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ABSTRACT
Spatial Alarms are reminders for mobile users upon their ar-
rival of certain spatial location of interest. Spatial alarm pro-
cessing requires meeting two demanding objectives: high
accuracy, which ensures zero or very low alarm misses, and
high scalability, which requires highly efficient and optimal
processing of spatial alarms. Existing techniques for pro-
cessing spatial alarms cannot solve these two problems at
the same time. In this paper we present the design and im-
plementation of a new indexing technique, Mondrian tree.
The Mondrian tree indexing method partitions the entire uni-
verse of discourse into spatial alarm monitoring regions and
alarm-free regions. This enables us to reduce the number of
on-demand alarm-free region computations, significant sav-
ing of both server load and client to server communication
cost. We evaluate the efficiency of the Mondrian tree index-
ing approach using a road network simulator and show that
the Mondrian tree offers significant performance enhance-
ments on spatial alarm processing at both the server side and
the client side.

1. INTRODUCTION
Spatial alarms extend the idea of time-based alarms

to the spatial dimension. They serve as personal re-
minders to the mobile users upon their arrival of a
specified location of interest. An example of a spatial
alarm is Locale [1] which enables one of the pre-defined
cellphone ring settings upon arrival of future reference
location of interest. For example, Alice sets a spatial
alarm on her office in Georgia Tech campus. When she
arrives on campus or within two miles of her office, Lo-
cale changes the ringer setting to the pre-defined setting
such as silence.
A spatial alarm consists of four main components: a

target, an alarm monitoring region, a spatial event, and
an action. The target component specifies the future
reference point of interest (Alices office in our exam-
ple). The alarm monitoring region contains the alarm
target and is defined by the distance threshold to the
alarm target (two miles from Alices office in the cam-
pus). The spatial event component specifies the moving
location of the mobile client, which is of interest to the
spatial alarm (Only when Alice is close to the Georgia
Tech campus, the event occurs). If the user moves to
the current location and the distance to the alarm tar-
get is smaller than the spatial threshold, it means that

the mobile user enters the alarm region, thus the event
occurs. The action component of the spatial alarm de-
fines the information to be disseminated to, or the ac-
tion to be taken on behalf of, the mobile subscribers of
the spatial alarm (e.g., the ringer setting is changed).
Categorization of Spatial Alarms.
According to the publish-subscribe scope, we classify
spatial alarms into three categories: private, shared and
public. Private alarms are installed and used exclu-
sively by the publisher. Shared alarms are installed by
the publisher with a list of authorized subscribers and
the publisher is typically one of the subscribers. Public
alarms are usually installed with the purpose of sharing
them with all mobile users who are entering the spatial
regions of the alarms. Mobile users may subscribe to
public alarms by topic categories or keywords, such as
“traffic information on highway 85 North in Atlanta”

or “Zagat survey of top-ranked local restaurants”.
Challenge of Spatial Trigger Processing.
The two demanding objectives for processing spatial
alarms are high accuracy, which ensures zero or very
low alarm misses, and high scalability, which requires
highly efficient and optimal processing of spatial alarms.
In order not to miss a single spatial alarm, either the
client or the server needs to check frequently whether
the client enters one of her alarm monitoring regions.
The alarm check frequency determines the level of ac-
curacy obtained. The higher frequency one performs
alarm check, the higher accuracy one can obtain for
alarm evaluation but at higher cost of alarm process-
ing at both server and mobile clients. At one extreme,
the alarm processing server will handle the check of all
alarms for all mobile clients at high frequency, which
can be very expensive and not scalable. Furthermore,
even in this server centric case, clients still need to be
constantly connected in order for the location server to
continuously track their current location through sig-
nal probing [9], which is known to be energy inefficient
compared to running a simple application on the mobile
client [18, 10].
Contributions and scope of the paper.
Bearing the above-mentioned problems in mind, in this
paper we design and implement a new indexing struc-
ture, called Mondrian tree, for scalable processing of
spatial alarms. The Mondrian tree indexing method
partitions the entire universe of discourse into two types

1



of spatial regions: alarm monitoring regions and alarm-
free regions. At any given time, a mobile client will be
residing in either an alarm free region or an alarm mon-
itoring region. This enables us to minimize the cost of
dynamically computing alarm-free region for each mo-
bile client as done in existing literature [4, 6, 11, 15].
We evaluate the efficiency of the Mondrian tree index-
ing approach using a road network simulator. We show
that the Mondrian tree offers significant performance
enhancements on spatial alarm processing at both the
server side and the client side.

2. RELATED WORKS
Three areas of research are directly relevant to spatial

alarm processing. First, event-based location reminder
systems have been advocated in human computer inter-
action community [8, 17]. The main focus of this line
of work is the usability of location reminder systems.
None of these approaches deal with efficient processing
of large number of reminders.
The second area of relevant research is the use of safe

regions [6, 15] for continuous query processing or spa-
tial alarm processing [4]. The main idea is to compute
a safe region for each mobile client in terms of the spa-
tial locality of queries, aiming at reducing the amount
of unnecessary evaluations of continuous queries or spa-
tial alarms while the user is moving inside of her safe
region. All existing approaches compute safe regions
dynamically for mobile clients when they move out of
their current safe region or when new queries are added.
However, computing safe regions on-demand has three
disadvantages. First when two clients a and b are in the
same location, the server computes the same safe region
twice. Second, the server is burdened with increased
safe region computation cost as more users cross their
safe regions frequently [4, 6]. Finally, determining a safe
region requires intensive computation. For n continuous
queries, it takes from O(n) to O(n log3 n) to compute a
rectangular safe region [15].
Another area related to this work is the information

monitoring and event-based systems for delivering rel-
evant information to users on demand. User-defined
queries can be initiated when new relevant information
which is of personal interest to the user is detected by
the system [7].

3. MONDRIAN TREE INDEXING
In this section we present an overview of the Mon-

drian Tree design, including basic ideas and algorithms
for construction, maintenance, and search.

3.1 Basic Ideas and Properties
The Mondrian indexing is a rectangular region parti-

tioning method. It takes as an input the spatial alarms
in the given universe of discourse and generates a region

partition tree with two types of spatial regions as the
output. A unique feature of the Mondrian tree is that it
indexes not only spatial alarm monitoring regions but
also the remaining regions, called alarm-free regions
(AFR), which do not have any spatial alarms. Thus,
each leaf node of Mondrian tree is either an alarm mon-
itoring region or an AFR. The goal of such a design is
to allow the spatial alarm evaluation engine to easily
locate the current region of a mobile client, and more
importantly, to evaluate a spatial alarm only when the
mobile subscriber of the alarm is inside of the alarm
monitoring region.
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Figure 1: Step-by-step partitioning
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Figure 2: Step-by-step building a tree

Partitioning the Entire Region. Figure 1 shows
the steps of partitioning an area with one spatial alarm
into 5 disjoint regions (one alarm monitoring region and
four AFR regions). The corresponding Mondrian trees
for the four steps in Figure 1 are shown in Figure 2. At
each step we choose a split dimension which is a per-
pendicular to one of the 2D coordinate axes. The split
dimension may be chosen by alternating between x-axis
and y-axis. In step 1, x-axis is selected as a splitting di-
mension. Now the entire region is divided into smaller
regions, R1 and R2. The root of the Mondrian tree,
which covers the entire region, has two children, each
of which points to R1 and R2 respectively as shown in
Figure 2(a). In step 2, R2 in Figure 1(a) is chosen to
be further partitioned because it contains T1. We alter
the split dimension from x to y-axis, which results in
R3 and R4 as shown in Figure 1(b) and 2(b). We keep
selecting a region and partitioning it until the remain-
ing rectangle has the same region as the spatial alarm
monitoring region as shown in Figure 1(d).
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Figure 3: Step-by-step partitioning
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Figure 4: Step-by-step building a tree

Dealing with Overlapping Spatial Alarms.
Mondrian tree deals with a spatial alarm overlapping
with another spatial alarm by partitioning the new alarm
as two small alarms, one that overlaps with the existing
alarm and the other that does not. The overlapping
alarm is added into the leaf node that covers the ex-
isting alarm. The other small alarm keeps finding the
right leaf node. For example, in Figure 1 there is one
spatial alarm T1. Let’s add one more alarm T2 that
overlaps with T1 as shown in Figure 3(a). We continue
to partitioning from the step 4 in Figure 1(d) and Fig-
ure 2(d). When T2 is inserted, it goes down to the leaf
by selecting a node that contains T2. When T2 arrives
at R3 by taking the path root → R2 → R3, we stop at
R3 because both R3’s children are intersecting with T2.
We then split T2 into T2.left which overlaps with R5

and T2.right which overlaps with R6. T2.left keeps go-
ing down until it reaches R8. Although R8 completely
covers T2.left’s region and is bigger than T2.left, we
do not split R8 because it already has an alarm T1. In-
stead, we add T2.left into the node R8. Now R8 has two
spatial alarms T1 and T2. On the other hand, T2.right

chooses R6 for the next node. R6 is split into R9 and
R10 as shown in Figure 3(b) and Figure 4(a). Then R9

is split again into R11 and R12 as shown in Figure 3(c)
and Figure 4(b).
Comparisons with R-tree and k-d tree.
Mondrian indexing partitions the entire universe of dis-
course while other multi-dimensional indexing algorithms
are interested in regions that have queries. Figure 5 and
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Figure 5: Comparison of Partitioning Scheme
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Figure 6: Comparison of Building Trees

6 shows how different Mondrian tree is from R-tree and
k-d tree. The user’s current location is labeled as a star.
Mondrian tree returns an AFR for the the current lo-
cation as shown in Figure 5(a). Therefore, the mobile
client can enter a sleep mode during the safe period
computed based on the shortest distance from the cur-
rent location of the mobile client to the border of the
AFR region. In contrast, R-tree or k-d tree can only
locate the spatial alarms nearby a mobile client and the
system needs to compute the safe region for each mo-
bile client using the spatial alarms in the vicinity of her
current location, because traditional tree-based index-
ing such as R-tree and k-d tree family only index spatial
regions containing spatial alarms. Thus, one needs to
search k nearest spatial alarms to a mobile client in
order to compute the AFR region of the mobile client.

3.2 Challenges in Mondrian Tree Design
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Figure 7: Various partitioning examples for one
spatial alarm

We discuss two technical challenges in Mondrian Tree
design. First, there are several ways of partitioning the
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entire universe of discourse of interest. The result of
partitioning depends on the order of alarms to be in-
serted and the order of split dimensions used as shown
in Figure 7. Therefore, an immediate question is how to
build an optimal Mondrian tree in terms of fast search
and low maintenance cost.
The second challenging decision is related to whether

we should build one single Mondrian tree for all spa-
tial alarms in the system or we should create one Mon-
drian tree for spatial alarms of each individual mobile
subscriber. We below use an example to illustrate our
observation and insights in terms of guidelines that we
use to make our final design choice.
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Figure 8: Public and private Alarms

Consider a simplified scenario represented in Figure
8(a). There are two mobile objects p and q. p has two
spatial alarms T1 and T2 shaded lighter. q has one alarm
T3 shaded darker.
One Mondrian tree for all spatial alarms: For

Figure 8(a), the Mondrian tree for this example dis-
plays that p is inside of an alarm-free region (AFR) and
q stays in the alarm T2’s monitoring region but q did
not subscribe to alarm T2. In the single Mondrain tree
approach, q is either notified that she is inside of an
alarm monitoring region regardless of the alarm owner-
ship (subscription based) or the system needs to anno-
tate each alarm region with a list of subscribers in order
to detect whether the alarm region is relevant to the
mobile client or irrelevant in terms of alarm subscrip-
tion. In either case, maintaining a single Mondrian Tree
for all alarms may incur higher overhead when there
are relatively large number of private alarms or shared
alarms and fewer public alarms to which every mobile
subscribes. One Mondrian tree for each mobile
subscriber: First, not all users are subscribers of an
alarm. Second, not all public alarms are subscribed by
all users. Private alarms are subscribed by only one mo-
bile user and shared alarms are subscribed by a group
of users. Figure 8(b) shows the entire region of interest
from the user q’s perspective. Compared to Figure 8(a),
Figure 8(b) shows that q is not inside of any alarms and
thus not an alarm subscriber. Therefore the movement
of q does not trigger any alarm check at the server. It
is obvious that building a separate Mondrian tree for

each mobile subscriber is much more efficient in terms
of both accuracy and efficiency of alarm processing, es-
pecially when the number of private alarms and shared
alarms is much larger than the total number of public
alarms.
On the other hand, this approach might not be effi-

cient in terms of storage cost when a number of mobile
users subscribe to the same set of spatial alarms and
thus create and maintain the same Mondrian tree mul-
tiple times. Figure 8(c) shows that there are three pub-
lic spatial alarms that both p and q have subscribed to.
Thus two of them have the same Mondrian treecreated
and maintained in the system. One optimization in this
case is to maintain one tree at the server, thus saving
the cost of building the same tree multiple times.
In summary, if we have n + m mobile objects in the

system and only n of them subscribe to some spatial
alarms, then we create and maintain a maximum of n
Mondrian trees. Furthermore, among n users, if we
have k mobile subscribers who subscribe only public
Alarms, then we need to create and maintain upto n -
k + 1 Mondrian trees, one for public Alarms of k mobile
objects and the others for private Alarms of n - k users.

4. MONDRIAN TREE ALGORITHMS

4.1 Incremental Construction
The incremental construction algorithm typically works

with an existing Mondrian tree in two steps. On inser-
tion of spatial alarm t, the algorithm frist finds recur-
sively finds a node v such that v’s region v.R covers or
equals to t’s monitoring region t.R and among all the
nodes, v.R is the smallest region covering t.R. Then
the algorithm decides whether to split the region de-
noted by v or to assign t into node v. Concretely, to
the algorithm considers the following three cases:

(a) If v is a leaf without associated with any alarms,
v.R completely covers t.R and is bigger than t.R,
then we split v and insert t into one of its children.

(b) If v is a leaf and v.R is exactly the same as t.R or v
has already associated to one or more alarms, then
we add t into the set of alarms maintained in the
v.alarms.

(c) If v is a non-leaf node and t.R overlaps with v’s chil-
dren, we split the alarm t into two parts: t.left and
t.right each of which intersects with v’s children.

We provide the pseudo code for incremental insertion
in Algorithm InsertAlarm below with comments (a),
(b), and (c) corresponding to the three cases. SplitNode splits
the node into two child nodes along the x or y-axis so
that one of them contains t. Similarly, SplitAlarm handles
the third case. Due to the space limit, we omit the
pseudo code of SplitNode and SplitAlarm .
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Algorithm 1 InsertAlarm (node v, alarm t)

1: if v.isLeaf() then
2: if t.R equals v.R or v.alarms 6= null then
3: v.alarms ← t.ID ⊲ (b)
4: else
5: SplitNode (v, t) ⊲ (a)
6: if v.left.R contains t.R then
7: InsertAlarm (v.left, t)
8: else
9: InsertAlarm (v.right, t)

10: end if
11: end if
12: else
13: (tleft, tright) = SplitAlarm (v, t) ⊲ (c)
14: InsertAlarm (v.left, tleft)
15: InsertAlarm (v.right, tright)
16: end if

The incremental insertion is typically used when mo-
bile users subscribe spatial alarms randomly and there
is no prior information about spatial alarm distribution.
Thus, all spatial alarms will be inserted based on first
come first served. For example, Figure 9 shows how the
results differ while varying the order of insertion. Fig-
ure 9 (a) shows the result of inserting T2 and then T1,
meanwhile Figure 9 (b) shows the reverse order. Figure
10(a) and Figure 10(b) show corresponding Mondrian
trees. Two trees has the same depth, but they have dif-
ferent shapes. We observe that the tree in Figure 10(a)
tends to grow faster in left direction than the other. On
the other hand, Figure 10(b) is likely to grow in right
direction.
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Figure 9: Comparison of Mondrian indexing
varying the order of inserting spatial alarms

4.2 Batch Construction
The algorithm for batch construction is typically used

to build the initial Mondrian Tree. It can utilize the
distribution of spatial alarms to build a more balanced
tree if a set of spatial alarms are installed to the system
together. We also use the batch algorithm for handling
incremental insertion of multiple alarms to the existing
Mondrian tee.
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Figure 10: Comparison of Mondrian trees vary-
ing the order of inserting spatial alarms

Algorithm 2 BatchInsert (Alarm[] tList, Axis axis)

1: if tList.size() == 0 then
2: return
3: end if
4: Sort(tList, axis)
5: int mid = tList.size() / 2
6: InsertAlarm (tList[mid])
7: Alarm[] tLeft ← tList[0..mid-1]
8: Alarm[] tRight ← tList[mid+1..tList.size()]

Another possible enhancement towards generating a
more balanced Mondrian tree is to use a compact node
data structure. In the basic Mondrian tree structure,
each node has a region R, two children left and right,
and a set of alarms alarms as follows:

R left right alarms

We call this data structure as basic node. The idea of
compact node is to represent each node with four child
nodes pointing to all surrounding regions: left, right,
down, and up. The data structure of the compact node
is defined as follows:

R left right down up alarms

Batch construction performs a parallel split. For ex-
ample, in Figure 9(c), we select x axis for the starting
split dimension and cut the entire region along the two
vertical lines of R1 which produce two tall left and right
neighbors (R2 and R3) and two short lower and upper
neighbors (R3 and R5).
In general, with n alarms we first sort the set of n

alarms in one dimensional coordinate, say x, and choose
an alarm such that its x coordinate value is the me-
dian of all n alarms’ x coordinate values. By taking
the alarm as the root, we could insert maximum one
half of n− 1 alarms in the subtree which is pointed to

5



by root’s left child, and the other half into the sub-
tree pointed by root’s right field. The same operation
continues recursively after sorting remaining alarms in
the other dimensional coordinate, say y. The iteration
stops when there is no more alarms left to be inserted.
Figure 9(c) and 10(c) show the result of partitioning by
the batch construction.

4.3 Deletion
The deletion algorithm consists of two steps. The first

step is to find nodes that have t using FindRegions.
Then for each node v found, we remove t.ID from v.alarms.
The second step handles the merge operation for differ-
ent scenarios. For example, when there are no alarms
left in v.alarms and four surrounding regions of v are all
AFRs, then the merge operation will be invoked to unite
the four surrounding AFRs and the node into one big-
ger AFR. Due to the space limit, we omit the deletion
algorithm detail and the other merge scenario analysis
in this paper.

Algorithm 3 FindRegions(Node v, Alarm t)

1: Create an empty array result[]
2: if v.isLeaf() then
3: if v.R contains t.R then
4: results[]← v

5: end if
6: else
7: if v.left.R intersects with t.R then
8: result[]← FindRegions(v.left, t)
9: end if

10: if v.right.R intersects with t.R then
11: result[]← FindRegions(v.right, t)
12: end if
13: end if
14: return result[]

4.4 Search Algorithm
The search for mobile user’s current region in Mon-

drian tree is similar to the search algorithm of binary
tree. From the root it compares the position of the
mobile object with the left and the right children’s’ re-
gion to determine if the search should proceed in the
left subtree or the right subtree of the index. Con-
cretely, the search algorithm finds the node which con-
tains the current position of the mobile object. Let the
position be represented by p(x, y). The algorithm first
takes the root node as an input node v and the cur-
rent position coordinate of p as p(x, y). If p is inside
of one of v’s children c, the search continues by setting
c to be the next input of FindRegion. The iteration
stops when we arrive at a leaf node of the Mondrian
tree. The pseudo code of the algorithm is given in Algo-
rithm FindRegion. Figure 11 shows the workthrough

of FindRegion.

Algorithm 4 FindRegion(Node v, Alarm t)

1: if v.isLeaf() then
2: if v.R contains p then
3: return v

4: else
5: return null

6: end if
7: end if
8: for c : all children in v do do
9: if c.R intersect with t.R then

10: return FindRegion(c, p)
11: end if
12: end for

!""#
$

%
&$

%
'$

%
($

%
)$

%
*$

%
+$

%
,$

%
-$

%
.$

%
&/$

%
&&$

%
&'$

R
2 

R
3 

R
7 

R
8 

R
9 

R
12 R

11 

1 2 3 4 5 6 

1 

2 

3 

4 

5 

6 

7 

Figure 11: A search path to the current node

5. SPATIAL ALARM PROCESSING
A spatial alarm should be evaluated in three steps.

First, we need to determine what type of events should
activate the spatial alarm evaluation process. Second,
the server needs to find out the list of alarms to be eval-
uated upon the occurrence of the alarm events. The
more relevant this list is, the shorter this list will be
and the more efficient the spatial alarm evaluation will
be. Third, the server executes the action component of
those spatial alarms whose alarm conditions are eval-
uated to be true. The decision in the first two steps
should be made with the objective of minimizing alarm
miss-rate to achieve high accuracy.
The nave strategy for alarm processing is periodic

evaluation. High frequency is essential to ensure that
few or none of the alarms are missed. Periodic evalua-
tion, though simple, can be extremely inefficient due to
frequent and often high rate of irrelevant alarm evalua-
tions [4].
A simple and yet straightforward enhancement over

periodic evaluation is to use the location update of a
mobile user as the alarm evaluation event. Upon re-
ceiving a location update at the server (through ei-
ther server-initiated location tracking service or client
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location reporting service), the server looks up spa-
tial alarms that are in a close vicinity of the mobile’s
current location using the Mondrian tree (either gen-
eral or client-specific). This approach is independent of
the concrete location update strategies (periodic, dead-
reckoning or others). However, not all location update
events are suitable as the alarm firing events. First,
not all location updates of a mobile client will lead to
a successful evaluation of her spatial alarms. For ex-
ample, Alice has five alarms installed in downtown At-
lanta but her home is 30 miles north from the down-
town. When Alice travels within 10 miles of vicinity of
her home, all location updates of Alice should not be
used as the alarm firing event, since all five alarms will
never become true unless Alice travels to downtown At-
lanta area. Second, location updates of a mobile client
will not lead to the successful evaluation of the spatial
alarms that are not subscribed or owned by this mobile.
For instance, Bob’s spatial alarms are indifferent to the
motion behavior of Alice.
In the subsequent sections, we will describe the use

of grace period, alarm free regions in conjunction with
Mondrian tree for efficient processing of spatial alarms.

5.1 Grace Period
The first basic idea for evaluating spatial alarms effi-

ciently is to incorporate the spatial locality of the alarms
and the motion behavior of mobile objects. One ap-
proach is to use the concept of grace period.
Given a mobile object p and an alarm Ti (1 ≤ i ≤

n), where n is the total number of alarms installed in
the system, the grace period of p with respect to Ti,
denoted by gp(p, Ti), can be computed based on the
distance between the current position of p and the alarm
monitoring region Ti.R, denoted as d(p, Ti.R). Given a
mobile client and a spatial alarm Ti, two main factors
affecting the grace period are (i) the velocity of mobile
client p, f(Vp), and (ii) the distance d(p, Ti.R). Thus,
the grace period gp(p, Ti) can be computed as follows:

gp(p, Ti) =
d(p, Ti.R)

f(Vp)
(1)

The concept of grace period has two performance im-
plications. At the server side, we can skip the check of
any spatial alarms owned or subscribed by p during the
grace period of gp(p, Ti), where {Ti | Ti ∈ p’s subscrib-
ing alarms, 1 ≤ i ≤ n}, regardless whether or not the
location update events for p may occur during this pe-
riod. At the mobile client side, mobile client can enter
sleep mode for the spatial alarm evaluation application
during the grace period. Our experiments show that the
grace period based approach can significantly reduce the
amount of unnecessary alarm evaluation without loss of
accuracy.

5.2 Alarm-Free Region

Algorithm 5 ComputeGP(Node v, Position p, Veloc-
ity v)

1: minGP ← 99999999
2: for d : distance to each border of v from p do do
3: gp ← d / v
4: if gp < minGP then
5: minGP ← gp
6: end if
7: end for
8: return minGP

Recall Figure 8(b) we observe that regardless of the
total number spatial alarms subscribed or owned by a
user, only those alarms that are in her close vicinity
have non-zero probability of being fired. The idea of
alarm free region (AFR) utilizes this spatial locality of
alarms and the motion behavior of mobile clients. In the
context of Mondrian tree, an AFR is defined as a rect-
angular region that does not contain any spatial alarms.
As long as the mobile client moves within an AFR, the
client is free from the need for alarm check, which sig-
nificantly reduces the amount of unnecessary evalua-
tions of spatial alarms at the alarm evaluation server.
There are two alternative ways to compute AFR: using
Mondrian tree or dynamically compute AFR based on
the current location of a mobile client and the alarms
nearby. We argue that the approach of dynamically
computing the AFRs has three disadvantages. First,
when two clients a and b are in the same location and
subscribe the same alarms, then the server computes the
same AFR twice. Second, the server load can grow dra-
matically due to increased AFR computation as users
continue to move or when hot spots of user movement
occur. Finally, computing an AFR itself requires inten-
sive computation when the number of nearby spatial
alarms is not small. Concretely, computing a rectangu-
lar AFR takes from O(n) to O(n log3 n), where n is the
number of spatial alarms used in the AFR computation.
In summary , Mondrian tree provides an elegant so-

lution to tackle these problems. It partitions the entire
universe of discourse into two types of regions: alarm
monitoring regions and AFR. Once the tree is built, the
server does not need to compute AFR for any mobile
clients no matter how they move and where the hotspots
are. The Mondrian tree only pays for the maintenance
cost when a new spatial alarm is installed (region parti-
tion) or existing alarms are expired (region merging).
Furthermore, by using Mondrian batch algorithm to
handle insertion of new spatial alarms and expiration
of existing alarms, we can further reduce or minimize
the maintenance cost of the Mondrian trees. Also when
several users have the same spatial alarms, the server
does not need to compute the same AFR multiple times.
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5.3 Mondrian Tree with Grace Period
The goal of using Mondrian tree index with grace

period is to combine AFR and grace period in a most
effective manner such that the spatial alarm processing
can be achieved with high accuracy and high efficiency.
Concretely, a mobile client staying in the AFR can

obtain its current grace period either locally or through
the server, depending on the capacity of the mobile
client. This is a configuration parameter when a client
registers with the spatial alarm server. When the grace
period expires, the mobile client wakes up and checks
if she moves out of its current AFR. If not, the client
obtains a new grace period, and the spatial alarm ap-
plication running on the client enters the sleep mode
again during the new grace period. Otherwise, the mo-
bile client communicates with the server to obtain its
current residing region. If the region is an AFR, then
the client computes the grace period using the same
process. Otherwise, the mobile client is inside of an
alarm monitoring region. The server invokes the alarm
evaluation for this client.
The strategy of using the Mondrian tree index in con-

junction with grace period prevails over the strategy
of using grace period computation without Mondrian
tree for a number of reasons. First, the computation
for grace periods of mobile clients are done once dur-
ing Mondrian tree creation and maintenance, resulting
in significant saving in term of sever loads and client
energy consumption. Second, Mondrian tree structure
facilitates the utilization of distributed client-server ar-
chitecture. For example, when a mobile client is in an
AFR, the server may need to compute the grace pe-
riod for this client multiple times, especially when the
mobile client moves frequently but in the close vicin-
ity. By shipping the AFR of each mobile subscriber to
the client side, the mobile client can compute the grace
period locally. This approach reduces the amount of
communication from client to server for grace period
computation within the same AFR, and thus provides
significant saving on energy consumption at the client.
At the same time, it also reduces the server load for spa-
tial alarm evaluation, allowing better scalability with
respect to growing number of clients and large number
of spatial alarms.

5.4 Distributed Client-Server Architecture
It is widely recognized that server-centric, distributed

client-server, and client-centric are three alternative ar-
chitectures for mobile computing applications. Consid-
ering that client-centric architecture is only applicable
for supporting private spatial alarms [12], in this paper
we focus on server-centric architecture and distributed
client-server architecture.
In the server-centric architecture, spatial alarms will

be installed and processed at the server. Mobile clients

do not contribute directly to the spatial alarm process-
ing task. The server obtains the current location of its
mobile clients through localization services [14, 9] which
are orthogonal to the spatial alarm processing service.
In the distributed client-server architecture, the spa-

tial alarm processing can be carefully partitioned into
server-side processing and client-side processing. For in-
stance, the Mondrian tree indexing approach promotes
the idea of creating and maintaining one Mondrian tree
for each mobile subscriber. This enables the system to
minimize the overhead of searching for relevant alarms
of a given mobile client and reduce the overhead of
maintaining a large Mondrian tree. With this design
principle in mind, we consider three possible strategies
for implementing the Mondrian tree based spatial alarm
evaluation. The choice of which strategy to use depends
primarily on the capacity of mobile clients.
The first strategy will have the sever perform the fol-

lowing four tasks: (1) construct and maintain n Mon-
drian tree for n mobile subscribers; (2) search the Mon-
drian tree index to find the current region in which a
mobile resides; (3) compute the grace period based on
the current AFR of the mobile; and (4) send to each
mobile subscriber her current grace period during which
the mobile client can sleep. In this scenario, the client
checks if its grace period expires and sends a new grace
period request message to the server whenever its grace
period expires.
The second strategy will have the server perform only

the first two tasks and a modified version of the 4th
task. Concretely, the server sends the current region
of a mobile instead of the grace period to each client.
Now the client can compute the grace period locally
using its current AFR (task 3). The client only reports
to the server when it moves outside of the current AFR
or alarm monitoring region.
The third strategy will have each client build a Mon-

drian tree. Each client lookups the index locally, finds
its current residing region. If it is an AFR, it computes
the grace period accordingly. A client only reports to
the server if it enters an alarm monitoring region.

6. EXPERIMENTAL EVALUATION
In this section we report our experimental results that

evaluate the performance and effectiveness of the Mon-
drian tree approach for processing spatial alarms. Due
to the space limit, we focus our experiments that com-
pare the performance of Mondrian trees with two well-
known spatial index structures: Grid index and R-tree.
We show that Mondrian tree is more effective for spa-
tial alarm processing, though Grid index and R-tree are
known to be efficient for spatial query processing.
(1) Experiment Setup
All the experiments presented in this paper are con-
ducted by extending the GTMobiSim mobility simula-
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tor [?, ?]. The simulator generates a set of traces of
moving vehicles on a real world road network. Maps
used in the simulator are obtained from the National
Mapping Division of the U.S. Geological Survey[3] in
the form of Spatial Data Transfer Format[2]. Simula-
tion in this paper uses the map of Metro Atlanta, which
covers an area larger than 1,000 km2. We initially place
vehicles randomly on the road segments according to
traffic densities determined from the traffic volume data
[5]. The trace was generated by simulating 2,000 vehi-
cles moving on the roads of metro Atlanta for a period of
ten minutes. At each intersection, a vehicle will choose
a direction and a road segment to travel randomly from
the set of available choices.
In real world, the travel patterns of mobile users ex-

hibit hot spots. For instance, the mobile density in
shopping malls or the football stadium is high during
weekends or game seasons. Thus more spatial alarms
may be installed around the hot spots. In order to sim-
ulate real-world environment, the spatial alarms used
in our experiments are generated in two ways: uni-
form distribution (UNI) and skewed distribution. For
skewed distribution, we use the term SKEW80 to de-
note that 80 percent of spatial alarms are distributed
near hotspots and rest of them are uniformly distributed.
Thus SKEW100 denotes the extreme case where 100
percent of spatial alarms are installed near hotspots. In
our experiments, the number of spatial alarms varies
from 2,000 to 10,000. The default number of alarms is
10,000.
All the experiments were conducted on an Intel Core

2 Duo CPU 2.8GHz with 4GB RAM running Windows
7. To show the advantage of Mondrian tree index, we
compare the Mondrian tree with two most popular spa-
tial indexing structures: in-memory Grid index and R-
tree index.
We evaluate the performance of the Mondrian tree

index under the client-server architecture with periodic
evaluation approach (M PRD), the distributed architec-
ture with periodic evaluation (M+PRD), and the dis-
tributed architecture with grace period approach (M+GP).
We compare Mondrian tree algorithms with Grid index
(GPRD) and R-tree index (RPD) using periodic evalu-
ation and dynamic AFR computation at the server.
The main factor affecting the processing of spatial

alarms using Grid indexing is the size of grid cell. The
smaller cells the Grid has, the more cells each alarm
will intersect with. The larger cells the Grid has, the
more alarms will be within a single cell, which reduces
the server-side evaluation cost. To provide a fair com-
parison with Grid index against R-tree and Mondrian
tree, we choose the size of the cell as 2,730m × 2,730m
in the experiments reported in this section.

(2) Client-size Performance Evaluation
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Figure 12: Number of Wake-up

Figure 6 shows the average number of wake-up for
each mobile client. In all approaches except M+GP,
clients have the same number of wake-up because clients
periodically wake up wait for server to inform them if
they are in an AFR or an alarm monitoring region.
These results show that periodic evaluation has two or-
ders of magnitude larger number of wakeups compared
to Mondrian grace period approach (M+GP) because
clients in M+GP wake up only when their grace period
expires.
Now we examine the size of AFR and its relation-

ship to the number of AFR crossings. Figure 13(a) and
13(b) show the average number of AFR crossings when
varying the total number of alarms. The average size
of AFR under the varying number of alarms is mea-
sured and shown in Figure 13(c) and 13(d). We ob-
serve that as the number of alarms is increasing, the
average size of AFR decreases for both uniform and
skewed alarm distributions. The average size of AFR
in M+PRD and M+GP is up to five orders of magni-
tude bigger than that of MPRD, GPRD, and RPRG
approaches. In M+PRD and M+GP, each client only
creates and maintains its own Mondrian tree, which has
only the number of alarms that the client subscribes
to, and thus very small compared to the centralized
server-side Mondrian tree (MPRD). Therefore the av-
erage AFR size is much bigger for distributed Mondrian
tree approach. In MPRD the average size of AFR varies
depending on the type of alarm distribution. In the uni-
form distribution, the average AFR size is smaller than
that of GPRD or RPRD because rectangles are dis-
tributed evenly and Mondrian tree partitions the entire
region into smaller rectangles. In skewed distribution,
the higher skewedness of the alarms is, the larger aver-
age AFR size MPRD will have and the more alarms are
placed near hot spots. show the reverse trend of Figure
13(c) and 13(d).
In summary, when using periodic evaluation approaches,

clients wake up periodically and wait for the server to
inform them if they enter an alarm monitoring region
or send them the new AFR if they cross the exist-
ing AFR. In contrast, with grace period approach the
spatial alarm application on the client side enters the
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Figure 13: Client Evaluation: AFR crossing vs AFR size
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Figure 14: Client Evaluation: CPU (ms) and Power (mW)

sleep-mode longer than periodic approaches. Therefore
M+GP has the shortest CPU time as shown in Figure
14(a) and 14(b). RPRD has the longest CPU time be-
cause the server takes the longest time for computing
AFR as shown in Figure 15(a) and 15(b).
The third set of experiments on the client size aims

at measuring CPU and energy efficiency. We compute
the power consumption of client device for CPU usage
and network usage. According to [16] even in idle mode
in which there is no data transfer via a wireless net-
work device, the network device consumes power, and
the activity for data transfer via network devices con-
sumes more power than the computing activity. Due
to the server processing time as shown in Figure 15(a)
and 15(b), clients in GPRD and RPRD wait longer and
more frequently for AFR information from the server
and thus consume more battery power. This is evident
from Figure 14(c) and 14(d). Clients in M+GP con-
sumes the least power and wakeups the least. M+PRD
approach, relatively speaking, consumes less power than
Grid, R-tree, and server-side (centralized) Mondrian
tree approaches. However, the M+PRD approach con-
sumes more power than M+GP because M+GP re-
quires clients to wake up only when their grace pe-
riod is expired instead of periodically as in M+PRD.
RPRD and MPRD approaches consume most power.
In MPRD, clients cross their AFR frequently due to
the small size of AFRs. In RPRD, clients have to wait

longer due to the longer response time compared to the
G PRD approach.

(3) Performance Evaluation in Server-side
Mondrian tree approach indexes both spatial alarms
and AFRs at the same time. Therefore, it does not
require on-demand AFR computation as Grid index
(GPRD) and R-tree index (RPRD) approaches. Fig-
ure 15(a) and 15(b) show AFR computation for GPRD
and RPRD approaches. RPRD takes more time than
GPRD due to the higher search cost for finding the
nearby alarms.
Figure 15(c) and 15(d) show the total server time,

which consists of computing AFRs (in R-tree and Grid
index) or searching AFRs (in Mondrian tree) and pro-
cessing spatial alarms. The main factor affecting the
server time is the number of crossings either reported or
detected depending on whether the location of clients
is tracked and whether the distributed architecture is
employed. The more AFR crossings a client experi-
ences, the more time the server spends in computing or
searching AFR in addition to processes alarms. Given
that Mondrian distributed approach (M+GP) has the
largest AFR size on average, there is fewer AFR cross-
ings experienced at the client side. Therefore, M+GP
has the least server time for spatial alarm processing,
while RPRD consumes the largest server time.
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Figure 15: Server Side Alarm Evaluation

(4) Cost of Mondrian Tree in Size and Depth
In this set of experiments, we vary the number of spatial
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Figure 16: Cost of Mondrian Tree

alarms from 2,000 to 10,000 and evaluate the cost of
constructing Mondrian tree in terms of memory size
and the average tree depth.
The fact that a Mondrian tree with more alarms re-

quires more storage is self-evident as shown in Fig-
ure 16(a). A leaf node that already has a set of alarms
will add a new alarm instead of splitting the node. Thus
when alarms are distributed with higher skewedness, a
Mondrian tree has less number of nodes than the one
with uniform distribution. Thus, UNI requires more
storage (Figure 16(a)) and has higher tree depth (Fig-
ure 16(b)).

7. CONCLUSIONS
We have described the design and development of the

Mondrian tree index for efficient processing of spatial
alarms. The main distinguishing feature of Mondrian
tree compared with conventional spatial indexes such as
R-tree family, Grid file family is that Mondrian tee ap-
proach indexes not only spatial alarms but also AFRs,
enabling fast lookup of AFRs instead of on-demand
computation of AFRs. Another novelty of the Mon-
drian indexing framework is its ability to utilize the
characteristics of spatial alarms to create and maintain
one Mondrian tree for each mobile subscriber, which is
particularly effective when there is relatively small num-
ber of public alarms compared to the private and shared
alarms in the system. Our experiments show that the
distributed grace-period based Mondrian tree approach

(M+GP) can dramatically minimize the amount of un-
necessary spatial alarm processing compared to sever
side (centralized) Mondrian tree or R-tree and Grid in-
dexing structures under periodic evaluation with on-
demand AFR computation.
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