
Fast, Lightweight Virtual Machine Checkpointing

Michael H. Sun Douglas M. Blough
Georgia Institute of Technology

Abstract

Virtual machine checkpoints provide a clean encapsula-
tion of the full state of an executing system. Due to the
large nature of state involved, the process of VM check-
points can be slow and costly. We describe the imple-
mentation of a a fast and lightweight mechanism of VM
checkpointing for the Xen virtualization machine mon-
itor that utilizes copy-on-write techniques to reduce the
VM’s downtime and performance overhead incurred by
other forms of VM checkpointing.

1 Introduction

This paper the describes an implementation of a fast and
lightweight checkpoint mechanism for virtual machines.
A VM checkpoint is a consistent image of the complete
state of a running VM at a given point in time. We in-
troduce a copy-on-write (CoW) checkpointing technique
for the Xen virtualization platform that is significantly
faster and lighter-weight than current VM checkpointing
methods.

VM checkpointing requires that a consistent view of
a running VM’s CPU state, memory, and device state
(most notably, disk) be captured at various points in
time. The most basic mechanism for checkpointing sus-
pends the running VM, copies its entire state, and fi-
nally restarts the VM. Disk schemes that provide copy-
on-write snapshot capabilities can eliminate the need to
copy entire VM disks 1. With VM memory sizes easily
reaching hundreds of gigabytes, copying the entirety of
the suspended VM’s memory contents generally results
in significant VM downtimes.

VM migration schemes, which can be viewed as a
superset of checkpointing, have generally utilized pre-
copying to drastically reduce the downtime incurred
while a VM is migrated between hosts [1, 7]. Pre-
copying is a technique that consists of a number of mem-
ory copying rounds while a VM is running, before the

actual checkpoint/migration point. During each round,
memory pages that have not yet been copied or have been
recently modified by the running VM are copied out. Af-
ter a number of copy rounds, the VM is suspended and
the remaining dirty memory pages are copied out; the
VM is then allowed to restart. By performing most of
the memory copying concurrently with the running VM,
a significantly smaller portion of the memory state needs
to be copied while the VM is suspended resulting in sub-
stantially shorter downtimes. Pre-copying does intro-
duce substantial resource overheads as copying is per-
formed over a number of rounds; moreover, these over-
heads and the VM’s downtime are sensitive to the write
intensity of a VM’s execution behavior and can grow to
unacceptable levels with particular VM workloads. Cur-
rently, Xen, VMware, and KVM all utilize pre-copying
in their migration schemes. Though all three only explic-
itly provide for the most basic VM checkpointing service
that does not use pre-copying, pre-copying-based migra-
tion mechanisms can easily be adapted for checkpoint
use.

We introduce a CoW-based VM checkpointing mech-
anism capable of tolerating write-intensive VM behav-
iors more effectively than pre-copy checkpoint mech-
anisms. Rather than performing any copying of state
while a VM is suspended, a consistent view of a VM is
taken by write protecting all of a VM’s memory through
the use of manipulating protection bits in shadow page
tables. This constant time operation ensures that VM
downtimes remain small even in the face of write in-
tensive VM behavior. Post-copying then takes places in
a single round, eliminating the overhead of redundantly
copied pages. Unlike other work on CoW, post-copy mi-
gration/checkpoint schemes, our CoW-based checkpoint
mechanism is completely transparent to the VM, requir-
ing no modification to or assistance from the VM operat-
ing system. By enforcing our copy-on-write semantics
through hypervisor-level components such as shadow
page tables and emulated IO devices, generality of our



checkpoint mechanism is preserved.

2 Related Work

The major system virtualization platforms—Xen,
VMware, KVM—currently only provide a primitive
suspend-save-restart checkpoint mechanism in which
significant VM downtimes are incurred. VM migration
and VM forking, however, can both be seen as gener-
alized forms of VM checkpointing and their bodies of
work provide a number techniques adaptable for VM
checkpointing.

The majority of VM migration schemes utlize pre-
copying, a technique in which the bulk of state transfer
is done prior to the actual migration point. Xen live mi-
gration [1], VMware VMotion [7], and KVM live migra-
tionc̃itekivity:klv all iteratively pre-copy memory pages
for a number of rounds, copying in each round those
pages that have been dirtied since the last round until
a small writable working set (WWS) can be identified
or a threshold of rounds is reached. The VM is then
suspended, the remaining dirty pages copied along with
CPU and device state to the destination where the VM is
restarted. By this reducing the state that must be trans-
ferred with the VM is suspended, the VM’s downtime is
greatly reduced.

High availability systems, Remus [3] and Kemari [8],
have modified the live migration mechanism of Xen to
enable high frequency VM checkpointing between pri-
mary and backup hosts. Remus and Kemari checkpoint
efficiently by continuously repeating the final copy round
of live migration; the VM is suspended or paused and
memory dirtied since the last checkpoint is copied to
from the primary to the backup. The high frequency of
the checkpointing (as often as every 25ms) tends to keep
the number of dirty pages copied during checkpoints
small, resulting in acceptable VM downtimes. Both sys-
tems have also managed to further reduce VM downtime
by eschewing the costly suspend/restart signaling of the
current Xen implemenation in favor of lightweight event
channels. Despite these improvements, checkpointing at
such high frequencies incurs significant overhead penal-
ties. Kernel compile benchmarks show more than 50%
performance penalty when checkpointed at 50ms inter-
vals and I/O intensive workloads such as SPECweb op-
erate at 25% of their native performance. Reducing the
frequency of checkpoints would increase the amount of
dirty state that must be copied during a checkpoint, rais-
ing the VM downtime; the problem increases in severity
with more write intensive workloads.

Post-copy based migration [5] is a technique that at-
tempts to address the major drawbacks of pre-copy based
migration: duplicate memory transfers across iterative
copy rounds, and less than acceptable VM downtimes for

write intensive workloads. It defers memory transfer to
after the VM’s CPU state has been migrated and the VM
restarted at the destination. The memory state is then
both actively pre-paged to the destination and demand-
paged when the VM faults over a missing page. This en-
sures that no memory page is transmitted more than once,
and that a VM’s downtime depends only on the time to
transfer a small portion of CPU state. A pre-paging strat-
egy that actively fetches those pages spatially local to a
faulting page access is used to reduce the number of de-
mand page faults. Their implementation however, only
supports PV guests as the mechanism of trapping mem-
ory accesses utilizes an in-memory pseudo-paging de-
vice in the guest. Our approach allows fully virtualized
guests to run without modification.

A VM fork is an abstraction analogous to a process
fork where a running VM spawns child VMs that are
clones of itself. Potemkin [9] and the Difference En-
gine [4] offer VM forks that operate locally within sin-
gle machine. CoW techniques implemented in a man-
ner similar to our work allow the VM forks to occur
quickly by deferring the duplication of memory pages
until the contents of the pages actually differ between
VMs. Snowflock[6] extends the VM fork abstraction in
a distributed fashion, providing the ability for clones to
be created across a cluster of machines. In essence, a
combination of cloning and migration, Snowflock lever-
ages the same CoW technique used by Potemkin and the
Difference Engine to capture an immutable image of the
parent VM as well as a demand-paging mechanism sim-
ilar to Hines et al. to provides missing pages to VM chil-
dren. Since the goal of VM fork work has been the ef-
ficient creation of VM clones that run simultaneously,
current VM fork implementations are not ideally suited
to being checkpoint mechanisms; they do not provide a
means of obtaining dependable, persistent checkpoints
and require that extra resources be allocated to support a
running clone rather than a checkpoint.

Colp et al. [2] have announced and provided patches to
Xen that utilize CoW techniques similar to ours in order
to provide fast checkpoints. Their effort was performed
concurrently, though independently with ours. From a
high level the efforts appear congruent, so we therefore
provide details of our specific implementation.

3 Design

An effective VM checkpointing solution requires that a
consistent view of a large amount of state be captured in
an efficient manner. A consistent view entails the pro-
curement of the memory state, CPU state, and I/O device
state of an VM at an instantaneous point in time. The
checkpoint mechanism should minimally interrupt VM
execution, incur a small resource footprint, minimally

2



degrade the performance of applications in the VM, and
complete in a brief time period.

We define the VM downtime to be the largest length
of time that a VM’s execution is suspended during the
checkpoint process. 2 The resource footprint is mea-
sured by the amount of memory, CPU time, and disk
space utilized by the checkpoint process. The impact
of checkpointing on VM applications is measured by the
differences in benchmark results—both application-level
benchmarks and microbenchmarks—between when the
benchmark is run with and without checkpointing en-
abled.

Pre-copying approaches exhibit poor performance un-
der write-intensive VM behavior because the writeable
working set of memory pages that must be copied while
a VM is suspended becomes so large that the VM incurs a
significant (greater than 1 sec) period of downtime. This
problem will be exacerbated given the current growth
trends of CPU performance greatly outpacing memory
bus bandwidth. In contrast, our approach utilizes a copy-
on-write mechanism that enables a consistent view of a
suspended VM to be captured in an extremely short pe-
riod of time irrespective of the write intensity of the VM
workload. During VM suspension, memory pages are
only write protected, deferring memory copying to after
the VM has been allowed to restart. This also ensures
that each memory page will be copied only once, avoid-
ing the wasteful duplicate copies that can occur during
pre-copy rounds.

We explain the process of our CoW checkpoint
approach which captures a persistent image of the entire
VM’s state at each checkpoint.

Step 1: Initiate Checkpoint
The checkpoint management process initiates a check-
point by suspending the executing VM. This entails
descheduling the VM, quiescing I/O devices, and
unmapping shared memory regions. This is the start of
the VM’s downtime.

Step 2: Capture Consistent View
The VM’s CPU and device state is copied to persistent
storage as part of the checkpoint image. All of the VM’s
memory pages are then write protected and a snapshot is
performed on the VM’s disks.

Step 3: VM Resumption & Post-copy
Devices are reconnected, shared memory remapped,
and the VM is restarted. Write-protection faults are
intercepted and the contents of the faulting memory
pages are copied to the checkpoint image, and the
memory page is made writable again. Other sources
of memory writes such as DMA are intercepted and
CoW performed on those memory pages. Concurrently,

the checkpoint manager process actively copies out the
VM’s memory pages, making them writable again after
they have been copied to the checkpoint image.

Step 4: Checkpoint Completion
After every memory page of the VM has been copied to
the checkpoint image, either by the checkpoint manager
process or through a CoW fault, the checkpoint is
complete.

4 Implementation

We have implemented our copy-on-write checkpoint
mechanism on the Xen 3.2.2 platform. This Xen plat-
form consists primarily of the Xen hypervisor and a priv-
ileged VM called dom0 in which libraries, utilities and
management components execute. It is capable of run-
ning para-virtualized (PV) domains as well as fully vir-
tualized domains (HVM). Our implementation involves
modifications to the hypervisor, some library routines in
libxc, and the xend management daemon. The imple-
mentation was built to support 32-bit non-PAE operation
for both PV and HVM guest VMs.

4.1 Background
The Xen live migration code was the building block from
which we built our checkpoint mechanism. The migra-
tion code consists of code from both the xend manage-
ment daemon, the libxc library, and some internal fea-
tures of the hypervisor. In particular, we take advan-
tage of the log-dirty mode that live migration uses, in
which shadow page tables are used to keep track mem-
ory writes. In this mode, a guest VM (PV or HVM)
loads shadows copies of what it believes to be its page
tables. This allows the protection bits to be modified in
a way transparent to the actual guest. In log-dirty mode,
all pages are write protected so that all memory writes
can be intercepted through faults. We utilize this mode
to capture attempted writes to memory, copy the origi-
nal memory page before modification to copy-on-write
(CoW) buffers, and then allow the memory write to oc-
cur.

4.2 Special behavior
Log-dirty mode via shadow page tables doesn’t catch all
writes to memory however. For HVM domains, I/O is
emulated through QEMU, which performs DMA with-
out regard to the domain’s shadow page tables. Thus
these I/O writes must also be intercepted for copy-on-
write snapshots to work. We modify the QEMU daemon
to make a hypercall to the hypervisor informing it which
pages will be modified. Additionally, the Xen hypervisor

3



itself emulates certain operations that write to memory
without regard for page table protections. For our imple-
mentation, we had to track down all of these operations in
the hypervisor and ensure a copy-on-write occurs before
memory is modified if the domain is being checkpointed.

4.3 Checkpoint execution flow
A copy-on-write (CoW) checkpoint is initiated just as a
VM migration would be: through the xend control plane
daemon running in domain 0, a specialized and privi-
leged management domain. The daemon makes a call to
a function in the libxc library to start the checkpoint. At
this point, the VM is still running. CoW code in libxen
then allocates memory buffers and other state in prepa-
ration for handling the CoW memory snapshot. After all
preparations have been made, libxen signals to the xend
daemon that the domain should be suspended. xend then
disconnects devices, records the QEMU daemon’s state,
and performs a snapshot on the virtual disk used by the
domain. This can be achieved in a number of ways, but
for our implementation we utilize a ZFS virtual disk and
it’s snapshotting capabilities.

The xend daemon then signals the CoW code in libxen
that the domain has been suspended. At this point a snap-
shot of the VM will be taken. Log-dirty mode is turned
on which has the effect of write protecting the VM’s
memory through the shadow page tables. Special CPU
state and context are also captured. The xend daemon is
then signaled to restart the domain.

A virtual snapshot of the domain has then taken place,
as any modifications from the time of VM suspension are
tracked. A libxc tool now begins to copy all of the mem-
ory pages of the running domain and writes them out to
a checkpoint file. After the libxc process copies all the
memory, the CoW memory buffers that hold the vital un-
modified memory pages are written out to the checkpoint
file, replacing any memory pages that might have been
copied while the VM had already resumed execution.

4.4 Optimizations
We investigated a number of fault reduction optimiza-
tions that would attempt to copy those memory pages
more likely to fault during the checkpoint process as a
means of improving performance. We implemented a
last n address space optimization where pages dirtied
from the last n address spaces seen in page directory
register cr3 would be copied first to avoid faulting. In
our evaluation as will seen later, we realized the majority
of the cost of checkpoint comes from the copying over-
head of producing a entire checkpoint, and that individ-
ual faults were insignificant in comparison. This led us to
look into incremental checkpoints, where only recently

xend libxen

Begin Checkpoint
Allocate CoW buffers and other state

Suspend VM

Disconnect Devices
Get QEMU-DM state

Snapshot VBD
Copy CPU context and other state

Turn on log-dirty mode
Reconnect Devices

Restart Domain

Copy all memory pages out to checkpoint file
Turn off log-dirty mode

Write out memory pages from CoW buffers to checkpoint file

Figure 1: Execution flow of checkpoint mechanism

modified pages are written out to a incremental check-
point file. That work has not been completed at the time
of this report.

5 Evaluation

The two most important performance metrics our mech-
anism strove to improve were downtime and overall per-
formance overhead on the running VM. We evaluate the
performance of our checkpoint mechanism against other
possible methods of VM checkpointing, namely a stan-
dard full stop checkpoint, and one based on pre-copying.
Our testbed consists of a machine with a 2.4 Ghz Intel
Core Duo E6600 with VT support, 2GB of RAM and a
7200 RPM SATA hard drive.

We began our evaluation with a setup consisting
of a Damn Small Linux (DSL) distribution 256 MB
HVM VM running idly and measuring the downtime
each checkpoint incurred under the standard checkpoint
mechanism, our copy-on-write mechanism and a check-
point mechanism that used pre-copying. We made a sim-
ple modification to the Xen live migration code to create
checkpoints instead of migrating VMs. The results of the
mean of three trials can be seen in Figure 2. Clearly, the
use of CoW checkpointing improved the overall down-
time by more than 76% compared to the next closest
mechanism.

We then evaluate how well our checkpoint mechanism
performs on a VM running a kernel compile workload.
A 512 MB Arch Linux HVM VM is loaded with a stan-
dard Linux kernel compile while checkpoints are taken
at different frequencies. Figure 3 shows for all intervals,
our CoW-based checkpoint mechanism outperforms the
pre-copy based mechanism.

We also compare the overhead the differing check-
pointing mechanisms have on our kernel compiling VM.
Figure 4 shows that other than at the highest checkpoint-

4



Figure 2: Downtime of Damn Small Linux checkpoint

ing frequency (30 sec), our CoW-based solution has a
lower overhead than the pre-copy based mechanism.

6 Conclusion

We have designed and implemented a copy-on-write-
based checkpointing solution for Xen that supports both
PV and HVM guests. It is fast and lightweight, generally
outperforming the next best solution, a pre-copy-based
checkpoint mechanism.

7 Acknowledgments

Would like to thank Mike Hibler and the Emulab team
for their extraordinary help in setting up our testbed en-
vironment.

References
[1] CLARK, C., FRASER, K., HAND, S., HANSEN, J., JUL, E.,

LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration
of virtual machines. In Proceedings of the 2nd conference on Sym-
posium on Networked Systems Design & Implementation (2005),
vol. 2, USENIX Association Berkeley, CA, USA, pp. 20–20.

[2] COLP, P. VM Snapshots.

[3] CULLY, B., LEFEBVRE, G., MEYER, D., FEELEY, M.,
HUTCHINSON, N., AND WARFIELD, A. Remus: high availabil-
ity via asynchronous virtual machine replication. In Proceedings
of the 5th USENIX Symposium on Networked Systems Design and
Implementation (2008), USENIX Association Berkeley, CA, USA,
pp. 161–174.

[4] GUPTA, D., LEE, S., AND VRABLE, M. Difference engine: Har-
nessing memory redundancy in virtual machines.

[5] HINES, M., AND GOPALAN, K. Post-Copy Based Live Vir-
tual Machine Migration Using Adaptive Pre-Paging And Dynamic
Self-Ballooning.

Figure 3: Downtime of precopy-based vs. CoW-based
checkpointing

[6] LAGAR-CAVILLA, H., WHITNEY, J., SCANNELL, A., RUMBLE,
S., DE LARA, E., BRUDNO, M., AND SATYANARAYANAN, M.
University of Toronto–Department of Computer Science Techni-
cal Report CSRG-TR578 Impromptu Clusters for Near-Interactive
Cloud-Based Services.

[7] NELSON, M., LIM, B., AND HUTCHINS, G. Fast transparent
migration for virtual machines. In Proceedings of the USENIX An-
nual Technical Conference (2005), USENIX Association Berkeley,
CA, USA, pp. 25–25.

[8] TAMURA, Y. Kemari: Virtual Machine Synchronization for Fault
Tolerance using DomT. In Xen Summit (2008).

[9] VRABLE, M., MA, J., CHEN, J., MOORE, D., VANDEKIEFT,
E., SNOEREN, A., VOELKER, G., AND SAVAGE, S. Scalability,
fidelity, and containment in the potemkin virtual honeyfarm. ACM
SIGOPS Operating Systems Review 39, 5 (2005), 148–162.

Notes
1LVM, ZFS
2A suspended VM has been descheduled by the hypervisor and it’s

I/O devices quiesced; a VM becomes active again when it is sched-
uleable and its I/O devices have been reconnected

5



Figure 4: Compile times at various checkpoint intervals

6


