
Analysis of a Redactable Signature Scheme on Data
with Dependencies

David Bauer
School of ECE

Georgia Institute of Technology
Email: gte810u@mail.gatech.edu

Douglas M. Blough
School of ECE

Georgia Institute of Technology
Email: dblough@ece.gatech.edu

Abstract—Storage of personal information by service providers
risks privacy loss from data breaches. Our prior work on
minimal disclosure credentials presented a mechanism to limit
the amount of personal information provided. In that work,
personal data was broken into individual claims, which can be
released in arbitrary subsets while still being cryptographically
verifiable. In applying that work, we encountered the problem
of connections between claims, which manifest as disclosure
dependencies. In further prior work, we provide an efficient
way to provide minimal disclosure, but with cryptographic
enforcement of dependencies between claims, as specified by the
claims certifier. Now, this work provides security proofs showing
that the scheme is secure against forgery and the violation of
dependencies in the random oracle model. Additional motivation
is provided for a preservation of privacy and security in the
standard model.

I. INTRODUCTION

This technical report is provided as a follow-up to our
previous work creating a redactable signature scheme that can
cryptographically enforce release policies for showing claims
with dependencies on other claims. [1] For the convenience
of the reader, the system description from (an updated version
of) that report is duplicated here, before the security proofs.

A. Scenario and Terminology

We consider a scenario with three types of entities: a prover,
a verifier, and a certifier. A prover holds records that are
certified (cryptographically signed) by a certifier. The prover
wants to convince the verifier that the certifier did indeed
certify the records. However, the prover does not wish to
release all of the records, but just some subset of them.
Additionally, the certifier wishes to restrict the manner in
which the records can be released. “Released” here refers only
to releasing records with evidence that they are certified (ie,
cryptographic proof). The prover can freely forge (uncertified)
records, so the verifier will accept only certified documents.
We refer to an indivisible piece of a record as a claim,
following our earlier credential work.

II. SYSTEM DESCRIPTION

Our redactable signature with dependencies consists of
several parts. The first two parts are the PKI certificate and
Merkle hash tree as used in our prior work and described in the
previous section. The interesting and novel part is the handling
of the dependencies.

A. Dependency Graph

Dependencies between data can come in many forms. The
simplest form is a single ”depends upon” relationship, such
as ”claim 1 depends upon claim 2”, which means that ”claim
1” should not be released without also releasing ”claim 2”.
The next simplest form is a chaining of dependencies, such
as ”claim 1 depends upon claim 2, and claim 2 depends
upon claim 3”. These chains can be handled by creating one
node per claim in the chain, with each node containing its
corresponding claim and all subsequent claims in the chain.
Less simple is when there are OR options, such as ”claim 1
depends upon either claim 2 or claim 3”. In small numbers,
these OR options can be handled by just enumerating the
possible combinations as if they were chains, but for large
systems, that is extremely inefficient.

Simple OR dependencies will be represented by a directed
acyclic graph (DAG). To handle these dependencies efficiently,
a secure hash function is used to create a path whereby a claim
is proven valid at the same time as the next node in the graph
is proven valid. We call a node that is dependent upon another
node a parent of the latter node. The node that is depended
upon is called the child node. A node is assigned a ”string”
value, which is a hash of the string values of its parent nodes
and its actual data value. Calculating a node’s string therefore
requires having the data for that node. Just as the node (hash)
values in the Merkle hash tree define a unique set of children,
each node’s string value defines a unique set of parent nodes
and its data value. In order to tie the entire DAG down to a
single value, an output value is created, which is simply the
set of string values of all of the leaf nodes of the DAG.

Figure 1 shows the notation that we use, while Figure 2
shows the example described above. The example in Figure 3
shows that multiple parent nodes are efficiently handled. In
general, the size of the node’s value will grow sub-linearly
with the number of parents, as the extra parent strings are
amortized by the node’s actual data content.

AND operations are more complex to handle than OR
operations. An example including an AND operation is shown
in Figure 4. The AND node has two branches for its two
children. A different string for the AND is given to each
branch, represented by AND1 1 and AND1 2. (The two
AND pieces are shown without the S(x) notation, because

−→ is used for depends upon
A −→ B is read “A depends upon B”,

and A is called a parent of B
+ indicates concatenation
{} indicates a set of values, concatenated together
S(x) is the string for vertex x, and is defined as
S(x) = H({ parent vertices strings }+ x)

Fig. 1. Generic Dependency Form

OR

1

2 3

Claim1 −→ Claim2 or Claim3
S(Claim1) = H(Claim1)
S(Claim2) = H(S(Claim1) + Claim2)
S(Claim3) = H(S(Claim1) + Claim3)
Output = S(Claim2) + S(Claim3)

Fig. 2. Simple Dependency Example

OR

1

2 3

45 6

OR OR

Claim1 −→ Claim2 or Claim3
Claim2 −→ Claim4 or Claim5
Claim3 −→ Claim4 or Claim6
S(Claim1) = H(Claim1)
S(Claim2) = H(S(Claim1) + Claim2)
S(Claim3) = H(S(Claim1) + Claim3)
S(Claim4) = H(S(Claim2) + S(Claim3)+

Claim4)
S(Claim5) = H(S(Claim2) + Claim5)
S(Claim6) = H(S(Claim3) + Claim6)
Output = S(Claim4) + S(Claim5) + S(Claim6)

Fig. 3. Multiple Parents

Claim1 −→ (Claim2 or Claim3) and
(Claim4 or Claim5)

Is transformed into:
Claim1 −→ AND1
AND1 −→ OR1 and OR2
OR1 −→ Claim2 or Claim3
OR2 −→ Claim4 or Claim5
S(Claim1) = H(Claim1)
S(AND1) = H(S(Claim1) + AND1 1)
AND1 1 = Random value, of size |H|
AND1 2 = S(AND1) xor AND1 1
S(OR1) = AND1 1
S(OR2) = AND1 2
S(Claim2) = H(S(OR1) + Claim2)

= H(AND1 1 + Claim2)
S(Claim3) = H(S(OR1) + Claim3)

= H(AND1 1 + Claim3)
S(Claim4) = H(S(OR2) + Claim4)

= H(AND1 2 + Claim4)
S(Claim5) = H(S(OR2) + Claim5)

= H(AND1 2 + Claim5)
Output = S(Claim2) + S(Claim3)+

S(Claim4) + S(Claim5)

Fig. 4. Combining AND and OR

they aren’t actual vertex nodes in the graph.) When the two
branches are XORed together, the result is the actual value
of the AND node. For an n-input AND, this is done by
generating n-1 random values (each the size of the output
of the hash function) and using them as the values for the
first n-1 branches. The final branch is the XOR of the rest of
the branches and the AND node’s value. All of the randomly
generated values are included in the string that is hashed to
get the AND node’s value (to prevent any linear combination
attacks against the XOR combination). This is a simple (n, n)
secret sharing scheme, which requires the strings of all of the
AND node’s children to be known to reconstruct the value of
the AND node itself. The example also shows how the OR
nodes disappear, because their value is equal to their parents’
value.

As an example of requiring combined AND and OR de-
pendencies, imagine a table of claims, with each column

Prover provides:
Output = S(Claim2) + S(Claim3)+

S(Claim4) + S(Claim5)
S(Claim2) = H(AND1 1 + Claim2)
S(Claim4) = H(AND1 2 + Claim4)
S(AND1) = H(S(Claim1) + AND1 1)
S(Claim1) = H(Claim1)

Verifier checks:
Output is signed (in the hash tree)
All hash values are correct
S(AND1) = AND1 1 xor AND1 2)

Fig. 5. Showing claims 1, 2, and 4

containing a different type of claim. Consider the rule that to
access an element of the first column requires also showing (at
least) one element of every other column. Using our method,
this requires a graph containing one node for every element
in the table, a single AND node, and one OR node for each
column but the first two.

Certain dependencies are not handled by our current ap-
proach, including some cyclic dependencies, negative depen-
dencies, and operations that cannot be represented as a com-
bination of ANDs and ORs. We do not believe that negative
dependencies between released claims is meaningful, since the
prover could always perform multiple, independent showings
of the signed documents. Cycles are, in general, prohibited,
although we handle simple cycles that are not interdependent
on other sets of claims by collapsing the entire cycle into a
single claim.

B. Protocols for Usage

In general, a set of claims will have some claims with
no dependencies and other groups of claims that are inter-
dependent. To handle this situation, we combine the structures
described in the previous subsection with the hash-tree-based
redactable signature scheme from our prior work. Each group
of inter-dependent claims is represented by a DAG and a single
signed output value is generated for each such group. Each
of these signed output values then becomes a node in the
overall hash tree, along with each of the claims that have no
dependencies associated with them. As in the prior approach,
the certifier signs the root value of this hash tree and places
it in a PKI certificate.

To show a claim that has dependencies requires showing
more claims to fulfill those dependencies. We refer to a claim
and one set of additional claims that fulfills the dependencies
as a chain. The term “chain” is not strictly accurate, since the
chain will have multiple branches if it has any AND nodes,
and those multiple branches may even connect together (ie,
not a tree). There can be no loops, per the constraint that
dependencies must be in the form of a DAG.

As an example, consider the graph of Figure 4 and the case
of showing ”Claim1”, ”Claim3”, and ”Claim4”. The prover
must provide to the verifier the input strings that were hashed

to create the string values of each of the claims being shown
and the AND node on the path, along with the (signed) output
value. The input string for a claim node includes the actual
data of that claim, so the data for the three claims is included
in what is shown. Figure 5 summarizes what the prover shows
and what the verifier needs to verify. The only additional
values given to the verifier that are not used are S(Claim4)
and S(Claim5). These are the string values for the other
two leaf nodes, and contain just the hash output. Under the
assumption that the hash function is secure (can’t be inverted
and doesn’t leak data), then no data is leaked by these extra
strings, except for the knowledge of their existence.

III. SECURITY

A. Threat model

The primary threat our system is designed to resist is the
prover and verifier collaborating to cheat the certifier, by
violating the dependencies on showing claims. In this case,
security is done on a “can prove” basis, where it doesn’t matter
how the certified data is proven. In particular, the verifier does
not have to follow established protocols or intentions. (Put
simply, we do not assume that the verifier is an honest player
in the system.) We refer to the verifier as suspicious (of the
prover), but rule-breaking.

B. Definitions

Definition 1. A node is an unambiguously parseable set of
hash values plus a single claim. Each hash value is the hash
of another node in the structure or an AND node secret share.

Definition 2. A node is a leaf node if it is contained in the
specially defined list of leaf nodes. If a leaf node’s hash value
can be found in any node in the structure, the entire structure
must be considered invalid by the verifier.

Definition 3. A non-AND node is accepted by a verifier if it
is in the list of leaf nodes, or if its hash value is found in an
already accepted node. An AND node is accepted if its hash
is created by combining shares from already accepted nodes.
A claim is accepted if it is in an accepted node.

Definition 4. The directed acyclic graph (DAG) consists of
all nodes reachable when starting from the list of leaf nodes.

Definition 5. A task is called possible if and only if it is
computationally feasible.

C. Forgery

Forgery covers all cases where the verifier is convinced that
a claim is certified by a particular entity, when it was not.
Forgery covers several different problems, depending on what
part of the system is attacked. For example, a forger can try to
attack the hash function to create a bad final or intermediate
value. A secure hash function will prevent this type of attack.

Overview: the structure of the system is a signed DAG. It
is shown that a verifier will only accept data if it was in the
DAG when the DAG was created/signed and that a creator
will only sign a DAG when all data in it is known.

Theorem 1. The verifier will only accept as valid data items
that were known to be in the structure by its creator.

1) Assumptions:
• A collision-resistant hash function is used.
• The set of leaf nodes is fixed via a digital signature. The

use of a redactable signature, such that not all leaf nodes
are known to the verifier has no impact on our proof.

• The structure and type of a node is known and unam-
biguously parseable.

• The certifier will not put in hash values of nodes for
which the contents are unknown.

• The certifier will not put a malformed node into the DAG.
• The “random” values used for AND nodes are generated

by the certifier (and are not accepted from another entity).
• The hash function may be modeled as a random oracle [2]

(for AND nodes).
2) Without ANDs: Proof: First, by the collision re-

sistance assumption on the hash function, it is not possible
to create two nodes with the same hash value but different
contents. By definition, a leaf node will be accepted if and
only if its hash is in the list of leaf nodes and a non-leaf node
will be accepted if and only if its hash is given in an already
accepted node. By induction, a node will be accepted if and
only if it is either in the list of leaf nodes or connected to a
node in the list of leaf nodes via a chain of accepted nodes,
i.e., it is in the DAG.

A node’s value and therefore hash depends on the hash
values of the nodes to which it links and the claim it contains.
Therefore, a node’s value cannot be computed without the
hash of the nodes to which it links already being known. By
induction, a node’s value cannot be computed without the hash
of all nodes ’down’ from it in the DAG being known. Since
this applies to all nodes, it applies to the leaf nodes. Thus, the
set of leaf nodes cannot be computed without knowing the
hash values of all other nodes in the DAG. By assumption,
the creator of the structure will not accept the hash value of a
node without also knowing the contents. Thus, since the hash
values of all nodes in the DAG must be known, the contents
of all nodes in the DAG must be known. And since the verifier
will only accept nodes in the DAG, the verifier will only accept
nodes known to be in the structure at creation time, and thus
data items that were in the structure at the time of its creation.

3) With ANDs:

Lemma 1. Given a secure hash function H that may be
modeled as a random oracle, a list of values {x} in the domain
of H such that |{x}| <<< |H|, it is not computationally
feasible to find a set of values {y} such that x′ = H({y})
xor {y}, where x′ is any element of {x}.

Proof: H({y}) is a completely different random value for
each different {y}. XORing in non-random (but chosen ahead
of time) values can’t make the output any less random. Thus,
H({y}) xor {y} is still a random value for each different {y}.
The probability of such a random value appearing in {x} is

|{x}|/|H|, which is very small in a practical system.
Proof: By the assumptions of a secure hash function and

a reasonable generation of (pseudo) random values for AND
nodes, it is not possible to find a node that hashes to any of the
“random” values. Similarly, it is not possible to find a node
that hashes to the parity value for an AND node. Thus, it is
not possible to fake a non-AND node from the values and
constructions provided for AND nodes. An AND node itself
has a specific form. By the assumption of unambiguous nodes,
an AND node cannot be mistaken for a non-AND node. By
the definition for accepting an AND node and the assumption
that a certifier will not put a malformed node into the DAG,
an AND node is accepted if and only if the self-check values
contained in it and the parity value are all given in already
accepted nodes. (Since it is trivial to forge an AND node if
one of the check values may be freely determined, a sincere
verifier cannot accept an unverified/unaccepted check/parity
value.) The case of forging an AND node using only accepted
values is equivalent to the case given in Lemma 1, but with {y}
constrained to come from the same list as {x}. As such, by
Lemma 1 it is not possible to forge an AND node from already
accepted values. Since it is not possible to forge either an
AND or non-AND node using the AND node constructs, the
addition of AND nodes does not allow any forgery not already
possible. But, it was already shown that in the case with no
AND nodes, it is not possible to get any forgery accepted.

D. Loss of Privacy

A loss of privacy occurs when the verifier learns something
that the prover doesn’t mean to show.

In the system, there is only one place where additional
information is given out: the hash value of some nodes that
the prover doesn’t show will still be given to the verifier. This
could allow an attacker to perform a dictionary attack against
a node, except that random padding makes such an attack
infeasible.

E. Violation of Dependencies

A violation of dependencies occurs when the prover can
convince a suspicious, but rule-breaking verifier that the
creator certified a claim (which is in the structure), without
respecting the dependencies that the signer expected to be
enforced.

1) Additional Assumptions:
• The “random” values must look random, such that it is

not possible to find a (simple) generator that will produce
the AND values.

2) Without ANDs: Proof: From the previous proof
against forgery, it is already known that an attacker cannot get
a verifier to accept a node which was not in the DAG when the
creator signed it. A node (in the DAG) will not be accepted by
a verifier unless the hash of that node is given in an already
accepted node, a leaf node, or an accepted partial node. An
accepted partial node is the case where a prover can convince
a verifier that a bit of data is part of a valid node, without
showing the whole node. Under the random oracle model of a

hash function, it should not be possible to convince a verifier
to accept any partial node, because

1) The only evidence a verifier should accept is a hash
value

2) The hash value can only be computed by the random
oracle given the entire node

3) Therefore, a verifier cannot check or accept a partial
node

Using a real hash function that processes data such that later
data cannot be processed without earlier data (or intermediate
values from already processed earlier data), it is easy to see
that even using intermediate values from the hash calculation
can’t allow a prover to make malicious use of partial nodes,
because the data that the node is showing is the last part
of the node to be hashed. Virtually all hash functions meet
this criteria, with the exception being hash functions using
tree-based hashing (such as MD6 [3] or the optional mode
of Skein [4]). With partial nodes excluded, only hash values
in already accepted nodes or leaf nodes will be accepted
by a verifier as evidence of a node belonging in the DAG.
Additionally, since such accepted nodes or leaf nodes cannot
be accepted by the verifier without knowing their contents, the
dependencies upon them are maintained.

3) With ANDs: Proof: The new assumption is neces-
sary to prevent a prover from convincing the verifier to accept
a “random” value for use in an AND node that has not been
shown in an already accepted or leaf node. If the values chosen
form an obvious pattern, or are generated by a weak pseudo-
random number generator, the verifier may accept a confirmed
pattern as sufficient evidence to accept a value.

Under this random-looking assumption, the verifier will
only accept “random” values that appear in already shown
and accepted nodes or leaf nodes. By the assumption that the
certifier generates the “random” values and the unforgability
of AND nodes, those “random” values will be values intended
as random values by the prover. It was shown above that in
this situation, the verifier can only show nodes in the DAG. As
the verifier cannot know that a node is in the DAG without the
full path going back to leaf nodes, the difficulty of violating
the dependencies reduces to the difficulty of having a forged
node accepted by the verifier or getting a partial node accepted.
Both of these were already shown to not be possible.

IV. ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation (under Grant CNS-CT-0716252) and the Institute
for Information Infrastructure Protection. This material is
based in part upon work supported by the U.S. Department
of Homeland Security under Grant Award Number 2006-CS-
001-000001, under the auspices of the Institute for Information
Infrastructure Protection (I3P) research program. The I3P is
managed by Dartmouth College. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as necessarily representing the official
policies, either expressed or implied, of any of the sponsors.

REFERENCES

[1] D. Bauer, D. M. Blough, and A. Mohan, “Redactable signatures on
data with dependencies,” CERCS, Georgia Institute of Technology,
Tech. Rep., 2009. [Online]. Available: http://www.cercs.gatech.edu/tech-
reports/tr2009/abstracts/03.html

[2] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for
designing efficient protocols,” in CCS ’93: Proceedings of the 1st ACM
conference on Computer and communications security. New York, NY,
USA: ACM, 1993, pp. 62–73.

[3] R. L. Rivest, “The md6 hash function – a proposal to
nist for sha-3,” Submission to NIST, 2009. [Online]. Available:
http://groups.csail.mit.edu/cis/md6/docs/2009-04-15-md6-report.pdf

[4] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker, “The skein hash function family,” Submission
to NIST, 2008. [Online]. Available: http://www.schneier.com/skein.pdf

