
 - 1 -

POWER- AND AREA-EFFICIENT SINGLE SISO ARCHITECTURE OF TURBO DECODER

Dongwon Lee and Wayne Wolf

School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA 30332

dwlee@gatech.edu and wolf@ece.gatech.edu

ABSTRACT

In this paper, we propose a power- and area-efficient

architecture of Turbo decoder. In order to improve the non-

functional performance metrics such as power consumption

and area, we use the trade-off method between bit error rate

(BER) performance and the two non-functional performance

metrics. Our proposed architecture shows about 16.7%

reduction in power consumption and about 22.5% reduction

in area compared to the general architecture.

Index Terms— trade-off method, data dependency,

parallelism, sub-optimal initialization, single SISO

architecture

1. INTRODUCTION

In digital wireless communication systems, channel

coding is used to restore the damaged bits to the original bits.

Turbo coding is one of the best channel coding schemes in

terms of bit error rate (BER) performance [1]. When it was

invented, Turbo coding was not practically used because of

its computational complexity and large decoding latency.

But as some applications such as wireless communication

and satellite communication require better BER

performance, Turbo coding starts being considered again.

Many papers have been published to improve the non-

functional performance: area, power, decoding latency, and

throughput [2, 3, 4]. This paper introduces a new

architecture that reduces the power consumption and area at

the cost of only modest losses in BER.

In order to improve the non-functional performance

metrics such as power, area, and throughput, we trade off

BER degradation. First, the power consumption can be

reduced by removing the necessary but non-critical

computations. Second, if the computations are done in

separate functional units, those units can be eliminated,

which results in the reduced area as well. The BER

degradation due to the removal of the computation (and the

corresponding units) should be tolerable. Finally, the

throughput can be improved by exploiting some parallelism

which exists in Turbo decoding sequence. In some cases, the

exploitation of parallelism requires the removal of data

dependency. In those cases, first of all, data dependency

between computations in Turbo decoding sequence should

be analyzed. Then the BER degradation is measured when

the dependency is removed. If the degradation can be

acceptable, the parallelism is exploited. In this paper, we

focus on the power consumption and area, and use the trade-

off approach to improve them.

We use the Log-Maximum a posteriori (Log-MAP) [5]

and sliding window algorithms [6] in this paper, which make

the practical implementation of the MAP algorithm [7]

possible. The Log-MAP algorithm reduces the

computational complexity of the MAP algorithm. One of the

most critical issues in implementing the MAP (including the

Log-MAP) algorithm is the memory size required to store

one of the forward and backward state metrics until Log-

Likelihood Ratios (LLRs) are calculated. Depending on

implementation, only one of the two state metrics is stored.

Our proposed architecture stores the forward state metrics.

In order to resolve the memory size problem, the sliding

window algorithm is used in this paper [6].

This paper is organized as follows. Section 2 shortly

describes the Log-MAP and sliding window algorithms. In

Section 3 and 4, the trade-off method to improve the power,

area, and throughput is described. In section 5, we propose a

power- and area-efficient Turbo decoder architecture. We

compare the power, area, and BER of our proposed

architecture with those of the general architecture in

Section 6.

2. LOG-MAP AND SLIDING-WINDOW

ALGORITHMS

The Log-MAP algorithm is a derivative of the MAP

algorithm, which reduces the pure MAP’s computation

complexity by converting multiplications and divisions to

additions and subtractions respectively. Implementation of

MAP-based algorithms including Log-MAP requires a large

size of memory to store the forward (or backward) state

metrics until the LLRs are calculated. This memory size

problem is one of the main issues in practically

implementing MAP-based algorithms.

The sliding window algorithm helps us resolve the

memory size problem. As shown in Fig. 1, one frame is

 - 2 -

divided into several sub-blocks and each sub-block is

decoded separately, where w represents the size of main

window, g is the size of guard window, and N is the total

frame size. Therefore, we need to store the forward (or

backward) state metrics only for one small sub-block,

instead of the whole frame.

There are two kinds of window in the sliding window

algorithm: main window and guard window. As shown in

Fig. 1, the forward recursion is accomplished only through

the main window, but the backward recursion is carried out

through both the main and guard windows. The backward

recursion through the guard window (called dummy

computation) is not for computing the LLRs, but for

obtaining the reliable initial backward metric at the

boundary of the main window and the guard window, e.g., at

w-1, 2w-1, etc. The size of guard window is a key factor

affecting BER performance; the larger the size, the better the

BER performance. The size of guard window should be

determined by trade-off between the memory size, the

decoding latency, and the BER performance [8]. For simple

implementation, the size of guard window can be set to be

equal to that of main window [2, 3]; the beta computation

unit for the main window can be also used for the guard

window without any modification. In this paper, we use the

equal-size window method.

3. HOW TO IMPROVE THROUGHPUT

Even though this paper does not focus on throughput,

we describe the method to improve the throughput in this

section. The throughput is one of the most important non-

functional performance metrics. In Turbo decoding, the

throughput is defined as the rate at which LLR values are

produced. We can improve it by pipelining or parallelizing

computations in Turbo decoding sequence. (pipelining can

be viewed as one of the parallelizing)

Fig. 2 shows the decoding sequence of a non-pipelined

architecture. The horizontal axis represents the trellis time

and the vertical axis represents the processing time. The

forward arrows indicate alpha (forward state metric) and

gamma (branch metric) computations and the backward

solid arrows indicate beta (backward state metric), gamma,

and LLR computations. The dashed backward arrows

indicate the beta and gamma computations, which are for

getting the reliable initial beta metric at the boundary as

described in section 2. (The equal-size window method is

used here) As shown in Fig. 2, the forward and backward

computations are done sequentially in the non-pipelined

architecture. As a result, the LLR values are produced with

interruption; for example, they are generated at processing

time index 1, 3, 5, etc., but not generated at time index 2, 4,

etc.

In the non-pipelined architecture, two kinds of data

dependency limit the throughput: one is within each sub-

block and the other is across adjacent sub-blocks. First,

within each sub-block, computations across the iterations

have true data dependency. For example, the 2
nd

 half

iteration of the 1
st
 iteration can be started only after the 1

st

half of the 1
st
 iteration is completed. And the 1

st
 half of the

2
nd

 iteration can be started only after the 2
nd

 half of the 1
st

iteration is completed, and so on. This data dependency is

due to the inherent nature of the iterative Turbo decoding

scheme using the MAP algorithm; the extrinsic values of one

component decoder are used as a priori information of

Trellis time

Subblk 0 Subblk 1 Subblk 2 Last subblk

1
st
 half of

1
st
 iter

2
nd

 half of

1
st
 iter

Processing time

Time

index

1
2
3
4
5

0

Figure 2. Non-pipelined decoding sequence

Trellis time

Subblk 0 Subblk 1 Subblk 2 Last subblk

Processing time

1
st
 half of

1st iter

2
nd

 half of

1st iter

Figure 3. Pipelined decoding sequence

Trellis time

Subblk 0 Subblk 1 Subblk 2 Last subblk

1
st
 half of

1
st
 iter

2
nd

 half of

1
st
 iter

Processing time
Figure 4. Parallel decoding sequence

0 w-1

w+g-1

2w-1

2w+g-1

N-1

1st sub-block 2nd sub-block last sub-block

bits

forward recursion

backward recursion

forward recursion

backward recursion forward recursion

backward recursion

Main window Guard window

One frame

 Figure 1. General sliding window algorithm

 - 3 -

another component decoder. Since this dependency is very

strong - the removal of the dependency results in a

functional failure (huge BER degradation), there is no way

to remove this data dependency. Therefore, the decoding

sequence within each sub-block should be strictly observed.

Because of this limitation, even if an infinite number of

functional units are added, the maximum attainable

throughput is still limited. Second, another type of data

dependency exists across the adjacent sub-blocks. Since it is

related to initial beta metric computation, we call it initial

value dependency in this paper. Although the initial value

dependency is also true data dependency, it is very weak –

its removal only results in the modest BER degradation.

Fig. 3 shows one example of the decoding sequences

with the improved throughput by using pipelining.

Compared to Fig. 2, the decoding sequence of following

sub-blocks is moved one processing time index ahead. In the

middle of pipeline (neither prologue nor epilogue), the three

computations corresponding to the backward solid arrow,

forward solid arrow, and backward dashed arrow of different

three sub-blocks respectively are done at the same time. As a

result, the LLR values are generated without interruption and

the throughput is about two times that of Fig. 2. In Fig. 3,

the initial value dependency is still observed.

In some cases, the pipelining or parallelizing requires

the removal of data dependency. In those cases, data

dependency between computations should be analyzed and

the BER degradation due to the removal of the dependency

should be measured. If the BER degradation can be

acceptable, the parallelism can be exploited. Fig. 4 shows

the example to which the trade-off approach is applied in

order to improve the throughput. The decoding sequence is

the case with a parallelism level = 2, i.e. two sub-blocks are

concurrently processed. The following decoding sequences

are moved one more processing time index ahead compared

to that of Fig. 3. Now the initial value dependency is

removed. If the BER degradation due to the removal is

tolerable, this parallelism can be exploited. The throughput

is about four times that of the Fig. 2.

In this paper, we consider serial architecture, not

parallel architecture of Turbo decoder. In other words, we

consider the architecture corresponding to Fig. 3, not Fig. 4.

4. HOW TO REDUCE POWER CONSUMPTION

AND AREA

In section 3, we described how throughput can be

improved by the pipelining and parallelizing of

computations. If needed, the trade-off approach between the

BER performance and the throughput performance is used.

In order to reduce the dynamic power consumption and

area, we also use the trade-off approach in this section.

As described in section 3, the initial value dependency

can be removed at the expense of modest BER losses; the

dummy computations (corresponding to the backward

dashed arrows in Fig. 3) can be removed because their

results are not directly used to get the LLR values, but to get

the reliable initial beta metrics at the boundary (at the end

point of each sub-block). All the dashed lines in Fig. 3 can

be removed as in Fig. 5. Eliminating these computations

definitely results in the reduced dynamic power

consumption. Furthermore, the additional BCU and GCU

related to the dummy computations are no longer required.

The elimination of those units also causes the area to be

lowered. This elimination, however, can lead to BER

performance degradation, which might be acceptable. But if

there are some ways to compensate the degradation, it is

better to apply the methods than doing nothing. The larger

sub-block size and more iteration number are examples of

the compensation methods. But the both methods have a

negative effect on the power consumption and area.

Boutillon et al. showed another alternative solution, the sub-

optimal initialization method in [9]. Although they explained

the sub-optimal initialization method for parallel architecture,

its concept can be also applied to this paper, serial

architecture. In the sub-optimal initialization method, the

initial beta metrics are referenced across the iterations. For

example, as shown in Fig. 5, the final beta metric of sub-

block 1 at the 1
st
 half of the 1

st
 iteration is used as the initial

beta metric of sub-block 0 at the 1
st
 half of the 2

nd
 iteration,

Trellis time

Subblk 0 Subblk 1 Subblk 2 Last subblk

1
st
 half of

1
st
 iter

2
nd

 half of

1
st
 iter

1
st
 half of

2
nd

 iter

2
nd

 half of

2
nd

 iter

1
2
3

0

Time

index

Processing time
Figure 5. Decoding sequence with sub-optimal initialization

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Eb/No [dB]

B
E
R

iter=1, Fig.3

iter=1, Fig.5

iter=2, Fig.3

iter=2, Fig.5

iter=3, Fig.3

iter=3, Fig.5

iter=4, Fig.3

iter=4. Fig.5

iter=5, Fig.3

iter=5, Fig.5

Figure 6. BER performance comparison

 - 4 -

and so on. The reference should be taken only within the

same component decoder.

Fig. 6 compares the BER performance of Fig. 3 and Fig.

5 decoding sequences. The simulation parameters are set as

follows: code rate = 1/3, constraint length = 3, frame length

= 512 bits, sub-block length = 128 bits, and the number of

iterations = 5. As shown in Fig. 6, the BER performance

degradation of Fig. 5 compared to Fig. 3 is negligible over

all Eb/N0 and iterations. In this paper, the serial architecture

corresponding to Fig. 3 is called the general architecture

[10], and one corresponding to Fig. 5 is called the proposed

architecture. To sum up, we propose a Turbo decoder

architecture with the low power consumption and small area

for the decoding sequence in Fig. 5.

5. TURBO DECODER ARCHITECTURE

The proposed architecture operates according to the

decoding sequence in Fig. 5. In traditional Turbo decoders,

several component decoders – mostly two - are used. The

two separate Soft-In Soft-Out (SISO) decoders are

corresponding to two component encoders respectively. But

considering the utilization efficiency of the SISO units, the

dual SISO-based scheme is inefficient because one of the

two is always in the idle state in turn. For example, the 2
nd

SISO is always in the idle state during every 1
st
 half iteration

and the 1
st
 SISO is always in the idle state during every 2

nd

half iteration. Therefore, we consider a single SISO scheme

in this paper.

The block diagram of our proposed architecture based

on the single SISO scheme is shown in Fig. 8. It is

composed of ALU, memory unit, and controller. The ALU is

general, but the memory unit and the controller are specific

to our architecture. For showing the difference between the

proposed architecture and the general architecture, the

general one is also shown in Fig. 7.

5.1. ALU

Since we use the single SISO scheme and remove the

dummy computations in the proposed architecture, only one

Alpha Computation Unit (ACU) and one Beta Computation

Unit (BCU) are required as shown in Fig. 8. The ACU and

BCU are always in operation for two consecutive sub-blocks

at the same time excluding at the prologue and epilogue of

the pipeline processing. For example, at the time index 1 in

Fig. 5, the ACU is working for the sub-block 1 and the BCU

is working for the sub-block 0. For this pipeline processing,

the gamma branch metrics should be provided to the both

ACU and BCU at the same time. Therefore, two Gamma

Computation Unit (GCU)s are required.

In the general architecture, the dummy computation is

necessary, so one additional BCU and GCU are required as

shown in Fig. 7.

5.2. Memory

Three kinds of memory are used in terms of its function:

input buffer, interleaver/deinterleaver (I/DI), and LIFO

buffer. The input buffer stores the raw received information

and parity bits. For continuous decoding, the buffer size

should be twice the frame size; during the current frame

decoding, the next frame is stored for the future processing.

And since the code rate is 1/3 in this example, the input

buffer is composed of six component buffers: two for the

information bits, two for the first parity bits, and two for the

second parity bits. The two for the information bits are

shared between the in-order information bits and the

interleaved information bits. Secondly, the I/DI is used to

permutate the extrinsic values. One I/DI is shared between

two component decoding (although we use the single SISO

scheme, there are two component decoding procedures) by

time-division multiplexing; when the single SISO is

operating as the first component decoder, I/DI is used as

deinterleaver. And when the single SISO is used as the

second component decoder, I/DI is used as interleaver.

Finally, there are two kinds of LIFO buffer: one for the

alpha metrics and the other for the decoded bits. In this

paper, since the alpha computation is first done and the LLR

computation is done with the beta computation, a LIFO

buffer for the beta metrics is not needed. The size of the two

LIFOs is twice the sub-block length respectively, regardless

 LCU: LLR Computation Unit

GCU

GCU

ACU

BCU LCU

LIFO_

alpha

LIFO_

dec_out

I/DI

Input

buffer

Controller

Single SISO

Xk

Y1k

Y2k

X

Y

Z

X

Y

Z

GCU BCU

X

Y

Z

Figure 7. General single SISO architecture

GCU

GCU

ACU

BCU LCU

LIFO_

alpha

LIFO_

dec_out

I/DI_ext

Input

buffer

Controller

Single SISO

Xk

Y1k

Y2k

X

Y

Z

X

Y

Z

Figure 8. Proposed single SISO architecture

 - 5 -

of the total frame size because the sliding window algorithm

is used in this paper.

The LIFO buffers are totally the same in the both

general and proposed architecture because they are not

affected by the dummy computation. But there is difference

in the input buffer and I/DI. In order to show the difference,

read operations to the input buffer are shown in Fig. 9 and

10 with the example of four sub-blocks. For simplicity, only

one buffer (one of the six component buffers) is shown. The

first type arrow () represents the in-order read operations

and the other () represents the permuted-order read

operations. As shown in Fig. 10, in the proposed architecture,

the two memory accesses at most are needed at the same

time: one for the forward data reading and the other for the

backward data reading. Therefore, the input buffer can be

implemented by using a dual-port memory with bidirectional

ports. Since write and read operations are not occurred in

overlapping segments of time, they can share the

bidirectional ports (although write operation is not shown

here). But in the general architecture, the three memory

accesses at most are needed at the same time as shown in Fig.

9. Therefore, a triple-port memory with bidirectional ports is

used to implement the input buffer. The bidirectional port

can be shared between write and read operations as in the

proposed architecture. This analysis is also applied to the

I/DI.

5.3. Controller

The controller generates all control signals for all

memories such as address, chip select, write enable, etc. As

shown in Fig. 10, there are only ten states which correspond

to the ten time indices, and the control signals to be

generated at each state are unique. Therefore, we can design

the controller as finite state machine (FSM) [11]. In addition,

except for the prologue (time index 0 or 5) and the epilogue

(time index 4 or 9), we can represent the three states in the

middle (time index 1, 2, 3 or 6, 7, 8) as just one state

because the required signal patterns are the same at the all

three states. Therefore, even if the number of sub-blocks

increases, the FSM-based controller is scalable because the

required number of states is always six regardless of the

frame length: one for the in-order prologue, one for the in-

order middle, one for the in-order epilogue, one for the

permuted-order prologue, one for the permuted-order middle,

and final one for the permuted-order epilogue. The same

design concept is applied to the control part design of the

LIFO and I/DI.

6. EXPERIMENTAL RESULTS

We implement the proposed architecture in Verilog

language and functionally verify it by comparing its output

vector with the golden reference vector which is generated

from our high-level C model. Then we synthesize it and

measure the area in terms of equivalent gate count by using

Xilinx XST tool [12], and measure the dynamic power

consumption by using Xpower tool [13]. In order to show

the advantages of the proposed architecture in terms of the

power consumption and area, we also implement the general

architecture.

The simulation parameters in this section are: code rate

Table 1. Equivalent gate count

(frame length = 512 bits, sub-block length = 128 bits)

General

architecture
Proposed

architecture

ACU 3,128 3,128

BCU 3,128 x 2 3,128 x 1

GCU 345 x 3 345 x 2

ALU

LCU 2,992 2,992

Input
buffer

80,081 x 6 61,361 x 6

I/DI 80,081 x 2 61,361 x 2

LIFO_
Alpha

26,155 26,155
Mem

LIFO_
dec_out

2,444 2,444

Controller 7,143 5,389

Total 689,801 (100%) 534,814 (77.5%)

Table 2. Dynamic power consumption (mW)

(freq = 188 MHz, Vccint = 1.2V, ambient temp = 25oC)

General

architecture
Proposed

architecture

ALU 72.54 67.82

Memory 123.26 98.20

Controller 35.53 26.61

Total 231.33 (100%) 192.63 (83.3%)

1
st
 subblk

2
nd

subblk

3
rd

subblk

4th subblk

Input buffer
0 1 2 3

Time index
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Processing time

Figure 9. Read operations to input buffer in normal

architecture

1
st
 subblk

2
nd

subblk

3
rd

subblk

4
th
 subblk

Input buffer 0 1 2 3

Time index
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Processing time

Figure 10. Read operations to input buffer in proposed

architecture

 - 6 -

= 1/3, constraint length = 3, frame length = 512 bits, and

sub-block length = 128 bits. Table 1 shows the equivalent

gate count with the fixed frame length and sub-block length.

The proposed architecture shows 22.5% reduction in area

compared to that of the general architecture, which is owing

to three factors. First, the area of the ALU is reduced owing

to the reduction in the required number of the BCU and

GCU. Second, the area of the memory decreases because the

number of access ports in the input buffer and I/DI decreases

from three (triple-port memory) to two (dual-port memory).

The area of the two LIFOs does not change. Finally, the area

of the controller is reduced owing to the reduced number of

control signals. All the three effects are fundamentally due

to the fact that the dummy computations are removed in the

proposed architecture.

Table 2 compares the dynamic power consumption.

According to the synthesis result, the operating frequency is

set to the maximum frequency = 188MHz, voltage = 1.2V,

and ambient temperature = 25
o
C. Table 2 shows that the

total power consumption of the proposed architecture

decreases by 16.7% compared to that of the general

architecture. In order to see the effect of the increasing

number of sub-blocks and iterations on the performance, we

convert the power consumption into the energy consumption

which is related to the battery life in mobile devices. As the

number of sub-blocks increases, the required number of

dummy computations also increases in the general

architecture. Therefore, the energy consumption difference

between the proposed architecture and the general one gets

larger as the number of sub-blocks increases. Similarly, the

difference also gets larger as the number of iterations

increases.

7. CONCLUSION

In this paper, we proposed the power- and area-efficient

architecture of Turbo decoder. In order to improve the non-

functional performance metrics such as power consumption

and area, we applied the trade-off approach between the

BER performance and the non-functional performance. The

proposed architecture is compared to the general

architecture in terms of power consumption and area by

using the experimental results. The proposed architecture

shows about 22.5% reduction in area and about 16.7%

reduction in power consumption compared to those of the

general architecture. And as the number of sub-blocks or

iterations increases, the percentage reduction in energy

consumption of the proposed architecture compared to that

of the general architecture gets larger.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon

limit error-correcting coding and decoding: Turbo codes,” in Proc.

IEEE Int. Conf. Communications, Geneva, Switzerland, pp. 1064–

1070, May 1993.

[2] S. Lee, N. R. Shanbhag, and A. C. Singer, “Area-efficient high-

throughput MAP decoder architectures,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 13, no. 8, pp. 921-933, Aug. 2005.

[3] Z. Wang, Z. Chi, and K. K. Parhi, “Area-efficient high-speed

decoding schemes for turbo decoders,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 10, no. 6, pp. 902-912, Dec. 2002.
[4] J. Kaza and C. Chakrabarti, “Design and implementation of

low-energy turbo decoders,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 12, no. 9, pp. 968-977, Sep. 2004.

[5] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of

optimal and sub-optimal MAP decoding algorithms operating in

the log domain,” in Proc. IEEE Int. Conf. Communications, pp.

1009–1013, 1995.

[6] A. J. Viterbi, “An intuitive justification of the MAP decoder for

convolutional codes,” IEEE J. Select. Areas Commun., vol. 16, pp.

260–264, Feb. 1998.

[7] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal

decoding of linear codes for minimizing symbol error rate,” IEEE

Trans. Inform. Theory, vol. IT-20, pp. 284–287, Mar. 1974.

[8] M. Marandian, J. Fridman, Z. Zvonar, and M. Salehi,

“Performance analysis of turbo decoder for 3GPP standard using

the sliding window algorithm,” IEEE Int. Symp. Personal, Indoor

and Mobile Radio Communications, vol. 2, pp. e127-e131, Sep.

2001.

[9] E. Boutillon, C. Douillard, and G. Montorsi, “Iterative

Decoding of Concatenated Convolutional Codes: Implementation

Issues,” Proc. of the IEEE, vol. 95, no. 6, pp. 1201–1227, Jun.

2007.

[10] C. Lin, Y. Shih, H. Chang, and C. Lee, “A low power

Turbo/Viterbi decoder for 3GPP2 applications,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 14, no. 4, pp. 426-430, Apr.

2006.

[11] M. Hasan, T. Arslan, “A triple port RAM based low power

commutator architecture for a pipelined FFT processor,” Proc. Int.

Symp. Circuits and Systems, vol. 5, pp. v353-v356, May 2003.

[12] Xlinx XST tool user guide 9.2i.

[13] Xlinx Xpower tutorial, ver. 1.3, Jul. 2002.

