization for High Performance Computing, 2009.

[64] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using os
observations to improve performance in multicore systems,” Micro,
IEEE, vol. 28, no. 3, 2008.


