
Camouflage: Automated Sanitization of Field Data

James Clause
College of Computing

Georgia Institute of Technology
clause@cc.gatech.edu

Alessandro Orso
College of Computing

Georgia Institute of Technology
orso@cc.gatech.edu

ABSTRACT
Privacy and security concerns have adversely affected the
usefulness of many types of techniques that leverage infor-
mation gathered from deployed applications. To address this
issue, we present a new approach for automatically sanitiz-
ing failure-inducing inputs. Given an input I that causes
a failure f , our technique can generate a sanitized input I ′

that is different from I but still causes f . I ′ can then be sent
to the developers to help them debug f , without revealing
the possibly sensitive information contained in I. We im-
plemented our approach in a prototype tool, camouflage,
and performed an empirical evaluation. In the evaluation,
we applied camouflage to a large set of failure-inducing
inputs for several real applications. The results of the eval-
uation are promising; they show that camouflage is both
practical and effective at generating sanitized inputs. In par-
ticular, for the inputs that we considered, I and I ′ shared
no sensitive information.

1. INTRODUCTION
Investigating techniques that capture data from deployed

applications to support in-house software engineering tasks
is an increasingly active and successful area of research (e.g.,
[1,3–5,13,14,17,21,22,26,27,29]). However, privacy and se-
curity concerns have prevented widespread adoption of many
of these techniques and, because they rely on user partici-
pation, have ultimately limited their usefulness. Many of
the earlier proposed techniques attempt to sidestep these
concerns by collecting only limited amounts of information
(e.g., stack traces and register dumps [1, 3, 5] or sampled
branch profiles [26, 27]) and providing a privacy policy that
specifies how the information will be used (e.g., [2, 8]). Be-
cause the types of information collected by these techniques
are unlikely to be sensitive, users are more willing to trust
developers. Moreover, because only a small amount of infor-
mation is collected, it is feasible for users to manually inspect
and sanitize such information before it is sent to developers.

Unfortunately, recent research has shown that the effec-
tiveness of these techniques increases when they can lever-
age large amounts of detailed information (e.g., complete
execution recordings [4, 14] or path profiles [13, 24]). Since
more detailed information is bound to contain sensitive data,
users will most likely be unwilling to let developers collect
such information. In addition, collecting large amounts of
information would make it infeasible for users to sanitize
the collected information by hand. To address this prob-
lem, some of these techniques suggest using an input mini-
mization approach (e.g., [6, 7, 35]) to reduce the number of
failure-inducing inputs and, hopefully, eliminate some sensi-
tive information. Input-minimization techniques, however,
were not designed to specifically reduce sensitive inputs, so
they can only eliminate sensitive data by chance. In or-
der for techniques that leverage captured field information
to become widely adopted and achieve their full potential,
new approaches for addressing privacy and security concerns
must be developed.

In this paper, we present a novel technique that addresses
privacy and security concerns by sanitizing information cap-
tured from deployed applications. Our technique is designed
to be used in conjunction with an execution capture/replay
technique (e.g., [4, 14]). Given an execution recording that
contains a captured failure-inducing input I = 〈i1, i2, . . . in〉
and terminates with a failure f , our technique replays the
execution recording and leverages a specialized version of
symbolic-execution to automatically produce I ′, a sanitized
version of I, such that I ′ (1) still causes f and (2) reveals as
little information about I as possible. A modified execution
recording where I ′ replaces I can then be constructed and
sent to the developers, who can use it to debug f .

It is, in general, impossible to construct I ′ such that it
does not reveal any information about I while still caus-
ing the same failure f . Typically, the execution of f would
depend on the fact that some elements of I have specific
values (e.g., i1 must be 0 for the failing path to be taken).
However, this fact does not prevent the technique from be-
ing useful in practice. In our evaluation, we found that the
information revealed by the sanitized inputs was not sensi-
tive and tended to be structural in nature (e.g., a specific
portion of the input must be surrounded by double quotes).
Conversely, the parts of the inputs that were more likely to
be sensitive (e.g., values contained inside the double quotes)
were not revealed (see Section 4).

To evaluate the effectiveness of our technique, we imple-
mented it in a prototype tool, called camouflage, and car-
ried out an empirical evaluation of 170 failure-inducing in-

1

puts for several real applications. In the evaluation, we in-
vestigated three research questions that are concerned with
the feasibility, strength, and effectiveness of the approach.
The results of the evaluation show that: (1) our approach is
feasible in that, for each input that we considered, camou-
flage generated, in a matter of minutes, a sanitized version
that reproduced the original failure; (2) the percentage of
information revealed by the sanitized inputs ranged from
≈ 60% (in the worst case) to ≈ 2% (in the best case); and
(3) even in the worst case, the sanitized inputs were un-
likely to reveal sensitive information and could have been
safely sent to developers. Although still preliminary, these
results are promising and show that our approach can be
both efficient and effective at sanitizing inputs that cause
failures in real applications.
The contributions of this paper are:

• A novel technique for automatically generating sani-
tized versions of failure-inducing inputs.

• A prototype tool that implements our technique for
Java applications.

• An extensive empirical study that demonstrates the
feasibility and effectiveness of our technique.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an example that we used to motivate our
technique. Section 3 describes our technique in detail. Sec-
tion 4 presents our empirical evaluation. Section 5 presents
related work and Section 6 presents our conclusions and pos-
sible future work.

2. MOTIVATING EXAMPLE
In this section, we provide an example that will be used

in the remainder of the paper to illustrate our technique.
Figure 1 shows the code for the example, which is an ex-
cerpt from a credit card processing utility that accepts Visa,
American Express, and Discover credit cards. The program
reads from the command line the credit card number to be
processed and passes it to isValidCardNumber, which checks
whether the provided number is valid using the Luhn for-
mula (a simple checksumming algorithm). If the credit card
number is valid, the program invokes processCard, which
determines the type of the credit card number (i.e., Visa,
American Express, or Discover) by checking the number’s
prefix and processes the card accordingly.

Function processCard contains a fault that can cause the
credit card processing utility to incorrectly handle certain
credit card numbers. On October 1, 2006, Discover’s pre-
fix was changed from “650” to “65”. Because line 20 of
processCard was not updated to reflect this change, valid
Discover card numbers that start with “65[1–9]”, such as
6521 1065 6000 0061,1 are not correctly processed and would
cause an UnknownCardType exception to be thrown.

Although this program and fault are relatively simple to
understand, failures caused by this fault are good examples
of the type of scenario that our technique targets, for two
reasons. First, such failures directly involve sensitive in-
formation (credit card numbers, in this case), which means
that users would likely be unwilling to provide developers

1Obviously, all credit card numbers used in this paper are
presented for informational purposes only and should not be
used in any other way.

 boolean isValidCardNumber(String ccn) {
 1. if(ccn.length() != 16) return false;
 2. int sum = 0;
 3. boolean alternate = false;
 4. int i = ccn.length() - 1;
 5. for (; i >= 0; i--) {
 6. int n = mapChar(ccn.charAt(i));
 7. if (alternate) {
 8. n *= 2;
 9. if (n > 9) n = (n % 10) + 1;
10. }
11. sum += n;
12. alternate = !alternate;
13. }
14. return (sum % 10) == 0;
 }

 void processCard(String ccn) {
15. if(ccn.startsWith("4"))
16. //process Visa
17. else if(ccn.startsWith("34")
18. || ccn.startsWith("37"))
19. //process American Express
20. else if(ccn.startsWith("650"))
21. //process Discover
22. else
23. throw new UnknownCardType(ccn);
 }

 int mapChar(char c) {
24. return (c >= '0' && c <= '9') ? c-'0' : c-'A'+10;
 }

 void main(String[] args) {
25. if(isValidCardNumber(args[0]))
26. processCard(args[0]);
 }

Figure 1: Code excerpt for our motivating example.

with the specific input that triggered the fault. Second, it
would be difficult for commonly used approaches to pro-
vide a sanitized version of the input that still triggers the
fault. In particular, input-minimization techniques would be
likely to fail. Minimization techniques that attempt to find
a subset of the inputs that causes the same failure, such as
ddmin [35] or delta [6], will be unsuccessful because a valid
credit card number must have 16 digits, so no minimization
would be possible. Minimization techniques that perform al-
phabet normalization by substituting some portions of the
input with a “don’t care” value (e.g., tmin [7]) would also
likely fail, as most inputs generated in this manner will not
satisfy the Luhn formula. Even constructing sanitized in-
puts by hand would be quite difficult, due to the difficulty
of generating inputs that pass the Luhn check.

3. AUTOMATIC SANITIZATION
Before discussing the details of our approach, we use Fig-

ure 2 to illustrate, intuitively, the goal of the approach and
the context in which it operates. Given a program P with in-
put domain ID, a failure f , and an input I ∈ ID that causes
f , there is in general a subset of the input domain, If ⊆ ID,
such that every input in If causes f .2 In general, identify-
ing If is impossible due to computability issues. However,
under some assumptions that we discuss in Section 3.3, it is
possible to identify a subset of If , such that every input in
this subset follows the same path as I and causes f .

To compute this subset, our approach uses a specialized
version of symbolic execution [25]. Symbolic execution tech-

2Note that this includes the extreme (and rare) case in which
If is a singleton whose only element is I.

2

●

★

ID: Input domain

: Inputs that cause f

: Inputs that satisfy
 the path condition
 derived from I

I': sanitized
input

I: sensitive
input

IΦ

I f

Figure 2: Intuitive view of a program domain.

niques execute a program using symbolic inputs so that, at
each point in the computation, the state is expressed as a
function of the input, and the conditions on the input for
reaching the current location l are expressed as a conjunc-
tion of constraints called a path condition.

In our approach, we leverage this characteristic of sym-
bolic execution to identify, given a specific input I, a subdo-
main of ID whose elements are inputs that cause the pro-
gram to follow the same path as I. More precisely, our tech-
nique performs symbolic execution along the specific path
of execution p caused by I; when failure f occurs at loca-
tion l, the computed path condition, φ, identifies exactly the
subdomain that we are looking for—the set of all inputs, in-
cluding I, that cause p to be executed and f to occur at
l. We call this set Iφ. (Note that, in general, the fact that
an input satisfies φ does not necessarily imply that such in-
put will follow the same path as I or, if it does, cause f .
However, this tends to be the case in most situations, as we
discuss in detail in Section 3.3.)

After computing φ, our approach generates a sanitized in-
put I ′ by identifying a satisfying assignment for φ that is
different from I. To do this, it leverages a solver for Satis-
fiability Modulo Theories (i.e., a constraint solver), which,
intuitively, chooses I ′ by selecting an input from Iφ − I.

The strength of our approach (i.e., how well it prevents
information about I from being revealed) depends on two
related aspects. First, the solution identified by the solver,
I ′, must be independent from I. We expect this assumption
to be always satisfied, as the solver knows nothing about I
when it solves φ. Moreover, most constraint solvers utilize
some randomness in their search heuristics, so the selection
of I ′ can be safely considered pseudo-random. Second, the
subdomain identified by φ, Iφ, must be large enough to guar-
antee that an enumeration of the domain is impractical in
a reasonable amount of time. (Because φ can be derived
from I ′, just as it is derived from I, a trivially small domain
allows for easily recovering I, which defeats the purpose of
the technique.)

To strengthen our approach, particularly with respect to
the second aspect, our approach specializes symbolic exe-
cution for our context of use by introducing path condition
relaxation. Path condition relaxation is a suite of optimiza-
tions to basic symbolic execution that specialize constraint
generation so as to increase the size of Iφ. Intuitively, path
condition relaxation loosens overly restrictive constraints,
thus allowing for a larger number of solutions, which in-
creases the strength of the approach.

In the rest of this section, we discuss in detail how our
technique performs symbolic execution and path condition
relaxation.

Path condition:
; constraints from mapChar
ccn[0] ≥ '0' ∧ ccn[0] ≤ '9' ∧
...
ccn[15] ≥ '0' ∧ ccn[15] ≤ '9' ∧

; constraints from isValidCardNumber
((ccn[0] - '0') * 2) > 9 ∧ ((ccn[2] - '0') * 2) ≤ 9 ∧
((ccn[4] - '0') * 2) ≤ 9 ∧ ((ccn[6] - '0') * 2) > 9 ∧
((ccn[8] - '0') * 2) > 9 ∧ ((ccn[10] - '0') * 2) ≤ 9 ∧
((ccn[12] - '0') * 2) ≤ 9 ∧ ((ccn[14] - '0') * 2) > 9 ∧

((((((ccn[0] - '0') * 2) % 10) + 1) + ((ccn[1] - '0') + (((ccn[2]
- '0') * 2) + ((ccn[3] - '0') + (((ccn[4] - '0') * 2) + ((ccn[5]
- '0') + (((((ccn[6] - '0') * 2) % 10) + 1) + ((ccn[7] - '0') +
(((((ccn[8] - '0') * 2) % 10) + 1) + ((ccn[9] - '0') + (((ccn[10]
- '0') * 2) + ((ccn[11] - '0') + (((ccn[12] - '0') * 2) +
((ccn[13] - '0') + (((((ccn[14] - '0') * 2) % 10) + 1) + (ccn[15]
- '0')))))))))))))))) % 10) = 0 ∧

; constraints from processCard
ccn[0] ≠ '4' ∧
ccn[0] ≠ '3' ∧
ccn[0] = '6' ∧ ccn[1] = '5' ∧ ccn[2] ≠ '0'

Original input:
Sanitized input: 6521 1065 6000 0061

6510 2556 8418 3585

Figure 3: Path condition and sanitized input gen-
erated when the code in Figure 1 is run with
6521 1065 6000 0061 as input.

3.1 Symbolic Execution
As we mentioned in the previous section, our technique

performs symbolic execution in parallel with a concrete ex-
ecution, which is similar to what other recent techniques do
(e.g., DART [19], CUTE [30], EXE [11], and KLEE [10]). In
our case, symbolic execution follows the path corresponding
to a given failure-inducing input I rather than an arbitrary
input chosen by the technique. In addition, our approach
is only concerned with re-executing a specific, known to be
feasible, path p (rather than exploring multiple, possibly in-
feasible paths), which helps the scalability of our approach.

To generate path conditions, our technique associates a
symbolic variable vk with every element of I and maintains
a mapping from each symbolic variable to the location of
the associated element (e.g., the first character of the first
command line argument or the ith character of a particular
file). For our example in Figure 1, for instance, each charac-
ter of the command line argument would be associated with
a unique symbolic variable: i0 is associated with v0, which
is mapped to the first character of the first argument; i1 is
associated with v1, which is mapped to the second character
of the first argument; and so on. The mapping between vari-
ables and locations is used to generate I ′ from the solution
provided by the constraint solver.

As the program executes, program statements are inter-
preted, and their effect determines (1) the symbolic state
of the program, expressed in terms of the symbolic vari-
ables, and (2) the current path condition. As an example of
a symbolic state, consider two subsequent instructions S1:
x = i+ (j − 5) and S2: y = x ∗ 2 where i is associated with
a symbolic expression e and j is associated with symbolic
variable v1; the value of y in the symbolic state after S2’s
execution would be the symbolic expression“(e+(v1−5))∗2”.

Like traditional symbolic execution, our technique con-
structs path conditions incrementally, by appending a new
constraint to the current path condition every time a pred-
icate that depends on the symbolic state is executed (i.e.,
every time a predicate uses one or more values that have an

3

associated symbolic expression). The constraint encodes the
condition on the symbolic variables under which the pred-
icate evaluates in the same way as the concrete execution.
To illustrate, we again use our motivating example. When
line 24 is executed for the first time, c is associated with sym-
bolic variable v15, has the concrete value ′1′, and is compared
with character ′0′. In this case, the predicate evaluates to
true because ′1′ ≥ ′0′; therefore, the constraint“v15 ≥ ′0′”
is appended to the path condition. Had the predicate eval-
uated to false, the constraint “v15 < ′0′” would have
been appended instead. Figure 3 shows the complete path
condition generated by running the code for our motivating
example with 6521 1065 6000 0061 as input.

After generating the path condition, our technique con-
verts it into a representation that a constraint solver can
handle. Currently, no constraint solver can handle the com-
plete set of constructs that can be in a symbolic expression,
such as multiplication of two symbolic expressions or bit-
shifting by a symbolic amount. To handle these cases, our
technique leverages a technique called concretization [19,30],
which replaces the value of one or more symbolic variables
involved in the problematic expressions with their corre-
sponding concrete values. By making some symbolic values
concrete, concretization reduces the domain identified by the
path condition being solved, thus reducing the amount of
information that can be sanitized. Nevertheless, concretiza-
tion is typically necessary to make the approach practical.
On the positive side, constraint solvers are constantly im-
proving, so the number of situations that require concretiza-
tion is likely to decrease over time.

3.2 Path Condition Relaxation
As we mentioned at the beginning of Section 3, path con-

dition relaxation consists of several optimizations that mod-
ify the way path conditions are generated to increase the
number of solutions for the computed conditions. There are
many situations in which path condition construction can
be optimized. In the following, we describe the four opti-
mizations that our technique currently uses.

Array inequality. Typically, a comparison between two
arrays is performed by iterating over the arrays and perform-
ing a pairwise comparison between corresponding elements.
In traditional symbolic execution, the result of each compar-
ison would be recorded as a constraint in the path condition.
Therefore, only inputs that cause every comparison to eval-
uate the same way as the observed execution would satisfy
the path condition. For example, assume that a = [1, 2, 3],
b = [1, 2, 4], a’s elements are associated with symbolic ex-
pressions e1, e2, and e3, and b’s elements are associated with
symbolic expressions e4, e5, and e6. Checking the equality of
these arrays would add the constraints “e1 = e4”, “e2 = e5”
and “e3 6= e6” to the path condition.

The key intuition behind our optimization of array com-
parisons is that such comparisons are essentially atomic op-
erations. Therefore, when arrays are not equal, our tech-
nique can replace the constraints that encode the individual
comparisons with a constraint that simply requires that at
least one comparison evaluates to false (i.e., at least one el-
ement is different). For the previous example, the constraint
“v1 6= v3 ∨ v2 6= v4 ∨ v3 6= v6” would be added. All variable
assignments that satisfy the original constraints also satisfy
the relaxed one, but this latter is also satisfied by many
other assignments (e.g., a = [2, 2, 3], b = [1, 2, 4]).

Multi-clause conditionals. In many languages, com-
monly used Boolean operators such as “and” and “or” are
evaluated with short-circuit or minimal evaluation seman-
tics; only the minimal amount of evaluation is done to de-
termine the value of the expression. For example, consider
the conditional “if(i1 > 5 ‖ i2 > 5)”. If i1’s value is 6, then
“i2 > 5” will not be evaluated, as the outcome of the condi-
tion is known after the evaluation of “i1 > 5”. Because the
rest of the conditional is not evaluated, the path condition
will only include the constraint “v1 > 5”. Like for array in-
equalities, such path conditions exclude a large number of
assignments that would cause the conditional to evaluate to
the same value (e.g., a = 0, b = 6).

To generate relaxed path conditions for multi-clause con-
ditionals, our technique generates constraints that encode all
clauses in the conditional, not just those evaluated at run-
time. For example, if the conditional “if(i1 > 5 ‖ i2 > 5)”
were to evaluate to true, our technique would generate the
constraint “v1 > 5 ∨ v2 > 5”. Conversely, if the conditional
were to evaluate to false, the constraint “v1 < 5 ∧ v2 < 5”
would be generated. Clauses joined by “and” and condition-
als comprised of more than two clauses are handled in a
similar manner.

Switch statements. Switch statements are similar to
multi-clause conditionals in that multiple values can cause
the switch to jump to the same target (i.e., for default tar-
gets or case statements that immediately fall through to
their successor). If the default branch is taken, our technique
generates a constraint of the form “vi 6= c1 ∧ . . . ∧ vi 6= cn”,
where vj is the symbolic expression associated with the value
compared by the switch statement, and each c is the value of
one of the case statements inside the switch; the constraint
forces the value of vi to be different from all of the values in
the case statements, but does not further restrict the range
of values that can be chosen. Conversely, if one of the cases
of the switch statement is taken, the technique generates a
constraint of the form “vi = c1 ∨ . . . ∨ vi = cn”, where vi
is again, the symbolic expression associated with the value
compared by the switch statement, and each c is one of the
values of the cases that branch to the same target.

Array reads. Array accesses are a another case in which
concretization is typically performed. For example, assume
that a = [2, 0, 1], and that x has the value “0” and is associ-
ated with symbolic expression e when statement “‘if(a[x] >
0)” is executed. For this statement, e would be concretized
to “0” to ensure that the same path is followed.

Similar to the cases we discussed previously, concretizing
in this case is unnecessarily restrictive, as multiple values
in an array can satisfy the same condition. In our previ-
ous example, for instance, the values “2” at index 0 and
“1” at index 2 will both cause the conditional to evaluate
to true, which means that e can be equal to either “2”
or “0”. To generate path conditions that take this possi-
bility into account, our technique uses an approach simi-
lar in nature to the one proposed by Elkarablieh and col-
leagues [18]. Essentially, our technique encodes a snapshot
of the contents of the array into the path condition as se-
quence of ternary-expressions. Continuing with the previ-
ous example, the technique would generate the constraints
“((e == 0) ? 2 : (e == 1) ? 0 : 1) > 0 ∧ e ≥ 0 ∧ e < 3”.
These constraints ensure that the value of e is within the
bounds of a, but otherwise allow it to be any value that
satisfies the conditional.

4

3.3 Assumptions
Our technique is based on the assumption that any input

that satisfies path condition φ not only follows the same path
as the original failure-inducing input I, but also results in the
same failure f . In practice, this requires that the necessary
conditions for f are encoded in φ. Intuitively, the only cases
in which this assumption does not hold are non-determinism
and implicit checks.

If the program being considered is non-deterministic, our
technique may not be able to generate sanitized inputs that
reproduce the failure because it cannot guarantee that events
such as thread switches always occur in the same order. Note
that this problem is common to all debugging-related tech-
niques and not specific to our approach. Like for these
techniques, the issue could be addressed by leveraging a
capture/replay technique that supports deterministic replay
(e.g., [4]). (As we stated in the Introduction, our technique
is meant to be used in conjunction with a technique for ex-
ecution capture and replay.)

Implicit checks are checks that are performed by an entity
that is external to the application and, thus, are not ob-
servable by the symbolic execution. Two typical examples
of implicit checks are checks performed by the underlying
runtime system (e.g., checks that may result in a division-
by-zero or out-of-memory error) and checks performed by a
human oracle (e.g., a tester that classifies an execution as
failing because the outcome produced is different from the
expected one).

Because these checks are not performed by the applica-
tion, they would not be included as constraints in the path
condition φ, and an input that satisfies φ may fail to repro-
duce f . Although this issue exists, we believe it is of limited
relevance in most cases, for several reasons. First, although
(some types of) implicit checks occur frequently, we expect
that the majority of them will be irrelevant because, as con-
firmed by our evaluation, they constraint variables that are
not directly or indirectly related to the failure. Therefore,
in the worst case, our technique could simply ignore cases
for which the sanitized input cannot reproduce f and fo-
cus on the remaining failures. Second, we can automatically
account for implicit checks that occur within the runtime
system by making them explicit. To account for division-
by-zero errors, for instance, our technique could add an ex-
plicit check of the denominator’s value every time a division
is encountered. Third, in the case of checks that cannot be
automatically handled, such as human or external checks, we
could either ignore the corresponding failures, as discussed
above, or rely on some form of built-in oracle. (This is anal-
ogous to relying on an accurate automated oracle, as many
automated debugging techniques do.)

4. EVALUATION
To evaluate our technique we implemented it in a proto-

type tool, called camouflage, and investigated the follow-
ing research questions:

RQ1: Feasibility—Can our approach generate, in a reason-
able amount of time, sanitized inputs that reproduce
the original failure?

RQ2: Strength—How much information about the original
failure-inducing inputs is revealed by the approach?

RQ3: Effectiveness—Are the sanitized inputs generated by
our approach safe to send to developers?

Note that RQ2 provides an objective assessment of our
technique; it does not make any assumptions about whether
the revealed information is actually sensitive. Conversely,
RQ3 does take into account whether the information that is
revealed is indeed sensitive.

The remainder of this section discusses camouflage, our
subjects, and our experimental protocol and results.

4.1 Prototype Tool
Our camouflage tool is a prototype implementation of

our technique for applications written in the Java language.
It consists of two separate components: the constraint gener-
ator and the input sanitizer. (We consider the capture/replay
tool that would provide inputs to be sanitized to camou-
flage as an external component.) The current implemen-
tation of the constraint generator is an extension to NASA’s
explicit state software model checker for Java software: Java
PathFinder (JPF) (http://javapathfinder.sourceforge.net/). We
chose JPF as the basis for the constraint generator because
it has many capabilities that simplify our implementation
(e.g., bytecode overloading and uncaught exception han-
dling) and has been successfully extended with features sim-
ilar to the ones we need (i.e., concolic execution [23] and
symbolic execution [32]). In fact, we were able to reuse some
portions of the concolic execution extension in our tool.

To assign symbolic variables to an application’s inputs, we
use JPF’s method interception capabilities to wrap all na-
tive methods in the java.io package. Because, ultimately,
all file and network inputs are read by these methods, cam-
ouflage can easily associate a symbolic variable with every
input read from these sources. To handle other sources of
input, we also wrap the main method (to handle command
line arguments) and the appropriate methods for reading
environment variables and system properties. By default,
camouflage assumes that all inputs are sensitive. How-
ever, as a convenience, it also allows users to specify that
inputs read from specific sources should not be associated
with a symbolic variable. This feature is useful, for example,
in cases where it is known that inputs read from certain files
or network streams are not sensitive and do not need to be
sanitized. To implement our specialized path condition gen-
eration (see Section 3.2), we use JPF’s bytecode overloading
facilities to replace each Java bytecode with a modified ver-
sion that replicates the instruction’s original semantics, but
also performs the necessary steps for generating path condi-
tions. Finally, to identify when failures occur, we use JPF’s
VMListener interface to intercept uncaught exceptions.

When the execution reaches the point of failure, and the
failure occurs, the constraint generator writes the recorded
path condition to disk. In addition, it also stores a set of con-
straints that prevent the constraint solver from selecting the
original input. These additional constraints are necessary;
we have encountered instances, albeit rarely, where with-
out these constraints, the solver happened to select inputs
that were unnecessarily similar to the original inputs (i.e.,
portions of the sanitized input were identical to the corre-
sponding portions of the original input, even though other
values could have been chosen). Note that we add these
additional constraints as “discardable” constraints that can
be ignored if the constraint solver cannot satisfy them. If
these constraints could not be ignored, there may be cases
where their presence would make the path condition unsat-
isfiable (e.g., when portions of an input must have a given

5

value for the failure of interest to occur). Using discardable
constraints allows camouflage to handle these situations.

The input sanitizer is implemented as a set of Ruby scripts
and works as follows. First, it transforms the constraints
produced by the constraint generator into a format under-
stood by the constraint solver. Then, it invokes the con-
straint solver to find a solution for the constraints. Finally,
it transforms the solution provided by the constraint solver
into a concrete input that can be sent to developers. As our
constraint solver, we choose YICES [16] because of its sup-
port for bit vector operations and discardable constraints.
Among the constraint solvers that we are aware of, it is the
only one to support both of these features. Using bit vectors
for symbolic variables allows our implementation to handle
bit shifts and masks, which are commonly used in the Java
libraries. However, using bit vectors does have one draw-
back: currently, no constraint solver, including YICES, sup-
ports floating point arithmetic on bit vectors. This means
that camouflage does not support associating a symbolic
variable with floats or doubles.

4.2 Subjects
The goal of our technique is to generate sanitized inputs

that cause the same failures as the original input while re-
vealing as little information as possible. To suitably evaluate
our technique with respect to this goal, we selected applica-
tions with known faults that process information that can be
considered private or sensitive: NanoXML (16 faults), which
is available from the Software-artifact Infrastructure Repos-
itory (SIR) [15], a Java version of printtokens (2 faults),
whose original C implementation is also available from SIR;
the address book component of the Columba email client ver-
sion 1.4 (1 fault) (http://www.columbamail.org); and version 1.0
of htmlparser (1 fault) (http://htmlparser.sourceforge.net). For
each fault, we selected multiple failure-inducing inputs. For
NanoXML and printtokens, we used the failure-inducing in-
puts provided with the two applications. For Columba and
htmlparser, we constructed representative inputs by hand.
In total, we used 170 failure-inducing inputs that range in
size from several hundred bytes to over 5 megabytes.

4.3 RQ1: Feasibility
The goal of our first research question is to assess whether

the amount of time needed to generate sanitized inputs is
reasonable and whether the sanitized inputs reproduce the
original failure. To generate the data necessary for inves-
tigating these questions, we proceeded as follows: for each
failure-inducing input, we used camouflage to run the ap-
plication and generate a sanitized version of such input. In
addition, we recorded two measurements: (1) the amount of
time needed by camouflage to generate the path condition
and (2) the amount of time needed by the constraint solver
to solve the generated path condition.

The top-half of Figure 4 presents a bar chart that shows,
for each fault, the average amount of time camouflage
needed to generate path conditions. The bottom-half of the
figure shows the average amount of time needed by the con-
straint solver to solve the generated path conditions. As the
figure shows, the amount of time needed to generate path
conditions ranges from an average of 162 seconds (for print-
tokens) to an average of 533 seconds (for htmlparser). The
amount of time needed to solve the path conditions ranges
from an average of 0.1 seconds (for printtokens) to an av-

erage of 15.7 seconds (for Columba). For all of the failure-
inducing inputs that we considered, camouflage was able
to generate a sanitized version in less than 10 minutes. Be-
cause camouflage is designed to run off-line, during idle
periods when free cycles are available (e.g., overnight), the
approach is clearly practical. Users will only experience
the overhead caused by the capture/replay technique used,
which have been shown to be in the single digits for modern
approaches [4, 14].

To determine whether the sanitized inputs reproduce the
original failures, we executed our subject applications with
their sanitized inputs and manually inspected the outcomes.
We found that all 170 sanitized inputs produced by camou-
flage successfully reproduced the original failure.

4.4 RQ2: Strength
To assess the strength of the sanitization performed by

camouflage, we used the following two metrics: bits of
information revealed and residue. The first metric, bits of
information revealed, is a standard entropy measure that has
been used in related work [12, 33]. Intuitively, it measures
how much information is revealed by the technique by cal-
culating how many inputs satisfy the path condition (i.e.,
the number of inputs in Iφ). In general, a sanitized input
reveals

P
i∈I′ |log2(xi)| bits of information about I, where

xi is the number of solutions to the constraints involving i
divided by the size of i’s input domain. For example, as-
sume that i′0 is an 8-bit character (i.e., its input domain
contains 256 values) and that 5 of the 256 possible values
satisfy the constraints on i′0. In this case, i′0 reveals approx-
imately 5.76 of the 8 total bits of information about i0. Be-
cause computing xi exactly is difficult and expensive when
constraints involve multiple input elements, we chose to use
an algorithm by Martin that quickly provides an accurate
over-approximation of xi [28].

The bits-of-information-revealed metric provides a good
starting point for assessing the strength of the sanitization.
However, its results can be misleading. For example, it is
possible to decrease the amount of bits revealed while large
portions of the input remain unchanged. To illustrate this
situation, consider a program that reads 10 characters as
input. Assume that the constraints on each of the last 5
characters have 10 possible solutions, while the first 5 char-
acters must remain the same. If the number of possible
solutions for the second 5 characters is increased from 10 to
200, the amount of information revealed decreases from 63.3
bits to 41.7 bits. This decrease correctly indicates that it is
now more difficult to recover the original input, but it fails
to indicate that half of the input is unchanged, a fact that
may be important, especially if the first half of the input is
more sensitive than the second half.

Our second metric, residue, addresses this shortcoming.
Residue is essentially the number of inputs that remain un-
changed after sanitization. For the example mentioned in
the previous paragraph, the percentage of residue would not
change if the number of possible solutions for the second
5 characters increased from 10 to 200, thus indicating that
sanitization may not have been as effective as the bits of
information revealed metric would suggest. By using both
metrics, we can assess the strength of the sanitization per-
formed by camouflage from multiple perspectives and bet-
ter judge how much information about the failure-inducing
inputs is revealed by their sanitized versions.

6

c
o
l
u
m
b
a

p
r
i
n
t

t
o
k
e
n
s
1

p
r
i
n
t

t
o
k
e
n
s
2

n
a
n
o
x
m
l

v
0
1
s
0
1

n
a
n
o
x
m
l

v
0
1
s
0
3

n
a
n
o
x
m
l

v
0
1
s
0
5

n
a
n
o
x
m
l

v
0
1
s
0
6

n
a
n
o
x
m
l

v
0
2
s
0
2

n
a
n
o
x
m
l

v
0
2
s
0
3

n
a
n
o
x
m
l

v
0
2
s
0
4

n
a
n
o
x
m
l

v
0
2
s
0
5

n
a
n
o
x
m
l

v
0
2
s
0
6

n
a
n
o
x
m
l

v
0
2
s
0
7

n
a
n
o
x
m
l

v
0
3
s
0
4

n
a
n
o
x
m
l

v
0
3
s
0
9

n
a
n
o
x
m
l

v
0
3
s
1
0

n
a
n
o
x
m
l

v
0
5
s
0
3

n
a
n
o
x
m
l

v
0
5
s
0
5

n
a
n
o
x
m
l

v
0
5
0
9

h
t
m
l

p
a
r
s
e
r

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

fault runtime solvetime

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s05

v01s06

v01s06

v01s06

v01s06

v01s06

v01s06

v01s06

v01s06

v01s06

v01s06

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s03

v02s03

v02s04

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s07

v02s07

v02s07

v02s07

v02s07

v03s04

v03s09

v03s10

v03s10

v03s10

v03s10

v03s10

v03s10

v03s10

v03s10

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s05

v05s09

3.85 0.394

3.85 0.367

3.8 0.380

3.85 0.438

3.75 0.396

3.81 0.354

3.81 0.392

3.8 0.388

3.81 0.000

3.85 0.000

3.8 0.404

3.81 0.395

3.84 0.000

3.85 0.416

3.81 0.000

3.8 0.000

3.75 0.000

3.85 0.371

3.8 0.423

3.85 0.448

3.81 0.416

3.85 0.401

3.85 0.411

3.81 0.424

3.81 0.438

3.76 0.388

3.77 0.436

3.8 0.464

3.85 0.416

3.82 0.000

3.75 0.441

3.81 0.431

3.9 0.000

3.86 0.000

3.46 0.463

3.41 0.460

3.45 0.488

3.45 0.436

3.4 0.000

3.47 0.492

3.45 0.476

3.47 0.500

3.47 0.488

3.45 0.478

3.45 0.000

3.55 0.000

3.45 0.000

3.4 0.497

3.44 0.486

3.26 0.477

3.8 0.000

3.65 0.480

3.65 0.436

3.71 0.506

3.76 0.474

3.75 0.491

3.7 0.465

3.76 0.000

3.75 0.431

3.8 0.469

4 0.425

3.66 0.483

3.5 0.455

3.5 0.497

3.5 0.448

3.46 0.492

3.8 0.465

3.8 0.484

3.81 0.476

3.8 0.500

3.85 0.500

3.8 0.528

3.85 0.488

3.8 0.500

3.85 0.000

3.88 0.532

3.45 0.524

3.35 0.000

3.51 0.542

3.55 0.510

3.51 0.491

3.5 0.509

3.55 0.514

3.55 0.452

3.51 0.440

3.49 0.490

3.56 0.489

3.55 0.500

3.55 0.520

3.5 0.440

3.6 0.516

3.51 0.513

3.5 0.464

3.5 0.452

3.91 0.592

3.65 0.356

3.47 0.505

3.57 0.464

3.35 0.568

3.53 0.452

3.46 0.496

3.45 0.438

3.8 0.439

3.76 0.466

3.8 0.439

3.8 0.483

3.81 0.000

3.82 0.428

3.85 0.439

3.86 0.000

3.8 0.417

3.9 0.370

3.95 0.396

3.51 0.428

3.46 0.383

3.5 0.441

3.3 0.379

3.5 0.351

3.9 0.449

3.53 0.382

3.5 0.360

3.35 0.402

3.55 0.385

3.41 0.431

3.49 0.453

4.02 0.367

3.65 0.437

4.05 0.376

3.95 0.386

4.05 0.456

4.06 0.422

4.1 0.371

4.1 0.435

4.06 0.452

4.01 0.387

4.06 0.410

4.11 0.486

4.06 0.415

4.05 0.439

4.17 0.421

4.15 0.364

4 0.485

4.15 0.458

4 0.387

4.05 0.448

4.05 0.440

4.05 0.388

4.06 0.444

4.05 0.411

4.05 0.405

4.06 0.460

4.01 0.376

4.05 0.428

4.05 0.481

4 0.359

4.11 0.407

4.06 0.477

4.11 0.411

4.05 0.444

4.05 0.527

4.05 0.379

4.05 0.433

3.37 0.459

3.3 0.438

fault runtime constraint Runtime

addressbook

htmlparser

tokens1

tokens2

v01s01

v01s03

v01s05

v01s06

v02s02

v02s03

v02s04

v02s05

v02s06

v02s07

v03s04

v03s09

v03s10

v05s03

v05s05

v05s09

5.420 15.700 325.20

8.890 9.100 533.40

2.700 0.100 162.00

2.700 0.100 162.00

3.817 0.301 229.04

3.451 0.351 207.08

3.260 0.477 195.60

3.733 0.375 223.98

3.741 0.455 224.48

3.400 0.262 204.00

3.510 0.542 210.60

3.529 0.487 211.72

3.699 0.408 221.97

3.544 0.405 212.64

3.500 0.351 210.00

3.900 0.449 234.00

3.563 0.402 213.75

4.060 0.425 243.58

3.370 0.459 202.20

3.300 0.438 198.00

0

150

300

450

600

198202
244

214
234

210213222212211204
224224

196207
229

162162

533

325

0

0.2

0.4

0.6

0.8

1

0.440.46
0.420.40

0.45

0.35
0.410.41

0.49
0.54

0.26

0.45
0.38

0.48

0.35
0.30

0.100.10

9.1015.70

c
o
n
s
t
r
a
i
n
t

s
o
l
v
e
r

t
i
m
e

(
s
)

fault runtime solvetime

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s01

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s03

v01s05

v01s06

v01s06

v01s06

v01s06

v01s06

v01s06

v01s06

v01s06

v01s06

v01s06

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s02

v02s03

v02s03

v02s04

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s05

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s06

v02s07

v02s07

v02s07

v02s07

v02s07

v03s04

v03s09

v03s10

v03s10

v03s10

v03s10

v03s10

v03s10

v03s10

v03s10

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s03

v05s05

v05s09

3.85 0.394

3.85 0.367

3.8 0.380

3.85 0.438

3.75 0.396

3.81 0.354

3.81 0.392

3.8 0.388

3.81 0.000

3.85 0.000

3.8 0.404

3.81 0.395

3.84 0.000

3.85 0.416

3.81 0.000

3.8 0.000

3.75 0.000

3.85 0.371

3.8 0.423

3.85 0.448

3.81 0.416

3.85 0.401

3.85 0.411

3.81 0.424

3.81 0.438

3.76 0.388

3.77 0.436

3.8 0.464

3.85 0.416

3.82 0.000

3.75 0.441

3.81 0.431

3.9 0.000

3.86 0.000

3.46 0.463

3.41 0.460

3.45 0.488

3.45 0.436

3.4 0.000

3.47 0.492

3.45 0.476

3.47 0.500

3.47 0.488

3.45 0.478

3.45 0.000

3.55 0.000

3.45 0.000

3.4 0.497

3.44 0.486

3.26 0.477

3.8 0.000

3.65 0.480

3.65 0.436

3.71 0.506

3.76 0.474

3.75 0.491

3.7 0.465

3.76 0.000

3.75 0.431

3.8 0.469

4 0.425

3.66 0.483

3.5 0.455

3.5 0.497

3.5 0.448

3.46 0.492

3.8 0.465

3.8 0.484

3.81 0.476

3.8 0.500

3.85 0.500

3.8 0.528

3.85 0.488

3.8 0.500

3.85 0.000

3.88 0.532

3.45 0.524

3.35 0.000

3.51 0.542

3.55 0.510

3.51 0.491

3.5 0.509

3.55 0.514

3.55 0.452

3.51 0.440

3.49 0.490

3.56 0.489

3.55 0.500

3.55 0.520

3.5 0.440

3.6 0.516

3.51 0.513

3.5 0.464

3.5 0.452

3.91 0.592

3.65 0.356

3.47 0.505

3.57 0.464

3.35 0.568

3.53 0.452

3.46 0.496

3.45 0.438

3.8 0.439

3.76 0.466

3.8 0.439

3.8 0.483

3.81 0.000

3.82 0.428

3.85 0.439

3.86 0.000

3.8 0.417

3.9 0.370

3.95 0.396

3.51 0.428

3.46 0.383

3.5 0.441

3.3 0.379

3.5 0.351

3.9 0.449

3.53 0.382

3.5 0.360

3.35 0.402

3.55 0.385

3.41 0.431

3.49 0.453

4.02 0.367

3.65 0.437

4.05 0.376

3.95 0.386

4.05 0.456

4.06 0.422

4.1 0.371

4.1 0.435

4.06 0.452

4.01 0.387

4.06 0.410

4.11 0.486

4.06 0.415

4.05 0.439

4.17 0.421

4.15 0.364

4 0.485

4.15 0.458

4 0.387

4.05 0.448

4.05 0.440

4.05 0.388

4.06 0.444

4.05 0.411

4.05 0.405

4.06 0.460

4.01 0.376

4.05 0.428

4.05 0.481

4 0.359

4.11 0.407

4.06 0.477

4.11 0.411

4.05 0.444

4.05 0.527

4.05 0.379

4.05 0.433

3.37 0.459

3.3 0.438

fault runtime constraint Runtime

addressbook

htmlparser

tokens1

tokens2

v01s01

v01s03

v01s05

v01s06

v02s02

v02s03

v02s04

v02s05

v02s06

v02s07

v03s04

v03s09

v03s10

v05s03

v05s05

v05s09

5.420 15.700 325.20

8.890 9.100 533.40

2.700 0.100 162.00

2.700 0.100 162.00

3.817 0.301 229.04

3.451 0.351 207.08

3.260 0.477 195.60

3.733 0.375 223.98

3.741 0.455 224.48

3.400 0.262 204.00

3.510 0.542 210.60

3.529 0.487 211.72

3.699 0.408 221.97

3.544 0.405 212.64

3.500 0.351 210.00

3.900 0.449 234.00

3.563 0.402 213.75

4.060 0.425 243.58

3.370 0.459 202.20

3.300 0.438 198.00

0

150

300

450

600

198202
244

214
234

210213222212211204
224224

196207
229

162162

533

325

0

0.2

0.4

0.6

0.8

1

0.440.46
0.420.40

0.45

0.35
0.410.41

0.49
0.54

0.26

0.45
0.38

0.48

0.35
0.30

0.100.10

9.1015.70

Figure 4: Bar charts showing, for each fault, the average amount of time needed to execute the subject and
generate the corresponding path condition (top) and average amount of time needed for the constraint solver
to find a solution (bottom).

c
o
l
u
m
b
a

p
r
i
n
t

t
o
k
e
n
s
1

p
r
i
n
t

t
o
k
e
n
s
2

n
a
n
o
x
m
l

v
0
1
s
0
1

n
a
n
o
x
m
l

v
0
3
s
1
0

n
a
n
o
x
m
l

v
0
5
s
0
3

n
a
n
o
x
m
l

v
0
5
s
0
5

n
a
n
o
x
m
l

v
0
5
0
9

h
t
m
l

p
a
r
s
e
r

%

r
e
s
i
d
u
e

%

b
i
t
s

r
e
v
e
a
l
e
d

n
a
n
o
x
m
l

v
0
1
s
0
3

n
a
n
o
x
m
l

v
0
1
s
0
5

n
a
n
o
x
m
l

v
0
1
s
0
6

n
a
n
o
x
m
l

v
0
2
s
0
2

n
a
n
o
x
m
l

v
0
2
s
0
3

n
a
n
o
x
m
l

v
0
2
s
0
4

n
a
n
o
x
m
l

v
0
2
s
0
5

n
a
n
o
x
m
l

v
0
2
s
0
6

n
a
n
o
x
m
l

v
0
2
s
0
7

n
a
n
o
x
m
l

v
0
3
s
0
4

n
a
n
o
x
m
l

v
0
3
s
0
9

a
d
d
re
s
s
b
o
o
k

h
tm
lp
a
rs
e
r

p
ri
n
tt
o
k
e
n
s
1

p
ri
n
tt
o
k
e
n
s
2

v
0
1
s
0
1

v
0
1
s
0
3

v
0
1
s
0
5

v
0
1
s
0
6

v
0
2
s
0
2

v
0
2
s
0
3

v
0
2
s
0
4

v
0
2
s
0
5

v
0
2
s
0
6

v
0
2
s
0
7

v
0
3
s
0
4

v
0
3
s
0
9

v
0
3
s
1
0

v
0
5
s
0
3

v
0
5
s
0
5

v
0
5
s
0
9

0

20

40

60

80

100

a
d
d
re
s
s
b
o
o
k

h
tm
lp
a
rs
e
r

p
ri
n
tt
o
k
e
n
s
1

p
ri
n
tt
o
k
e
n
s
2

v
0
1
s
0
1

v
0
1
s
0
3

v
0
1
s
0
5

v
0
1
s
0
6

v
0
2
s
0
2

v
0
2
s
0
3

v
0
2
s
0
4

v
0
2
s
0
5

v
0
2
s
0
6

v
0
2
s
0
7

v
0
3
s
0
4

v
0
3
s
0
9

v
0
3
s
1
0

v
0
5
s
0
3

v
0
5
s
0
5

v
0
5
s
0
9

0

20

40

60

80

100

Figure 5: Box plots showing, for each fault, the bits of information revealed as a percentage of the total
number of bits in the input (top) and the percentage of residue (bottom) that remains after sanitization.

Figure 5 presents two box-and-whisker plots that show, for
each fault and failure-inducing input, the bits of information
revealed by the sanitized input as a percentage of the total
number of bits in the failure-inducing input (top) and the
percentage of residue in the sanitized input (bottom). For
the subjects we considered, the average percentage of bits
of information revealed ranges from 2.3% to 76.5%, with
an overall average of 30.6% and the average percentage of
residue ranges from 1.5% to 65%, with an overall average of
30%. Although these results confirm that, in general, it is
impossible to generate sanitized inputs that reveal no infor-
mation about the original inputs, they are also encouraging;
the majority of sanitized inputs produced by camouflage
only reveal a limited amount of information. (Moreover,
as the results discussed in the next section show, the in-
formation revealed is unlikely to be sensitive.) The results
also suggest that the strength of the sanitization performed
by camouflage depends not only on the subject applica-
tion, but also on the specific input and can vary widely even
among different inputs that trigger the same fault.

4.5 RQ3: Effectiveness
The results of RQ2’s investigation provide an objective

measure of the sanitation performed by camouflage. How-
ever, without considering whether the revealed information
is actually sensitive, it is difficult to accurately assess if san-
itized inputs can safely be sent to developers. Performing
such an assessment is the goal of the study addressing RQ3.
In this study, we conducted an in-depth, qualitative assess-
ment of all the sanitized inputs generated by camouflage
that takes into account whether the revealed information
is sensitive. To make this determination, we manually in-
spected each failure-inducing input and its sanitized version.
(As the discussion of the specific sanitization cases in the
rest of this section will show, for the subjects we consid-
ered the distinction between sensitive and not sensitive was
fairly clear-cut.) For all 170 sanitized inputs, we found that
they did not reveal any information that we believe to be
sensitive. In the rest of this section, we provide a detailed
description of our analysis for three sanitized inputs: one for

7

<!DOCTYPE Foo [
 <!ELEMENT Foo (ns:Bar)>
 <!ATTLIST Foo
 xmlns CDATA #FIXED 'http://nanoxml.n3.net/bar'
 a CDATA #REQUIRED>

 <!ELEMENT ns:Bar (Blah)>
 <!ATTLIST ns:Bar
 xmlns:ns CDATA #FIXED 'http://nanoxml.n3.net/bar'>

 <!ELEMENT Blah EMPTY>
 <!ATTLIST Blah
 x CDATA #REQUIRED
 ns:x CDATA #REQUIRED>
]>
<!-- comment -->
<Foo a='test' b='test1' c='test2'>vaz
 <ns:Bar>
 <Blah x="1" ns:x="2"/>
 </ns:Bar>
</Foo>

Figure 6: Failure-inducing input for NanoXML.

NanoXML, one for the address book component of Columba,
and one for htmlparser. We chose to present these inputs
because, among the failure-inducing inputs for each applica-
tion, they have the highest percentage of bits of information
revealed and residue. Consequently, they are the most likely
to actually reveal sensitive information.

Figures 6, 7, and 8 show representations of the portions
of the original inputs that can and cannot be changed (i.e.,
residue) for the inputs we are presenting. In these figures,
portions of the inputs that can be changed are colored gray,
while portions that cannot be changed are colored black.

NanoXML. The input for NanoXML shown in Figure 6
is an XML file available from SIR repository. The fault
triggered by this input causes NanoXML to incorrectly han-
dle closing tags. As the figure shows, the portions of this
file that cannot be changed do not contain any sensitive
information. The literals “DOCTYPE”, “ATTLIST”, and
“FIXED” are keywords of the language used to specify doc-
ument type definitions, and NanoXML specifically checks for
their presence. Similarly, the angle brackets, exclamation
points, hyphens, double quotation marks, backslashes, and
equals signs that cannot be changed are necessary because
they define the structure of the XML document. Conversely,
portions of the input that are likely to contain sensitive in-
formation, such as XML tag names, attribute values, and
tag bodies, can all be changed without preventing the modi-
fied input from reproducing the failure. Therefore, although
a relatively large percentage of the file cannot be changed
(≈ 65%), we can consider the input to be sanitized because
it contains, to the best of our knowledge, no real sensitive
information.

Columba. The input for Columba shown in Figure 7 is a
comma-separated-value file of contact information. The en-
tries in each row are a contact’s first name, last name, sort
key, nickname, work phone, and home phone. The fault
that this file triggers is in a section of Columba that handles
the email portions of each row. Columba assumes that each
contact has either a work or a home email address. If this as-
sumption is violated, as it is by the second-to-last row in the
part of the input shown in Figure 7, an exception is thrown.
The results of sanitizing this input are similar to the results
of sanitizing the input for NanoXML; the structural elements
of the file (i.e., the commas that separate the individual

...
Wayne,Bartley,Bartley,Wayne,wbartly@acp.com,,
Ronald,Kahle,Kahle,Ron,ron.kahle@kahle.com,,
Wilma,Lavelle,Lavelle,Wilma,,lavelle678@aol.com,
Jesse,Hammonds,Hammonds,Jesse,,hamj34@comcast.com,
Amy,Uhl,Uhl,Amy,uhla@corp1,com,uhla@gmail.com,
Hazel,Miracle,Miracle,Hazel,hazel.miracle@corp2.com,,
Roxanne,Nealy,Nealy,Roxie,,roxie.nearly@gmail.com,
Heather,Kane,Kane,Heather,kaneh@corp2.com,,
Rosa,Stovall,Stovall,Rosa,,sstoval@aol.com,
Peter,Hyden,Hyden,Pete,,peteh1989@velocity.net,
Jeffrey,Wesson,Wesson,Jeff,jwesson@corp4.com,,
Virginia,Mendoza,Mendoza,Ginny,gmendoza@corp4.com,,
Richard,Robledo,Robledo,Ralph,ralphrobledo@corp1.com,,
Edward,Blanding,Blanding,Ed,,eblanding@gmail.com,
Sean,Pulliam,Pulliam,Sean,spulliam@corp2.com,,
Steven,Kocher,Kocher,Steve,kocher@kocher.com,,
Tony,Whitlock,Whitlock,Tony,,tw14567@aol.com,
Frank,Earl,Earl,Frankie,,,
Shelly,Riojas,Riojas,Shelly,srojas@corp6.com,,
...

Figure 7: Failure-inducing input for Columba’s ad-
dress book component.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://
www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>james clause @ gatech | home</title>

<style type="text/css" media="screen" title="">
<!--/*--><![CDATA[<!--*/

 body {
 margin: 0px;
...

/*]]>*/-->
</style>
</head>
<body>
 ...
</body>

Figure 8: Failure-inducing input for htmlparser.

fields) cannot be changed, but the non-structural elements
(i.e., each contact’s first name, last name, and so on) can
all be changed. Consequently, we can conclude that the in-
put produced by camouflage is sanitized (i.e., contains no
sensitive information) and can be safely sent to developers.

HtmlParser. The input for htmlparser shown in Fig-
ure 8 is an HTML file taken from the website of one of
the authors. The fault that this input triggers is in the
tag-processing portion of htmlparser, which scans for pairs
of angle brackets and backslashes. This version of html-

parser incorrectly handles several angle brackets around the
CDATA portion of the file, which causes a mismatch between
opening and closing brackets and leads, ultimately, to an
exception being thrown. For this input, the only parts that
cannot be changed are the angle brackets and backslashes,
which are explicitly matched by the tag parser. Again, the
portions of the input that are most likely to be sensitive—
the contents of the web page and the style sheet—have all
been changed.

8

Overall conclusions. For the three failure-inducing in-
puts that we presented above, and the additional 167 in-
puts that we considered in our evaluation, camouflage
was always able to sanitize the inputs by removing all of
the portions of the inputs that we considered to be sensi-
tive. These results are encouraging because they provide
initial, but strong, evidence that camouflage can generate
sanitized failure-inducing inputs that could be safely sent to
developers.

4.6 Threats to Validity
Because we used a limited number of subjects and faults,

our results may not generalize. However, both the subjects
and the faults we considered are real and representative of
the type of situations we expect to encounter in practice.
Therefore, we believe that these results, albeit preliminary,
are promising and warrant additional experimentation with
more varied and larger subjects.

5. RELATED WORK
Currently, only a few techniques directly address the prob-

lem of eliminating sensitive information from captured data.
The technique most closely related to ours is the one pro-

posed by Castro and colleagues [12], which is also based on
symbolic execution. The main advantage of our technique
over theirs is the use of a customized symbolic execution
algorithm, rather than a traditional one, which enables our
approach to generate larger sub-domains and should ulti-
mately result in a more effective sanitization. Although we
cannot perform a direct comparison of the two approaches
because their implementation (1) works for x86 binaries and
(2) is not publicly available, we performed a study to get
an initial assessment of the difference in effectiveness be-
tween the two techniques. To do this, we developed a Java
implementation of Castro and colleagues’ technique using
JPF’s symbolic execution engine and compared its perfor-
mance with the performance of camouflage (in terms of
time needed to generate sanitized inputs, bits of information
revealed, and residue) when run on our set of subjects and
failure-inducing inputs. The results of this comparison show
that camouflage required only slightly more time to gen-
erate sanitized inputs, and, on average, the sanitized inputs
generated by camouflage revealed 30% less bits of infor-
mation and contained 40% less residue. With the caveat of
a potential implementation bias, these results provide clear
evidence that our technique can be more effective at sani-
tizing inputs than Castro and colleagues’ technique.

Broadwell and colleagues’ Scrash tool uses a form of se-
cure information flow (dynamic tainting) to identify where
sensitive information is stored inside a crash dump [9]. Dur-
ing an execution, an initial set of of data is marked as sen-
sitive. As the execution progresses, any data that is derived
from this initial set is also marked as sensitive. Finally, when
a crash occurs, any data that is marked as sensitive is ex-
cluded from the crash dump that is sent to developers. The
main practical limitation of this approach is the difficulty
in identifying the initial set of sensitive data—it is unrea-
sonable to expect users to perform this step, and relying on
the application’s developers is equivalent to trusting them
with access to the sensitive data. Furthermore, unlike our
technique, Scrash does not attempt to sanitize sensitive
data, but simply avoids sending it to the developers, which
would result in a loss of potentially useful information on the

developers’ side. In addition, their technique is performed
on-line and, unlike our technique, may subject users to high
runtime overheads.

Wang and colleagues propose an approach, Panalyst [33],
that aims to reconstruct failure-inducing inputs on devel-
opers’ machines by using a combination of dynamic taint
analysis, symbolic execution, and collection of answers to
questions sent to a client running on the user’s machine.
Answers provided by the client determine which direction
the symbolic execution takes when encountering branches
that depend on sensitive information and what values are
read or written by memory accesses through sensitive point-
ers. The client will answer all questions that do not involve
sensitive information, but will only disclose up to a prede-
termined amount of sensitive information. Like for Scrash,
the main practical limitation of this technique is the diffi-
culty in identifying which information is sensitive and how
much sensitive information is safe to send to developers. In
addition, there are also technical limitations that may pre-
vent the approach from scaling beyond the stateless packet
processing application on which it has been evaluated.

In addition to the techniques that are directly related to
ours, there is also a large body of work that is concerned with
anonymizing data sets (e.g., databases or spreadsheets) be-
fore they are released to the public (e.g., [31,34,36]). These
approaches try to maintain statistical properties of the data
(e.g., the distribution of ages across a population) while pre-
venting users of the data from uniquely identifying a specific
record (e.g., the age of a specific individual). Typically, this
is accomplished by merging data (e.g., ages 0–18 are grouped
together) or by adding random noise to the data. Because
the conditions for reproducing a failure are typically very
specific, these approaches are not suitable for our scenario.

White-box dynamic test generation and fuzzing techniques
(e.g., [10, 11, 19, 30, 32]) are also tangentially related to our
technique. Instead of solving path conditions to obtain a
new set of inputs to reach a known failure, they iteratively
generate, negate, and solve path constraints to explore mul-
tiple execution paths.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a novel technique for sanitizing

inputs that cause failures. Given a failure-inducing input,
our technique (1) identifies an input set that includes this
input together with other inputs that induce the same failure
and (2) selects an input different from the initial one from
this set. To do this, our technique leverages a specialized
version of symbolic execution and various optimizations that
aim to increase the size of the failure-revealing input set (so
as to increase the effectiveness of the sanitization).

We also presented camouflage, a prototype implemen-
tation of our approach for Java programs, and an empirical
evaluation of camouflage on 170 failure-inducing inputs
for several real applications. The results of the evaluation
show that our approach is feasible and effective. For each
failure-inducing input that we considered, camouflage was
able to generate a sanitized version that reproduced that
original failure in less than 10 minutes; an amount of time
that is well within the length of typical idle periods on a
user’s machine. Moreover, manual investigation of the san-
itized inputs shows that they do not reveal any potentially
sensitive information contained in the original inputs, and
could therefore be safely sent to developers.

9

As future work, we will investigate additional metrics for
quantifying the strength of the sanitization. Bits of informa-
tion revealed and residue constitute a useful starting point,
but, as we mentioned in the paper, they fail to account for
all aspects of privacy loss. Most importantly, they do not
consider the relative sensitivity of different parts of the in-
puts. In addition, we believe that for many users these met-
rics would be difficult to use effectively, as they provide no
indication of what is an acceptable percentage of bits of in-
formation revealed or residue. As our evaluation shows, even
when a sanitized input reveals a relatively large amount of
information, it may still be safe to send to developers.

7. REFERENCES
[1] Apport - Automatic crash reports, September 2009.

https://wiki.ubuntu.com/Apport.
[2] Privacy Statement for the Microsoft Error Reporting

Service, September 2009.
http://oca.microsoft.com/en/dcp20.asp.

[3] Technical Note TN2123: CrashReporter, September 2009.
http://developer.apple.com/technotes/tn2004/tn2123.html.

[4] The Amazing VM Record/Replay Feature in VMware
Workstation 6, September 2009. http:
//blogs.vmware.com/sherrod/2007/04/the_amazing_vm_.html.

[5] Windows Error Reporting: Getting Started, September
2009. http://www.microsoft.com/whdc/maintain/StartWER.mspx.

[6] Delta, September 2009. http://delta.tigris.org/.

[7] tmin: Fuzzing Test Case Optimizer, September 2009.
http://code.google.com/p/tmin/.

[8] Apple. Apple Customer Privacy Policy, September 2009.
http://www.apple.com/legal/privacy/.

[9] P. Broadwell, M. Harren, and N. Sastry. Scrash: A system
for Generating Secure Crash Information. In Proceedings of
the 12th Conference on USENIX Security Symposium,
pages 19–19, 2003.

[10] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the 8th
USENIX Symposium on Operating Systems Design and
Implementation, pages 209–224, 2008.

[11] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. Exe: automatically generating inputs of
death. In Proceedings of the 13th ACM Conference on
Computer and Communications Security, pages 322–335,
2006.

[12] M. Castro, M. Costa, and J.-P. Martin. Better Bug
Reporting with Better Privacy. In Proceedings of the 13th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
319–328, 2008.

[13] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani.
Holmes: Effective Statistical Debugging via Efficient Path
Profiling. In Proceedings of the 31st International
Conference on Software Engineering, pages 34–44, 2009.

[14] J. Clause and A. Orso. A Technique for Enabling and
Supporting Debugging of Field Failures. In Proceedings of
the 29th IEEE and ACM SIGSOFT International
Conference on Software Engineering, pages 261–270, 2007.

[15] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
Controlled Experimentation with Testing Techniques: An
Infrastructure and its Potential Impact. Empirical Software
Engineering: An International Journal, 10(4):405–435,
2005.

[16] B. Dutertre and L. de Moura. The YICES SMT Solver.
http://yices.csl.sri.com/tool-paper.pdf.

[17] S. Elbaum and M. Diep. Profiling Deployed Software:
Assessing Strategies and Testing Opportunities. IEEE

Transactions on Software Engineering, 31(4):312–327,
2005.

[18] B. Elkarablieh, P. Godefroid, and M. Y. Levin. Precise
pointer reasoning for dynamic test generation. In
Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, pages 129–140, 2009.

[19] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 213–223, 2005.

[20] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated
Whitebox Fuzz Testing. In Proceedings of the Network and
Distributed System Security Symposium, 2008.

[21] D. Hilbert and D. Redmiles. An Approach to Large-scale
Collection of Application Usage Data Over the Internet. In
Proceedings of the 20th International Conference on
Software Engineering, pages 136–145, 1998.

[22] D. M. Hilbert and D. F. Redmiles. Extracting Usability
Information from User Interface Events. ACM Computing
Surveys, 32(4):384–421, Dec 2000.

[23] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kieżun.
jFuzz: A Concolic Whitebox Fuzzer for Java. In
Proceedings of the First NASA Formal Methods
Symposium, pages 121–125, 2009.

[24] L. Jiang and Z. Su. Context-aware Statistical Debugging:
From Bug Predictors to Faulty Control Flow Paths. In
Proceedings of the Twenty-second IEEE/ACM
International Conference on Automated Software
Engineering, pages 184–193, 2007.

[25] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[26] B. Liblit. Cooperative Bug Isolation. PhD thesis, University
of California, Berkeley, 2004.

[27] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan. Scalable Statistical Bug Isolation. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 15–26, 2005.

[28] J.-P. Martin. Upper and lower bounds on the number of
solutions. Technical Report MSR-TR-2007-164, Microsoft
Research, 2007.

[29] C. Pavlopoulou and M. Young. Residual Test Coverage
Monitoring. In Proceedings of the 21st International
Conference on Software Engineering, pages 277–284, 1999.

[30] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit
Testing Engine for C. In Proceedings of the 10th European
Software Engineering Conference / 13th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 263–272, 2005.

[31] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza,
Y. Saygin, and Y. Theodoridis. State-of-the-art in Privacy
Preserving Data Mining. ACM SIGMOD Record,
33(1):50–57, 2004.

[32] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test Input
Generation with Java PathFinder. SIGSOFT Software
Engineering Notes, 29(4):97–107, 2004.

[33] R. Wang, X. Wang, and Z. Li. Panalyst: Privacy-aware
Remote Error Analysis on Commodity Software. In
Proceedings of the 17th USENIX Security Symposium,
pages 291–306, 2008.

[34] Z. Yang, S. Zhong, and R. N. Wright. Privacy-Preserving
Queries on Encrypted Data, volume 4189 of Lecture Notes
in Computer Science, pages 479–495. 2006.

[35] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software
Engineering, 28(2):183–200, 2002.

[36] S. Zhong, Z. Yang, and R. N. Wright. Privacy-Enhancing
K-Anonymization of Customer Data. In Proceedings of the
24th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 139–147, 2005.

10

