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ABSTRACT 

 

In this paper, we propose a power- and area-efficient 

architecture of Turbo decoder. In order to improve the non-

functional performance metrics such as power consumption 

and area, we use the trade-off method between bit error rate 

(BER) performance and the two non-functional performance 

metrics. Our proposed architecture shows about 16.7% 

reduction in power consumption and about 22.5% reduction 

in area compared to the general architecture.  

 

Index Terms— trade-off method, data dependency, 

parallelism, sub-optimal initialization, single SISO 

architecture 

 

1. INTRODUCTION 

 

In digital wireless communication systems, channel 

coding is used to restore the damaged bits to the original bits. 

Turbo coding is one of the best channel coding schemes in 

terms of bit error rate (BER) performance [1]. When it was 

invented, Turbo coding was not practically used because of 

its computational complexity and large decoding latency. 

But as some applications such as wireless communication 

and satellite communication require better BER 

performance, Turbo coding starts being considered again. 

Many papers have been published to improve the non-

functional performance: area, power, decoding latency, and 

throughput [2, 3, 4]. This paper introduces a new 

architecture that reduces the power consumption and area at 

the cost of only modest losses in BER.    

In order to improve the non-functional performance 

metrics such as power, area, and throughput, we trade off 

BER degradation. First, the power consumption can be 

reduced by removing the necessary but non-critical 

computations. Second, if the computations are done in 

separate functional units, those units can be eliminated, 

which results in the reduced area as well. The BER 

degradation due to the removal of the computation (and the 

corresponding units) should be tolerable. Finally, the 

throughput can be improved by exploiting some parallelism 

which exists in Turbo decoding sequence. In some cases, the 

exploitation of parallelism requires the removal of data 

dependency. In those cases, first of all, data dependency 

between computations in Turbo decoding sequence should 

be analyzed. Then the BER degradation is measured when 

the dependency is removed. If the degradation can be 

acceptable, the parallelism is exploited. In this paper, we 

focus on the power consumption and area, and use the trade-

off approach to improve them. 

We use the Log-Maximum a posteriori (Log-MAP) [5] 

and sliding window algorithms [6] in this paper, which make 

the practical implementation of the MAP algorithm [7] 

possible. The Log-MAP algorithm reduces the 

computational complexity of the MAP algorithm. One of the 

most critical issues in implementing the MAP (including the 

Log-MAP) algorithm is the memory size required to store 

one of the forward and backward state metrics until Log-

Likelihood Ratios (LLRs) are calculated. Depending on 

implementation, only one of the two state metrics is stored. 

Our proposed architecture stores the forward state metrics. 

In order to resolve the memory size problem, the sliding 

window algorithm is used in this paper [6].  

This paper is organized as follows. Section 2 shortly 

describes the Log-MAP and sliding window algorithms. In 

Section 3 and 4, the trade-off method to improve the power, 

area, and throughput is described. In section 5, we propose a 

power- and area-efficient Turbo decoder architecture. We 

compare the power, area, and BER of our proposed 

architecture with those of the general architecture in 

Section 6.  

 

2. LOG-MAP AND SLIDING-WINDOW  

ALGORITHMS 

 

The Log-MAP algorithm is a derivative of the MAP 

algorithm, which reduces the pure MAP’s computation 

complexity by converting multiplications and divisions to 

additions and subtractions respectively. Implementation of 

MAP-based algorithms including Log-MAP requires a large 

size of memory to store the forward (or backward) state 

metrics until the LLRs are calculated. This memory size 

problem is one of the main issues in practically 

implementing MAP-based algorithms.  

The sliding window algorithm helps us resolve the 

memory size problem. As shown in Fig. 1, one frame is 
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divided into several sub-blocks and each sub-block is 

decoded separately, where w represents the size of main 

window, g is the size of guard window, and N is the total 

frame size.  Therefore, we need to store the forward (or 

backward) state metrics only for one small sub-block, 

instead of the whole frame.  

There are two kinds of window in the sliding window 

algorithm: main window and guard window. As shown in 

Fig. 1, the forward recursion is accomplished only through 

the main window, but the backward recursion is carried out 

through both the main and guard windows. The backward 

recursion through the guard window (called dummy 

computation) is not for computing the LLRs, but for 

obtaining the reliable initial backward metric at the 

boundary of the main window and the guard window, e.g., at 

w-1, 2w-1, etc. The size of guard window is a key factor 

affecting BER performance; the larger the size, the better the 

BER performance. The size of guard window should be 

determined by trade-off between the memory size, the 

decoding latency, and the BER performance [8]. For simple 

implementation, the size of guard window can be set to be 

equal to that of main window [2, 3]; the beta computation 

unit for the main window can be also used for the guard 

window without any modification. In this paper, we use the 

equal-size window method. 

 
3. HOW TO IMPROVE THROUGHPUT 

 
Even though this paper does not focus on throughput, 

we describe the method to improve the throughput in this 

section. The throughput is one of the most important non-

functional performance metrics. In Turbo decoding, the 

throughput is defined as the rate at which LLR values are 

produced. We can improve it by pipelining or parallelizing 

computations in Turbo decoding sequence. (pipelining can 

be viewed as one of the parallelizing)  

Fig. 2 shows the decoding sequence of a non-pipelined 

architecture. The horizontal axis represents the trellis time 

and the vertical axis represents the processing time. The 

forward arrows indicate alpha (forward state metric) and 

gamma (branch metric) computations and the backward 

solid arrows indicate beta (backward state metric), gamma, 

and LLR computations. The dashed backward arrows 

indicate the beta and gamma computations, which are for 

getting the reliable initial beta metric at the boundary as 

described in section 2. (The equal-size window method is 

used here) As shown in Fig. 2, the forward and backward 

computations are done sequentially in the non-pipelined 

architecture. As a result, the LLR values are produced with 

interruption; for example, they are generated at processing 

time index 1, 3, 5, etc., but not generated at time index 2, 4, 

etc. 

In the non-pipelined architecture, two kinds of data 

dependency limit the throughput: one is within each sub-

block and the other is across adjacent sub-blocks. First, 

within each sub-block, computations across the iterations 

have true data dependency. For example, the 2
nd

 half 

iteration of the 1
st
 iteration can be started only after the 1

st
 

half of the 1
st
  iteration is completed. And the 1

st
 half of the 

2
nd

 iteration can be started only after the 2
nd

 half of the 1
st
 

iteration is completed, and so on. This data dependency is 

due to the inherent nature of the iterative Turbo decoding 

scheme using the MAP algorithm; the extrinsic values of one 

component decoder are used as a priori information of 
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Figure 2. Non-pipelined decoding sequence 
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            Figure 1. General sliding window algorithm 
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another component decoder. Since this dependency is very 

strong - the removal of the dependency results in a 

functional failure (huge BER degradation), there is no way 

to remove this data dependency. Therefore, the decoding 

sequence within each sub-block should be strictly observed. 

Because of this limitation, even if an infinite number of 

functional units are added, the maximum attainable 

throughput is still limited. Second, another type of data 

dependency exists across the adjacent sub-blocks. Since it is 

related to initial beta metric computation, we call it initial 

value dependency in this paper. Although the initial value 

dependency is also true data dependency, it is very weak – 

its removal only results in the modest BER degradation.  

Fig. 3 shows one example of the decoding sequences 

with the improved throughput by using pipelining. 

Compared to Fig. 2, the decoding sequence of following 

sub-blocks is moved one processing time index ahead. In the 

middle of pipeline (neither prologue nor epilogue), the three 

computations corresponding to the backward solid arrow, 

forward solid arrow, and backward dashed arrow of different 

three sub-blocks respectively are done at the same time. As a 

result, the LLR values are generated without interruption and 

the throughput is about two times that of Fig. 2. In Fig. 3, 

the initial value dependency is still observed.  

In some cases, the pipelining or parallelizing requires 

the removal of data dependency. In those cases, data 

dependency between computations should be analyzed and 

the BER degradation due to the removal of the dependency 

should be measured. If the BER degradation can be 

acceptable, the parallelism can be exploited. Fig. 4 shows 

the example to which the trade-off approach is applied in 

order to improve the throughput. The decoding sequence is 

the case with a parallelism level = 2, i.e. two sub-blocks are 

concurrently processed. The following decoding sequences 

are moved one more processing time index ahead compared 

to that of Fig. 3. Now the initial value dependency is 

removed. If the BER degradation due to the removal is 

tolerable, this parallelism can be exploited. The throughput 

is about four times that of the Fig. 2.  

In this paper, we consider serial architecture, not 

parallel architecture of Turbo decoder. In other words, we 

consider the architecture corresponding to Fig. 3, not Fig. 4. 

 
4. HOW TO REDUCE POWER CONSUMPTION  

AND AREA 

 

In section 3, we described how throughput can be 

improved by the pipelining and parallelizing of 

computations. If needed, the trade-off approach between the 

BER performance and the throughput performance is used. 

In order to reduce the dynamic power consumption and 

area, we also use the trade-off approach in this section.  

As described in section 3, the initial value dependency 

can be removed at the expense of modest BER losses; the 

dummy computations (corresponding to the backward 

dashed arrows in Fig. 3) can be removed because their 

results are not directly used to get the LLR values, but to get 

the reliable initial beta metrics at the boundary (at the end 

point of each sub-block). All the dashed lines in Fig. 3 can 

be removed as in Fig. 5. Eliminating these computations 

definitely results in the reduced dynamic power 

consumption. Furthermore, the additional BCU and GCU 

related to the dummy computations are no longer required. 

The elimination of those units also causes the area to be 

lowered. This elimination, however, can lead to BER 

performance degradation, which might be acceptable. But if 

there are some ways to compensate the degradation, it is 

better to apply the methods than doing nothing. The larger 

sub-block size and more iteration number are examples of 

the compensation methods. But the both methods have a 

negative effect on the power consumption and area. 

Boutillon et al. showed another alternative solution, the sub-

optimal initialization method in [9]. Although they explained 

the sub-optimal initialization method for parallel architecture, 

its concept can be also applied to this paper, serial 

architecture. In the sub-optimal initialization method, the 

initial beta metrics are referenced across the iterations. For 

example, as shown in Fig. 5, the final beta metric of sub-

block 1 at the 1
st
 half of the 1

st
 iteration is used as the initial 

beta metric of sub-block 0 at the 1
st
 half of the 2

nd
 iteration, 
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Figure 5. Decoding sequence with sub-optimal initialization 
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and so on. The reference should be taken only within the 

same component decoder.  

Fig. 6 compares the BER performance of Fig. 3 and Fig. 

5 decoding sequences. The simulation parameters are set as 

follows: code rate = 1/3, constraint length = 3, frame length 

= 512 bits, sub-block length = 128 bits, and the number of 

iterations = 5. As shown in Fig. 6, the BER performance 

degradation of Fig. 5 compared to Fig. 3 is negligible over 

all Eb/N0 and iterations. In this paper, the serial architecture 

corresponding to Fig. 3 is called the general architecture 

[10], and one corresponding to Fig. 5 is called the proposed 

architecture. To sum up, we propose a Turbo decoder 

architecture with the low power consumption and small area 

for the decoding sequence in Fig. 5. 

 

5. TURBO DECODER ARCHITECTURE 

 

The proposed architecture operates according to the 

decoding sequence in Fig. 5. In traditional Turbo decoders, 

several component decoders – mostly two - are used. The 

two separate Soft-In Soft-Out (SISO) decoders are 

corresponding to two component encoders respectively.  But 

considering the utilization efficiency of the SISO units, the 

dual SISO-based scheme is inefficient because one of the 

two is always in the idle state in turn. For example, the 2
nd

 

SISO is always in the idle state during every 1
st
 half iteration 

and the 1
st
 SISO is always in the idle state during every 2

nd
 

half iteration. Therefore, we consider a single SISO scheme 

in this paper. 

The block diagram of our proposed architecture based 

on the single SISO scheme is shown in Fig. 8. It is 

composed of ALU, memory unit, and controller. The ALU is 

general, but the memory unit and the controller are specific 

to our architecture. For showing the difference between the 

proposed architecture and the general architecture, the 

general one is also shown in Fig. 7.  

 

5.1. ALU 

 

Since we use the single SISO scheme and remove the 

dummy computations in the proposed architecture, only one 

Alpha Computation Unit (ACU) and one Beta Computation 

Unit (BCU) are required as shown in Fig. 8. The ACU and 

BCU are always in operation for two consecutive sub-blocks 

at the same time excluding at the prologue and epilogue of 

the pipeline processing. For example, at the time index 1 in 

Fig. 5, the ACU is working for the sub-block 1 and the BCU 

is working for the sub-block 0. For this pipeline processing, 

the gamma branch metrics should be provided to the both 

ACU and BCU at the same time. Therefore, two Gamma 

Computation Unit (GCU)s are required.  

In the general architecture, the dummy computation is 

necessary, so one additional BCU and GCU are required as 

shown in Fig. 7. 

 

5.2. Memory 

 

Three kinds of memory are used in terms of its function: 

input buffer, interleaver/deinterleaver (I/DI), and LIFO 

buffer. The input buffer stores the raw received information 

and parity bits. For continuous decoding, the buffer size 

should be twice the frame size; during the current frame 

decoding, the next frame is stored for the future processing. 

And since the code rate is 1/3 in this example, the input 

buffer is composed of six component buffers: two for the 

information bits, two for the first parity bits, and two for the 

second parity bits. The two for the information bits are 

shared between the in-order information bits and the 

interleaved information bits. Secondly, the I/DI is used to 

permutate the extrinsic values. One I/DI is shared between 

two component decoding (although we use the single SISO 

scheme, there are two component decoding procedures) by 

time-division multiplexing; when the single SISO is 

operating as the first component decoder, I/DI is used as 

deinterleaver. And when the single SISO is used as the 

second component decoder, I/DI is used as interleaver. 

Finally, there are two kinds of LIFO buffer: one for the 

alpha metrics and the other for the decoded bits. In this 

paper, since the alpha computation is first done and the LLR 

computation is done with the beta computation, a LIFO 

buffer for the beta metrics is not needed. The size of the two 

LIFOs is twice the sub-block length respectively, regardless 
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of the total frame size because the sliding window algorithm 

is used in this paper. 

The LIFO buffers are totally the same in the both 

general and proposed architecture because they are not 

affected by the dummy computation. But there is difference 

in the input buffer and I/DI. In order to show the difference, 

read operations to the input buffer are shown in Fig. 9 and 

10 with the example of four sub-blocks. For simplicity, only 

one buffer (one of the six component buffers) is shown. The 

first type arrow (    ) represents the in-order read operations 

and the other (  ) represents the permuted-order read 

operations. As shown in Fig. 10, in the proposed architecture, 

the two memory accesses at most are needed at the same 

time: one for the forward data reading and the other for the 

backward data reading. Therefore, the input buffer can be 

implemented by using a dual-port memory with bidirectional 

ports. Since write and read operations are not occurred in 

overlapping segments of time, they can share the 

bidirectional ports (although write operation is not shown 

here). But in the general architecture, the three memory 

accesses at most are needed at the same time as shown in Fig. 

9. Therefore, a triple-port memory with bidirectional ports is 

used to implement the input buffer. The bidirectional port 

can be shared between write and read operations as in the 

proposed architecture. This analysis is also applied to the 

I/DI.  

 

5.3. Controller 

 

The controller generates all control signals for all 

memories such as address, chip select, write enable, etc. As 

shown in Fig. 10, there are only ten states which correspond 

to the ten time indices, and the control signals to be 

generated at each state are unique. Therefore, we can design 

the controller as finite state machine (FSM) [11]. In addition, 

except for the prologue (time index 0 or 5) and the epilogue 

(time index 4 or 9), we can represent the three states in the 

middle (time index 1, 2, 3 or 6, 7, 8) as just one state 

because the required signal patterns are the same at the all 

three states. Therefore, even if the number of sub-blocks 

increases, the FSM-based controller is scalable because the 

required number of states is always six regardless of the 

frame length: one for the in-order prologue, one for the in-

order middle, one for the in-order epilogue, one for the 

permuted-order prologue, one for the permuted-order middle, 

and final one for the permuted-order epilogue. The same 

design concept is applied to the control part design of the 

LIFO and I/DI. 

 

6. EXPERIMENTAL RESULTS 

 

We implement the proposed architecture in Verilog 

language and functionally verify it by comparing its output 

vector with the golden reference vector which is generated 

from our high-level C model. Then we synthesize it and 

measure the area in terms of equivalent gate count by using 

Xilinx XST tool [12], and measure the dynamic power 

consumption by using Xpower tool [13]. In order to show 

the advantages of the proposed architecture in terms of the 

power consumption and area, we also implement the general 

architecture.   

The simulation parameters in this section are: code rate 

Table 1. Equivalent gate count  

(frame length = 512 bits, sub-block length = 128 bits) 
 

 
General 

architecture 
Proposed 

architecture 

ACU 3,128 3,128 

BCU 3,128 x 2 3,128 x 1 

GCU 345 x 3 345 x 2 

ALU 

LCU 2,992 2,992 

Input 
buffer 

80,081 x 6 61,361 x 6 

I/DI 80,081 x 2 61,361 x 2 

LIFO_ 
Alpha 

26,155 26,155 
Mem 

LIFO_ 
dec_out 

2,444 2,444 

Controller 7,143 5,389 

Total 689,801 (100%) 534,814 (77.5%) 
 

 

 

       
Table 2. Dynamic power consumption (mW) 

(freq = 188 MHz, Vccint = 1.2V, ambient temp = 25oC) 
 
 

 
General   

architecture 
Proposed 

architecture 

ALU 72.54 67.82 

Memory 123.26  98.20 

Controller 35.53  26.61 

Total  231.33 (100%) 192.63 (83.3%) 
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= 1/3, constraint length = 3, frame length = 512 bits, and 

sub-block length = 128 bits. Table 1 shows the equivalent 

gate count with the fixed frame length and sub-block length. 

The proposed architecture shows 22.5% reduction in area 

compared to that of the general architecture, which is owing 

to three factors. First, the area of the ALU is reduced owing 

to the reduction in the required number of the BCU and 

GCU. Second, the area of the memory decreases because the 

number of access ports in the input buffer and I/DI decreases 

from three (triple-port memory) to two (dual-port memory). 

The area of the two LIFOs does not change. Finally, the area 

of the controller is reduced owing to the reduced number of 

control signals. All the three effects are fundamentally due 

to the fact that the dummy computations are removed in the 

proposed architecture. 

Table 2 compares the dynamic power consumption. 

According to the synthesis result, the operating frequency is 

set to the maximum frequency = 188MHz, voltage = 1.2V, 

and ambient temperature = 25
o
C. Table 2 shows that the 

total power consumption of the proposed architecture 

decreases by 16.7% compared to that of the general 

architecture. In order to see the effect of the increasing 

number of sub-blocks and iterations on the performance, we 

convert the power consumption into the energy consumption 

which is related to the battery life in mobile devices. As the 

number of sub-blocks increases, the required number of 

dummy computations also increases in the general 

architecture. Therefore, the energy consumption difference 

between the proposed architecture and the general one gets 

larger as the number of sub-blocks increases. Similarly, the 

difference also gets larger as the number of iterations 

increases. 

 

7. CONCLUSION 

 

In this paper, we proposed the power- and area-efficient 

architecture of Turbo decoder. In order to improve the non-

functional performance metrics such as power consumption 

and area, we applied the trade-off approach between the 

BER performance and the non-functional performance. The 

proposed architecture is compared to the general 

architecture in terms of power consumption and area by 

using the experimental results. The proposed architecture 

shows about 22.5% reduction in area and about 16.7% 

reduction in power consumption compared to those of the 

general architecture. And as the number of sub-blocks or 

iterations increases, the percentage reduction in energy 

consumption of the proposed architecture compared to that 

of the general architecture gets larger. 
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