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Abstract—Parallel Thread Execution ISA (PTX) is a virtual
instruction set used by NVIDIA GPUs that explicitly expresses
hierarchical MIMD and SIMD style parallelism in an application.
In such a programming model, the programmer and compiler
are left with the not trivial, but not impossible, task of composing
applications from parallel algorithms and data structures. Once
this has been accomplished, even simple architectures with low
hardware complexity can easily exploit the parallelism in an
application.

With these applications in mind, this paper presents Ocelot,
a binary translation framework designed to allow architectures
other than NVIDIA GPUs to leverage the parallelism in PTX
programs. Specifically, we show how (i) the PTX thread hierarchy
can be mapped to many-core architectures, (ii) translation
techniques can be used to hide memory latency, and (iii) GPU
data structures can be efficiently emulated or mapped to native
equivalents. We describe the low level implementation of our
translator, ending with a case study detailing the complete
translation process from PTX to SPU assembly used by the IBM
Cell Processor.

I. INTRODUCTION

Motivation. The dramatic transition from frequency scaling
driven by hardware pipelining and aggressive speculation
to concurrency scaling riding massive hardware multithread-
ing and computationally dense SIMD demands an equally
dramatic programming model shift. GPU architectures have
neatly skirted the power and frequency walls impeding the
progress of general purpose CPU architectures by targeting
a class of applications that can be expressed using parallel
algorithms and data structures – forgoing the complexities of
out of order superscalar style scheduling [1] and inefficiencies
of multilevel caches [2]. The heaviest load in this new many-
core arena falls on the shoulders of the programmer to leverage
programming models that harness the computational capability
of future many-core architectures.

Parallel Languages. Hwu et al. warn that as market require-
ments and fabrication capabilities enable the development of
increasingly parallel architectures like GPUs, an irresistable
temptation to impose explicitly parallel programming models
on these architectures will follow [3]. This trend is apparent
in the introduction of the CUDA programming model for
NVIDIA GPUs where MIMD and SIMD style parallelism
[4] is exposed directly to the programmer. However, rather
than impeding development, the incredible volume of work

concerning ports of applications from a variety of domains
including graphics [5], signal processing [6]–[8], computa-
tional finance [9], physics simulation [10]–[12], streaming
media [13], and others [14] to the CUDA programming
model suggests architectures that leverage explicitly parallel
representations of programs can dramatically impact the field
of general purpose computing.

CUDA. Given the success of the CUDA programming
model for GPU architectures and the lack of comparable
models for general purpose many-core processors (the clos-
est competitors being threading libraries like Pthreads [15],
OpenMP [16], and MPI [17]), it is a natural extension to
support CUDA programs on other architectures. This approach
has been shown to be possible for x86 architectures via
emulation [4] and efficient via source to source translation
[18]. The expectation is that many-core architectures will
be able to leverage the explicit data parallelism in CUDA
programs.

PTX. In order to provide a generic and efficient approach,
we would like to be able to move down a level of abstraction;
rather than compiling CUDA programs to distinct architec-
tures, we would like to generate an intermediate representation
that retains the explicit data parallelism in a CUDA applica-
tion, while easing translation to generic architectures. Luckily,
NVIDIA already provides such a representation: a virtual
instruction set called PTX is first generated by the CUDA
compiler before a just in time (JIT) translator is used to target
a specific GPU architecture before a program is executed.
If we can develop an equivalent translator for architectures
other than NVIDIA GPUs, it becomes possible to run existing
CUDA applications efficiently on generic architectures.

Ocelot. To enable the efficient migration of existing CUDA
applications across diverse many-core architectures, this paper
introduces a set of translation techniques, implemented in a
framework called Ocelot, for mapping low level GPU specific
operations to many-core architectures. Based on the feature
set of the target architecture, we show how (i) high level PTX
operations can be selectively translated to hardware primitives
or emulated in software, (ii) GPU specific data structures can
be mapped to native equivalents or emulated in software,
and (iii) introduce program analysis techniques required to
translate the data parallel representation of PTX. We show how



these generic techniques can be applied to the translation of
PTX to the IBM Cell Specialized Processing Unit (SPU) ISA,
and provide a case study covering the complete translation
process of a simple but nontrivial example.

Organization. This paper is organized as follows: Section II
gives background on PTX; Section III presents Ocelot; Section
IV describes translation to Cell; Section V walks through an
example translation; and Section VI covers related work.

II. BACKGROUND - PTX

As a virtual instruction set, PTX was designed to be
translated. Rather than adopting the competing philosophy that
a single invariant instruction set is a necessity for backwards
compatibility, PTX allows the underlying architecture to be
changed without the need for the hardware decoders present
in many modern processors [19], [20]; the approach is similar
to that taken by Transmeta where x86 is treated as a virtual
instruction set that is dynamically translated to a propriety
VLIW architecture [21]. The advantage of using a new in-
struction set rather than x86 is that it allows the use of a set
of abstractions that are agnostic by design to the underlying
architecture. In PTX, this design goal of architecture agnosti-
cism is achieved through (i) a set of constructs in the language
that ease translation, (ii) a relaxed set of assumptions about the
capabilities of the architecture, and (iii) a hierarchical model
of parallelism.

A. Facilitating Translation

Typed SSA. In order to enable translation, PTX is stored
in a format that is amenable to program analysis. Specifically,
instructions use an infinite set of typed virtual registers in
partial SSA form [22] as operands. Partial SSA in this context
means that registers have a single defs, multiple uses, and no
explicit Φ functions. Directly, this partial SSA form eliminates
a redundant register allocation stage in the high level compiler,
and ensures that the translator can easily infer the program data
flow without performing memory disambiguation to determine
aliases of variables spilled to memory. Indirectly, the typing
system enhances a variety of program analyses. Virtual regis-
ters in PTX are explicitly typed in terms of minimum precision
(8-64 bits) and basic type (bitvector, bool, signed/unsigned
int, and floating point), with support for weakly-typed lan-
guages [23] provided via explicit convert instructions. This
typing system is remarkably similar to the system used in
LLVM [24], which was designed to facilitate array dependence
analysis and loop transformations in addition to field-sensitive
points-to analyses, call graph construction, scalar promotion
of aggregates, and structure field reordering transformations
which do not require explicit typing [25]–[27].

PTX vs LLVM. Other virtual instruction sets like LLVM
further enable program analysis though explicit memory al-
location [24] instructions, a feature that is noticeably lacking
in PTX. We speculate that the lack of this feature is closely
related to the lack of support for heap based memory allocation
in any current NVIDIA GPU [4]. In general, it is more difficult
to implement heap based allocation for parallel architectures

[28] than static allocation, and this process is further com-
plicated by the weak-consistency memory model assumed by
PTX. It is not clear whether adding a similar instruction to
PTX would provide any benefit.

SIMD. Support for SIMD architectures is provided with
the inclusion of predication and select instructions in the PTX
ISA. Starting with the ability of threads to take arbitrary
control paths, predication allows simple control flow to be
compressed into a series of predicated instructions. The PTX
translator can selectively implement these instructions as if-
then-else style branch intensive code on architectures with
narrow SIMD width or hardware predicates on architectures
that support them.

Parallelism. Additionally, PTX includes directives for ex-
plicitly handling fundamental parallel operations like barri-
ers, reductions, atomic updates, and votes. Specifying these
operations at a high level allows the translator to leverage
specialized hardware as in [29] if it exists, fall back on
common primitives like semaphores that are available to the
majority of modern architectures, or convert parallel sections
with synchronization to equivalent sequential loops between
synchronization points as in [18].

B. A Hierarchical Model of Parallelism

Threads and Warps. The basic unit of execution in PTX
is a light-weight thread. All threads in a PTX program fetch
instructions from the same binary image, but can take distinct
control paths depending on the values of pre-set id registers
with unique values for each thread. The first level of hierarchy
groups threads into SIMD units (henceforth warps). The warp
size is implementation dependent, and available to individual
threads via a pre-set register.

In order to support arbitrary control flow as a programming
abstraction while retaining the high arithmetic density of
SIMD operations, NVIDIA GPUs provide hardware support
for dynamically splitting warps with divergent threads and
recombining them at explicit synchronization points. PTX
allows all branch instructions to be specified as divergent or
non-divergent, where non-divergent branches are guaranteed
by the compiler to be evaluated equivalently by all threads in
a warp. For divergent branches, targets are checked across all
threads in the warp, and if any two threads in the warp evaluate
the branch target differently, the warp is split. PTX does not
support indirect branches, limiting the maximum ways a warp
can be split to two in a single instruction. Fung et. al. [30]
show that the PTX translator can insert synchronization points
at post-dominators of the original divergent branch where
warps can be recombined.

CTAs. As shown in figure 1, the second level of hierarchy
in PTX groups warps into concurrent thread arrays (CTAs).
The memory consistency model at this point changes from
sequential consistency at the thread level to weak consistency
with synchronization points at the CTA level. Threads within a
CTA are assumed to execute in parallel, with an ordering con-
strained by explicit synchronization points. These synchroniza-
tion points become problematic when translating to sequential



Fig. 1. PTX Thread Hierarchy

architectures without software context switching: simple loops
around CTAs incorrectly evaluate synchronization instructions.
Stratton et. al. [18] show that CTAs with synchronization
points can be implemented without multithreading using loops
around code segments between synchronization points. CTAs
also have access to an additional fixed size memory space
called shared memory. PTX programs explicitly declare the
desired CTA and shared memory size; this is in contrast to
the warp size, which is determined at runtime.

Kernels. The final level of hierarchy in PTX groups CTAs
into kernels. CTAs are not assumed to execute in parallel in a
kernel (although they can), which changes the memory con-
sistency model to weak consistency without synchronization.
Synchronization at this level can be achieved by launching
a kernel multiple times, but PTX intentionally provides no
support for controlling the order of execution of CTAs in
a kernel. Communication among CTAs in a kernel is only
possible through shared read-only data structures in main
memory and a set of unordered atomic update operations to
main memory.

Scalable Parallelism. Collectively, these abstractions allow
PTX programs to express an arbitrary amount of data paral-
lelism in an application: the current implementation limits the
maximum number of threads to 33554432 [4]. The require-
ments of weak consistency with no synchronization among
CTAs in a kernel may seem overly strict from a programming
perspective. However, from a hardware perspective, they allow
multiprocessors to be designed with non-coherent caches,
independent memory controllers, wide SIMD units, and hide
memory latency with fine grained temporal multithreading:
they allow future architectures to scale concurrency rather than
frequency. In the next section, we show how a binary translator
can harness the abstractions in PTX programs to generate
efficient code for parallel architectures other than GPUs.

III. OCELOT

PTX as an IR. PTX provides a description of an appli-
cation at a similar level of abstraction to the intermediate

representation of a compiler. Because of this, the process of
translating a PTX application to another architecture is remark-
ably similar to the process of compiling a CUDA application
to that architecture after the intermediate representation has
been generated by the compiler front end. At a very high
level, the translator must examine a set of PTX instructions
before generating an equivalent set of native instructions. This
process can potentially create new control flow paths and
introduce additional variables requiring the translator at the
very least to then perform data flow analysis to determine
register live ranges before allocating registers and generating
traslated code.

Trivial Translation. An incredibly simple translator tar-
geting only single threaded PTX applications that avoided
using GPU specific shared memory could be implemented with
only the aforementioned operations. However, the PTX thread
hierarchy and the lack of support on many architectures for
scratchpad memory significantly complicates the translation
process for non-trivial programs. In Ocelot, this complexity
is divided between modifications to the code generated by
the translator and a runtime component that interacts with the
translated application as it is executing.

A. Runtime Support

Thread Hierarchy. In Ocelot, a runtime component is used
to provide services to the translated application that are not
provided by the target architecture. It should be noted that
even PTX applications translated to NVIDIA GPUs using
the CUDA tool chain are coupled with a runtime component
that handles resource allocation and a first pass of thread
scheduling. Similarly, Ocelot’s runtime component performs
a first pass of thread scheduling that is required because no
hardware platform that we are aware of today including GPUs
can manage the massive number of threads available to PTX
in hardware. The first pass of thread scheduling is performed
by looping over the number of CTAs in a PTX program,
and launching them on the hardware as resources become
available. After this first pass of scheduling, a second pass is
required on architectures that do not provide hardware support
for multithreading to the degree possible within a CTA (up to
512-way). SIMD architectures that do not provide hardware
support for warp splitting and recombining require a third pass
where software checks are inserted after potentially divergent
branches. All of the synchronization operations available in
PTX without native hardware equivalents must also be handled
at this level.

GPU Hardware Emulation. In addition to thread schedul-
ing, the runtime component must also emulate GPU specific
data structures (shared memory and special registers), and
GPU specific instructions that are not directly translated. PTX
includes instructions for high level math and trigonometric
functions like sin, atan, and exp. For architectures without
instruction level implementations of these operations, either
the translator must inline their implementation, or call equiv-
alent functions. In regards to accesses to special registers and
shared memory, the translator can insert traps into the runtime



that redirect accesses to preallocated data structures in main
memory. Additionally, the translator can wrap accesses to main
memory with conditional traps into the runtime implementing
software caching in scatchpad memory for architectures with-
out hardware caches.

B. Thread Compressing Loops

Thread Compression. The degree of hardware support for
multi-threading in modern processors varies from none in sin-
gle core architectures to 16 in Intel Nehalem [31] to 32 in Sun
Niagra 2 [32]. None of these architectures can natively support
the maximum of 512 threads within a CTA available to PTX
programs, and require the use of either software multithreading
or a technique that we refer to as thread compression to
handle PTX programs with more than a few threads per CTA.
To our knowledge, this idea was first introduced in [18] –
though it is conceptually similar to the blocked loop unrolling
used in OpenMP [16] and programming model intrinsics used
by Intel Larabee [33]; it consists of emulating fine grained
PTX threads with loops around unsynchronized sections of
code, compressing several PTX threads into a single hardware
thread. In the context of a translator, we implement thread
compression by examining the control flow graph of the
application and finding all synchronization instructions. For
every synchronization instruction starting from the root of the
dominator tree of the application, we create a loop starting at
the earliest unsynchronized dominator of the block with the
synchronization instruction and ending immediately before the
instruction.

Multithreading. In our complete partitioning solution, the
number of PTX threads is divided among the hardware threads
available in a single core. A loop over PTX threads is
assigned to each hardware thread or further divided among
software threads if the overhead of doing so is low enough.
Intuitively, implementing software multithreading rather than
thread compressing loops is advantageous only if there are
opportunities to conditionally context switch at boundaries
other than synchronization instructions. A motivating example
can be found in an architecture with a software managed cache
implemented in scratchpad memory. In such an architecture,
cache misses could incur a high latency penalty and could also
be made visible to a software thread scheduler. If the context
switch overhead was lower than the direct and indirect cache
miss penalties, it would be advantageous to switch to another
thread and while a cache miss was being serviced.

C. Emulating Fine Grained TMT

Temporal Multithreading. In the lightweight threading
model of PTX, threads have distinct register sets, program
counters, and little else. PTX does not explicitly support a
stack, an entire application shares a virtual address space, and
special registers are handled by the runtime. In this model,
a context switch involves check-pointing the register file and
program counter, selecting a new thread, and restoring the
new thread’s live registers and program counter. The major
direct cost of this operation is the checkpoint and restore of

the register file, and the major indirect cost is the displacement
of the working set of a thread on architectures with caches.
Being a binary translator, Ocelot has an opportunity to reduce
these overheads before the application is ever executed.

Context Switches. We begin by noticing that PTX programs
have a relatively large variance in the number of live registers
at any time as can be seen in Figure 2. For sections of the
application where the number of live registers is much smaller
than the size of the architected register file, multiple versions
of the same section can be generated using non-overlapping
sets of registers. Threads can be distributed evenly across these
orthogonal register sets; if there are N such sets of registers,
then N threads can be stored in the register file at any given
time. A single extra register can be added to each thread’s
state pointing to the program counter of the next thread, and
the process of a context switch involves saving the program
counter of the current thread and jumping to the program
counter of the next thread. This can be implemented using
a single move instruction and a single branch instruction on
many architectures – making context switches among threads
stored in the register file nearly free. Note that assigning fewer
registers to each thread allows more contexts to be stored
at any given time, but increases the probability of having to
spill any given register. This phenomenon creates a trade off
between context switch and register spill overhead.

D. Software Warp Formation

Dynamic Warp Formation. The fact that PTX was si-
multaneously designed for SIMD architectures and arbitrary
control flow creates significant challenges for architectures that
implement SIMD instruction sets without hardware support
for dynamically reforming warps. Fung [34] shows a 4x worst
case, 64x best case, and 32x average increase in IPC on a 16-
wide SIMD architecture with no warp recombination across
eight sample CUDA applications wehn compared to a serial
architeture. This implies that there is at least the potential for
speedup on architectures that support SIMD instructions, but
do not have hardware support for detecting divergence within
a SIMD set. In order to provide the ability to exploit SIMD
instructions in architectures that support them, we extend
Fung’s work to address software dynamic warp formation.

A Software Implementation. Ocelot uses a combination of
binary translation and runtime support to implement dynamic
warp splitting. We optimistically assume that PTX threads
can be packed into warps and statically assign them during
translation. We then run a pass through the control flow graph
and find branch instructions that are specified as possibly
divergent. For these instructions, we break the conditional
branches into three operations: (i) a SIMD computation of the
branch target, (ii) a SIMD check to see if all branch targets are
equal, and (iii) either a trap into the runtime if the check fails
or the original branch instruction if the check succeeds. In the
case that the check succeeds, the program runs N*M threads
at a time where N is the warp size and M is the degree of
hardware multithreading. If the check fails, the runtime splits
the warp into two partially full warps, each taking a different



Fig. 2. Sample CUDA Register Usage

path. For partially full warps, either predication is used to
disable inactive ways in the warp if it is supported, or loads
and stores from those ways are ignored by the runtime.

Warp Reformation. Ocelot implements dynamic warp re-
forming in a similar fashion. We note that all threads will
eventually return to the same program counter at synchro-
nization points. Recall from [18] that thread loops end at
synchronization points. If Ocelot inserts a trap into the runtime
after each synchronization point, the runtime can scan the
entire set of PTX threads assigned to a single hardware thread,
deleting any newly created warps and enabling all of the
threads in the remaining warps. This reverts the assignments
of threads to warps to the static assignment specified by Ocelot
when the program was translated. The reader should note
that this operation creates a trade off between the loop and
runtime overhead needed to reform warps and the performance
lost from running partially full warps. Fung suggests that
reformations can should place at the immediate post dominator
of all divergent branches for hardware implementations which
achieve a 44.7% average speedup over not recombining. Com-
bining this with our approach would required loops around all
divergent control paths. A more thorough evaluation is needed
before a similar conclusion can be reached for our proposed
software implementation.

E. Dynamic Translation

GPUs. Until now, all of the techniques that we describe
can be implemented using static translation before a PTX
application is executed, which is the approach used by the
CUDA translator as of version 2.1 [4]. Given the prominent

examples of dynamic translation for x86 [35]–[37], Java
Bytecode [38], and VLIW architectures [21], [39] the reader
might be surprised by its omission here. Dynamic translation
in the previously mentioned examples is typically done at
the super-block level or lower. Multihtreading significantly
complicates the process of dynamic translation as threads can
take divergent control flow paths, simultaneously requiring
the services of the translator. On GPUs, PTX provides no
mechanism for self-modifiable code, making dynamic trans-
lation at the PTX level impossible without delving into the
undocumented and unsupported realm of GPU specific binary
translation. Additionally, the weak memory consistency model
assumed by PTX across CTAs would make updating a shared
code cache difficult to implement. Finally, the sheer magni-
tude of distinct control paths running on modern NVIDIA
GPUs at any given time (up to 15360 [4]) would make lock
based update mechanism to a shared code cache prohibitively
expensive – these updates would need to be made by a
translator written in CUDA or PTX running on the GPU; we
are not aware of any attempt to port generic compiler/translator
operations to wide SIMD architectures. Luckily, this restriction
is not overly cumbersome: PTX programs are typically smaller
than complete applications and are launched like function
calls using the CUDA runtime API. Multiple launches of
the same PTX program can be translated once and cached
for subsequent executions similar to method-level dynamic
translation used in [38].

Other Architectures. Though dynamic translation does
not seem practical for GPU architectures, other architectures
may offer a different perspective. For example, a four-core



superscalar processor supporting four wide SIMD as in In-
tel’s [31] will only have at most four distinct control flow
paths, where each core offers fast single threaded performance
when compared to a GPU. Each thread can build a chain
of superblocks as it encounters code that has not yet been
translated and update a protected global code cache in main
memory. These are the architectures where previous examples
of dynamic translation have found success, and we plan to
explore dynamic implementations of Ocelot when targeting
them.

F. Integration With CUDA

Intercepting API Calls. As mentioned briefly in the previ-
ous section, PTX programs are typically called from larger
C applications using the CUDA runtime API. Along with
providing functions for calling PTX programs, the API allows
the C application to query to system to determine the number
of and types of GPUs, bind to a specific GPU, allocate and
deallocate memory on the GPU, and perform DMA copies
from the virtual address space of the C program to the address
space of the GPU. In order to target architectures other than
GPUs, we would like to be able to emulate the functionality
of some of these calls – particular memory allocation and
transfer operations – and use Ocelot rather than NVIDIA’s
translator when a PTX application is called. To accomplish
this, we use a technique similar to that used by Gupta. et. al.
for GPU virtualization [40]: we provide a dynamically linked
library that replaces cudart.so and intercepts all CUDA API
calls, selectively redirecting them to either native CUDA calls
or Ocelot equivalents. This enables us to conditionally choose
between NVIDIA’s translator when launching a PTX program
on an NVIDIA GPU, or Ocelot when launching a program on
another supported architecture.

IV. TARGETING IBM CELL

Cell Background. This section assumes that the reader is
familiar with the architecture of the IBM Cell Processor. We
suggest the following reference [41] to readers who are new
to this architecture. We adopt the terms SPU to refer to the
either the individual cores in Cell or the instruction set used
by those cores, local store to refer to SPU specific scratchpad
memory, and mailbox to refer to the dedicated communication
channels between adjacent cores in Cell.

Translation. Now that the reader is familiar with the general
process of translating a PTX application to a new architecture,
we narrow the scope of the paper and consider translating
specifically to the IBM Cell Processor. At this time, Cell
remains the only Ocelot target with a functioning implemen-
tation and the following discussion is informed by the lessons
learned during that implementation. We began with the Cell
processor because of its novelty as a target for translation and
the similarities between its architecture and that of NVIDIA
GPUs. At a high level, both architectures provide an array of
relatively simple processors with SIMD capabilities – Shader
Modules (SMs) for GPUs and Synergistic Processing Units
(SPUs) for Cell – suitable for mapping the thread hierarchy

expressed in PTX. We begin with a detailed description of
this mapping, moving on to a discussion of emulating shared
memory and special registers in the SPU local store, software
caching and temporal multithreading, warp resizing, Cell’s
lack of predication, and ending with a discussion of register
management conforming to the Cell ABI.

A. Mapping the Thread Hierarchy

The mapping of the PTX thread hierarchy to Cell mirrors
the set of hardware units in Cell:

• Warp - SIMD Unit
• CTA - SPU
• Kernel - CTA Array
Kernels and CTAs. Ocelot first considers the number of

CTAs in a PTX program, creating a queue of all CTAs in a
data structure on the Power Processing Unit (PPU). CTAs are
launched on SPUs as they become available. This approach
was chosen rather than static assignment in order to maintain
efficient work distribution of CTAs in the case that they have
variable and nondeterministic runtimes – which has been prob-
lematic for applications like ray tracing with secondary rays
[5]. Ocelot does not split CTAs from the same group across
SPUs in order to take advantage of the weak-consistency with
no synchronization assumption among groups: caches may be
used by each SPU without the need for a coherence protocol,
and even though Cell provides sequential consistency among
all SPUs, it is not necessary to ensure the correctness of any
translated application. Compared to static assignment, Ocelot’s
queue based approach does incur additional latency for the
SPU to notify the PPU that its CTA has finished and to be
issued a new one. Using the mailbox primitives available in
Cell, we believe that this overhead can be made smaller than a
DMA copy by the SPU to main memory – in other words, we
believe that the overhead is negligible for non-trivial CTAs.

Warps. Once an SPU has been assigned a CTA, it is
partitioned into warps. Most operations can be packed into
SIMD instructions in the SPU ISA. However, particularly
lacking are scatter and gather type operations required to
implement loads and stores to distinct addresses in SIMD.
Instructions such as these are serialized as a sequence of
load and store operations. Given the high latency of memory
operations, we do not believe that this solution creates any
significant overhead compared to an explicit scatter or gather
instruction, which would have to perform the same underlying
operations. Warps are composed of either two or four threads
depending on the floating point precision used by the PTX
program. SPUs currently use 128-bit registers capable of
holding either four single precision floating point numbers,
or two double precision numbers. We note that it would be
possible to dynamically switch between a warp size of two
and four by inserting explicit runtime traps before entering a
section of code using a different precision. A simple approach
would be to make this distinction after each synchronization
instruction signifying the start of a new thread loop because
it could be combined with the warp reformation operation.
However, a more complex analysis would be required to



determine the most efficient positions to insert these warp
precision transitions.

Threads. The first partitioning stage reduces the number
of threads within a CTA by a factor of either two or four
depending on the warp size. The remaining warps must then be
implemented in software, as SPUs have no hardware support
for simultaneous multithreading. For this implementation, we
use a combination of thread compression and software TMT
as described in Section III-B. Thread compression is used to
reduce the amount of state associated with each thread, and
software TMT is used to hide latency in the case of a long
latency operation. Without thread compression, the runtime
would have to maintain the live register set of each warp in
the SPU local store. Thread compression by a factor of N
reduces the number of times that this live register set must be
saved and loaded from the local store by at least a factor of N.
However, this must be balanced against the number of software
threads in order improve the chance of finding an available new
thread when a high latency operation is encountered. Ocelot
places a minimum on the number of software threads as the
number of threads that can be stored completely in the register
file, and it places a maximum of the maximum latency of
any operation divided by the average context switch latency.
This takes advantage of the lower overhead of switching
to a thread whose live registers are already in the register
file, also acknowledging that in the worst case where every
thread immediately encounters an operation with the greatest
possible latency, the process of cycling through all threads and
starting their operation will gives the first thread’s operation
time to finish. If there are options between the minimum
and maxmimum number of threads, Ocelot reverts to a user
defined parameter, floored to the maximum and ceilinged to
the minimum.

B. Software Caching and Threading

Context Switch On Cache Miss. Software TMT allows for
a context switch to hide high latency operations. In Ocelot,
the only high latency operation considered is an access to
main memory. This operation is accomplished by trapping into
the runtime component which maintains a software managed
cache in the SPU local store memory. On every access to
main memory, the runtime checks to determine if the specified
address is present in the cache. If so, it performs a load or store
to the copy in the local store. If the address is not present, it
first checks for pending operations on the same cache line,
initiates an asynchronous DMA copy from main memory if
there are none, and performs a context switch to a ready thread.
The check for pending operations to the same cache line is
needed to prevent deadlock situations where one warp kicks
out data referenced by another, which then proceeds to kick
out the first warp’s data before it has a chance to use it. If a
cache access fails due to a miss, the program counter of the
current warp is rolled back to the previous instruction so that
the access will be replayed when the warp is scheduled next.

Thread Scheduling. Context switching in software TMT
is managed by the runtime. A set of warps is stored in the

register file and the remaining warps are mirrored in the local
store. The runtime maintains a ready flag for each warp that
determines whether or not it can be scheduled. The ready
flag begins set for each warp, is cleared when the warp
encounters a cache miss or hits the next synchronization point,
and is reset when a cache line is returned from main memory.
Divergent warps manipulate the same registers as their original
counterparts, and are scheduled independently by the runtime.
However, threads within the warp that are not active do not
update registers.

Scheduling Algorithm. The goal of scheduling in this
context is to provide the lowest total runtime of the total set
of warps, rather than provide any fairness guarantees to the
set of warps. This goal is best accomplished by minimizing
the number of context switches and keeping the working set
of a particular warp warm in the cache as much as possible,
so our policy selects the most recently used ready warp,
giving preference to those already in the register file. Note
that the static partitioning of the register sets used by warps
means that any two warps using the same registers cannot be
present in the register file at the same time. When conflicts
between the most recently used warp and warps already in the
register file exist, we choose a warp already in the register file
based on the intuition that the benefits gain from avoiding a
register checkpoint and restore will be greater than those from
selecting a thread whose working set is more likely to be in
the cache. Empirical studies have shown the opposite behavior
in the context of traditional process level multithreading where
indirect misses due to replacement and reordering have higher
penalties than register checkpointing [42]. These results are
not applicable to PTX threads which share data, run in near
lockstep, and are designed with high spatial locality to exploit
memory coalescing [43].

Managing Registers. Note that the number of live registers
can potentially change between synchronization instructions,
allowing more or less warps to be cached in the register file at
any given time. The Ocelot translator takes as a parameter the
number of registers desired per thread. Any required registers
over this limit are spilled to a dedicated local memory region in
the local store, but any fewer registers can be assigned to other
warps. This potentially complicates transitions across synchro-
nization points because the registers assigned to the same
warp in the previous section might not correspond exactly to
threads in the new section. Ocelot provides two approaches
to handling this case. The first approach examines the total
number of registers required by each section, and selects the
maximum for each, while the second approach, inspired by
[35], provides compensation code at synchronization points to
copy live values in previous registers into the newly allocated
registers. The first approach potentially allows fewer threads to
be cached in the register file, but avoids overheads associated
with compensation code. Ocelot provides both approaches to
the user specifiable via a configuration option.



Fig. 3. Ocelot Translation Process

C. Emulating GPU Memory Structures

In addition to the resources provided by the IBM Cell
architecture, PTX assumes the existence of scratchpad memory
referred to as shared memory, and special registers.

Special Registers. Special registers can be handled in two
ways by Ocelot: in the translator or in the runtime. Ignoring
recently introduced special registers tied to GPU performance
counters [4], special registers make the CTA dimensions, warp
size, and number of CTAs available to PTX threads. To handle
these instructions in the translator, Ocelot maps them to SSA
registers that are initialized when the thread is started and
exist for the lifetime of the application. Subsequent data-flow
analysis and dead code removal eliminates registers that are
never referenced, while ensuring that physical registers are
shared among SSA registers that do not have overlapping
live ranges. The second approach replaces all references to
special registers with traps into the runtime which determine
the correct value based on which thread is currently executing.
This is possible because all special registers are derived
from a combination of the active warp, CTA, and the static
dimensions of the PTX program. Either of these approaches
are available to the user via a configuration parameter.

Shared Memory. Handling shared memory is potentially
more complicated than special registers because of its overlap
in functionality with the SPU local store which is utilized
by the software managed cache of global memory. Shared
memory is accessible by all warps in a CTA, and therefore
it can allocated directly in the local store. However, it is
not immediately clear that shared memory should be directly
implemented in the SPU local store because it would reduce
the size of the software managed cache. The alternative would
be to implement it in global memory using the software
managed cache to reduce its access time. In the first case,
loads and stores to shared memory could be directly translated
into loads and stores to the local store, whereas in the second
case, they would be replaced by traps into the runtime,
adding a performance penalty. In PTX, the assumption is that
shared memory is significantly faster than global memory, and
applications that relied on this would benefit from the first
technique. Depending on the application, the additional shared
memory latency may or may not be offset by the reduction in
cache misses and context switches. Ocelot implements both
techniques and again allows the user to choose one or the
other.

D. Translating PTX Instructions

SPU vs PTX. When compared to PTXs’s lowly 51 in-
structions, the SPU’s 201 would seem to indicate that the

set of operations available on Cell would subsume those
available in PTX, not so. PTX’s typing system allows the same
instructions to specify different operations based on the types
of the operations supplied, whereas SPU includes a distinct
instruction for each operand type, making PTX the more
comprehensive ISA. In particular, SPU does not implement
predication, parallel primitives (vote, reduction, barrier), high
level math operations (sin, cos, atan, exp), or atomic accesses
to global or shared memory1. These instructions require extra
attention by the translator to implement an equivalent sequence
of SPU instructions.

Predication. Predication is used in PTX to express con-
trol flow in a more compatible form to SIMD operations –
depending on the value of a specified predicate register, the
destination register of a predicated instruction is conditionally
updated. No concept of predication exists in SPU. However,
SPU does include a conditional select instruction that picks
bits from one of two possible registers depending on the
values of a third register. Implementing predication using these
instructions involves first generating a temporary select mask
whenever a PTX predicate is updated and storing it in an SPU
register. When a predicated PTX instruction is encountered, a
temporary SSA SPU register is created to hold the result. The
conditional select SPU instruction is used to update the result
of the PTX predicated instruction with either the result of the
instruction stored in the temporary register or the original value
of the register. Rather than introducing dedicated registers for
each PTX predicate, SPU registers are only allocated for the
live ranges of PTX predicates. Note that this process adds
an additional instruction for each PTX predicated instruction.
If active masks for warps are implemented using a similar
method, full warps will achieve a peak IPC of two rather than
four, warps with two active threads will break even with a
serial implementation, and warps with a single thread will
operate at half speed. This observations suggests that for Cell
it is more beneficial to create disjoint register sets when warps
are split so that the entire set can be updated while the warp
executes without needed conditional select instructions for
instructions that are not explicitly predicated.

Parallel Operations. Parallel primitives might seem like
they must be handled by traps into the runtime since they share
data across threads within a CTA, and this is true for atomic
and reduction operations. However, Ocelot handles barrier and
vote by inserting translated code instead. For barrier, this
is possible because the instruction implies a synchronization
point and is handled trivially via the formation of thread
compressing loops. For vote, which is an any or all operation
across predicates of threads within a warp, Ocelot can insert
instructions that scan the complete value of the indicated
predicate register masked by the warp’s active mask and imme-
diately determine a value. Atomic and reduction instructions
require read-modify-write style operations to global and shared
memory. These can be handled via locks available to SPU

1As atomic accesses are a new feature of PTX, they are not supported in
the current implementation of Ocelot



Fig. 4. CGivens CUDA Source

programs, requiring traps into the runtime to execute.

V. A CASE STUDY : CGIVENS

Translating CGivens. As a practical example of the trans-
lation approach used in Ocelot, we captured the intermediate
representation generated after each stage in the translation
process of a simple application as shown in figure 3. The
program is specified in CUDA augmented C and compiled
using the NVIDIA compiler NVCC V0.2.1221, which gen-
erates a corresponding PTX assembly file. Before execution,
the PTX assembly file is loaded by Ocelot which creates a
control flow graph (CFG) of basic blocks in the program. The
freshly loaded control flow graph begins in the partial SSA
form used by PTX. Ocelot immediately converts the CFG to
complete SSA form, which eases optimization at the PTX
level. A dominator tree is computed using reverse iterative
dataflow which allows Ocelot to determine the boundaries for
thread compressing loops. The resulting CFG is then translated
to an equivalent CFG of SPU instructions and runtime traps.
Again the CFG is verified to be in complete SSA form and
optimizations are selectively applied. After the optimization
phase, data flow analysis is used to determine live ranges
of SSA register values. Finally, Ocelot performs a register
allocation operation to map SSA registers to SPU equivalents.
Ocelot outputs an assembly file of SPU instructions which is
subsequently passed to the SPU assembler to generate an SPU
object file. This is finally linked against the statically compiled
Ocelot runtime and driver application, generating an invokable
binary.

A. CUDA Source

Compilation. The application chosen for this evaluation
was the simplest non-trivial application in our library of
CUDA applications so that operations at the assembly level

Fig. 5. CGivens PTX Source

would simple enough to grasp by the reader. This application
(CGivens) computes the Givens rotation matrix, which is a
common operation used in parallel implementations of linear
algebra operations like QR decomposition. The inner kernel of
the application is shown in Figure 4. Note that this operation
is completely data-parallel, where each PTX thread computes
a different matrix in parallel. The code provides divergent
control flow paths, but there are no explicit synchronization
points.

B. PTX Assembly

PTX IR. The CUDA compiler is used to generate the PTX
representation of CGivens, of which the first basic block is
shown in Figure 5. Note the explicit typing of each SSA
register, the reliance on predication to perform conditional
branching, the memory space qualifiers for load and store
operations, and the .uni suffix on unconditional branches.
Ocelot begins by parsing a program in this form and generating
a control flow graph of PTX instructions.

C. Control Flow Graph

CFG. Figure 6 provides a snapshot of a node in CGivens
before and after conversion to complete SSA form. Note
that Φ functions are only generated for live registers using
partial data-flow analysis as in [44] creating an efficient pruned
SSA representation. Though this example does not perform
any, Ocelot provides the infrastructure to selectively apply
optimizations at this stage.

Dominator Tree. Figure 7 shows the dominator tree of the
CGivens application. In this case the lack of synchronization
instructions precludes the need for explicit thread loops to
enable thread compression. Thread compression in this case



Fig. 6. SSA Form

would degenerate into a single loop around the entire applica-
tion. As mentioned in section III-D, a more complex analysis
could potentially reduce the amount of time that warps remain
divergent by placing additional synchronization instructions
at the post dominators of potentially divergent branches –
in the figure, the first divergent branch occurs at the end of
block 2 which is post dominated by block 7. However, this
implementation of Ocelot does not include that optimization.

D. Translation

PTX to SPU. The translation process is then performed on
the optimized PTX control flow graph. In this implementation,
PTX instructions are examined one at a time and converted to
equivalent sequences of SPU instructions. Figure 8 compares
the translation of two different types of memory accesses.
Parameter memory is mapped to structures in the SPU local
store, and is therefore replaced by a simple load from the
local store. Global memory is cached by the runtime, so a
load from global memory is replaced by a function call to
the runtime. Note that calls to the runtime must abide by the
semantics of the SPU application binary interface [45], which
specifies which registers can be used for passing arguments
during function calls. At this point, the translator is dealing
with virtual registers in SSA form, so a mapping must be
created from any registers used as arguments to function calls
to their corresponding physical registers. These registers are
referred to as preallocated, and are given preference during
the final register allocation phase.

Predicates. Another interesting example of translation oc-
curs when predicates are used in PTX. Figure 9 shows a

Fig. 7. CGivens Dominator Tree

PTX instruction that updates a predicate and a series of SPU
instructions that emulate the behavior. A new SSA register
is created to temporarily store the predicate value, which is
eventually consumed by a conditional branch in SPU, rather
than a predicated branch in PTX. Note that this implementa-
tion of Ocelot has many opportunities for optimization in the
translation process. An obvious example is in the extra add
with zero instruction used to move the predicate after it was
generated. The temporary register is needed in case the result
of the comparison operation in the PTX SETP instruction is
applied to a boolean operation to generate the final result. If,
as in this case, it is not applied to a boolean function, it is
copied directly to the result. It would be possible to detect
this case in the translator and eliminate the redundant copy
instruction by saving the output of the comparison directly to
the result. There are likely to be many such opportunities for
optimizations in the current implementation of Ocelot.

E. Data and Control Flow Analysis

Restoring SSA. After the translation process, the program
is stored in a CFG of SPU instructions. Additional variables
introduced in the translation process require an additional pass
to convert the CFG to complete SSA form. Once in SSA
form again, further optimizations can be easily applied to the
SPU version of the program. Our current implementation does
not support include any optimizations other than dead code
elimination at this stage. However, this example does not have
any dead instructions so the code is not changed during the
optimization phase.



Fig. 8. Translated Memory Operations

Fig. 9. Translated Predicate Instructions

Register Live Ranges. After optimizations have been per-
formed, Ocelot iteratively evaluates a set of data flow equations
as in [46] to determine the live ranges of registers. For
each basic block, Ocelot creates a function that consecutively
applies the definitions and uses of each register. Performing
this function in reverse for each basic block, adding a register
to the current live set upon it’s first use and removing it after
encountering it’s definition, effectively computes register live
ranges for an individual block. Registers that are still alive
after traversing the entire block are propagated to the live set
of the block’s predecessors, whose live sets are scheduled to
be recomputed. This process is repeated until the live sets of
all blocks stabilize, and overlapping live ranges for each SSA
register can be determined.

F. Register Allocation and Code Generation

Register Allocation. In the last phase of translating the
CGivens application, the register live ranges computed in the
previous section along with the set of preallocated registers
from the translation stage are used to perform register al-
location. The Cell ABI reserves 47 callee saved registers
and 71 caller saved registers out of the 128 SPU registers
for use by SPU applications. The Ocelot register allocator
chooses callee saved registers first, falling back to caller saved
registers, and finally spilling excess registers to the stack.
The allocator implements the well known Chattain-Briggs
algorithm which expresses the allocation process as a graph
coloring problem. Note that the allocator is able to color the
graph using 9 distinct registers, enabling between 11 and 44
separate contexts to be stored in the register file at any time
depending on the number of divergent warps.

Code Generation. Once the register allocation stage has
finished, the application is passed through a code generation
stage in Ocelot that either creates a binary object file or
outputs an assembly text file that can be assembled using

the Cell Toolchain. A section of the resulting assembly file
is shown in Figures 8 and 9. Observe that the corresponding
PTX instructions are inlined as comments to ease debugging
the translation process.

Correctness. In order to test the validity of out translator,
we link the generated SPU assembly file with the previously
compiled Ocelot runtime which handles loading the applica-
tion and running it on the SPUs in Cell. We run the complete
application for a number of input parameters, generating
distinct Givens rotation matrices. We then compare these
results to the equivalent application generated with the CUDA
toolchain run on an NVIDIA GPU. In terms of functionality
for this application, both the NVIDIA toolchain and Ocelot
produce identical results.

VI. RELATED WORK

A. GPGPU Programming

CUDA. Numerous examples of applications ported to the
CUDA programming model provide the motivation for seam-
lessly migrating CUDA applications to other many-core archi-
tectures using Ocelot. Sungupta et. al., Govindaraju et. al., and
Krüger et. al. provide basic building blocks of many algorithms
with efficient GPU implementations of Scan (prefix sum)
[47], database primitives [48], and linear algebra operations
[49] respectively. Cederman and Tsigas provide an efficient
implementation of quicksort using CUDA, able to sort 16
million floating point numbers in under half a second on
an NVIDIA 8800GTX [50]. Higher level applications have
also been shown to have efficient explicitly parallel CUDA
implementations [12]. Ocelot is able to leverage all of these
implementations for architectures other than GPUs.

B. CUDA Compilation

MCUDA and Larabee. Ocelot builds on the emerging
body of knowledge concerning compiling explicitly parallel
programs (like CUDA) to architectures other than GPUs.
In the CUDA toolchain, NVIDIA includes an emulator that
compiles CUDA applications directly to native code without
first generating a PTX representation [4]. For each PTX thread,
a corresponding native thread is created, relying on mutex
primitives for implementing synchronization points. As the
number of threads in a PTX application grows, the overheads
associated with this approach grows to an unacceptable level
as most native threading libraries were not designed to handle
several thousand or more threads. Stratton et. al. offer an
alternative approach at the compiler level by introducing a
source to source translator that replaces CUDA API calls
with native equivalents and inlines thread compressing loops
at CUDA synchronization function boundaries. The result of
the translation is ANSI C source than can be compiled with
a native compiler. SIMD level parallelism is extracted by
the compiler which makes use of OpenMP style pragmas
around thread compressing loops. Similarly, the programing
model used by Intel Larabee Renderer [33] uses the concepts
of lightweight fibers and batch processing rather than many



hardware threads to perform parallel rendering on an array of
x86 cores.

Ocelot. Ocelot differs from these approaches which oper-
ate above the compiler level by utilizing binary translation.
Rather than requiring code to be recompiled from source
when targeting a new architecture, existing applications can be
translated as their PTX source is loaded. Ocelot does have two
distinct advantages over these approaches that rely on static
compilation, (1) the dimensions of the PTX thread hierarchy
are determined at runtime, allowing a translator to change
the partitioning of threads among warps, thread compressing
loops, software threads, and hardware threads before a PTX
application is launched, and (2) runtime information about the
execution of an application can be used to optimize hot paths
[51], target more efficient architectures, or reallocate runtime
resources.

C. Binary Translation

Examples. Binary translation has been successfully applied
to a variety of problems including optimizing Java byte-code
[38] or x86 [35], running x86 on RISC [36] and VLIW
processors [21], [39], instrumenting applications [37], and
even by NVIDIA for ensuring compatibility across generations
of GPUs [52].

Liquid SIMD. Perhaps the most similar example to Ocelot
is Clark’s liquid SIMD approach to migrating SIMD oper-
ations to future architectures by expressing them in terms
of scalar operations that can be converted back to SIMD
operations by a binary translator. Again, thread compressing
loops are used to express SIMD instructions as a sequence
of smaller scalar operations. These loops are expressed in an
implicitly parallel form that can be easily recognized by a
compiler and converted back to SIMD. This approach differs
from the representation of SIMD operations in PTX as it
assumes that ways in a SIMD set are never divergent, and
thus cannot support the arbitrary control flow expressible in
PTX.

The Liquid SIMD approach focuses on being able to convert
back to SIMD operations from scalar equivalents. Ocelot
leverages the explicit specification of parallelism in PTX to
avoid the need for this operation: if a program has been
compressed down to a small number of threads, the original
PTX can be referred to again when targeting an architecture
supporting a wider SIMD width.

VII. CONCLUSIONS

Summary. This paper proposed the use of binary trans-
lation to enable flexible and efficient migration of CUDA
applications to platforms other than NVIDIA GPUs, lever-
aging the explicit data parallelism painstakingly extracted by
the programmer and compiler. Ocelot provides a complete
methodology for translating CUDA applications to parallel
architectures that may not be equipped with the same hardware
capabilities as GPUs. Ocelot presents translation techniques
enabling: (i) software warp resizing, (ii) latency hiding via
software context switches, and (iii) runtime overhead reduction

via thread compression. These new techniques are used as part
of a complete translation framework incorporating both novel
and well known operations to translate PTX applications to
the IBM Cell Processor.

We examined the considerations needed to map GPU spe-
cific data structures to the Cell Processor, then showed how the
thread hierarchy in PTX could be mapped to the processing
elements available in Cell. Our walk through of the complete
translation of the CGivens application provided insight into the
low level considerations required to implement the previously
described techniques.

Future Work. Ocelot, in its current form, provides a useful
set of tools for analyzing PTX applications and running CUDA
programs on Cell. Eventually, we would like to explore the
integration of Ocelot with other ISAs like LLVM, enabling
translation to a variety of many-core targets other than Cell and
GPUs. Runtime dynamic translation in particular could enable
a system containing multiple Ocelot targets to selectively
translate PTX functions to different architectures depending
on their predicted efficiency, or fall back on a generic many-
core processor if no other targets were present. Of course,
runtime platforms for heterogeneous systems like Harmony
[53], Merge [54], or Seqouia [55] could benefit from the ability
to dynamically translate PTX applications rather than being
forced to rely on previously compiled libraries.
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[49] J. Krüger and R. Westermann, “Linear algebra operators for gpu
implementation of numerical algorithms,” in SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers. New York, NY, USA: ACM, 2003, pp.
908–916.

[50] D. Cederman and P. Tsigas, “A practical quicksort algorithm for graphics
processors,” in Proceedings of the 16th Annual European Symposium on
Algorithms, vol. 5193. Springer-Verlag, 2008, pp. 246–258.

[51] R. Cohn and P. G. Lowney, “Hot cold optimization of large windows/nt
applications,” in MICRO 29: Proceedings of the 29th annual ACM/IEEE
international symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 1996, pp. 80–89.

[52] NVIDIA, NVIDIA Compute PTX: Parallel Thread Execution, 1st ed.,
NVIDIA Corporation, Santa Clara, California, October 2008.

[53] G. Diamos and S. Yalamanchili, “Harmony: An execution model and
runtime for heterogeneous many core systems,” in HPDC’08. Boston,
Massachusetts, USA: ACM, june 2008.

[54] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge: a
programming model for heterogeneous multi-core systems,” in ASPLOS
XIII: Proceedings of the 13th international conference on Architectural
support for programming languages and operating systems. New York,
NY, USA: ACM, 2008, pp. 287–296.

[55] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia:
programming the memory hierarchy,” in SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing. New York, NY, USA:
ACM, 2006, p. 83.


