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ABSTRACT
Symbolic execution is a static-analysis technique that has been used
for applications such as test-input generation and change analy-
sis. Symbolic execution’s path sensitivity makes scaling it diffi-
cult. Despite recent advances that reduce the number of paths to
explore, the scalability problem remains. Moreover, there are ap-
plications that require the analysis of all paths in a program frag-
ment, which exacerbate the scalability problem. In this paper, we
present a new technique, called Symbolic Program Approximation
(SPA), that performs an approximation of the symbolic execution
of all paths between two program points by abstracting away cer-
tain symbolic subterms to make the symbolic analysis practical, at
the cost of some precision. We discuss several applications of SPA,
including testing of software changes and static invariant discovery.
We also present a tool that implements SPA and an empirical eval-
uation on change analysis and testing that shows the applicability,
effectiveness, and potential of our technique.

1. INTRODUCTION
Symbolic execution [11, 28] is a well-known program analysis

technique used in software-engineering tasks such as test-case gen-
eration (e.g., [24]) and test-suite augmentation (e.g., [31]). Sym-
bolic execution analyzes program paths one by one with full pre-
cision. For each path, symbolic execution computes the values of
program variables and the conditions (constraints) required to reach
program points along that path as expressions in terms of input
variables, which are represented by symbols. Unfortunately, tech-
niques based on symbolic execution do not scale well because of
the number of paths in a program is typically infinite or grows ex-
ponentially with the size of the program (a problem known as path
explosion). The problem is exacerbated by the presence of library
calls and the difficulty of solving certain types of constraints.

Some applications, such as change analysis [2, 29, 31] for test-
ing and maintenance, require the symbolic execution of all paths
between two program points. For that purpose, Apiwattanapong
and colleagues presented a practical variant of symbolic execution,
called partial symbolic execution [2, 31], that starts at a change in
the program instead of the entry of the program and explores only
paths up to a certain distance from the change. The test-suite aug-
mentation technique based on this variant finds the precise condi-
tions under which a change affects the state of the program and
propagates those effects along all paths up to the specified distance
(the goal of which is to ultimately affect the output). However, such
techniques also suffer from the path explosion problem, so the dis-
tances they can be reach in practice are limited.

Recently, novel approaches for symbolic execution of individ-
ual paths have been presented that heuristically select the next path
to explore in a way that gets increasingly “closer” to a coverage

goal (program point) and thus, reduces the number of paths ana-
lyzed [24, 32, 38]. Further research on modularity has made sym-
bolic execution more efficient by computing intermediate summaries
that help reduce the number of paths to explore [1, 23]. However,
despite these advances, the scalability of symbolic execution is still
limited by the path-explosion problem. For relatively large pro-
grams and components, only a small set of paths can be symboli-
cally executed within a certain time and memory budget.

A different, orthogonal direction has been taken by researchers
in model-checking [10], who have defined diverse abstractions that
significantly reduce the state space to explore [3, 4, 7, 13]. Because
the goal of model-checking is to verify or show violations of prop-
erties, if the abstraction is too coarse, researchers have proposed to
iteratively refine the abstraction using information from infeasible
counterexamples [5, 9, 25]. However, this process can lead to an
explosion in the state space and fail to produce an answer.

In this paper, we present Symbolic Program Approximation (SPA),
a new, general, and scalable approach to symbolic execution on all
program paths between two points. SPA addresses the path ex-
plosion problem by analyzing program paths in groups rather than
individually, taking advantage of the control- and data-dependence
structure of the program, and approximating path groups in a way
that trades off precision for scalability. In this way, approximate
results for symbolic execution can be obtained for larger programs
than traditional symbolic execution can handle. The SPA technique
is based on two main insights. First, multiple paths can be com-
bined into sets of related paths, called path families, such that the
symbolic conditions for covering a path family (i.e., covering any
path in that family) are simpler than the conditions for covering in-
dividual paths in that family. Second, symbolic conditions can be
arbitrarily dropped in a safe manner to produce an abstract inter-
pretation [14] (i.e., an overapproximation) of the results of sym-
bolic execution on path families. SPA is a parameterized algo-
rithm for approximate symbolic execution that can be instantiated
by partition-abstraction strategies designed specifically for the task
at hand (e.g., change analysis). An effective strategy distributes all
program paths between two points into a set of path families that
is small enough to symbolically execute in practice and that is also
effective for a given task. For example, an effective set of path fam-
ilies for testing a change specifies (partially complete) symbolic
conditions for the propagation of the effects of the change along
those path families; satisfying such conditions for a path family
makes it likely that the effects of the change will propagate along
some path in that family and affect the output.

Our technique uses three mechanisms to compute path families
and perform abstractions on demand. First, SPA defines path fam-
ilies in terms of the interprocedural control-dependence graph [34]
instead of the control-flow graph, which is the representation tra-
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ditionally used in symbolic execution. Such a path family con-
cisely describes all control-flow paths that follow the same control-
dependence edges. The edges in a path family correspond to the
terms in the path-family condition (PFC)—the generalization of a
path condition to multiple paths—computed by SPA for that fam-
ily. Second, SPA uses the interprocedural data dependencies in the
program to compute symbolic values and partition path families
by directly traversing such dependencies and identifying the in-
termediate PFCs for those dependencies. Because this process is
performed on demand, many combinations of intermediate condi-
tions do not need to be analyzed, which further reduces the total
number of paths with respect to traditional symbolic execution. Fi-
nally, SPA uses abstract interpretation [14] to avoid partitioning
some path families, overapproximating their symbolic execution
instead. This abstraction step makes symbolic execution practical
at the cost of some precision. The result safely approximates PFCs
and symbolic values of variables.

SPA has a number of applications in program analysis and test-
ing. For example, the results of SPA can be used in software testing
to approximate the behavioral differences between two versions of
a program; these differences can be used to guide test-site aug-
mentation [2,31]. For another example, these results can be used to
approach test-case generation [19,24,32] from an all-paths perspec-
tive. SPA can also be used in other software-engineering tasks such
as invariant discovery [15,18,22,35], bug finding [3], and modular
analysis: SPA computes symbolic expressions that model the ef-
fects of a program module in terms of its input; such expressions
are invariants that overapproximate the behavior of the module and
can be checked against a specification. In addition, the abstraction
resulting from our technique can be refined iteratively to produce
increasingly more precise abstractions.

In this paper, we also present the SPA tool that implements our
technique for Java programs. SPA uses models of library calls to fo-
cus the analysis effort on the application. We instantiated the SPA
tool with two strategies. The first strategy analyzes path families
covering sequences of program dependencies from a change point
to a certain dependence-distance d, without abstractions. This in-
stantiation of SPA corresponds to the technique called partial sym-
bolic execution [2, 31]. The second strategy also analyzes all paths
in dependence sequences from a change point, but uses a limit e
for the depth of the resulting symbolic expression tree, abstracting
all sub-expressions below e; using this strategy, and for the same
computational budget, SPA can analyze more paths—with some
imprecision—than partial symbolic execution, including parts of
the program that might contain important information that is missed
by a fully precise analysis. Using the SPA tool, we performed an
empirical study of these two instantiations for change analysis and
test-suite augmentation. The results of our study show that the sec-
ond strategy, using abstractions, is as effective or more effective
for this application than the first strategy, while being considerably
more efficient. Therefore, we show that the SPA framework can be
instantiated to produce more effective and efficient analyses than
techniques based on fully precise, traditional symbolic execution.

The main contributions of this paper are:

• The SPA technique for symbolic execution of all paths between
two program points that leverages path families, data dependen-
cies, and safe abstractions that trade precision for scalability.
• A set of applications of SPA for software engineering.
• A tool that implements our technique and empirical studies using

this tool on Java bytecode programs that show the effectiveness
of SPA for test-suite augmentation.

2. BACKGROUND

This section first introduces an example that we use throughout
the paper, and then overviews the main concepts required for our
technique: data and control dependencies, and symbolic execution.

2.1 Example
To discuss the background and our new technique, we use the

example function addElem, given on the left in Figure 1. Function
addElem takes as input unsigned integers a, b, and c, and map ref-
erence m, which associates integers with lists of integers. In state-
ments 1 and 2, if the map is not initialized, addElem creates a new
map, and statement 3 initializes variable sz to track the size of the
map. In statements 4–10, the function retrieves the list l associated
with key a, or, if no entry for key a exists, initializes that list to the
single-element list {a}, adds entry a→l to the map, and updates
sz accordingly. Statements 6 and 7 also initialize l to {a} if the
retrieved list is empty. In statements 11–14, the function adds b to
a list l mapped to a, as long as that list is not longer than the size of
the map plus a tolerance c, and prints "succeeded" or "failed"
accordingly. The function finally returns the tracked map size.

2.2 Control and Data Dependencies
Informally, statement s1 is control-dependent [20] on statement

s2 with label L if, in the control-flow graph (CFG)1 for the proce-
dure,2 the node associated with s2 has two or more outgoing edges,
and for at least one (with label L) but not all of these edges, every
path reaching that edge also reaches the node corresponding to s1.
Control dependencies can be represented in a control-dependence
graph (CDG), in which nodes represent statements and edges rep-
resent the control-dependencies between the statements.

To illustrate, consider function addElem, shown in Figure 1. The
control-flow graph (CFG) for the function is shown in the center in
the figure. By inspecting the CFG, we can see that statement 6
executes only if statement 4 evaluates to true and that statement
7 executes only if statement 6 evaluates to true. Thus, statement
6 is control dependent on 4T and statement 7 is control dependent
on 6T. In the CDG for addElem (shown on the right in Figure 1),
there is an edge from node 4 to node 6 labeled "T" and an edge
from node 6 to node 7 also labeled "T."

Statements in a procedure that are not control dependent on any
other statement in that procedure, such as statements 1, 3, 4, 11,
and 15 in addElem, are control dependent on the start of the proce-
dure. The CDG on the right in Figure 1 shows this dependence on
the node labeled START. Additionally, statements in a CDG that
have the same control dependencies can be grouped into the same
control-dependence region (cd-region) [20]. In the CDG in Fig-
ure 1, nodes in the same cd-region are shaded. For example, in
Figure 1, nodes representing entry, exit, 1, 3, 4, 11, and 15 are in
a cd-region controlled by START-T, and nodes representing state-
ments 13 and 14 are in a cd-region controlled by 11F.

Nodes in a cd-region are not necessarily ordered by their execu-
tion order, but for our purposes, we require this order. The CDG
in Figure 1 shows the nodes ordered from left to right within each
cd-region. For example, in the cd-region controlled by 11F, the
execution order of the nodes is 13, 14.

Control-dependencies can be computed for single procedures (in-
traprocedural), as shown in Figure 1, or across procedures (inter-
procedural). Informally, an interprocedural control-dependence

1In a control-flow graph, nodes represent statements, edges represent the flow of con-
trol between the statements, and special nodes, labeled EN and EX, represent entry to
and exit from the procedure, respectively.
2We use procedure to represent a procedure, a method, a function, or a monolithic
program.
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uint addElem(uint a,b,c; Map m)
List l, int sz

1. if m == null
2. m = new Map
3. sz = m.size

4. if hasKey(m, a)
5. l = getVal(m, a)
6. if l.length == 0
7. l = {a}

else
8. l = {a}
9. m = insert(m, a→l)

10. sz++

11. if l.length >= sz + c
12. print "failed"

else
13. l = append(l, b)
14. print "succeeded"

15. return sz
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Figure 1: Example function addElem (left), its control-flow graph (CFG) (center), and its control-dependence graph (CDG) (right).

graph [34] (ICDG) contains one CDG for each procedure, edges
that connect the CDGs at call and return sites, and additional arti-
facts that account for the calling context of called procedures.

Statement s1 is data dependent on statement s2 if (1) s2 defines
variable v, (2) there is a path from s2 to s1 that contains no redefini-
tion of v, and (3) s1 uses v. For example, in Figure 1, statement 11
is data dependent on statement 3 for variable sz, because state-
ment 3 defines sz, statement 11 uses sz, and there is a definition-
clear path (e.g., <3,4,5,6,11>) from statement 3 to statement 11.

2.3 Symbolic Execution
Symbolic execution [28] analyzes a program by executing it with

symbolic inputs along some program path. Symbolically execut-
ing all paths in a program to a given point (if feasible) effectively
describes the semantics of the program up to that point. Symbolic
execution represents the values of program variables at any given
point in a program path as algebraic expressions by interpreting
the operations performed along that path on the symbolic inputs.
The symbolic state of a program at a given point consists of the
set of symbolic values for the variables in scope at that point. The
set of constraints that the inputs must satisfy to follow a path is
called a path condition (PC) and is a conjunction of constraints
pi or ¬pi (depending on the branch taken), one for each predicate
traversed along the path. Each pi is obtained by substituting the
variables used in the corresponding predicate with their symbolic
values. Symbolic execution on all paths to a program point rep-
resents the set of possible states at that point as a disjunction of
clauses, one for each path that reaches the point. These clauses are
of the form PCi ⇒ Si, where PCi is the path condition for path
i, and Si is the symbolic state after executing path i.

To illustrate, consider path <EN,1,2,3,4,8> in Figure 1. We de-
note a symbolic input by the name of the input variable and a zero
subscript. In this example, symbolic execution starts with the sym-
bolic inputs a0, b0, c0, and m0 and uses these symbols as the initial
values of the respective variables. Also, the path condition PC is
initially empty. At statement 1 in the example path, there is no
change in any variable, but when moving to statement 2, symbolic
execution updates the path condition to m0==null. At statement
2, variable m equals new Map. At statement 3, variable sz is initial-
ized to (new Map).size. At branch 4F, symbolic execution up-
dates the path condition to m0==null∧¬hasKey(new Map,a0).
Finally, at statement 8, sz is initialized to {a}. Thus, at the end
of path <EN,1,2,3,4,8>, symbolic execution obtains the following
path condition and symbolic state:

PC = m0==null ∧ ¬hasKey(newMap,a0)

a=a0, b=b0, c=c0, m=new Map, sz=(new Map).size, l={a}.

3. THE SPA TECHNIQUE
This section presents the SPA technique for symbolic program

approximation. We present an overview of our technique using
the example in Figure 1 (Section 3.1) and then we describe the
components of SPA (Sections 3.2 and 3.3).

3.1 Overview of the Technique
Consider Figure 1 and assume that we want to compute the con-

ditions in this function for which adding an element to the list
fails—that is, the conditions for all paths that reach statement 12.
By inspecting the function, we can see that there are six paths
in addElem that reach statement 12; the path condition for each
path is some combination of truth values for the conditions at state-
ments 1, 4, and 6, and the condition 11T (i.e., statement 11 eval-
uates to true). Unfortunately, there are in reality many more paths
to statement 12 because these paths contain calls to hasKey and
other functions. Function hasKey, for example, can have a large or
infinite number of paths—a typical implementation of maps is hash
maps, which are efficient but complex. Thus, the total number of
paths can be unmanageable. Even worse, these auxiliary functions
might reside in libraries whose code is not available. Because of
these difficulties, traditional symbolic execution might have con-
siderable trouble finding feasible paths whose constraints can be
solved to find a satisfying input, let alone finding the conditions for
all program paths that cover the goal.

To solve the problem illustrated in this example, our technique
takes an opposite approach to traditional symbolic execution: in-
stead of exploring paths one by one, SPA starts with one path fam-
ily that groups all paths from the entry of addElem to the goal
(statement 12), and computes a symbolic condition for that path
family. We call this condition a path-family condition (PFC)—the
multi-path version of a path condition. The path family for all paths
from entry to statement 12 is described simply by the symbolic
value of 11T. The conditions at statements 1, 4, and 6 are not re-
quired because, regardless of the values that these conditions take,
the program execution will always reach statement 11. All paths
that branch at statements 1, 4, and 6 (plus all paths inside auxiliary
functions) are implicitly specified as part of this path family.

The problem of finding the PFC to the goal using SPA is thus
reduced to finding the symbolic value of condition 11T: the length
of the list associated with a is greater than or equal to the sum
of sz and c. To determine the length of the list, for instance, it
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is necessary to examine more closely the original path family, in-
cluding the auxiliary functions, and look for the definitions of l
that reach 11: statements 5, 7, and 8, which assign to l the values
getVal(m,a), {a}, and {a}, respectively. To reach statement 11,
these definitions require branch sequences <4T,6F>, <4T,6T>, and
<4F>, respectively, which partition the original path family into
three sub-path-families.

At this point, we notice that the definition of l at 5 depends on
the return value of getVal and that conditions 4T and 4F depend
on the return values of hasKey. Therefore, the analysis has two
alternatives: (1) enter these functions and analyze their contents
(a complex endeavor), or (2) apply a core mechanism of SPA that
abstracts conditions 4T and 4F and variable l at 5 as ∗, which rep-
resents the top value (i.e., the set of all possible values for a given
type).3 In this example, we let SPA choose the second alternative.
For example, the value ∗ for condition 4T means that this condition
has a value set {true, false}; both elements in the set are valid
values for this condition in our abstraction.

For the rest of this paper, vn denotes the use of variable v at
statement n. The special value n = 0 denotes the entry of the pro-
gram. Thus, with inputs denoted symbolically as a0, b0, c0, and
m0, respectively, condition 11T is l11.length≥sz11+c0. (Note
that a, b, and c are never modified, so any use of these variables
can be safely replaced by inputs a0, b0, and c0, respectively). Re-
placing l11 by its definitions and their respective path conditions,
we obtain the following case-style expression for 11T:

{ case 4T,6F: ∗.length ≥ sz11 + c0

case 4T,6T: {a0}.length ≥ sz11 + c0

case 4F: {a0}.length ≥ sz11 + c0 }

which, because {a0} is a list of one element, simplifies to

{ case 4T,6F: ∗.length ≥ sz11 + c0

case 4T,6T: 1 ≥ sz11 + c0

case 4F: 1 ≥ sz11 + c0 }

Use sz11 has reaching definitions at statements 3 and 10 whose
conditions to reach 11 are <4T> and <4F>, respectively. Thus,
sz11 = { case 4T: m3.size; case 4F: m3.size+1 }, where
m3 can be concisely expressed by (m0 =null)?(new Map):m0.
Thus, m3.size can be simplified to (m0 =null)?0:m0.size.
Now, because both 4T and 4F are ∗, use s11 evaluates to {case
m0 =null:{0,1}; case m0 6=null:{m0.size,m0.size+1}}.
Also, both conditions at 6 are ∗ because the expression ∗.length=0

is both true and false. Therefore, the final expression for 11T to
reach our goal (statement 12) is the PFC

{ ∗.length ≥ ((m0 =null)?0:m0.size) + c0,

1 ≥ ((m0 =null)?0:m0.size) + c0,

1 ≥ ((m0 =null)?0:m0.size) + 1 + c0 }

The resulting approximate PFC evaluates to true if any of its
three values is true. In other words, the abstractions applied by
SPA make all three values valid for <11T>, for any input.4 An input
generator that solves this PFC to execute statement 12 must pick an
input that satisfies all three values of <11T> to ensure that the goal
is reached. If the input generator knows that the fields length and
size of non-null lists and maps are never negative, then the gen-
erator can strengthen this PFC to 0≥((m0 =null)?0:m0.size)

+c0, and, therefore, pick null for m0 and 0 for c0. The gener-

3Replacing these return values with ∗ is an abstract interpretation [14]—a safe
overapproximation—of the values that those functions can return.
4Because ∗ includes the null list, the first value of the PFC can produce an error,
which we interpret as “not satisfied”—although, in this case, this is a spurious error.

ated input executes the concrete path <1,2,3,4,8,9,10,12,15>, thus
achieving the goal of executing statement 12.

In this example, SPA abstracts away all paths within hasKey

and getVal and still provides simple and sufficient conditions for
covering the goal—given an input generator as described. How-
ever, in general, the abstraction of terms in a path-family condition
will produce an under-constrained (i.e., overapproximate) system
of necessary but not sufficient conditions to symbolically describe
a PFC or a variable. For example, an input generator might not
be able to simultaneously satisfy all possible values of a PFC with
the same concrete input, and thus it can miss the goal. (An exam-
ple is the PFC for <11F> in Figure 1, for which no input guaran-
tees that ∗.length < ((m0 =null)?0:m0.size) + c0.) One
way to address this problem is to make the generator run multi-
ple times and provide different solutions, increasing the chances
that one of these inputs will cover the goal. An alternative is to
make SPA refine the conditions (e.g., enter hasKey) and compute
an (over)approximation of the effects of code previously abstracted
away, thus reducing the imprecision of the under-constrained PFC
and improving the chances that a generator will find an input that
reaches the goal.

This example also shows that SPA, in contrast with traditional
symbolic execution, traverses paths backwards and on demand when
searching for definitions. For this reason, even if without abstrac-
tions, SPA might end up visiting far fewer paths than a “blind”
forward symbolic execution. In the example, at the return state-
ment 15, computing the precise symbolic value of sz does not
require any auxiliary function except hasKey. Similarly, m does
not require the subpaths in statements 11–14 (including the call
to append) and l does not require insert. One consequence is
that, for example, SPA does not have to traverse all combinations
of paths in append and insert. In other words, instead of travers-
ing a number of paths that is a product of the number of paths in
both functions, SPA only traverses (at most) a sum of those paths.

3.2 Control-Dependence Families
SPA analyzes path families by grouping paths that share con-

trol dependencies into control-dependence families, or cd-families,
that use the edges of the interprocedural control-dependence graph
(ICDG) [34]. CD-families are more amenable than control-flow
paths for multi-path analysis and abstraction for two reasons: a cd-
family represents a (possibly infinite) group of paths, which can be
partitioned on demand, and the ICDG edges in a cd-family have a
one-to-one correspondence with the terms of the PFC.

To introduce cd-families, consider the example in Figure 1.5 There
is a potentially infinite number of paths from EN to node 12 because
of loops that might exist in hasKey, getVal, or insert. Even if
we ignore all function calls, there are still six paths to node 12
within addElem, distinguished by combinations of truth values at
nodes 1, 4, and 6. However, no matter how these conditions in
addElem evaluate, and no matter what occurs inside the auxiliary
functions, all paths from EN reach node 11, and then only the CDG
edge 11T is required to reach node 12. Therefore, the edge list
<11T> precisely and concisely describes the PFC from EN to 12.

Another example is the cd-family between nodes 2 and 7 in the
CDG of Figure 1, which represents the family of paths between
nodes 2 and 7 in the program. Starting at node 2, there is no for-
ward path in the CDG to node 7. However, after node 2 executes,
the program returns to region START-T. Within this region, the pro-
gram will then reach node 4 from which an edge list <4T,6T> of
edges leads to node 7. Therefore, the PFC for the cd-family be-
tween nodes 2 and 7 is fully described by edge list <4T,6T>. In
5Auxiliary functions terminate and do not halt or throw exceptions.
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other words, to find the cd-family, we started at node 2 and tra-
versed the CDG backwards (through edge 1T) until we found a re-
gion in which, after returning from node 2, we found node 4, which
is an ancestor of node 7. Edge 1T is not part of the definition of this
PFC because it is traversed before reaching the starting node 2.

In general, the edges in a list for a PFC are not necessarily con-
secutive in the ICDG: the SPA technique often must partition a
cd-family into constituent cd-families, each covering intermediate
points (definitions). Such constituent cd-families represent subsets
of the paths from the original cd-family. For example, in Figure 1,
consider the paths between EN and 12 that also include node 7.
Those paths form a cd-family whose PFC is described by edge list
<4T,6T,11T>, where 11T does not follow 6T in the CDG.

To formally define a cd-family, we need two other definitions.

DEFINITION 1. Node u is a control-ancestor of node v if (1)
there is a control-dependence region R in the ICDG that contains
both v and ua, where ua is either u or an ancestor of u in the ICDG,
and (2) v executes after ua in region R.

For example, node 7 in Figure 1 is a control-ancestor of node 11
because the ancestor 4 of 7 in the CDG is in the same region (START-
T) as 11, and node 4 executes before node 11.

DEFINITION 2. An edge list of control-dependence edges is
valid for nodes s and t if (1) for each pair (e1, e2) of consecutive
edges in that list, the first node u in the cd-region controlled by e1

is the source node v of e2, or u is a control-ancestor of v, (2) s is ei-
ther the source node of the first edge in the list or a control-ancestor
of that node, and (3) the first node in the cd-region controlled by the
last edge is either t or a control-ancestor of t. For an empty list to
be valid, s must be t or a control-ancestor of t.

We now define cd-family.

DEFINITION 3. A cd-family is a triple <s, t, E>, where s is the
starting point, t is the ending point, and E is a collection of one or
more valid lists of ICDG edges for the node pair (s, t).

To illustrate, the cd-family in Figure 1 of all paths from EN to
12 that include 7 is <EN,12,{<4T,6T,11T>}>. In this example, E
contains one control-dependence edge list, but, in general, multiple
edge lists might be needed to describe the desired paths between
s and t. If, for example, an ICDG contains cycles, then E might
contain an infinite number of edge lists. In such a case, we use
regular expressions or, for the interprocedural case, context-free
grammar expressions to produce a finite description of E.

3.3 The SPA Algorithm
In this section, we present the algorithm COMPUTESPA listed

on Figure 2, which performs symbolic program approximation (SPA)
of all paths between two program points, taking advantage of the
control and data dependencies and using abstractions.

COMPUTESPA inputs a program P , a starting point s in P ,
an ending point t in P , a (possibly empty) set V of variables to
symbolically evaluate at t, and an abstraction function Abstract.
COMPUTESPA outputs the PFC to reach t from s and the symbolic
values at t of the variables in V . Function Abstract decides when
a variable in a given path is abstracted away as ∗. SPA treats the
starting point s as the “entry” point for symbolic execution. There-
fore, any variable x at the entry of s is treated as a symbolic input,
becoming symbol x0 at s.

SPA uses the interprocedural data dependencies in P in addition
to the control dependencies required for cd-families. At line 1, SPA
initializes PFC(s→t) with the description of the cd-family between
s and t. This cd-family provides the top-level terms for PFC(s→t);
these terms will be later expanded into full symbolic expressions.

Algorithm COMPUTESPA

Input: P : program to analyze
s, t: start and end statements in P
V : set of variables to evaluate at t
Abstract: boolean function on use-path pairs

Output: PFC(s→t): path-family condition from s to t
Vsym: symbolic values of variables in V

(1) PFC(s→t) = computeCDFamily(s, t)
(2) Vsym = {<u, PFC(s→t)> | u ∈ V × {t}}

(3) workset = Vsym

(4) foreach term C ∈ PFC(s→t)
(5) p = getPrefixToCondition(PFC(s→t), C)
(6) foreach use u ∈ C
(7) workset ∪ = <u, p> // initially not expanded
(8) endfor
(9) endfor

(10) while workset 6= ∅
(11) pick and remove <u, p> from workset

(12) if Abstract(<u, p>)
(13) linkToUse(<u, p>, <∗, p>)
(14) mark <u, p> expanded
(15) continue to 10
(16) endif
(17) D = getReachingDefinitions(u, p)
(18) I = getReachingInputs(u, p)
(19) foreach assignment-path pair <a,pa> ∈D ∪ I
(20) p′ = getDefClearCoveringPath(pa, var(u), p)
(21) linkToUse(<u, p>, <a, p′>)
(22) foreach use ua ∈ rhs(a)
(23) if <ua, pa> not expanded: workset ∪ =<ua, pa>
(24) endfor
(25) foreach term C ∈ p′

(26) pc = getPrefixToCondition(p′, C)
(27) foreach use uc ∈ C
(28) if <uc, pc> not exp. : workset ∪ =<uc, pc>
(29) endfor
(30) endfor
(31) endfor
(32) mark <u, p> expanded
(33) endwhile

(34) return PFC(s→t), Vsym

Figure 2: The algorithm for computing a Symbolic Program Ap-
proximation (SPA) of all paths between two points.

For example, the initial cd-family between EN and 12 in the ex-
ample of Figure 1 is <EN, 12, {<11T>}>, where 11T is the initial
top-level term for PFC(s→t). At line 2, SPA creates the set Vsym

containing a pseudo-use of each variable in V at t (these pseudo-
uses are necessary because not all variables in V might be used
at t). Each pseudo-use is paired in Vsym with the condition re-
quired to reach t: PFC(s→t). At line 3, SPA initializes the working
set workset of use-path pairs (i.e., pairs of uses and the PFCs to
reach those uses from s) with all use-path pairs from Vsym. In
lines 4–9, SPA adds to workset all uses of variables occurring in
the top-level terms (individual conditions) of PFC(s→t), pairing
each use u in those terms with the corresponding “prefix” PFC
within PFC(s→t) that ends at the term where u is located, which is
computed by getPrefixToCondition. For example, for a cd-family
<s, t, {<aT,bT,cF>, <aF,dT>}> and term bT, getPrefixToCondition
returns <s, t, {<aT,bT>}>, trimming the first edge list and discard-
ing the second list because it does not contain bT.

After these initial steps, in lines 10–33, SPA proceeds to itera-
tively pick and remove from the workset one use-path pair <u,p>
(line 11) and process that pair. The call to Abstract at line 12 de-
cides whether this pair has to be abstracted away. If Abstract re-
turns true, SPA does not process pair <u,p> normally; instead, in
lines 13–15, SPA links to this use and PFC p the value ∗, marks the
pair as “expanded”, and continues to the next iteration in the while
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loop. In this case, no new elements are added to workset.
If, however, Abstract returns false, SPA proceeds to backward-

expand u within p at lines 17–31. Backward expansion of a use u
in path p finds all definitions and inputs (lines 17–18) for the vari-
able used at u that might reach the location of u through some
definition-clear path within the path family described by p. In
lines 19–31, for each such definition or input a and its associ-
ated cd-family pa (which ends at a), SPA computes cd-family p′

(line 20) which describes all paths from s that reach a and then
continue to u within the constraining p and without redefining the
variable at u. The resulting pair of definition/input a and path p′ is
then linked to the working pair <u, p> (line 21).

Identifying the definitions and inputs for u and their reaching
conditions is, however, not sufficient to obtain the symbolic value
of u. All uses on the right-hand-side (i.e., defining) expressions of
definitions, as well as all uses in the cd-family p′, also have to be
backward expanded transitively until only input and ∗ symbols are
left. Therefore, in lines 22–24, SPA adds to workset every use ua

on the right-hand side6 of a, associating each ua with cd-family
pa, which ends at ua. Similarly, lines 25–30 identify uses uc in
the terms of p′, pairing each use with the prefix cd-family pc that
ends at that use, and adds those pairs to workset. Note that SPA
only adds pairs to workset if they have not been already backward-
expanded. Each use-path pair is marked as expanded at line 32.

When the while loop ends, all uses in PFC(s→t) and V , as well
as all uses transitively reachable through definitions and sub-cd-
families from those initial uses, have been expanded within their
respective constraining cd-families or abstracted away. Implicitly,
the linking process produces symbolic expressions for all variables
of interest in terms of symbolic inputs and ∗. To obtain an explicit
symbolic expression for PFC(s→t) and the variables in V , we tra-
verse all links from use-path pairs to definitions and inputs, and
continue through the use-path pairs on the right-hand-side expres-
sions of reaching definitions and the PFCs for those definitions.

Safety and precision. The results of SPA are a safe overapprox-
imation of PFCs and values of variables because, whenever the
backward expansion of a use in COMPUTESPA is avoided, that
use is assigned the overapproximating value ∗ instead. Rather than
a single symbolic expression, SPA produces, in general, a multi-
valued set of expressions; some values are guarded by case con-
ditions, and the rest are not guarded (see Section 3.1). Therefore,
when replacing symbolic inputs with concrete inputs, the resulting
expression might evaluate to more than one concrete value.

Abstraction strategy. The use of the user-specified function Ab-
stract in SPA makes this algorithm a framework that can be in-
stantiated by any abstraction strategy represented by Abstract. An
abstraction strategy might also access, in addition to the current
use-path pair, any other information in program P or the status of
COMPUTESPA at that point. (Moreover, an instantiation of SPA
could also define how to pick the next <u,p> pair at line 11, for
more control.) The abstraction strategy specified by the user must
suit the particular analysis task. For example, the strategy might
consist of abstracting certain library calls, as in the example of
Section 3.1, or analyzing all code but stopping after SPA has tran-
sitively expanded a certain number of uses. In fact, the general
strategy on which we will focus in the rest of this paper is to ab-
stract path-condition sub-terms as ∗ which, if expanded, would be
located below a limit e in the expression tree from the original PFC
or the variables in V .

Termination. An important concern is the termination of the SPA

6The right-hand side for an input is empty.

algorithm. An abstraction might fail to prevent certain cyclic chains
of uses (as found in loops) from expanding forever. Thus, a basic
requirement for an abstraction strategy is to guarantee the termi-
nation of SPA. This is achieved, for example, by abstracting the
values of uses so that they converge within loops, or by limiting the
number of iterations in which a use is expanded. (The latter is the
standard approach in literature for symbolic execution of individual
paths [17]).

4. APPLICATIONS
In this section, we discuss three areas of application of the sym-

bolic approximation of programs with SPA: (1) analysis of changes
for test-suite augmentation and test-case generation (Section 4.1),
(2) computation of invariants and verification of properties (Sec-
tion 4.2), and (3) approximation of the effects of module calls for
incorporation into client analyses (Section 4.3).

4.1 Software Testing
In the context of regression testing, to test the effects of changes

and augment a test-suite, it is necessary to analyze first the effects
of changes and how these effects can propagate to the output. Cur-
rent research uses partial symbolic execution to identify propaga-
tion conditions up to a certain distance from each change [2, 31].
The goal of this research is to analyze the longest possible distances
within available computational resources; the longer the distance,
the more likely it is that the effects of changes will continue to
propagate after that distance and reach the output.

Unfortunately, the distances achieved experimentally by the re-
sulting techniques are small, and the effects of changes do not al-
ways reach the output. The problem is that the effects of changes
can stop propagating at places beyond the distance limit, which are
missed by the analysis. Using SPA, however, we can “redistribute”
the analysis effort: instead of analyzing the vicinity of a change
with full precision, we can use SPA to analyze that same area with
reduced precision and redirect freed computational resources to an-
alyze areas beyond the typical distance limit that previous research
can reach. Extending the reach of the analysis may cover many
propagation-stopping points previously missed. In Section 5, we
present an empirical study of this application of SPA.

SPA can also be used to generate inputs to target a specific goal,
such as a change or a branch that remains untested. We showed
such an application in Section 3.1, in which SPA computed an ap-
proximate PFC to cover statement 12 (branch 11T) in the example
from Figure 1. The main difference with traditional test-case gener-
ation approaches based on symbolic execution is that SPA analyzes
the conditions for all paths between the entry of the program and
the goal, rather than individual paths. Path-family conditions can
be simpler for families than for single paths, as long as a limited
number variables need to be backward expanded—either because
the coverage condition depends only on few intermediate variables,
or because abstraction was applied. The limitation of the all-paths
approach (i.e., SPA) is, of course, that abstractions might make the
result too imprecise to achieve coverage of the goal. Fortunately,
techniques based on abstractions, such as SPA, can be made to it-
eratively refine results in an effective way if good strategies can be
designed to guide such refinements [5,9,25]. In all, we consider the
all-paths approach to test-input generation as complementary to tra-
ditional symbolic execution and other input generation approaches;
we plan to investigate this further in the future.

4.2 Invariants and Verification
There is a significant body of research on discovering program

specifications. In particular, researchers have investigated static in-
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variant discovery [22, 35] and dynamic invariant discovery [18].
These two methods use pre-defined invariant templates that are
verified statically (i.e., for all possible executions) or checked dy-
namically (for a given test suite), respectively. More recent work
has used symbolic execution to dynamically discover invariants di-
rectly from the program code [15]. SPA, in contrast, can be used to
statically discover invariants from the program code (i.e., without
restricting to templates) that are guaranteed to hold for all execu-
tions. For example, consider function addElem in Figure 1. Dur-
ing the computation of the path-family condition described in Sec-
tion 3.1, we showed how SPA computes, in particular, an approx-
imation of sz11—the value of variable sz at Statement 11. This
happens to be the same value that sz has at the return statement,
sz15, which is:

{ case m0 =null: { 0, 1 }

case m0 6=null: { m0.size, m0.size + 1 } }

This expression is an invariant that overapproximates the return
value of function addElem. Manual examination of this function
and its auxiliary functions reveals two imprecisions in this invari-
ant: for m0 =null, sz15 cannot equal 0 because hasKey(m,a)

will not return true for an empty map (note that SPA avoided the
analysis of hasKey) and, for m0 6=null, the invariant does not as-
certain whether the value is the original size of the map, or that size
plus one. (Whether sz15 is the first or the second value depends,
again, on hasKey, which was abstracted away by SPA). Despite
those two imprecisions, however, this invariant can be useful. If,
for example, a developer specifies that addElem does not remove
elements from the map and does not insert more than one entry,
then the computed invariant is sufficient to verify that specification.

4.3 Modular Analysis
A major difficulty in static analysis of software arises from the

potentially large size of the subject program or the difficulty of
analyzing operations such as multiplications or calls to functions
such as native methods in Java. The size of the program compro-
mises the scalability of an analysis, especially for path-sensitive
analyses, which suffer greatly from the path explosion problem. To
address the scalability problem at least partially, researchers have
looked at compositional analysis for symbolic execution by com-
puting summaries of functions or code fragments before analyzing
the code that invokes those functions or fragments [1,23]. Although
symbolic summaries can help avoid multiple traversals of invoked
modules, the complexity or impossibility of symbolically execut-
ing such modules with precision remains. Also, the complexity of
the resulting composed expressions can become unmanageable.

SPA can be used to improve composability in symbolic execu-
tion by approximating the effects of modules, computing simplified
summaries that could not be normally obtained with full symbolic
execution. For example, consider again function addElem in Fig-
ure 1. The symbolic expression obtained for the return value is
considerably simpler than the fully precise expression that would
be obtained if we incorporated the effects of the call to hasKey in
the path-family conditions. Furthermore, the effects of addElem on
the map parameter m could also be approximated if SPA computes
approximate summaries for sub-modules hasKey and insert.

5. EMPIRICAL EVALUATION
The goal of our study was to determine whether SPA can be

more effective and more efficient than traditional symbolic execu-
tion. For that purpose, we implemented SPA and used it for one
particular application: change analysis for test-suite augmentation.

In this section, we present our toolset and the results of this study.
First, we describe our implementation of SPA and an tool based on
SPA for test-suite augmentation (Section 5.1). Then, we describe
our empirical setup (Section 5.2), the results of our study (Sec-
tion 5.3), and threats to the validity of our study (Section 5.4).

5.1 Implementation
We implemented our SPA algorithm, given in Figure 2, as a tool

of the same name: SPA. We implemented SPA in Java using the
Soot Analysis Framework7 to analyze programs in Java bytecode
format. We also used DUA-FORENSICS, a tool that we developed
previously, to perform the necessary data- and control-dependence
analysis. The inputs for SPA are a program P (a set of Java class
files), the starting point s and the ending point t of the analysis,
and an abstraction strategy. To analyze realistic Java programs
that use libraries and contain loops, SPA uses two mechanisms:
(1) manually-encoded models of the effects of library calls to pre-
vent the analysis from entering library code, and (2) user-provided
limits for the maximum length of edge lists (see Section 3.2), the
maximum size of the set of edge lists per path family, and the max-
imum number of iterations per loop. By default, SPA uses 10, 64,
and 2 for these limits, respectively.

If we compare these limits with those used in traditional sym-
bolic execution, we note that each control-dependence edge in a
path family describes multiple statements (i.e., the statements in a
control region). Such a limit can cover many more statements than,
for example, the MATRIX-RELOADED tool used in Reference [31],
which was normally limited to paths of 25 or fewer statements.
Also, we note that using these limits make SPA incomplete by an-
alyzing only a subset of all actual paths; we are currently working
on a complete version of SPA that abstracts loops safely and deals
with large numbers of edge lists.

Using SPA, we also implemented a tool called TSPA for test-suite
augmentation based on the technique from Reference [31]. The
goal of this tool and technique is to compute testing requirements
for a change corresponding to the conditions for propagation of the
effects of that change to the output (i.e., the conditions for mak-
ing the change observable). TSPA inputs P and P ′, the original and
modified versions of a program, respectively, and a distance limit
d. Using DUA-FORENSICS, TSPA identifies all dependence chains8

of length at most d from the change. Then, for each dependence
chain, TSPA calls SPA separately for P and P ′, specifying in each
case the starting and ending points of the chain as parameters s and
t, respectively. In addition, TSPA provides to SPA the specific path
family between s and t to analyze, which is the subset of paths be-
tween s and t that cover the dependence chain.9 For each of P and
P ′, SPA returns the path-family condition (PFC) for covering each
chain in that program and the symbolic value of the state variables
modified along each chain. TSPA then combines these results to ob-
tain the conditions under which the effects of the change propagate
at least up to distance d.

The abstraction strategy implemented by TSPA that instantiates
SPA is defined by a parameter e, corresponding to the maximum
depth (Section 3.3), from the initial set of use-path pairs, to which
these pairs are transitively expanded. In other words, e defines
the maximum height of the resulting symbolic expression trees; all
7http://www.sable.mcgill.ca/soot/
8A dependence chain is a sequence of control and data dependencies where the first
dependence starts at the change and the source statement of each next dependence is
dependent on the previous dependence in the sequence. Dependence chains corre-
spond to the sequence of events along which the effects of a change propagate. The
union of the transitive closure of the dependence relation from a change corresponds
to the forward slice from that change [37].
9Only a specific sequence of events between s and t covers a dependence chain.

7



variables below level e become ∗ (top). The value of e is inversely
proportional to the level of abstraction.

5.2 Experiment Design and Setup
In this study, we applied three techniques to a set of changes

in two different subjects and compared the effectiveness and effi-
ciency of those techniques for test-suite augmentation. The tech-
niques are:

1. MR, the technique defined in Reference [31] as implemented by
the MATRIXRELOADED tool, which uses partial symbolic exe-
cution on each dependence chain. We use MR as a representative
of traditional symbolic execution on control-flow paths, against
which we compare SPA.

2. TSPA-NoAbs, a version of TSPA that assigns to the parameter e the
value ∞ —no expansion limit and, thus, no abstractions. This
version of TSPA effectively implements the same technique from
Reference [31], but using the SPA algorithm instead, without any
abstraction.

3. TSPA-Abs, which uses a value of e anywhere between 1 and 8,
and thus, performs abstraction beyond this expansion limit.

To measure the effectiveness of these techniques on a change, we
randomly generated a large number of test suites satisfying the test-
ing requirements produced by that technique for that change and
computed the percentage of those test suites that revealed a dif-
ference in the output; this percentage is our measure of effective-
ness. To measure the efficiency of these techniques on a change,
we recorded the time required by a technique to analyze a change
and compute the testing requirements for that change; the longer a
technique takes, the less efficient it is.

We chose our experimental subjects and changes from among
those studied in Reference [31]. In that study, we experimented
with six changes from Tcas, a small air traffic control program of
131 lines of code, and seven changes from two releases of NanoXML,
an XML parser of 3497 and 4782 lines of code, respectively. To
construct the test suites for each change, we used the pools of test
cases provided with these subjects,10 consisting of about 1600 and
215 test cases, respectively. For three changes in Tcas and five
changes in NanoXML, the MR tool was not able to achieve 100%
effectiveness within the available computational resources. In this
paper, we study these eight changes to assess the improvements in
effectiveness achieved by TSPA-NoAbs and TSPA-Abs for different
values of the d parameter in both versions and the e parameter in
TSPA-Abs.

We performed our study of TSPA-NoAbs and TSPA-Abs on an In-
tel Core Duo 2 GHz machine with 2 GB of RAM. This configu-
ration is the same used for the results previously obtained by MR,
except that for this study, we had one extra GB of RAM, although in
practice this was not required by TSPA. For TSPA-NoAbs and TSPA-
Abs, we set a time limit of two hours to each run on a change and
combination of d and e. Whenever the analysis did not terminate
within that time, we would stop it. We only report results for runs
that finished within that time.

5.3 Results and Analysis
Effectiveness
Table 1 presents the test-suite augmentation effectiveness of each of
the three implemented techniques (columns) on each of the studied
changes (rows). For example, for change 3 in NanoXML, the ef-
fectiveness of MR, TSPA-NoAbs, and TSPA was 18.7%, 21.3%, and
26.1%, respectively. The effectiveness shown in Table 1 for each

10These subjects and test data are available at the SIR repository: http://sir.unl.edu.

Table 1: Difference-detection effectiveness for each technique.
change MR TSPA-NoAbs TSPA-Abs
tcas 1 54.1% 100% 100%
tcas 2 18.6% 100% 100%
tcas 3 3.7% 100% 100%
nanoxml 1 67.2% 67.7% 92.8%
nanoxml 2 10.4% 39.9% 41.0%
nanoxml 3 18.7% 21.3% 26.1%
nanoxml 4 66% 100% 100%
nanoxml 5 42.2% 80.5% 81.9%

Table 2: Analysis time, in seconds, required to achieve maximum
effectiveness.

change TSPA-NoAbs TSPA-Abs
tcas 1 7 7
tcas 2 6 6
tcas 3 6 6
nanoxml 1 3493 30
nanoxml 2 2939 28
nanoxml 3 3306 112
nanoxml 4 18 16
nanoxml 5 32 26

technique and change corresponds to the maximum effectiveness
of all combinations of d and e for that technique and change.

The first important result regarding effectiveness shown by this
table is that, for all changes, TSPA without abstractions (TSPA-NoAbs)
was more effective than MATRIXRELOADED (MR). In other words,
the implementation of the technique from Reference [31] using
the SPA algorithm without abstractions was at least as effective as
the previous implementation of the same technique, MR, based on
partial symbolic execution of individual control-flow paths. TSPA-
NoAbs was clearly more effective than MR on six changes: changes
1–3 in Tcas and 2, 4, and 6 in NanoXML. For change 5 in NanoXML,
in particular, the effectiveness of the SPA-based version was 80.5%,
almost twice as much as the 42.2% obtained by MR. Meanwhile,
for change 3 in NanoXML, TSPA-NoAbs was slightly more effective
than MR (21.3% versus 18.7%), and, for change 3 in NanoXML,
the difference was negligible.

We attribute the improvement in effectiveness of the implemen-
tation based on SPA without abstractions with respect to the MR
implementation, at least in part, to the benefits of the SPA algorithm
already described: analysis of path families instead of single paths
and the use of data and control dependencies (i.e., slicing [37])
to partition these families only as required to cover a target—in
this case, each dependence chain. Such benefits let the user set
less stringent path-length and iteration limits in TSPA-NoAbs than
in MR, for similar computational budgets, so that more and longer
paths can be analyzed.

The second important result from Table 1 is that, for all eight
changes, the effectiveness of the TSPA-Abs technique, using an ab-
straction strategy defined by a value of e between 1 and 8, was no
less effective than the version without abstractions (TSPA-NoAbs),
despite performing a less precise, overapproximating symbolic ex-
ecution of each dependence chain. In fact, TSPA-Abs was remark-
ably more effective for change 1 in NanoXML and slightly more
effective for changes 2, 3, and 5 of the same subject.

There are two reasons for the improvements in effectiveness of
TSPA-Abs with respect to TSPA-NoAbs. First, TSPA-Abs was able
to analyze, for most changes, longer distances than TSPA-NoAbs
(i.e., distances for which TSPA-NoAbs could not finish within the
time limit). For example, for change 1 in NanoXML, TSPA-NoAbs
reached distance 5, whereas TSPA-Abs could only reach distance 311

11This difference is more remarkable than it seems. As dependence distances grow,
the number of chains and paths can grow exponentially. For change 1 in NanoXML,

8



Second, for a given distance d, TSPA-Abs was often able to finish
within the time limit using greater values of the other practical lim-
its discussed earlier (mainly, the maximum number of edge lists)
than TSPA-NoAbs was capable of handling. Thus, TSPA-Abs was
able to analyze, in many cases, more paths than TSPA-NoAbs for
the same distance. The information obtained by analyzing more
and longer paths, although imprecise due to abstraction, was as ef-
fective or even more effective than the fully precise analysis.

Efficiency
In Table 2, we present the times in seconds that TSPA-NoAbs and
TSPA-Abs required to obtain the results from Table 1, corresponding
to the most effective of all combinations of parameters for which
our toolset could finish within the time limit. For Tcas, all of the
analysis times were equally small, but, for all changes in NanoXML,
TSPA-Abs took less time than TSPA-NoAbs to compute the corre-
sponding testing requirements. In particular, for the changes in
which the most expensive analysis was necessary (i.e., changes 1–3
in NanoXML), the time required when using abstractions was re-
markably lower than the time consumed by the precise version. For
example, for change 1 in NanoXML, TSPA-Abs required less than a
hundredth of the time used by TSPA-NoAbs—moreover, TSPA-Abs
was also more effective than TSPA-NoAbs for this change.

For test-suite augmentation, a technique such as TSPA-Abs that
obtains similar or better results than the precise version with fewer
resources can, in addition to saving such resources, be scaled to an-
alyze more and longer dependence chains and paths covering those
chains. If the produced requirements are not satisfactory for the
developer, the saved resources may allow her to refine the current
abstraction or try a different abstraction strategy.

Conclusions
Based on these results for test-suite augmentation, we conclude
that, for these subjects and changes:
1. The implementation of the precise version of the technique from

Reference [31] using SPA is more effective than the implemen-
tation based on traditional symbolic execution presented in that
same reference.

2. SPA instantiated with abstractions is at least as effective, if not
more effective, than the fully precise analysis (also implemented
as a SPA instantiation).

3. SPA instantiated with abstractions can be much more efficient
than the fully precise version of the same analysis, for a similar
or greater effectiveness.

5.4 Threats to Validity
There is one main internal threat to the validity of the results

obtained with the SPA tool. Although we tested our tool on sev-
eral subjects, used multiple runtime checks, and manually exam-
ined many of the results, it is still possible that potential errors in
the implementation of SPA affected in one way or another our re-
sults. A related threat corresponds to potential errors in our manual
modeling of Java library methods.

The comparison with a different implementation of the test-suite
augmentation technique (MATRIXRELOADED) raises an additional
threat to the comparison of SPA with traditional symbolic execu-
tion: neither MATRIXRELOADED nor SPA are in a mature enough
state of development to guarantee that, after the appropriate opti-
mizations and bug fixes, the differences will remain as shown in
this study. A comparison with other traditional symbolic execution
tools might be necessary.

The main external threat is the limit in the size of our study. More
subjects and changes have to be studied to generalize the conclu-
at distance 3, there are 65 chains; at distance 5, there are 1449 chains.

sions summarized above. We are currently working on making SPA
analyze new subjects and making it easier to set up experiments on
additional sets of subjects and changes.

6. RELATED WORK
Path-sensitive control-flow analysis
Symbolic execution was introduced in the 1970’s as a forward anal-
ysis of program paths [11, 28]. Clarke and Richardson later pre-
sented backward substitution as an alternative to forward expansion
to perform symbolic execution, and called global symbolic evalua-
tion the symbolic execution of all program paths [12]. In this paper,
we presented a technique that effectively performs global symbolic
evaluation of all paths between two points in a program and uses
backward substitution. Our technique, however, operates on the
dependence graph of the program instead of the traditional control-
flow graph. Our technique also performs abstractions to reduce the
cost of symbolic evaluation and make it more scalable.

Another path-sensitive static analysis approach is model check-
ing [10]. Model checking explores all paths in state-transition sys-
tems to check or disprove properties. Recently, explicit-state model
checking has been applied to software (e.g., [36]). In particular,
software model checkers have been used to implement forward
symbolic execution [27] by leveraging their path-exploration and
backtracking capabilities. Our SPA algorithm analyzes multiple
program paths too, but does so simultaneously and operates back-
wards on the dependence graph of the program to avoid traversing
unnecessary combinations of subpaths and to enable abstraction.

Abstractions
Model-checking research has also used the idea of safely abstract-
ing concrete, complex systems to facilitate verification on simpler,
more manageable abstractions (e.g., [4, 7, 30]). However, when
the checking process fails, researchers use infeasible counterexam-
ples to refine the current abstraction (e.g., [3–5, 7, 9, 25]). Model-
checking techniques typically start with the interprocedural control-
flow graph of the program as the initial abstraction12 and, by de-
fault, do not perform symbolic evaluation other than tracking sets
of predicates and symbolically executing counterxamples to check
their feasibility. Like these techniques, SPA uses overapproximat-
ing abstractions. However, SPA works on families of control-dependence
paths, which naturally represent the terms of symbolic path condi-
tions between two points. SPA partitions these path families guided
by data dependencies instead of counterexamples. Furthermore,
SPA separately partitions path families that correspond to different
terms, which avoids combining subpaths unnecessarily, as shown
in Section 3.1. These features of SPA reduce the number of paths
analyzed with respect to techniques based on control-flow.

Path slicing [26] has been proposed to remove irrelevant portions
of a counterexample path and perform only relevant abstraction-
refinements for model checking with respect to that path. Inter-
estingly, the sliced path implicitly represents an individual fam-
ily of all paths that contain the preserved portions of the original
path. While the resulting path family corresponds to a control-
dependence path family as used in SPA, there are, in general, mul-
tiple path families between two program points, all of which are
analyzed by SPA. Moreover, SPA iteratively partitions such path
families into sub-families to obtain the desired level of abstraction,
whereas path slicing simply feeds the sliced path back to the model
checker for refinement, without maintaining any symbolic repre-
sentation of the program.

Uninterpreted functions represent operations or code segments

12Calysto [3] improves performance by starting with the call graph instead and ab-
stracts function calls, which it later expands with their control-flow paths as needed.
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for which nothing is known. They have been used together with
specialized logics (e.g., [8]) to abstract classes of constructs in sys-
tem designs for verification. Researchers have also used uninter-
preted functions in symbolic execution when comparing two pro-
grams to prevent the unnecessary analysis of common segments [16,
29, 33]. The value ∗ in SPA can be considered an uninterpreted
function with a particular meaning: top. This is the same mean-
ing assigned by some analyses (e.g., [7]) to unsupported operations
such as multiplication. SPA, however, uses ∗ more generally to
abstract away arbitrary subterms within symbolic expressions.

Fischer et al. [21] presented a hybrid analysis in which a standard
data-flow analysis is iteratively enriched with predicates, suggested
by counterexamples, that add path sensitivity. SPA, in contrast,
starts with a control-dependence based path-sensitive analysis and
later abstracts subterms arbitrarily (e.g., based on resource bounds)
to provide an overapproximate path-sensitive result. SPA, in that
sense, can be seen as a specific form of analysis with dynamic pre-
cision adjustment [6], but working on control dependencies instead
of control flow.

Taghdiri et al. [35] presented an algorithm that mixes data-flow
analysis with symbolic execution to compute static invariants. SPA
can also be used to compute invariants, but provides a finer-grained
control over the abstraction level and eliminates unnecessary com-
binations of subpaths that arise from control-flow analysis.

Test-input generation
As mentioned earlier, model-checking techniques can be used for
test-input generation—an application we discussed for SPA. More
specialized test-input generation techniques based on symbolic ex-
ecution include “dynamic” symbolic execution [24, 32, 38]. We
believe that our all-paths approach complements these approaches,
which are based on the smart exploration of individual paths. We
also expect that modular analysis using SPA will improve compo-
sitional specializations of those techniques [1, 23].

7. CONCLUSION AND FUTURE WORK
In this paper, we presented Symbolic Program Approximation

(SPA), a technique that performs symbolic execution of multiple
paths between two points, using a combination of dependence anal-
ysis and backward expansion on those dependencies. Our tech-
nique works directly on program dependencies to analyze only the
parts of the program that are needed, thus avoiding unnecessary in-
termediate (sub)paths. In addition, our technique uses abstraction
to reduce the cost of the backward expansion process, trading pre-
cision for scalability. The result of SPA is a safe overapproximation
of the set of program paths between two points.

We also presented a tool of the same name—SPA—that imple-
ments this framework and supports the instantiation of precise and
approximate analyses of changes for test-suite augmentation. Us-
ing this tool, we experimented on a set of program changes and
concluded that SPA can serve as a better implementation for the
precise analysis of changes, while SPA can also be applied with
abstractions to obtain results as effective or more effective in less
time. This experiment supports our hypothesis that applications of
symbolic execution on all paths can benefit from using abstractions.

In the future, we plan to empirically investigate the use of SPA
in test-input generation, modular analysis, and invariant detection.
Also, because SPA currently performs a very simple abstraction by
replacing variables with the ∗ value (i.e., top), we intend to leverage
abstractions of intermediate complexity such as those from shape
analysis [30], predicate abstraction [4], and the Synergy and Dash
approaches [5, 25].
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