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ABSTRACT
Spatial alarms extend the idea of time-based alarms to the
spatial dimension. Just as time-based alarms are set to re-
mind us of the arrival of a future reference time point, spa-
tial alarms are set on a spatial location of interest which
the subscribers of the alarm will travel to sometime in the
future. Spatial alarm processing requires meeting two de-
manding objectives: high accuracy, which ensures zero or
very low alarm misses, and high scalability, which requires
highly efficient and optimal processing of spatial alarms. In
this paper we present a motion-aware framework, facilitated
by two systematic methods, for scalable processing of spa-
tial alarms. First, we introduce the concept of safe period
to minimize the number of unnecessary spatial alarm evalu-
ations, increasing the throughput and scalability of the sys-
tem. We show that our safe period-based alarm evaluation
techniques can significantly reduce the server load for spa-
tial alarm processing compared to the periodic evaluation
approach, while preserving the accuracy and timeliness of
spatial alarms. Second, we develop a suite of spatial alarm
grouping techniques based on spatial locality of the alarms
and motion behavior of the mobile users, which reduces the
safe period computation cost for spatial alarm evaluation at
the server side. We evaluate the scalability and accuracy of
our approach using a road network simulator and show that
the proposed motion-aware safe period-based approach to
spatial alarm processing offers significant performance en-
hancements for the alarm processing server while maintain-
ing high accuracy of spatial alarms, especially compared to
the conventional periodic alarm evaluation approach.

1. INTRODUCTION
Most people use time-based alarms in their daily lives in

order to wake up in the morning or to remind them of im-
portant time-based events. Time based alarms are effective
reminders of future events that have a definite time of oc-
currence associated with them. Spatial alarms extend the
idea of time-based alarms to future events that do not have
a definite time of occurrence but are known to be sensitive
to spatial locations which mobile users may travel to in the
near future. Just as time-based alarms are set to remind us
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when I am within 
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Figure 1: Spatial Alarms

of the arrival of a future reference time point, spatial alarms
are set to remind us of the arrival of a spatial location of
interest. Thus, spatial alarms can be modeled as location-
based triggers which are fired whenever a mobile user enters
the spatial region of the alarms. Spatial alarms provide crit-
ical capabilities for many mobile location-based applications
ranging from real time personal assistants, inventory track-
ing, to industrial safety warning systems.

Figure 1(a) shows three spatial alarms installed on the re-
gion around the grocery store at the corner of Clairmont and
Baircliff in Atlanta, the dry cleaning store near the house of
the mobile user, and the sport shoe stores selling Geox shoes
nearby or in Lennox Square. Assume that these alarms were
installed at time instance t0. Given user positions at fu-
ture time points t1 to t8, as shown in the figure, the spatial
alarms should be triggered at future time instants t3, t5 and
t8, informing the mobile user that she is entering the spatial
alarm region of her specified location of interest.

Processing of spatial alarms requires meeting two demand-
ing objectives: high accuracy, which ensures no alarms are
missed, and high scalability, which guarantees that the alarm
processing is highly efficient and scales to large number of
spatial alarms and growing base of mobile users. The con-
ventional approach to spatial alarms involves periodic alarm
evaluations at a high frequency. Each spatial alarm evalua-
tion is conducted by testing whether the user is entering the



spatial region of the alarm. High frequency is essential to
ensure that none of the alarms are missed. Though periodic
evaluation is simple, it can be extremely inefficient due to
frequent evaluations of alarms and the high rate of irrelevant
evaluations. This is especially true when the mobile user is
traveling in a location that is distant from the spatial areas
of all her location triggers, or when all her spatial alarms are
set on spatial regions that are far apart from one another.

In addition, spatial alarms can be processed using server-
based infrastructure or client-based architecture. Although
the client component of the server-based approach to spa-
tial alarm processing shares several capabilities with a client
based approach, such as the map and text based installation
of spatial alarms and notification of the triggered alarms,
there are some key differences in terms of processing capa-
bilities and optimization objectives between these two al-
ternative architectures. A server-based approach must al-
low optimizations for processing spatial alarms installed by
multiple mobile clients, whereas a client-based approach fo-
cuses more on energy-efficient solutions for evaluating a set
of spatial alarms installed on a single client.

In this paper, we describe a server-based approach to scal-
able processing of spatial alarms, aiming at optimizing the
conventional approach of periodic alarm processing by ad-
vocating a motion-aware safe period-based alarm evaluation
framework. Concretely, we formalize the concept of spatial
alarms and the problem of spatial alarm processing. We
introduce the concept of safe period to minimize the num-
ber of unnecessary spatial alarm evaluations, increasing the
throughput and scalability of the system. We show that our
safe period-based alarm evaluation techniques can signifi-
cantly reduce the server load for spatial alarm processing
compared to the periodic evaluation approach, while pre-
serving the accuracy and timeliness of spatial alarms. Fur-
thermore, we develop a suite of spatial alarm grouping tech-
niques based on spatial locality of the alarms and motion
behavior of the mobile users, aiming at optimizing safe pe-
riod computation at the server. We evaluate the scalability
and accuracy of our approach using a road network simula-
tor and show that our proposed framework for spatial alarm
processing offers significant performance enhancements for
the alarm processing server while maintaining high accuracy
of spatial alarms, especially compared to the conventional
periodic alarm evaluation approach.

2. SYSTEM OVERVIEW
In this section, we first define the concept of spatial alarms

and formalize the problem of spatial alarm processing. Then
we provide a discussion on different types of spatial alarms
and give a brief overview of our server-based system archi-
tecture. In addition, we describe two alternative ways of
processing spatial alarms discussing pros and cons of each,
introduce the concept of safe period and discuss its benefits
for alarm evaluation.

2.1 Spatial Alarms
A mobile user can define and install many spatial alarms.

A spatial alarm is typically defined and installed by a mobile
user and shared by many other users. We refer to the mobile
users who define and install the spatial alarms as the pub-
lishers or owners of the alarms. The owner of an alarm may
specify a list of potential mobile users with whom the alarm
may be shared. The system will verify the interest of listed
mobile users authorized to access the alarm and only those
users who respond positively are subscribed to the alarm.

A spatial alarm is a location trigger with the following six

basic components: Landmark, Alarm Target, Alarm Region,
Alarm Triggering Condition, Alarm Notification and Alarm
Stop Condition.
Landmark (L): A landmark refers to a particular location
reference which can be either a popular point of interest,
such as the Eiffel Tower in Paris, or an area of interest such
as a university campus. The concept of a landmark is cen-
tral to the definition of a spatial alarm as the alarm target
objects, defined below, are in the vicinity of a landmark.
Alarm Target (T): Alarm targets are objects of interest
which the subscribers of the alarm will travel to at a future
time point. Typically, alarm target objects may be associ-
ated with some filters specifying the matching conditions on
the alarm targets. A spatial alarm may have a single target
object or multiple target objects.
Alarm Region (R): Alarm region is defined as the area
around the alarm targets T upon entering which the user
requires the associated spatial alarm to be triggered. The
spatial alarm region may be specified by an area of radius r
around T or any other spatial region of regular or irregular
shape. The minimum bounding rectangle R is used to ap-
proximate all alarm regions for processing convenience; R is
denoted using the bottom-left and top-right corner points:
(xbl, ybl) and (xtr, ytr) respectively.

Consider the third spatial alarm example in Figure 1(a).
Lennox Square is the landmark of the alarm, the sport shoe
stores that sell Geox shoes are the alarm targets, and area
within a five mile radius to each shoe store of interest near
Lennox Square is the alarm region. Figures 1(c) illustrates
this example scenario, in which r1 is used to measure the
concept of nearby Lennox Square and r2= 5 miles, the dis-
tance to the shoe stores. Some alarms may have a single
target object which may be the same as the landmark for
this alarm; the first alarm on grocery store in Figure 1(b) is
an example of such an alarm.
Location Trigger: Each alarm has an associated location
trigger, which defines the spatial condition to be monitored
to determine if and when an alarm should be triggered. Lo-
cation triggers can be implicit in the spatial alarm specifi-
cation or be specified explicitly by the user.

For example, all three example alarms in Figure 1(a) have
implicit location triggers set on the encounter point where
the mobile user enters the alarm monitoring region. The sys-
tem will set a default Euclidean distance condition between
the mobile subscriber of an alarm and the alarm region,
namely distance(Si, R) = 0, for location trigger of alarm.
Alarm Stop Condition: Alarm stop condition can be
specified by a future time point or a future time interval.
We use the alarm stop condition to define the time interval
during which the alarm is alive, denoted as [ts, te], where ts

is the starting point of the alarm and te is the termination
point of the alarm. Each spatial alarm needs to define an
alarm termination condition to allow the system to correctly
remove the alarms.
Alarm Notification: Alarm notification messages are sent
to subscribers of the alarm upon alarm activation. Each
notification consists of notification recipients, notification
actions and notification methods. Notification actions may
be simple, such as displaying the notification message on
user device, or more complex, such as opening a grocery
shopping list on the user device along with the notification.
Notification methods can be real-time and interactive when
the mobile client is active, or deferred when the mobile client
is in sleep mode.

Based on these concepts we formally define the spatial
alarm evaluation problem below.



Formal Problem Definition: For any spatial alarm
A, given a landmark L at location (xl, yl), alarm targets
T around L, alarm region R covering an area of radius
r around the locations of T and a set of interested sub-
scribers S = {S1, S2, ..., Sn}, each spatial alarm evaluation
determines the subset of subscribers: {Si1 , Si2 , . . . , Sik

} ε S,
which enter the alarm region R at any instant of time t ε
[ts, te], where [ts, te] indicates the duration of time for which
the spatial alarm A is active.

2.2 Spatial Alarm Categorization
We categorize spatial alarms based on two criteria: publish-

subscribe scope of the alarms and motion characteristics of
alarm targets and alarm subscribers.
Categorization by Publish-Subscribe Scope:
We classify spatial alarms into three categories - private,
shared and public alarms - based on the publish-subscribe
scope of the alarms. Private alarms are installed and sub-
scribed to exclusively by the alarm owner. Shared alarms
are installed by the alarm owner with a list of k (k > 1)
authorized subscribers and the alarm owner is typically one
of the subscribers. Mobile users may subscribe to public
alarms by topic categories or keywords, such as “traffic in-
formation on highway 85North”, “Zagat survey top ranked
local restaurants”, to name a few. Without loss of generality,
rest of the paper assumes that public alarms are subscribed
to by all users. Alarms indicating hazardous road situations
or heavy road congestion are examples of alarms that fall
under this category.
Categorization by Motion Characteristics:
Spatial alarms may also be categorized based on the mo-
tion characteristics of alarm targets and alarm subscribers.
We illustrate our system design in terms of three classes of
spatial alarms by motion characterization. The first class is
the Mobile Subscribers Static Targets (MSST) alarms, where
alarm targets are typically set on still objects such as restau-
rants, hospitals, churches, office buildings, and so forth. The
second class is referred to as the Static Subscribers Mobile
Targets (SSMT) alarms, where alarm targets are moving
but the position of mobile subscribers remains unchanged
during the alarm validity period. A typical example of such
alarms is “tell me when the bus is within 2 miles of the bus
stop near my office”. The third class, where both alarm sub-
scribers and alarm targets are moving, is called the Mobile
Subscribers Mobile Targets (MSMT) alarms. A typical ex-
ample of such alarms is “inform me when my jogging buddies
Amy and Josh are within a mile of my current location”.

2.3 System Architecture
We assume that mobile users update their positions con-

tinually through either periodic location updates or dead
reckoning or other location estimation techniques based upon
known speed, elapsed time and course of movement. The
proposed spatial alarm processing system architecture is shown
in Figure 2, and it consists of three main components: alarm
installation or removal, alarm evaluation and optimization
and alarm notification and delivery.

The alarm installation or removal component accom-
plishes three main tasks: the installation of a spatial alarm
from an authorized user, the specification of publish-subscribe
scope of the alarm, such as the authorized subscriber list,
and the authorized removal of existing alarms. Only the
alarm owner is authorized to delete the active alarms she
has installed.

Upon the firing of a spatial alarm, the alarm notifica-
tion and delivery component performs two major tasks.
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Figure 2: Spatial Alarm Processor Architecture

First, it informs the subscriber(s) who trigger(s) the alarm
about the activated alarm by performing the set of actions
associated with the alarm. Second, it checks if the alarm is
one-time alarm or a continuous alarm with a specified du-
ration. It removes the alarm from the active alarm queue
if it is a one-time alarm. Otherwise, it triggers the alarm
evaluation component to determine the alarm check period
for periodic approach or to compute the safe period for our
approach. Alarm notification methods may vary with differ-
ent types of mobile devices depending on the latency con-
straint and the available means of delivery (voice message,
text message, etc.).

The spatial alarm evaluation component works in three
phases. First, it accepts spatial alarms as input and indexes
them using the underlying spatial indexing structures dur-
ing the alarm preprocessing phase. Next, the optimization
phase applies alarm optimization techniques to produce a
near-optimal alarm processing schedule. For example, safe
period computation and alarm grouping are performed in
the optimization phase. In the third phase, the actual alarm
evaluation takes place. We call this phase run-time alarm
execution. In this paper we focus on the design of optimiza-
tion techniques for spatial alarm evaluation.

2.4 Spatial Alarm Processing
We dedicate this section to discuss the weaknesses of ex-

isting spatial query processing techniques when applied to
spatial alarm processing. Then we describe the advantage
of our motion-aware safe period based alarm evaluation ap-
proach. We use a concrete example to facilitate the discus-
sions. Figure 3(a) displays the map for Chamblee region of
Georgia and an example alarm installed by a mobile user at
time instant t0 with the alarm region of radius r around the
alarm target.

Figures 3(b) and 3(c) display the road network for the
same region shown in Figure 3(a), extracted from the USGS [6]
database, which we use for experimental evaluation. As
shown in Figure 3(c), we consider a series of user positions
collected from t1 to t12, each time instant reflects the sub-
scriber’s position at an interval of one minute. We first
discuss how to process the installed alarm using existing
spatial continuous query framework and show why spatial
query processing techniques are inefficient when directly ap-
plied for processing spatial alarms.

The spatial continuous query approach would process the
spatial alarm by transforming the alarm into a user-centric
continuous spatial query. Given the alarm region of radius r
around the alarm target and the mobile user’s current loca-
tion marked by t0, the transformed spatial query is defined
by the query range r with the mobile alarm subscriber as
the focal object of the query. The evaluation of this spatial
query proceeds at time instant t1 and the query processor
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checks if the obtained query results contain the alarm tar-
get object. This process repeats periodically at each of the
marked time instants until the alarm target is included in
the query results at time instant t10 (query region marked by
shaded area in Figure 3(b)). The obvious drawback of this
approach is the amount of unnecessary processing performed
in terms of both the number of evaluations and the irrele-
vant query result computation at each evaluation. The far-
ther away the mobile user is from her spatial alarms, larger
the amount of unnecessary evaluations incurred using the
spatial continuous query approach.

Alternatively, we can use a periodic alarm evaluation tech-
nique as shown in Figure 3(c). At each time instant from
t1 onwards, the system needs to determine if the current
object position lies within the MBR of the spatial alarm
region. In case alarm evaluation is performed at an inter-
val of one minute, periodic spatial alarm processing would
evaluate this condition periodically from t1 to t9 and trigger
the alarm at t9 as the subscriber reaches the spatial alarm
boundary at this time instant. If the alarm evaluation pe-
riod is changed to two minutes, the alarm trigger will be
fired at t10 instead of t9. If the alarm evaluation period is
set for four minutes, this alarm will be missed as the alarm
evaluation takes place only at time instants t4, t8 and t12 and
at all evaluation times the subscriber is outside the alarm
region.

Although the periodic evaluation does not incur irrelevant
query result computation while processing spatial alarms, it
suffers from a number of drawbacks. First, alarm miss rate
is unpredictable as there is no appropriate technique for the
system to determine the ideal alarm evaluation period. In
case of high alarm miss rate the system fails to meet the high
accuracy requirement of spatial alarm processing. Second,
the periodic alarm evaluation approach is expensive as it
performs a large number of unnecessary evaluations; hence,
it is not scalable in the presence of a large number of alarms
installed by a large number of mobile users. The amount of
unnecessary evaluations increase as the mobile users move
farther away from their alarms.

Bearing in mind the problems inherent with the continu-
ous spatial query evaluation approach and drawbacks of the
periodic alarm evaluation approach, we develop a motion-
aware safe period-based alarm evaluation approach. The
goal of applying safe period optimization is to minimize
the amount of unnecessary alarm evaluations while ensur-
ing zero or very low alarm miss rate. The other technical
challenge behind safe period optimization is to minimize the
amount of safe period computation, further improving sys-
tem scalability and achieving higher throughput. We de-
scribe our basic approach for safe period computation in
the next section and address the challenge of minimizing
the amount of safe period computations in Sections 4 and 5.

3. SAFE PERIOD COMPUTATION
Safe period is defined as the duration of time for which

it is safe not to check a particular alarm for a particular
subscriber as the probability of this alarm being triggered
for the subscriber is zero. Consider a subscriber Si and a
spatial alarm Aj (1 ≤ j ≤ M , 1 ≤ i ≤ N), where N is the
total number of mobile users and M is the total number of
alarms installed in the system. The safe period of alarm Aj

with respect to subscriber Si, denoted by sp(Si, Aj) can be
computed based on the distance between the current posi-
tion of Si and the alarm region Rj , taking into account the
motion characteristics of Si and Aj .

Concretely, for alarms of the class Mobile Subscribers
Static Targets, the two factors that influence the compu-
tation of safe period sp(Si, Aj) are (i) the velocity-based
motion characteristic of the subscriber Si, and (ii) the dis-
tance from the current position of subscriber Si to the spa-
tial region Rj of alarm Aj . Thus the safe period sp(Si, Aj)
can be computed as follows:

sp(Si, Aj) =
d(Si, Rj)

f(VSi
)

(1)

Similarly, for Static Subscribers Mobile Targets alarm, the
safe period sp(Si, Aj) is computed by taking into account
(i) the distance from the current position of subscriber Si to
the spatial region Rj of alarm Aj , and (ii) the velocity-based
motion characteristic of the mobile alarm target, using the
following formula:

sp(Si, Aj) =
d(Si, Rj)

f(VT )
(2)

For spatial alarms of class Mobile Subscribers Mobile Tar-
gets, the motion characteristics of both subscriber and alarm
target need to be considered for the computation of the safe
period sp(Si, Aj), in addition to the distance between the
current location of the mobile subscriber and the moving
alarm region.

sp(Si, Aj) =
d(Si, Rj)

f(VSi
, VT )

(3)

Clearly, the distance measure between the current location
of the mobile subscriber and the moving alarm region Rj is
the first important parameter for safe period computation.
The second important parameter is velocity measure of the
mobile subscribers or the mobile alarm targets.

3.1 Distance Measurements
We use Euclidean distance approach as the basic distance

measure for safe period computation. It measures the mini-
mum distance from the current position of the mobile user,
denoted as Pm = (xm, ym), to the spatial alarm region
R. Though the Euclidean distance measurement is simple,
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it may at times underestimate the safe period for a given
alarm-subscriber pair.

Consider a spatial alarm region R covering the rectangular
region represented by four vertices of a rectangle: (P1, P2, P3, P4),
as shown in Figure 4(a), where P1 = (x1, y1), P2 = (x1, y2),
P3 = (x2, y2) and P4 = (x2, y1). The minimum Euclidean
distance from Pm to the spatial alarm region R, denoted
by dm,R, can be computed by considering the following four
scenarios: 1© when the mobile subscriber lies inside the spa-
tial alarm region the distance dm,R is zero; 2© when the
mobile subscriber is within the y scope of the spatial alarm
region, the minimum euclidean distance is the distance from
the mobile subscriber to the nearer of the two spatial alarm
edges parallel to the x-axis; 3© when the mobile subscriber
is within the x scope of the spatial alarm region, minimum
euclidean distance is the distance from the mobile subscriber
to the nearer of the two spatial alarm edges parallel to the
y-axis; and 4© when the mobile subscriber is outside both
the x and y scope then the distance is the minimum of the
euclidean distance to the four vertexes. Formally, dm,R, the
minimum Euclidean distance from mobile position Pm to
the spatial alarm region R, is computed using the following
formula:

dm,R =



















0, x1 ≤ xm ≤ x2

and y1 ≤ ym ≤ y2

min(|xm − x1|, |xm − x2|), y1 ≤ ym ≤ y2 only
min(|ym − y1|, |ym − y2|), x1 ≤ xm ≤ x2 only
min(dm,1, dm,2, dm,3, dm,4), otherwise

dm,1, dm,2, dm,3, dm,4 denote the Euclidean distance from Pm

to the four rectangle vertexes P1, P2, P3, P4 respectively. The
distance function di,j =

√

(xi − xj)2 + (yi − yj)2 is used to
compute the Euclidean distance between two points Pi and
Pj .

The safe period formulae in equations 1, 2 and 3 as-
sume that the subscriber heads towards the alarm region
in a straight line along the direction of the minimum Eu-
clidean distance, an assumption that is rarely true in real
life. One way to relax this stringent condition is to use
the steady motion assumption: If the subscriber is head-
ing towards the alarm region R, then the deviation in his
motion direction is not likely to be extreme. Figure 4(b)
shows a scenario where the bounded deviation in subscriber
motion is taken into account for calculating average safe pe-
riod for subscriber S approaching alarm region R. In order
for the subscriber S to enter the alarm region R at some
future time instant, the average angle of motion for the sub-
scriber S over the safe period must lie between −θL and
+θR (as shown in the figure), which we refer to as alarm
trigger angular range. Assume that the mobile subscriber
heads towards the alarm region R in a direction at an angle
θ from the minimum Euclidean distance vector; we refer to
the distance from the subscriber position to the alarm re-
gion as the steady motion distance, denoted as smdist(θ).

The steady motion-based safe period can be determined by
smdist(θ)/f(VS). Using the average steady motion distance
obtained by computing smdist(θ) over all θ values ranging
from −θL to +θR, the steady motion-based safe period over
the alarm trigger angular range can be calculated as,

sp =

∫

+θR

−θL

smdist(θ)dθ

f(VS)
∫

+θR

−θL

dθ
=

l + h

f(VS)(θR + θL)
, (4)

where l, h denote the length and height of the spatial alarm
region. The steady motion assumption provides a more re-
alistic and optimistic measure for safe period computations
compared to the minimum Euclidean distance approach.

3.2 Velocity Measurements
Maximum Speed: The use of maximum travel speed of
the mobile client for the velocity function f(VS) carries both
advantages and disadvantages. On one hand, the ‘maxi-
mum travel speed’ can be set by pre-configuration based on
a number of factors, such as the nature of the mobile client
(such as a car on the move or a pedestrian walking on the
street), or the types of roads used. On the other hand, the
maximum speed-based velocity estimation is often over pes-
simistic especially in the following two scenarios: (1) when
the mobile client stops for an extended period of time; or
(2) when the mobile client suddenly turns onto a road with
very low speed limit.

Another issue related to the use of maximum speed of a
mobile client for the velocity function f(VS) is related to
alarm misses. The maximum velocity based approach may
fail to trigger alarms in cases where the maximum speed for
the mobile subscriber increases suddenly. For example, a ve-
hicle moving from a street onto a state highway would expe-
rience a sudden increase in its velocity, which may invalidate
safe period computations. One way to address such sudden
increase in velocity is to use dead reckoning techniques which
require the mobile user to report to the server when her ve-
locity increases over a certain threshold, as shown in Fig-
ure 4(c). The use of dead reckoning or similar techniques
will allow the server to recompute the safe period for all
alarms subscribed by this mobile client upon any significant
velocity change.

In Figure 4(c), the mobile client keeps track of its pre-
dicted positions based on its maximum speed and its actual
positions. As soon as the difference between the predicted
position and the actual position exceeds a given threshold
value (say δ), the client provides its current speed V2 to
the server. If V2 > V1, where V1 is the previously recorded
maximum speed, the spatial alarm server uses the current
reported speed V2 to infer the type of road on which the user
is traveling and the maximum travel speed for the road.
Expected Speed: One way to address the pessimistic na-
ture of the maximum speed-based safe period computations
is to use the expected speed for the velocity function. The
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future expected travel speed of a mobile client is computed
as the sum of the current expected speed weighted by a fac-
tor α and the maximum speed weighted by a factor (1 −
α). Lower α values provide similar speed estimates as the
maximum speed measure described earlier. Expected speed
calculations are based on an exponentially weighted aver-
age over the current and previous location of mobile client
(weighted by β) and previous expected speed calculation
(weighted by (1 − β)).

V c
expected = β ∗ D(lc, lp)

(tc − tp)
+ (1 − β) ∗ V p

expected (5)

Vexpected = α ∗ V c
expected + (1 − α) ∗ VS (6)

where V p
expected, V c

expected, Vexpected are the previous, cur-
rent and future expected travel speed of the subscriber, tc,
tp represent current and previous time instance for expected
speed computation and lc, lp represent the subscriber posi-
tion at these time instances respectively.

3.3 Safe Period Based Alarm Evaluation
The safe period-based approach processes a spatial alarm

in three stages. First, upon the installation of a spatial
alarm, the safe period of the alarm with respect to each
authorized subscriber is calculated. Second, for each alarm-
subscriber pair, alarm evaluation is triggered upon the expi-
ration of the associated safe period and a new safe period is
computed. In the third stage, a decision is made regarding
whether the alarm should be fired or should wait for the new
safe period to expire. If the new safe period is larger than a
system-supplied threshold tδ, it means that the mobile client
is still some distance away from the alarm region. However,
if the new safe period is smaller than tδ, it means that the
mobile client is entering the alarm region and the alarm is
triggered.

When compared to periodic alarm evaluation, the safe
period approach for spatial alarm processing reduces the
amount of unnecessary alarm evaluation steps, especially
when the mobile subscriber is far away from all her alarms.
On the other hand, the main cost of the basic safe period
approach described in this section is due to the excessive
amount of unnecessary safe period computations, as the ba-
sic safe period approach performs safe period computation
for each alarm-subscriber pair, regardless of the distance be-
tween the current location of the subscriber and the alarm
region. Given n users with an average of m spatial alarms
relevant to each user, the complexity of safe period compu-
tation is O(n · m). One obvious idea to reduce the amount
of unnecessary safe period computations is to group spatial
alarms based on geographical proximity and calculate safe
period for each subscriber and alarm group pair instead of
each alarm-subscriber pair.

4. ALARM GROUPING TECHNIQUES
The basic premise behind alarm grouping is to reduce the

number of safe period computations while ensuring no alarm
misses. In this section we present three alternative group-
ing techniques, each of which offers different degree of im-
provement for safe period computations. First, we group
all alarms based on their spatial locality without consider-
ing subscriber specificity of the alarms. Alternatively, we
apply spatial locality based-grouping to alarms of each in-
dividual subscriber. Both our analytical and experimental
study show that this approach is more effective. The third
locality-based alternative is to employ the nearest alarms-
based grouping, which is effective but costly when there are
frequent alarm additions and removals.

In addition to spatial locality based grouping techniques,
we also develop subscriber mobility-based optimizations to
further improve the scalability of alarm processing, which
will be discussed in Section 5.

4.1 Spatial Locality-based Grouping
Spatial locality-based grouping considers the set of alarms

from all users and inserts the nearby alarms into alarm
groups. This approach outperforms basic safe period alarm
evaluation if each group has a large number of alarms be-
longing to the same subscriber. Figure 5(a) displays the
alarm regions for a set of installed alarms. The alarms for
user 1 are marked by shaded alarm regions. Basic safe pe-
riod evaluation computes the safe period for each of the six
alarms {Ai | 1 ≤ i ≤ 6} subscribed by the mobile user 1.
In comparison, Figure 5(b) shows three groups derived from
spatial locality-based grouping technique. We use a simple
R-tree implementation in order to group alarms and identify
the minimum bounding rectangles (MBRs) for alarm groups
which are also referred to as alarm monitoring regions. In-
stead of computing safe period for each alarm-subscriber
pair, spatial locality-based grouping requires the system to
calculate a safe period for each subscriber and alarm group
pair instead. However, on entering an alarm region the safe
period to all relevant alarms within the alarm group also
needs to be computed. Despite this additional evaluation
step, the number of safe period computations may be con-
siderably reduced by grouping alarms according to spatial
locality. Instead of six safe period computations required by
the basic safe period technique, only three safe period com-
putations need to be performed as all three alarm groups,
{AGi | 1 ≤ i ≤ 3}, contain alarms relevant to user 1. Fur-
ther safe period computations will be performed depending
on the number of relevant alarms within the users’ current
alarm monitoring region. Even though this approach re-
duces the number of safe period computations it requires
considerable additional processing to determine the set of
relevant alarm groups for each subscriber and the set of rele-
vant alarms for each subscriber within an alarm group. The
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lack of subscriber-specificity in the underlying data struc-
ture, R-Tree, leads to retrieval of large number of unneces-
sary alarms. The main cost of this alarm grouping technique
is due to these unnecessary alarm checks. This technique
proves to be efficient for large number of public alarms as
the effect of subscriber-specificity is reduced in the presence
of large number of public alarms.

4.2 Subscriber-Specific Spatial Locality-based
Grouping

In contrast to spatial locality-based grouping, subscriber-
specific spatial locality-based grouping performs a two level
grouping: the first level grouping is on all subscribers and
the second level grouping is on spatial alarms relevant to
each subscriber. We use a B-tree based implementation to
speed up search on subscribers and an R-Tree implementa-
tion to capture spatial locality of alarms for each subscriber
in order to speed up alarm search. The underlying data
structure is a hybrid structure which uses a B-tree for sub-
scriber specific search at the first level and an R-tree for
subscriber specific spatial alarm search at the second level.
Figure 5(c) shows an example of this grouping. Alarms in-
stalled by user 1 are grouped together in AG1 and AG4

and may be fired only when the user is entering the MBRs
of AG1 or AG4. Subscriber specific spatial locality-based
grouping has two advantages over the basic safe period alarm
evaluation and spatial locality based alarm grouping. First,
the number of safe period computations is significantly re-
duced. Second, each alarm group contains alarms relevant
to a single user, thus no irrelevant processing is performed.

Our experimental results show that this approach is ef-
ficient in the presence of large number of subscribers and
for large number of private and shared alarms. However,
this approach is less efficient in presence of large number
of public alarms or large number of subscribers with each
subscriber subscribed to a very small number of alarms.

4.3 Nearest Alarms-based Grouping
Nearest alarms-based grouping allows the system to per-

form one or only a few alarm checks dependent on the cur-
rent subscriber position. The idea is to have each location on
the map associated with the nearest spatial alarm region(s).
In order to perform nearest alarms-based grouping we use
an extension of the well known Voronoi diagram geometric
structure [7]. The Voronoi diagram for a given set of points
P in d-dimensional space R

d partitions the space into re-
gions where each region includes all points with a common
closest point ε P. The common closest point is defined ac-
cording to some distance metric dist. The Voronoi region
VR(p) corresponding to any point p ε P contains all points
pi ε R

d such that,

∀p′εP, p′ 6= p, dist(pi, p) ≤ dist(pi, p
′) (7)

Figure 6(a) shows the Voronoi diagram for a set of points
in two-dimensional space R

2 with euclidean distance metric.
The shaded area marks out the Voronoi region VR(p) for the
point p, each point ε P is referred to as a Voronoi site. Each
edge of VR(p) is a segment of the perpendicular bisector of
the line segment connecting p to another point in P.

In order to create a Voronoi diagram for spatial alarms we
first represent each spatial alarm region R by its center point
(xcr, ycr) and l, h representing the length and height of the
alarm region. We consider the center point of each alarm
region as a Voronoi site and create the Voronoi diagram as
shown in Figure 6(b). However, this Voronoi structure ex-
hibits two problems. Consider alarm A3 in Figure 6(b). The
alarm region overlaps with two adjacent Voronoi regions.
Second, consider the subscriber S in the figure residing in
the Voronoi region of alarm A1. S is at a minimum Eu-
clidean distance d1 from the alarm region of A1 and at a min-
imum Euclidean distance d2 to the alarm region of A2. Even
though d2 < d1, S may incorrectly identify A1 as the nearest
alarm on the basis of the underlying Voronoi diagram. In or-
der to rectify this problem, we introduce an extension to the
original Voronoi diagram by extending the boundary of each
Voronoi region by the extension radius r associated with

each point p where r =
√

l
2

2
+ h

2

2
. l, h denote the length

and height of the alarm region associated with center point
p. The extended Voronoi regions for alarms A1, A2, A3 and
A4 are shown in Figure 6(c). Extending the Voronoi region
boundaries leads to overlaps among neighboring Voronoi re-
gions, subscribers inside overlapping regions may have more
than one possible nearest alarm whereas subscribers inside
non-overlapping regions can have only one nearest alarm.
We refer to the overlapping regions as probabilistic nearest
alarm region and the non-overlapping regions as determin-
istic nearest alarm region.

Theorem 4.1. Objects inside probabilistic nearest alarm
region have more than one possible nearest alarm, objects in-
side deterministic nearest alarm region have a single possible
nearest alarm.

Proof. Proof skipped due to space limitations.

Nearest alarm grouping is efficient for spatial alarm sys-
tems that have infrequent addition or removal of alarms and
have no hotspots. However, it fails when there is a frequent
addition and removal of spatial alarms, since Voronoi dia-
grams need to be reconstructed each time an alarm is added
or removed. In addition, high density of alarms in some ar-
eas may also lead to large overlaps among Voronoi regions,
reducing the efficiency of the nearest alarm grouping tech-
nique.

4.4 Analytical Model for Safe Period Compu-
tation



In this section, we provide an analytical model for estimat-
ing the safe period computation cost for the basic safe period
approach (BSP), spatial locality-based approach (SLSP) and
the subscriber-specific spatial locality-based (SSSL) approach.
As mentioned previously, SLSP approach uses an R-Tree
structure to perform alarm grouping whereas the SSSL ap-
proach uses a two level tree structure. The number of alarm
regions allowed in a single alarm group, which translates
to the fanout and fill factor of a leaf node of the R-Tree,
needs to be determined in order to minimize the number of
safe period computations. We develop a model which al-
lows us to estimate the appropriate fanout of a leaf node in
order to minimize the safe period computation cost. This
result is used to compare the performance of the grouping
approaches with the BSP approach.

We consider a workspace with N spatial alarms installed
in the system and n users each having an average of m rel-
evant alarms. However, note that N 6= mn as shared and
public alarms will be relevant to more than one user. We as-
sume that fraction of private alarms is p, fraction of shared
alarms is s, with each shared alarm relevant to x users on
an average, and rest of the alarms are public alarms relevant
to all users.

The BSP computation calculates the euclidean distance
from the current user position to each relevant alarm. We
can use the assumptions stated above to estimate the av-
erage number of safe period computations Nbsp performed
at each evaluation step which is equal to average number of
alarms relevant to a single user NA as,

Nbsp = NA = N ·
{ p

m
+

s · x
m

+ (1 − p − s)
}

(8)

SSSL approach distributes the alarms relevant to a single
user into multiple groups, where each group only contains
alarms relevant to this user. This approach then estimates
the euclidean distance to each alarm group, followed by safe
period computation for each alarm within the nearest alarm
group once the subscriber enters the MBR of the correspond-
ing leaf node. Let bbr and ff denote the fanout and fill factor
for a leaf node of the lower level R-Tree which implies each
leaf node can contain bbr · ff spatial alarm regions on aver-

age. Hence we have
NA

bbr · ff
alarm groups with all alarms

within each group relevant to a single user. The number of
safe period computations performed at each evaluation step
using the SSSL approach is estimated as,

Nsssl =
NA

bbr · ff
+ bbr · ff (9)

We assume that the fill factor ff is set to a constant value
which is around 0.7 for best performance of the R-Tree struc-
ture [13]. In order to minimize the safe period computations,
we can determine bbr by setting the first order derivative of
Nsssl to zero. Hence, we have

d (Nsssl)

dbbr

= − NA

b2
br · ff

+ ·ff = 0, (10)

which implies bbr =

√
NA

ff
. Using this value for bbr, we get,

Nsssl =
NA√

NA

ff
· ff

+

√
NA

ff
·ff = 2·

√
NA = 2·

√

Nbsp (11)

A similar analysis of the SLSP approach shows that, Nslsp

≥ 2 ·
√

Nbsp. However, as this approach mixes alarms from

different users in an alarm group the worst case number of
safe period computations can be Nsslp = Nbsp + 1. This
situation may arise when all NA alarms relevant to a user
are distributed across NA different groups which will require
NA safe period computations for the alarm groups and a
single safe period computation for the relevant alarm within
that group.

5. SUBSCRIBER MOBILITY-BASED OPTI-
MIZATIONS

In this section, we introduce subscriber mobility-based
optimizations, which further reduce the amount of unnec-
essary safe period computations. The main idea behind the
subscriber mobility-based optimization is to avoid safe pe-
riod computations for those spatial alarms that are far away
from the current location of the mobile subscriber. We ob-
serve that computing the safe periods for all spatial alarms
regardless of how far away they are from the current posi-
tion of their subscribers can lead to wasteful computation,
since for each mobile subscriber, alarms at remote distances
will never be fired before the expiration of the safe periods
of nearby alarms. Our experiments show that subscriber
mobility-based safe period optimization is highly effective for
improving performance and scalability of spatial alarm pro-
cessing systems.

One way to implement subscriber mobility-based opti-
mization is to define a moving spatial area around each mo-
bile user which serves as the quarantine region. We use a
system-defined quarantine region to set the alarm monitor-
ing area for each mobile user and allow different sizes of
the quarantine region based on a number of factors, such as
the velocity of the mobile subscriber, the alarm density near
the mobile subscriber and the number of alarms installed per
subscriber. For each subscriber, at any given time instant
safe periods are computed only for relevant alarm groups (or
alarms) whose alarm group MBRs (or alarm regions) over-
lap with this moving quarantine region. Clearly by focusing
on computing safe periods and performing safe period alarm
evaluation only for alarm groups (or alarms) near each mo-
bile subscriber, this optimization can effectively reduce the
complexity of safe period computations and enhance the sys-
tem scalability.

We describe two different methods for determining the
appropriate quarantine region for each subscriber and dis-
cuss the pros and cons of each when applying mobility-based
optimization to our alarm grouping mechanisms. The first
method is the range-based subscriber mobility optimization,
which uses a system-supplied radius γ to determine the quar-
antine region for each subscriber. The second method uses
a pre-defined grid and defines the grid cell in which the mo-
bile subscriber currently resides as the quarantine region.
When the mobile user moves to a new grid cell, her quaran-
tine region changes; thus the set of alarms to be monitored
changes. We call this method grid-based subscriber mobility
optimization. Figure 7 shows examples for these two meth-
ods.

For range-based mobility optimization, we currently use a
system-supplied γ as the default quarantine radius. Given a
mobile subscriber, we first need to identify the set of alarms
subscribed by her and then determine which of her alarm
groups are intersecting with the quarantine region defined
by the given quarantine radius. We compute the safe period
only for those alarm groups whose alarm monitoring regions
overlap with the quarantine region (see Figure 7(a)). The
retrieval of relevant alarms whose alarm regions intersect
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with the quarantine region can be done by using the existing
R-tree index for spatial locality-based grouping or the two
level B-tree plus R-tree index for subscriber-specific spatial
locality-based grouping.

For grid-based mobility optimization, the same principles
are applied. The only difference lies in the mechanism used
to determine the quarantine region. The grid-based opti-
mization is designed to incorporate subscriber mobility op-
timization with the nearest alarm grouping. Concretely, the
quarantine region is defined using a grid overlaid on top of
the Voronoi diagram discussed in Section 4.3. The size of
the quarantine region depends on the size of the grid cell
α×β, which are system defined parameters. For all Voronoi
regions that overlap with the quarantine region of a mobile
subscriber, the system retrieves all nearest alarms for each
Voronoi region and performs safe period computations for
these alarms. The set of relevant alarms and their safe peri-
ods need to be recomputed when the subscriber moves out
of the current cell and enters another cell. The grid overlay
will also help in mitigating the costs associated with storing
and querying complex shaped Voronoi regions.

6. EXPERIMENTAL EVALUATION
In this section, we report our experimental evaluation

results. We show that our safe period-based framework
and optimization techniques for spatial alarm processing are
scalable and effective while maintaining high accuracy.

6.1 Experimental Setup
Our simulator generates a trace of vehicles moving on

a real-world road network using maps available from the
National Mapping Division of the U.S. Geological Survey
(USGS [6]) in Spatial Data Transfer Format (SDTS [5]).
A transport layer of 1:24K Digital Line Graphs (DLGs) is
used to extract the road-based network and the data is con-
verted to the Scalable Vector Graphic (SVG [4]) format us-
ing the GlobalMapper tool [2]. The simulator extracts the
road network information for three different road classes –
expressway, arterial and collector roads. Traffic volume data
from [12] is used to estimate the number of vehicles for differ-
ent road classes; vehicles are randomly placed on the road
network according to the traffic densities. The simulator
simulates the motion of vehicles on roads with appropriate
velocity information based on road classes; at intersections,
vehicles may move in any direction with attached probability
values. We use a map from Atlanta and surrounding regions
of Georgia, which covers an area larger than 1000 km2, to
generate the trace. Our experiments use traces generated by
simulating vehicle movement for a period of fifteen minutes,
results are averaged over a number of such traces. Results
for longer time periods show similar patterns. Table 1 lists
mean speeds, standard deviation and traffic volume values
for each road type. Default traffic volume values allow us
to simulate the movement of a set of 20,000 vehicles on the

Road type (speeds) Expressway Arterial Collector

Mean (km/h) 90 60 50
Std. dev. (km/h) 20 15 10
Traffic data (cars/h) 2916.6 916.6 250

Table 1: Motion Parameters

road network for the map. Each vehicle generates a set of
position parameters during the simulation which are evalu-
ated against the generated spatial alarm information. The
default spatial alarm information consists of a set of 10,000
spatial alarms installed uniformly over the entire map re-
gion; with default settings, around 65% of the alarms are
private, 33% shared and the rest are public alarms. This
simulator setup allows us to the test the robustness of our
framework under realistic mobility patterns.

6.2 Experimental Results
We evaluate the safe period-based approach to spatial

alarm processing through four sets of experiments.The first
set of experiments measures the performance of periodic
alarm evaluation by varying the time period and measuring
success rate and processing time. We show that the peri-
odic approach does not scale.The second set of experiments
compares the basic safe period alarm evaluation against the
periodic approach, and shows that the safe period based
alarm processing offers much higher success rate with lower
alarm evaluation time. The third set of experiments illus-
trates the effect of varying quarantine radius on the range-
based subscriber-mobility optimization technique. The final
set of experiments compares the performance of the vari-
ous grouping-based and mobility-based safe period optimiza-
tions against the basic safe period approach exhibiting the
scalability of our optimizations. We show that the mobility-
based optimizations outperform all other techniques in terms
of the number of safe period computations.

6.2.1 Scalability Problems of Periodic Alarm Evalu-
ation Technique

In this first set of experiments, we measure the scalabil-
ity of the periodic alarm evaluation technique with varying
number of users and varying number of alarms. Figure 8
displays the results as we vary the number of users from
2K to 20K. The time period tp for periodic alarm evalua-
tion is varied from 1 second to 50 seconds. As can be seen
from Figure 8(a), the success rate for alarm evaluation is
100% only if tp= 1 second; for higher tp success rate starts
falling, even with tp= 2 seconds the success rate does fall
to 99.9% which may not be acceptable from QoS viewpoint
as this translates to a significant number of alarm misses.
The sequence of alarms to be triggered for 100% success
rate are determined from a trace generated with extremely
frequent location update information for each user in the
system. For tp= 50 seconds the success rate falls to 81-82%.
Similar drop in success rate is experienced in all cases as
we vary the number of users in the system from 2K to 20K.
The alarm processing time is plotted in Figure 8(b). Our
traces are of fifteen minutes duration; considering that the
system may be able to spend around 80% of this time for
processing spatial alarms we set the maximum processing
time available to the system at t=12 minutes as indicated
by the horizontal dotted line in Figure 8(b). As can be seen
from the figure, for 10K users the system is unable to process
alarms at tp=1 seconds, thus failing to attain 100% success
rate. For 20K users, this scalability problem becomes worse
and the system is able to evaluate alarms only at tp=5 sec-
onds. Figure 9 shows the results for a set of 10K users as
we vary the number of alarms from 10K to 40K. The suc-
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cess rate, as shown in Figure 9(a), again exhibits a similar
drop on increasing tp. The alarm processing time shown in
Figure 9(b) displays the inability of the system to scale to
large number of alarms. From these results, we conclude
that periodic evaluation technique is unable to scale to a
large number of users and large number of alarms.

6.2.2 Performance Comparison with Basic Safe Pe-
riod Approach

In this section, we compare the performance of basic safe
period approach against the periodic evaluation technique
to display that basic safe period optimizations reduce alarm
evaluation time considerably but excessive amount of safe
period computations affect the scalability of the system. We
display the results for periodic approach with tp=2 second,
tp= 5 seconds, tp=10 seconds and the basic safe period op-
timization as discussed in Section 3 (P2, P5, P10 and SP
in Figures 10(b) and 11(b) respectively). Figure 10 displays
the success rate and processing time as we vary the num-
ber of users from 2K to 20K. Figure 10(a) displays that the
success rate is 100% for basic safe period approach and all
periodic approaches miss at least a few alarm triggers. Fig-
ure 10(b) displays the alarm processing time for P2, P5, P10
and SP with varying number of users. The safe period ap-
proach has much lower alarm evaluation time compared to
periodic approaches and the figure displays that it is almost
scalable to 20K users with 100% success rate. Despite the
low alarm evaluation time, the approach requires significant
amount of safe period computations and has high process-
ing time as can be seen from the figure. Figure 11 displays
the results for a set of 10K users with varying number of
alarms as we increase the number of alarms from 10K to
40K. The success rate, shown in Figure 11(a), again dis-
plays similar patterns as with varying number of users. The
alarm processing time, as shown in Figure 11(b), displays
the inability of our basic safe period approach to scale to
large number of alarms. In presence of even 20K installed
alarms, the approach has excessive safe period computation
time which pushes the overall processing time beyond the
12 minute limit determined earlier. Our alarm grouping and
subscriber mobility-based techniques provide optimizations
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to overcome this problem as displayed by the experimental
evaluation in Section 6.2.4.

6.2.3 Internal System Parameters
This set of experiments determines the appropriate pa-

rameters for the quarantine radius γ for range-based sub-
scriber mobility optimization; results for VGB grid cell size
α × β are omitted due to space constraints. Figure 12 dis-
plays the results obtained for the number of alarm evalu-
ation steps, number of safe period computations and over-
all processing time with varying values for γ. We vary the
radius from 250m to 2000m and observe the above param-
eters. The number of users is varied from 2K to 20K to
observe results across a wide range of number of users in
the system. As can be seen from Figure 12(a) the number
of alarm evaluation steps steadily decreases as we increase
γ. Smaller γ values will calculate lower safe periods in ab-
sence of any alarms (or alarm groups) within the quarantine
region. Hence, for lower values of γ the safe period com-
putations are more conservative. This trend is common as
we vary the number of users from 2K to 20K. The num-
ber of safe period computations steadily rises as we increase
γ (Figure 12(b)). This trend is also as expected because
larger γ implies more alarms (or alarm groups) will lie within
the quarantine region. A tradeoff between these two factors
is required to determine the appropriate value for γ. Fig-
ure 12(c) displays the overall processing time for different γ
values across varying number of users. The figure displays
the alarm evaluation time and safe period calculation time
for γ ε {0.25km, 1km, 2km} for each set of users; results for
other γ values are omitted from this graph to avoid clutter.
As we vary the number of users, from 2K to 20K, we ob-
serve that for each set of users the overall processing time is
minimum for γ=1000m. We choose this as the appropriate
value for γ for further experimentation.

6.2.4 Scalability of Safe Period Evaluation Techniques
We now discuss the performance of the safe period op-

timization techniques to test the scalability of our frame-
work. Figure 13 shows the number of alarm evaluation steps,
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Figure 12: Results with Varying Quarantine Radius Values
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Figure 13: Safe Period Optimizations with Varying Number of Users
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Figure 14: Safe Period Optimizations with Varying Number of Alarms

number of safe period computations and the alarm process-
ing time required by each approach- Basic Safe Period Op-
timization (BS), Subscriber-Specific Spatial Locality (SS),
Voronoi Grid-Based (VG) and the Range-based Subscriber
Mobility Optimization (RB). Results for Spatial Locality-
based grouping show expected trends but this approach has
high overall processing time as the system needs to perform
significant amount of computation to determine relevance of
alarms/alarm groups for each subscriber (see Section 4.1).
Hence, we exclude this approach from the results below.

Figure 13(a) displays the number of alarm evaluation steps
required by each approach. Basic safe period measures the
safe period to each relevant alarm and uses this safe pe-
riod to avoid further evaluations. As a result, this approach
has to perform a low number of alarm evaluations but each
evaluation step will involve a very large number of safe pe-
riod computations. Hence the number of safe period compu-
tations for this approach is extremely large (Figure 13(b))
which makes this approach overall computationally expen-
sive as can be seen from the total alarm processing times in
Figure 13(c). Subscriber-specific spatial locality grouping
incurs a large number of alarm evaluation steps as can be
seen from Figure 13(a). This approach first evaluates safe
period for each alarm group; once the user enters an alarm
monitoring region another evaluation step is required to de-
termine the safe period to all alarms lying within the alarm
monitoring region. Further, the algorithm needs to keep a

check on its position inside the alarm monitoring region and
switch to per alarm group-based safe period computations,
once subscriber moves outside the current alarm monitoring
region. These additional evaluation steps imply that this ap-
proach will incur a larger number of alarm evaluation steps
with each evaluation step requiring a small number of safe
period computations: either for each alarm group or for all
alarms lying within the current alarm monitoring region.
Thus the number of safe period computations required by
this approach is much lower than the basic approach despite
the larger number of alarm evaluation steps. Consequently,
the overall processing time for SS is lower than the BS ap-
proach as can be seen from Figure 13(c). The VG and RB
approaches lower the number of alarm evaluation steps by
considering only alarms or alarm groups within the quar-
antine region. In this set of experiments the quarantine
radius γ for RB is set to 1000m as determined by the re-
sults in the previous section. Similarly, VG grid cell size is
set to 1000m × 1000m. The number of evaluation steps for
these approaches is still larger than the number of evalua-
tion steps used by the basic approach as the safe periods
computed by this approach may be lower than the safe pe-
riod computed by the basic approach, in case no relevant
alarms/alarm groups lie within the quarantine radius range
or the current grid cell of the subscriber. In absence of any
alarms/alarm groups within the quarantine region, the safe
period for these approaches is calculated as the time required



by user to reach the edge of the quarantine region. How-
ever, each alarm evaluation step involves a very small num-
ber of safe period calculations leading to an extremely small
number of safe period computations (in Figure 13(b) results
for VG and RB are almost overlapping). Consequently, the
overall processing times for these two approaches are sig-
nificantly lower than other approaches. Figure 14 displays
the results for a set of 10K users as we vary the number
of alarms from 10K to 40K. These results confirm that our
mobility-based optimizations can scale to a large number of
alarms. As shown in Figure 14(c), even for 40K alarms VG
and RB approaches have a processing time lower than the
12 minute limit determined earlier. From these results we
can conclude that our safe period optimizations significantly
aid the scalability of the system.

7. RELATED WORK
An event-based location reminder system has been advo-

cated by many human computer interaction projects [16, 19,
9, 17, 14]. Understandably, the primary focus of the work is
from the point of view of the usability of such systems. Some
of the work provides extensive user evaluation studies which
establish the usefulness of location-based reminder systems
beyond doubt. However, none of these approaches deal with
the system oriented issues which need to be resolved to make
such systems feasible.

In the realm of information monitoring, event-based sys-
tems have been developed to deliver relevant information
to users on demand. User-defined triggers can be initiated
when new relevant information which is of personal interest
to the user is detected by the system [15, 8]. In addition to
monitoring continuously changing user information needs,
spatial alarm processing systems also need to deal with the
complexity of monitoring user location data in order to trig-
ger relevant alerts in a non-intrusive manner.

Applications like Geominder [1] and Naggie [3] already ex-
ist which provide useful location reminder services using cell
tower ID and GPS technology, respectively. Client-based
solutions for spatial alarm processing should focus on effi-
ciently evaluating spatial alarms while preserving client en-
ergy. Our server-centric architecture makes it possible for
users to share alarms and make use of external location infor-
mation monitoring services which provide relevant location-
based alerts. A server-centric approach is also essential for
extending the technology to clients using cheap location de-
tection devices which may not possess significant compu-
tational power. Even for clients with significant computing
resources, energy and bandwidth consumption remain major
bottlenecks and numerous works have dealt with the prob-
lem of energy conservation in mobile devices [10, 11, 18]. In
this work, we propose a scalable and efficient centralized ar-
chitecture for processing spatial alarms to resolve the above
issues.

8. CONCLUSION
We have presented a motion-aware safe period framework

and a suite of optimization techniques for scalable processing
of spatial alarms. The paper makes two important contri-
butions towards supporting spatial alarm-based mobile ap-
plications. First, we introduce the concept of safe period to
minimize the number of unnecessary alarm evaluations, in-
creasing the throughput and scalability of the system. We
show that our safe period-based alarm evaluation techniques
can significantly reduce the server load for spatial alarm pro-
cessing compared to the periodic evaluation approach, while

preserving the accuracy and timeliness of spatial alarms.
Second, we develop a suite of spatial alarm grouping tech-
niques based on spatial locality of the alarms and motion
behavior of the mobile users, which reduces the safe period
computation cost for spatial alarm evaluation at the server
side. We evaluate the scalability and accuracy of our ap-
proach using a road network simulator and show that the
proposed motion-aware safe period-based approach to spa-
tial alarm processing offers significant performance enhance-
ments for alarm processing on server side while maintaining
high accuracy of spatial alarms.

9. REFERENCES
[1] Geominder - Unleash the power of location-based

reminders.
http://ludimate.com/products/geominder/.

[2] Global Mapper Software LLC.
http://www.globalmapper.com.

[3] Naggie 2.0: Revolutionize Reminders with Location!
http://www.naggie.com/.

[4] Scalable Vector Graphics Format.
http://www.w3.org/Graphics/SVG.

[5] Spatial Data Transfer Format.
http://www.mcmcweb.er.usgs.gov/sdts/.

[6] U.S. Geological Survey. http://www.usgs.gov.
[7] F. Aurenhammer. Voronoi Diagrams – A Survey of a

Fundamental Geometric Data Structure. ACM
Computing Surveys, 23(3):345–405, 1991.

[8] V. Bazinette, N. Cohen, M. Ebling, G. Hunt, H. Lei,
A. Purakayastha, G. Stewart, L. Wong, and D. Yeh.
An Intelligent Notification System. IBM Research
Report RC 22089 (99042), 2001.

[9] A. Dey and G. Abowd. CybreMinder: A
Context-Aware System for Supporting Reminders. In
Second International Symposium on Handheld and
Ubiquitous Computing, pages 172–186, 2000.

[10] K. Flautner and T. Mudge. Vertigo: Automatic
Performance-Setting for Linux. Operating Systems
Review, 36(5S):105–116, December 2002.

[11] J. Flinn and M. Satyanarayanan. Energy-Aware
Adaptation for Mobile Applications. In SOSP, pages
48–63, 1999.

[12] M. Gruteser and D. Grunwald. Anonymous Usage of
Location-Based Services Through Spatial and
Temporal Cloaking. In MobiSys, 2003.

[13] A. Guttman. R-trees: A Dynamic Index Structure for
Spatial Searching. In ACM SIGMOD, 1984.

[14] S. Kim, M. Kim, S. Park, Y. Jin, and W. Choi. Gate
Reminder: A Design Case of a Smart Reminder. In
Conference on Designing Interactive Systems, pages
81–90, 2004.

[15] L. Liu, C. Pu, and W. Tang. WebCQ - Detecting and
Delivering Information Changes on the Web. In
CIKM, pages 512–519, 2000.

[16] P. Ludford, D. Frankowski, K. Reily, K. Wilms, and
L. Terveen. Because I Carry My Cell Phone Anyway:
Functional Location-Based Reminder Applications. In
SIGCHI Conference on Human Factors in Computing
Systems, pages 889–898, 2006.

[17] N. Marmasse and C. Schmandt. Location-Aware
Information Delivery with ComMotion. In HUC, pages
157–171, 2000.

[18] T. Mudge. Power: A First-Class Architectural Design
Constraint. Computer, 34(4):52–58, 2001.



[19] T. Sohn, K. Li, G. Lee, I. Smith, J. Scott, and
W. Griswold. Place-Its: A Study of Location-Based
Reminders on Mobile Phones. In UbiComp, 2005.


