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Abstract

Many on a daily basis use time based alarms. Spa-
tial alarms extend the very same idea to location-based
triggers, which are fired whenever a mobile user en-
ters the spatial region of the location alarms. Spatial
alarms provide critical capabilities for many mobile
location based applications ranging from personal as-
sistants, inventory tracking to industrial safety warn-
ing systems. In this paper we present an energy effi-
cient framework for processing spatial alarms on mo-
bile clients, while maintaining low computation and
storage costs. Our approach to spatial alarms pro-
vides two systematic methods for minimizing energy
consumption on mobile clients. First, we introduce the
concept of safe distance to reduce the number of unnec-
essary mobile client wakeups for spatial alarm evalu-
ation. This mechanism not only reduces the amount
of unnecessary processing of the spatial alarms but
also significantly minimizes the energy consumption
on mobile clients, compared to periodic wakeups, while
preserving the accuracy and timeliness of the spatial
alarms. Second, we develop a suite of techniques
for minimizing the number of location triggers to be
checked for spatial alarm evaluation upon each wakeup.
This further reduces the computation cost and energy
expenditure on mobile clients. We evaluate the scal-
ability and energy-efficiency of our approach using a
road network simulator. Our client based framework
for spatial alarms offers significant improvements on
both system performance and battery lifetime of mo-
bile clients, while maintaining high quality of spatial
alarm services, especially compared to the conventional
approach of periodic wakeup and checking all alarms
upon wakeup.

1 Introduction

Spatial alarms are considered by many as one of
the critical mobile location-based applications in fu-
ture computing environments. Processing of spatial

alarms requires meeting two demanding objectives:
high accuracy, which ensures no alarms are missed and
high energy efficiency and high scalability, which not
only minimizes the unnecessary processing cost and
the consumption of energy on spatial alarm process-
ing but also scales the energy efficient processing to
larger number of spatial alarms on mobile clients. The
conventional approach to designing the middleware ar-
chitecture for spatial alarms involves periodic alarm
checks at a high frequency. Each spatial alarm check
is conducted by testing whether the user is entering the
spatial region of the alarm. High frequency is essen-
tial to ensure that none of the alarms are missed. This
technique is simple but can be extremely energy ineffi-
cient due to both frequent wakeups and evaluation of
all alarms upon each wakeup. This is especially true
when the mobile client is traveling in a location that is
distant from the spatial areas of all her location trig-
gers or when the collection of spatial alarms is set on
spatial regions that are far apart from one another. In
addition, some types of mobile clients have stronger
resource constraints such as smart phones and hand
held PDAs compared to navigation systems in cars.

In this paper we present our architecture for en-
ergy efficient processing of spatial alarms on mobile
clients, while maintaining low computation and stor-
age costs. We present two systematic methods that
can progressively minimize the amount of energy con-
sumption on mobile clients for all types of spatial
alarms. The first method utilizes the concept of safe
distance to reduce the number of unnecessary wake-
ups on mobile clients for spatial alarm evaluation. By
enabling mobile clients to sleep for longer intervals of
time in the presence of active spatial alarms, we show
that our safe distance techniques can significantly min-
imize the energy consumption on mobile clients com-
pared to periodic wakeups, while preserving the ac-
curacy and timeliness of spatial alarms. The second
mechanism focuses on alarm checks upon each wakeup.
We develop a suite of techniques for minimizing the
number of location triggers to be checked upon each
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wakeup for different types of spatial alarms. This al-
lows us to further reduce the computation cost and
energy expenditure on mobile clients. Our experimen-
tal evaluation using a road network simulator shows
that our spatial alarms middleware architecture offers
significant improvements on battery lifetime of mobile
clients, while maintaining high quality of spatial alarm
services compared to the conventional approach of pe-
riodic wakeup and checking all alarms upon a wakeup.

2 System Model

A spatial alarm consists of three components:
the spatial region on a two-dimensional geographical
plane, the action to be taken upon firing of the alarm,
and the alarm termination condition, usually a tempo-
ral event such as time point or time interval. The spa-
tial regions used in spatial alarms can be of any shape.
We capture each of such spatial regions by a rectan-
gular bounding box, denoted by (x1, y1, x2, y2), where
(x1, y1) and (x2, y2) represent the top-left and bottom-
right vertices of the bounding rectangle. Without loss
of generality, in the rest of the paper, we simply assume
that each mobile client can install n spatial alarms
(n ≥ 0) and all spatial alarms are expressed by a rect-
angle spatial region, denoted by Ai for 1 ≤ i ≤ n. In
our first spatial alarm client middleware prototype, we
use a system supplied default spatial range in the ab-
sence of spatial region specification of a user-defined
alarm. Each mobile client can install as many spatial
alarms as the user wishes over the geographical area of
interest. Multiple mobile clients can set spatial alarms
on the same locations.

In this paper we assume that mobile clients have
limited energy, storage, and computational resources.
We also assume that at least one of positioning tech-
nologies, such as GPS, WiFi based triangulation or cel-
lular network assisted location identification services,
is available for the mobile client to identify its current
location. Each mobile client is a moving object with an
accompanying mobile device, such as cell phone, PDA,
car, which computes and communicates the current
location of the mobile client with the Spatial Alarm
client middleware. A mobile client can move freely
in the entire geographical area of interest (universe
of discourse). In addition, mobile clients may have a
map service available on their portable device, through
which the mobile client can navigate on the map to
identify and install their personalized spatial alarms
through interactive mode of communication with the
Spatial Alarm client middleware. Batch installation
of spatial alarms is also possible. Figure 1(a) shows
the spatial alarms installed in the Georgia Tech area
on the real world maps obtained from Google Maps
[1]. The rectangles denote the user specified alarm

areas. Figure 1(b) shows the corresponding road net-
work map from the TIGER database [2], which our
simulator uses for evaluating the effectiveness of the
proposed architecture and algorithms.

Although our development of the Spatial Alarm
framework considers three alternative architectures:
client-centric, server-centric with thin client, and fat
client with server mediation. In this paper we con-
centrate on the client-centric architecture in the sense
that the server is not involved in spatial alarm pro-
cessing at all, though we allow the mobile clients to
utilize some third party auxiliary services, such as the
map service, the Voronoi diagram provision service, to
name a few. We also assume that the client has the
spatial alarm storage manager that provides persistent
store for all its spatial alarms. On demand or periodic
offload of client alarms on the server is provided to al-
low mobile clients to off load their alarms to a server
in the event of client storage shortage.

3 System Overview

Spatial alarms differ from spatial location queries
in a number of ways. First, spatial queries such as “tell
me the gas stations within 10 miles on the highway
85 north” require continuous evaluation of the queries
as the mobile client moves on the highway 85 north.
However, spatial alarms, such as “notify me whenever
I am 5 miles away from this particular dry cleaning
store (marked on the map)”, only requires the alarm
to be evaluated when the mobile client moves to a
region that is within 5 miles of the specific dry cleaning
store. Thus, it is no use to wake up a mobile client
if she is 30 miles away from the dry cleaning store.
Clearly, the movement patterns of the mobile client
and the distance from the current location of a mobile
client to all her alarms are the two critical factors that
will affect when the mobile client needs to wakeup and
what alarms need to be checked upon each wakeup.
Thus one can optimize the spatial alarm processing by
devising more energy efficient algorithms.

Mobile devices conserve energy by spending most
of their time in a low energy state such as sleep mode.
Hence one of the critical design objectives for client
middleware architecture is to minimize the number of
device wakeups in spatial alarm processing. For in-
stance, the 206 MHz Itsy [4] pocket computer spends
540mW power in the System Idle, 0% processor idle
state, spends 100mW power in the System Idle, 95%
processor idle state, and while in the Sleep mode it just
spends 8.39mW power (which is about 64 times lesser
than the 0% processor idle case). It is interesting to
note that mobile devices like in the case of Itsy com-
puter [4] have a battery lifetime of only 3.8 hrs when
running in the high energy System Idle, 95% processor



idle state, while in the Sleep mode the lifetime is as
high as 279 hrs.

In the context of spatial alarm processing, one
can save energy by two phase optimizations. In Phase
one we minimize the number of device wakeups and in
phase two we further minimize the number of alarms
checked upon each wakeup. The phase one optimiza-
tion helps keep the mobile client in the ‘Sleep mode’
as long as possible, while the phase two optimization
helps reduce the computation cycles used for alarm
evaluation, which further reduces the energy require-
ments. In addition to energy efficiency, another im-
portant goal of spatial alarm processing is to maintain
the low or zero alarm misses.

The conventional approach for implementing a lo-
cation based reminder system is to wake up the de-
vice and check the alarm conditions periodically. If
the period is too large the mobile device might miss
alarms since there may be situations where the mobile
client passes through the ‘alarm area’ while asleep (be-
tween periodic checks). Hence, to reduce the number
of alarm misses, the wakeup period would have to be
kept small enough. The smallest wakeup period can
be set using the location update frequency (e.g., GPS
sampling period). Clearly, the periodic check approach
would be very energy inefficient. Also it is important
to note that if the mobile client is far away from any of
her alarms then depending on the maximum speed of
the client, it is possible to sleep for longer durations of
time and still guarantee that none of the alarms would
be missed.

Motivated by this observation, we propose the
concept of safe period which computes the time pe-
riod during which the mobile client can continue to
sleep without missing any of her alarms. We compute
this safe period using the distance from the current
location of the mobile client to all her alarms and the
speed measure of the mobile client. In our prototype
we consider Euclidean distance and road network dis-
tance as two alternative distance functions and con-
sider maximum travel speed and expected travel speed
of a mobile client as two alternative speed functions.
The expected speed measure is used to handle the sit-
uation where the mobile clients do not travel at their
maximum possible speed at all times, hence by con-
sidering the ‘Average Speed’ or the ‘Expected Speed’,
we may present a wakeup algorithm that is more adap-
tive to the movement behavior and the actual distance
from the client to the alarms. Further, by consider-
ing road network distance as a more accurate predic-
tion of the distance from the mobile client to all her
alarms, we can further extend the sleep time with-
out any alarm misses. We discuss these alternative
approaches to minimizing alarm wakeups in greater
detail in section 4.

(a)From Google
Maps[1] (b)From TIGER [2]

Figure 1: Spatial Alarms

In addition to minimizing wakeups in the phase
one optimization, we have noted that it is also essential
to reduce the computations performed for processing
alarms at each wakeup. The naive approach requires
checking against all alarms upon each wakeup, which
can be expensive. One way to mitigate this problem is
to group the alarms based on their spatial proximity,
check them together in groups and drill down until
individual alarm checks are performed. We refer to
the step of minimizing alarm checks as the ’phase two
optimization’. We extend three popular indexing al-
gorithms to perform the alarm grouping optimizations
using R-Tree [14], Voronoi diagram that partitions
the two-dimensional coordinate space into Voronoi Re-
gions [3, 12], resulting in a very efficient O(1) nearest
alarm lookup. To mitigate the additional storage cost,
we use the road network information to generate a Net-
work Voronoi Diagram [9], which achieves very similar
performance numbers as the Euclidean distance met-
rics, but with reduced storage costs. We discuss these
optimizations in greater detail in section 5.

4 Minimizing Device Wakeups

Our architecture for spatial alarm processing con-
sists of two phase optimizations. In this section we dis-
cuss the phase one optimization strategies that mini-
mize the number of device wakeups. Apart from the
high energy consumption, an important problem with
the periodic wakeup approach is that it is hard to es-
timate how frequently the device should wakeup to
ensure no alarms will be missed. Two factors that
are critical in determining such a frequency: (a) The
speed of the mobile client; and (b) the size of the spa-
tial alarm region. Unless the frequency is set to be ex-
tremely high (close to the location update frequency),
it would always be possible to introduce cases where
alarms can be missed by having alarms of the size
smaller than the distance traveled by the mobile client
between two consecutive wakeups. Thus the key chal-
lenge is to determine the right time for mobile clients
to wakeup in terms of energy efficiency and alarm ac-



curacy and given a location update, how to determine
the subset of alarms that should be checked to conserve
energy while maintaining zero alarm misses.

With both the problem of guaranteed alarm de-
livery and that of energy conservation in mind, we pro-
pose four optimization strategies to estimate the safe
period and use aperiodic wakeup of the mobile client
based on (a) the distance of the client to all her alarms
and (b) the travel speed of the mobile client.

4.1 Measuring the Distance to Alarm

There are two most commonly used methods for
measuring the distance from a mobile client’s current
location to an alarm. They are (a) Euclidean Dis-
tance and (b) Road Network Distance. The Euclidean
Distance approach is simpler and requires much lesser
data but may at times underestimate the time to sleep
before the next wakeup. The Road Network Distance
measure offers a more accurate estimate of the distance
from a mobile client’s current location to the spatial
region of the alarm, but it introduces additional over-
head with handling the road network map data. We
propose techniques to mitigate this additional over-
head by dividing the original map into tiles and selec-
tively download relevant tiles to a mobile client.

4.1.1 Euclidean Distance to an Alarm

Given a spatial alarm Ai with rectangular spatial
alarm region represented by four vertices of the rectan-
gle: (P1, P2, P3, P4) where P1 = (x1, y1), P2 = (x2, y1),
P3 = (x2, y2) and P4 = (x1, y2). Let the mobile client
be at Pm represented by the coordinates (xm, ym),
then the Euclidean distance from Pm to the alarm re-
gion of Ai, denoted by dAi , can be computed by con-
sidering four cases. Case 1: when the mobile device is
within the alarm boundaries the distance to the alarm
is zero; Case 2: when the mobile device is within the
y scope (represented using dotted lines in Figure 2 a))
the distance is the shortest of the distances to alarm
edges parallel to the x axis from the mobile client; Case
3: when the mobile device is within the x scope the
distance is the shortest of the distances to alarm edges
parallel to the y axis from the mobile client; and Case
4: when the mobile device is outside both the x and
y scopes, then the distance is the minimum of the Eu-
clidean distances to the four vertices. The four cases
can be formally defined as follows:

dAi =


0 x1 ≤ xm ≤ x2

and y1 ≤ ym ≤ y2
min(|xm − x1|, |xm − x2|) y1 ≤ ym ≤ y2 only
min(|ym − y1|, |ym − y2|) x1 ≤ xm ≤ x2 only
min(Dm1, Dm2, Dm3, Dm4) otherwise

Where Dm1, Dm2, Dm3, Dm4 denote the Euclidean
distance from Pm to the four rectangle vertices
P1, P2, P3, P4 respectively. The distance function
Dij =

√
(xi − xj)2 + (yi − yj)2 is used to compute the

Euclidean distance between two points Pi and Pj .

4.1.2 Road Network Distance

One of the main weaknesses of the Euclidean Distance
measure is that the estimated distance is often shorter
than the actual distance that the mobile client would
have to travel to get to the spatial region of interest
of a given alarm due to the underlying traversal
restrictions imposed by the road network. The Road
Network Distance measure uses the Dijkstra’s shortest
path algorithm [8, 6] to estimate the distance from
the mobile client’s current location to an alarm as
shown in Figure 2 (b). The underlying road network
is represented by the solid line and the mobile client is
represented by a shaded circle labeled by 1. Since the
mobile client is restricted to move along the roads, the
only places where it can enter the alarm area would
be the points of intersection of the alarm with the
roads, denoted by S1, S2, S3 in Figure 2 (b). Hence, in
order to estimate the Road Network Distance (RdAi

)
from Mobile Client at Pm to an alarm Ai we calcu-
late the shortest network distance (using Dijkstra’s
algorithm) to each of the three points of intersection
and choose the minimum. Mathematically, RdAi

=
min(SPath(Pm, S1), . . . , SPath(Pm, Sj), . . . , SPath(Pm, Sk))
where k is the total number of intersections of the
alarm area with different roads on the map, Sj

represents the jth point of intersection (1 ≤ j ≤ k),
and SPath(Pm, Sj) representing the Shortest Road
Distance from Mobile Client’s location at Point Pm

to the jth alarm-road intersection point Sj obtained
using the Dijkstra’s Shortest path Algorithm [6, 8].

Since computing the road network distance re-
quires detailed maps to perform the calculations, we
need efficient mechanisms to handle the situation when
it is not possible to store the entire available map infor-
mation on the mobile client. One approach to mitigate
this problem is to divide the entire map into square
map tiles and fetch only the relevant tiles to the mem-
ory of the mobile client each time when the road net-
work distance is computed. If the mobile client does
not have memory to host the map for the entire ge-
ographical area of interest, a third party map service
can be used for mobile clients to fetch the relevant ti-
tles from the server. Consider the example shown in
the Figure 3. Consider the midtown Atlanta map as
the area of interest. To begin with, the mobile client
requests the server to send over nine equal sized square
tiles that form a 3 by 3 tile matrix on the map with the
tile in which the mobile client resides as the inner most



(a) Euclidean Alarm Distance (b) Road Network Alarm Distance (c) Legend

Figure 2: Distance to Alarm from Mobile Client

tile (the tile numbered 13), and eight tiles surrounding
the inner most tile (numbered as 7, 8, 9, 12, 14, 17, 18
and 19, as shown in Figure 3(a)). The mobile client
then creates an internal system defined alarm over the
tile numbered 13 such that whenever the mobile client
moves outside the tile 13, an additional tile fetch re-
quest will be issued to the map server. For instance,
when the mobile client moves out of the inner most tile
numbered 13 to the tile 14 as shown in Figure 3(b),
additional tile fetches (10, 15 and 20 in the example)
are performed, the old internal system alarm set on
the tile 13 is removed and and a new internal system
alarm is set on tile 14 to monitor whether the mo-
bile client moves outside the current tile numbered 14.
Note that we reuse the very same idea of spatial alarm
to serve as a system level monitor to control when to
fetch the new tiles from the map service. Choice of
tile size depends on several factors. On one hand, the
larger the tile size is, the higher the energy conserva-
tion will be since the client will be more likely to be
further away from the internal system alarm on the
current tile. On the other hand, the larger the tile size
is, the more demand will be set on the client storage
capacity. Thus a proper setting of tile size needs to
trade off between the storage constraint and the en-
ergy conservation need. The good news is that even
assuming low storage availability of 2 MB, detailed
road map [2] of a medium size city, such as Atlanta
or Washington DC, can be stored without having to
request additional tiles from the map server. In the
rest of this paper we assume that the available storage
is limited and hence the tile size is small. We con-
sider the Georgia Institute of Technology campus in
Atlanta (which is about 1.61km2) to be contained in
its entirety in a tile as shown in Figure 3.

4.2 Speed Estimation Methods

Maximum Speed: The use of maximum travel
speed of the mobile client has a number of advan-
tages and disadvantages. On the brighter side, one can
set the ‘Maximum travel speed’ by pre-configuration
based on either the nature of the mobile client (such
as a car on the move or a pedestrian walking on the

(a) Tiled Midtown Map
(Client at Tile 13)

(b) Client Movement
from Tile 13 to Tile 14

Figure 3: Mobile Client Map Window: Tiling of maps
to reduce storage costs

street), or depending on the types of roads used, or the
environmental limitations on the mobile client such as
entered a building. For instance, if the mobile client
is always expected to be attached to a car then the
maximum speed of the car or the highest speed limit
on the road on which the car travels can be used as
the ‘Maximum travel speed’. However, using the max-
imum travel speed as the speed estimation technique is
often over pessimistic since it cannot adapt to the sit-
uation where a mobile client may stop for an extended
period of time or may suddenly turn onto a road with
very low speed limit.

Expected Speed: In most cases the speed of
the mobile client will often be lesser than the maxi-
mum speeds. This is especially true for road networks
that have different traffic patterns at different times of
a day, or that have winding roads or other unexpected
conditions. Hence, a more pragmatic approach is to
estimate the expected speed of the mobile client and
use the expected speed measure to determine the safe
period (the time to sleep) before the mobile client
needs to wake up the next time. In the first spatial
alarm middleware prototype system, we calculate
the current expected speed using the Exponential
Weighted Moving Average (EWMA) scheme (Equa-
tion 2) based on current and previous location of
the mobile client and the previous expected speed
estimate. In addition to the current expected speed
weighted by α, the future expected speed is increased



by performing a weighted average (1 − α) with the
maximum speed to ensure higher guarantee of alarm
delivery and zero or lower alarm misses (Equation 3).
The lower the α value is, the better the alarm delivery
guarantee will be, but the higher the incurred energy
cost. When α = 0 this function would return the
Maximum Speed. When α = 1 this function would
return the EWMA speed. In the experiments we set
α = 0.5 and β = 0.8.

vp
expected = 0 (1)

vc
expected = β ∗ D(lc, lp)

tc − tp
+ (1− β) ∗ vp

expected (2)

vexpected = α ∗ vc
expected + (1− α) ∗ vmax (3)

where vp
expected, vc

expected, vexpected are the previous,
the current, and the future expected travel speed of
the mobile client respectively, tc and tp represent the
current and previous time instances, lc and lp represent
the current and the previous location of the mobile
client at time instances tc and tp respectively and D
is the distance function.

4.3 The Aperiodic Wake-Up Algorithms

We have described the role of maximum speed
and the calculation of expected speed, and two alterna-
tive approaches to measuring the distance from a mo-
bile client to all her spatial alarms based on Euclidean
distance and road network distance respectively. In
this section, we introduce the concept of safe period
based on the distance function and the speed function,
and present four safe period based wakeup algorithms
by combining the two distance functions and the two
speed functions.

Tsleep = min(dA1 ...dAi
...dAn

)/vmax (4)

Tsleep = min(dA1 ...dAi
...dAn

)/vexpected (5)

Tsleep = min(RdA1 ...RdAi
...RdAn

)/vmax (6)

Tsleep = min(RdA1 ...RdAi
...RdAn

)/vexpected (7)

where Tsleep is time duration for which the mobile
client can sleep without potentially missing delivery of
any alarm, n is the total number of alarms installed
on the mobile client, dAi

, RdAi
are the euclidean and

road network distances from the mobile client’s current
location to the ith spatial alarm Ai (1 ≤ i ≤ n) and
vmax, vexpected are the maximum and expected travel
speeds of the mobile client.

Safe Distance with Max Speed: This wakeup
algorithm defines the safe distance of a mobile client
to each of her spatial alarms by combining the Eu-
clidean Distance function and the maximum speed as
shown in Equation 4. For any given mobile client, a

safe period to all her spatial alarms is the time du-
ration in which the spatial alarm middleware on the
mobile client can sleep. We estimate the safe period
using the minimum distance from the mobile client to
all her spatial alarms divided by the maximum travel
speed of the mobile client. At each wakeup, the mo-
bile client will perform two types of tasks. First, it
will process the spatial alarms installed on her client
device. We will discuss the spatial alarm processing
strategies in Section 5. Second, it will estimate the
safe period (i.e., the time to sleep), denoted by Tsleep,
before the next wakeup using equation 4. This wakeup
algorithm uses the maximum travel speed to estimate
the safe period and thus guarantees that no spatial
alarms will be missed no matter how the mobile client
changes her movement patterns, such as the number
of stops, the length of each stop, or the type of roads
traveled. Obviously this wakeup algorithm is over pes-
simistic in defining the safe period.

Safe Distance with Expected Speed: Clearly,
when a mobile client stops for a fairly extended dura-
tion, or when the mobile client travels on a low speed
limit road for extended period of time, the safe pe-
riod computation using the maximum travel speed of
the mobile client would not be able to take advan-
tage of different opportunities to optimize the safe pe-
riod. One way to overcome this problem is to use
the expected speed as defined in Section 4.2. Since
the ’expected speed’ would be ideally lesser than the
maximum speed, the number of device wakeup can be
further expected to be reduced. However, it is possi-
ble to miss alarms and no guarantees like in the Safe
Distance with Max Speed can be offered. Nevertheless,
the user can choose to use this approach as opposed to
the previous approach when energy of the device is low
and the alarm delivery is not critical but beneficial.

Safe Road Distance with Max Speed: The
two Euclidean distance based safe period wakeup al-
gorithms − Safe Distance with Max Speed and Safe
Distance with Expected Speed − clearly outperform the
naive periodic wakeup algorithm. However, the use of
Euclidean distance function fails to consider the limi-
tations imposed on the movement of mobile clients by
the underlying road network. Especially, in an urban
scenario, the road network plays a very important role
in determining how quickly a mobile client will reach
her nearest spatial alarm. We argue that in many cases
the road network distance will offer significantly higher
accuracy in terms of safe period estimation than the
Euclidean distance. Thus using the road network dis-
tance function to replace the Euclidean distance func-
tion in the safe period calculation allows the mobile
client to sleep for a longer duration while ensuring no
miss of alarms as shown in Equation 6.
Safe Road Distance with Expected Speed: Sim-



(a)Periodic (b)SD Max (c)Road SD Max

Figure 4: Comparison of Wake Up Strategies

ilar to the problem with safe distance with maximum
speed algorithm discussed under ’Safe Distance with
Expected Speed’, the problem of the safe road dis-
tance with maximum speed algorithm is the lack of
flexibility to take advantage of different movement pat-
terns of the mobile client to optimize the safe period,
since the use of maximum speed considerably under-
estimates the safe period in which the mobile client
may sleep. Equation 7 represents the road network
distance version.

Figure 4 provides an example scenario to il-
lustrate safe distance and safe road distance based
wakeup algorithms with the naive period wakeup ap-
proach. Circles in all three cases represent wakeups
of the mobile client and rectangles represent the spa-
tial alarms installed on the mobile client. The spatial
alarm layout on the road network is shown in all three
scenarios. Figure 4(a) represents the periodic Wake-
Up strategy. The shaded path consists of many circles
one overlapped with another, showing the high fre-
quency of the wakeups in this case. Figure 4(b) shows
the case of Safe Distance with Max Speed. It clearly
demonstrates the significant reduction in the number
of wakeups comparing to the Periodic wakeup case.
Figure 4(c) represents the case of Safe Distance with
Expected Speed. It shows a further reduction on the
frequency of the wakeups compared to the safe road
distance with maximum speed in Figure 4(b).

5 Minimizing Alarms Checked

In this section we argue that the approach of
check all alarms upon each wakeup is naive and waste-
ful of resources. We describe two approaches to mini-
mize the number of alarm checks per wakeup and show
how these approaches can reduce the computation cost
and the energy consumption involved in alarm checks.
In the first approach, we group spatial alarms that
are in close spatial proximity, in a hierarchical fash-
ion. Alarm Checking happens in groups, thus mini-
mizing the overall number of alarm checks performed
per wakeup. In the second approach, we divide the ge-
ographical area of interest into Voronoi regions based
on Euclidean distance to the alarms with each region

(a) Alarm
Grouping

(b) R Tree of grouped alarms

Figure 5: Alarm Grouping by Spatial Proximity

storing information that can quickly identify the near-
est alarm in the vicinity. Upon each wakeup, alarm
checks are performed only against the ’nearest’ alarm
by looking up the information in the Voronoi region
in which the mobile client currently resides. We also
consider using Network Voronoi Diagrams as an alter-
native.

5.1 Hierarchical Grouping of Alarms

When the geographical area in which a mobile
client installs her alarms is big, the number of alarms
installed is large and distributed across the entire area
of interest, checking all alarms upon each wakeup is
not only unnecessary but also a clear waste of re-
sources. We first propose to group spatial alarms
based on their spatial proximity and check the alarms
in selected groups upon each wakeup. The grouping
process proceeds in two steps. First, all alarms need
to be divided into groups based on spatial proximity
with each group associated with a spatial region. Only
when the mobile client moves into the region marked
by a group, the spatial alarms/subgroups within that
group will be checked, and all other alarms/subgroups
belonging to the other groups are eliminated from
alarm checking, leading to significant saving in terms
of computational cost and energy. For instance, Fig-
ure 5(a) shows a map of Georgia Tech with a total
of 10 alarms installed on a mobile client. We group
them into three groups with group one consisting of
A1, A2, A3, A4, group two consisting of A5, A6, A7, A8,
and group three consisting of A9 and A10 (see the three
innermost rectangles). All these three groups together
form the fourth group (see the outer most rectangle in
Figure 5(a)).

We use the R Tree [14] algorithm to perform the
alarm grouping in a hierarchical fashion as shown in
Figure 5(b). Upon each wakeup the mobile client tra-
verses down the tree using her current location and ter-
minates when one of the following conditions becomes
true: (i) a leaf node (alarm) is reached; or (ii) the
mobile client’s location is not bounded by any child’s
Minimum Bounding Rectangle (MBR). The condition
(i) signals that an alarm is satisfied and the appro-



priate action is triggered. This approach reduces the
number of alarms to be checked from O(n) in the naive
approach of check-all per wakeup to O(logb n), where
n represents the total number of alarms installed on
the mobile client and b represents the minimum num-
ber of alarms in a group. In the example shown in
Figure 5, b = 2 and n = 10.

The R-Tree based alarm grouping algorithm is ef-
fective in terms of energy saving and resource usage in
general and especially it can handle well, the situations
where the mobile client continuously adds new spatial
alarms into the client middleware system as she moves
on the road. However, if the number and the loca-
tion of the spatial alarms remain unchanged for long
duration of time, we can utilize the Voronoi diagram
to devise a more efficient alarm group algorithm. We
below present two such algorithms, one uses Voronoi
regions, called nearest alarm check algorithm, and the
other uses the Network Voronoi diagrams, called the
road network nearest alarm check algorithm.

5.2 Checking Nearest Alarm Only

The checking nearest alarm only algorithm is suit-
able for the scenarios where the number and location
of alarms remain unchanged for long duration of time
and no addition or removal of alarms are issued by the
mobile client. The Nearest Alarm Only optimization
consists of two phases. In the first phase, the two di-
mensional geographical area of interest is divided into
grid cells of equal size. Then the Voronoi diagram is
overlaid on top of the grid with Voronoi Regions [3, 12]
such that each Voronoi Region has a single nearest
alarm, as shown in Figure 6(a). To facilitate the search
for the nearest alarms for a given mobile client loca-
tion, we build a grid cell based dense index, in which
each cell contained in a Voronoi region will point to the
spatial alarm of that region, and each cell that over-
laps with k Voronoi regions (1 < k < n) will contain
k spatial alarms, each corresponding to one of the k
Voronoi regions.

Given a geographical area of interest, such as the
state of Georgia or the greater area of Atlanta, there
are many mobile clients who will install their person-
alized spatial alarms. Hence, a third party Voronoi
diagram service provider can be used to generate the
Voronoi diagram for the entire geographical area, and
each mobile client can download the resulting Voronoi
diagram for the area of interest on demand.

In the second phase, upon wakeup the mobile
client uses her current location to locate the grid cell
in which she resides and it takes only O(1) to lookup
the nearest alarm in the case where the grid cell of the
client is contained in a Voronoi region. In the situation
where the mobile client is at boundaries of k Voronoi

(a) Voronoi
Regions

(b) Small grid
cells

(c) Large grid
cells

Figure 6: Alarm Grouping by using grid cells

regions (1 < k < n), the grid cell in which the client re-
sides will point to k spatial alarms, all are qualified to
be the ‘nearest’ alarms. In this scenario all the Voronoi
regions overlapped with the current location of the mo-
bile client need to be considered, and the alarm check
will be performed against the ‘nearest’ alarm in each
of these overlapped Voronoi regions. Clearly, this ap-
proach greatly reduces the time to lookup the relevant
alarms to be checked, although it is only applicable in
the specific scenarios where alarms are not frequently
removed or added (since computing the Voronoi dia-
gram for the entire geographical area of interest each
time when a new alarm is added or an existing alarm
is removed can be quite expensive).

However, the storage requirement for such a
scheme is high. Let m denote the total number of
grid cells for the entire grid of the geographical area of
interest. We construct a dense index with m entries.
The storage cost is of the order O(m). With a high
value for m, the alarm lookup time takes O(1) but the
storage cost will be at O(m) (see Figure 6(b)). One
way to reduce the number m of grid cells is to increase
the grid cell size at the cost of increased probability of
having more than one alarms qualifying as the nearest
alarm for a given grid cell (see Figure 6(c)). This is
especially true when the grid cell in which the mobile
client resides overlaps with two or more Voronoi re-
gions. The larger the size of individual grid cells is,
the larger the number of alarms need to be checked
at each wakeup. At one end of the spectrum, if there
is only one cell covering the entire area of interest,
then this grid cell dense index approach simply de-
grades to the naive approach of check-all alarms upon
wakeup. We promote the use of storage to trade for
fast computation since this approach offers better en-
ergy conservation when alarm addition and deletion is
infrequent.

An alternative way to improve the storage cost is
to use the Network Voronoi Diagrams [9, 13] instead.
The checking nearest alarm with road network algo-
rithm consists of two phases. In the first phase, we
need to build network Voronoi diagram that can par-
tition the road network among the alarm nodes. In
the second phase, each of the nodes on the road net-



Figure 7: Simulator Design

work graph is associated with a list of ‘nearest alarms’
based on the road network distance. Thus the alarm
checking operation is performed using the O(Nd) al-
gorithm for constructing Network Voronoi Diagrams,
where N is the number of nodes (vertices) in the road
network graph and d is the maximum degree of any
vertex in the graph. Using the road network approach
greatly minimizes storage costs as we can bring down
the storage cost from O(Nd) to O(N) for the N number
of nodes in the road network graph.

6 Experimental Evaluation

We have described the four wakeup algorithms
and the three alarm check algorithms. In this section
we evaluate our architecture, the wakeup algorithms,
and the alarm check algorithms in terms of (a) total
energy consumed, (b) total battery lifetime, (c) alarm
density and alarm distribution, and (e) alarm delivery
quality in terms of alarm misses. We below first de-
scribe briefly our simulator design and our experimen-
tal setup. Then we present the experimental results,
demonstrating the effectiveness of our proposed mid-
dleware architecture for energy-efficient processing of
spatial alarms.

6.1 Experimental setup

In order to realistically simulate the spatial alarm
middleware system on the mobile clients we develop
a simulator that has the environment and work load
generation modules completely separated out from the
specific wakeup and alarm check algorithms used by
the mobile clients. Figure 7 shows a sketch of the key
components of the simulator. The environment mod-
ule uses the supplied map and generates mobile client
position trace for the duration of time specified. It
also generates the list of alarms based on the alarm
distribution defined by the Alarm Clustering Factor
(see the next subsection for details). The Device mod-
ule is independent of the environment module and can
be configured for different mobile clients with differ-
ent combinations of the Wake-Up algorithm and the
Alarm Check algorithm. Depending on the settings

given by each mobile client, it plays the client’s po-
sition trace file along with the alarms file generated
by the environment module and records the follow-
ing statistical information: (a) Number of wakeups (b)
Number of alarm checks (c) Number of alarms deliv-
ered (d) Storage cost, apart from the information re-
quired for visualizing the behavior of the system, such
as those shown in Figure 4. The Evaluation module
comprises scripts to systematically vary environmen-
tal parameters listed in the simulator parameter table
given in Figure 7, which generate performance graphs
presented in the rest of Section 6.

In reality the spatial alarms installed by a mo-
bile client are likely to be restricted in certain regions
of interests, such as a few miles around work place or
home. In order to simulate such behavior we intro-
duce the concept of Clustering Factor. We simulate
the distribution of spatial alarms of a mobile client us-
ing various clustering factors. In general, a clustering
factor of m implies that the alarms are distributed over
only 1

m

th of the map.

6.2 Estimating Energy and battery life

In order to measure the energy consumed and
battery lifetime for various wakeup algorithms and
alarm check algorithms, we use the device energy val-
ues corresponding to the itsy pocket computer [4] given
in the energy parameter table of Figure 7 as our ref-
erence model. In the rest of this subsection we show
how one can express the total energy Et consumed as
a function of the number of wakeups (Nw), the min-
imum time duration per wakeup (Tm), the total time
duration (Tt), the power consumption of the mobile de-
vice while awake (P100), idle (Pi) and asleep (Ps), and
the Alarm Check Ratio (Cr) which represents the ratio
of the number of total actual alarm checks performed
to the maximum total checks that can be performed
NAMAX

during the minimum wakeup durations Tm.
First, we compute the total energy Et as the sum

of the energy spent awake and the energy spent in the
sleep state. Let Tw and Ts denote the time periods of
a mobile client in awake and asleep state respectively
and Pw and Ps denote the energy spent per time unit
in awake and asleep state respectively. The following
equation holds.

Et = TwPw + TsPs (8)

Let Nw denote the number of wakeups and Tm

denote the minimum wakeup duration. We can com-
pute the time duration for which the mobile client is
awake using the following formula:

Tw = Nw × Tm (9)



Similarly, the time duration for which the mobile client
is asleep, denoted by Ts, as the difference of total time
duration Tt and the wakeup time duration Tw:

Ts = Tt −NwTm (10)

The energy required for keeping the device (mo-
bile client) awake is dependent on whether the mobile
client is computing or not. If there are more alarms
that the client has to compute for longer duration of
time, then the power consumption will be higher. Af-
ter the mobile client finishes checking for the alarms
at each wakeup, it goes to the idle state for a short du-
ration before going to sleep. Let Pi denote the power
spent by the mobile client during an idle state. A lower
value of Alarm Check Ratio indicates that fewer alarms
need to be checked, and hence higher the energy con-
servation. Thus, we can compute the power consumed
during wakeup, denoted as Pw, by the following for-
mula which has two components - one to incorporate
the power consumed while awake and the other while
idle before going to sleep.

Pw = CrP100 + (1− Cr)Pi (11)

Where Cr denote the ratio of ’total alarm checks per-
formed’ to the ’maximum number of alarms checks
that can be performed before the device has to go to
sleep’. It can be defined in terms of the total number
of actual alarm checks (NC), the maximum total num-
ber of alarm checks that can be performed (NAMAX

)
in the minimum wakeup duration, and the number of
wakeups (Nw):

Cr =
NC

NAMAX
∗Nw

(12)

By substituting Equations 9, 10, and 11 in Equa-
tion 8, we obtain the Total Energy consumed as fol-
lows:

Et = NwTm(CrP100 + (1− Cr)Pi) + (Tt −NwTm)Ps

(13)
Let Cb be the battery capacity, Tt be the total

time of the experiment, and Et represent the energy
spent during Tt. The battery lifetime of a mobile
client, denoted by Tb, can be calculated by the fol-
lowing equation:

Tb =
Cb × Tt

Et
(14)

6.3 Experimental Results

In this section we present a set of experimental
results. Our results demonstrate three important con-
clusions. First, the proposed wakeup and alarm check

algorithms offer significant (up to 6.4 times) reduc-
tion in terms of energy consumption in comparison to
the naive approach with periodic wakeups followed by
checking all alarms per wakeup. Second, the Safe Road
Distance with Max Speed wakeup algorithm offers the
maximum energy conservation with 100% alarm de-
livery guarantee. Third but not the least, the alarm
grouping check algorithm is the most flexible among
the alternative alarm check strategies and offers signif-
icant reduction in terms of energy consumption, and
significant improvement (up to 50%) in battery life
when the number of alarms is high. The Nearest-
only Alarm and the Network Nearest-only Alarm al-
gorithms offer even better improvements in terms of
energy consumption but have limited applicability and
can only be used in those cases where addition and re-
moval of alarms are less frequent and low in numbers.

6.3.1 Effect on Overall Energy Consumption

Figures 8, 9, 10 compare energy and battery life time
for a mobile device by varying the number of alarms
per map tile for different wakeup algorithms (Fig-
ure 8), different alarm check algorithms (Figure 9), and
five alternative combinations of wakeup algorithm and
alarm check algorithm (Figure 10). We used the mea-
surements for the Itsy Pocket Computer [4] given in
the energy parameter table of Figure 7 for these exper-
iments. The results were plotted using the equations in
Section 6.2. Apart from the values listed in the table in
Figure 7, we want to demonstrate how the algorithms
perform when the number of alarms reaches high val-
ues and assume that the mobile client can check only
100 alarms (TAMAX

) in 0.001 hrs. Though in reality
this number might be higher, by making such a pes-
simistic assumption we get to stress-test the system
and see its behavior at the boundary conditions.

Figure 8 (left and center) compare the energy con-
sumption of the individual wakeup algorithms by fix-
ing an alarm check algorithm and we use the naive
alarm check algorithm in this case. It shows that
our wakeup algorithms (especially the Safe Road Dis-
tance algorithms) perform close to 6 times better than
the naive algorithm of periodic wakeup and check all
alarms per wakeup. The increase in energy consump-
tion is almost linear with the increase in the number of
alarms for all four of our wakeup algorithms because
we use the naive alarm checking strategy in all the
cases. Figure 8 (right) shows the corresponding life-
time of the battery for each of the wakeup algorithms.
As shown in the figure, all our wakeup algorithms offer
significant improvement in terms of the battery life-
time of the mobile client and the battery lifetime con-
verges when the number of alarms are high, indicating
that by using the wakeup algorithms alone, it is not



Figure 8: Performance of WakeUp Strategies

Figure 9: Performance of Check Strategies

Figure 10: Performance of WakeUp-Check strategy combinations

always sufficient to reduce the energy consumption in-
volved. For such scenarios, alarm check algorithms are
necessary for energy conservation purpose.

Figure 9 (left and center) compare the energy con-
sumption of the alarm check algorithms by fixing the
wakeup Strategy (Periodic WakeUp Strategy is used
in this case). The graphs show that all three pro-
posed alarm check strategies turn out to outperform
the naive approach that checks all alarms upon each
wakeup, especially when the number of alarms are
high. The Energy consumption with the naive check
algorithm grows almost linearly while with our pro-
posed alarm check algorithms, the increase in terms
of energy consumption is much slower. This is to
be expected because the naive approach checks all
alarms upon each wakeup, which can be significantly
degraded when the number of alarms is high. Fig-
ure 9 (right) shows the corresponding effect on the
battery lifetime. The flexible alarm grouping based
checking algorithm offers close to 86% improvement
over the conventional approach. Also, interesting to
note is that the ’Road Nearest’ based check is almost
as energy efficient as the ’Nearest only’ check algo-
rithm even though it uses far lesser storage (as shown

in Figure 14(center-left)). Further, the trend shows
that these improvements grow with the increase in the
number of alarms.

Finally, we examine the effectiveness of the
wakeup and alarm check combinations. Figure 10
shows some of the interesting combinations. Due to
the space constraint, we omit for a large number of
possible combinations. The battery lifetime plot in
Figure 10 (right) is similar to Figure 8 (right). Even at
higher number of alarms per map tile, we show that the
battery lifetime of a mobile client is considerably bet-
ter in the wakeup case, reflecting the need for a good
alarm checking strategy that parts from the wakeup
algorithms.

Figure 11(left and center-left) compare the varia-
tion of Wake-Up frequencies with the increase in num-
ber of alarms. As one would expect the Periodic
Wake-Up strategy is indifferent with the increase in
the number of alarms. When the mobile client has
only one alarm per map tile, the proposed wakeup
algorithms reduce the number of wakeups by almost
an order of magnitude. The two Safe Road Distance
algorithms perform better than the Safe Distance al-
gorithms. The wakeup algorithms that use expected



Figure 11: Effect of Changes in Number of Alarms

speed reduce the frequency of wakeups further. How-
ever, as shown in Figure 13 the expected speed algo-
rithms may not guarantee the delivery of all alarms at
all times. Also all the proposed wakeup algorithms in-
crease the wakeup frequency as the number of alarms
increases and similarly, all the check algorithms in-
crease the number of alarm checks as the number of
alarms increases. This is expected because with in-
crease in number of alarms the average minimum dis-
tance to any alarm would be reduced and hence both
the Safe Distance and Safe Road Distance Wake-Up
algorithms will allow the mobile client to sleep only
for shorter durations. Note that in this set of exper-
iments we use a clustering factor of two and all the
alarms are limited to one half of the map, resulting in
the frequency of wakeups to level out for high number
of alarms.

Figure 11(right and center-right) compare the
Alarm Check algorithms as the number of alarms
varies. As one would expect, with increase in num-
ber of alarms, the number of checks per wakeup also
increases. Such an increase is linear for the naive
approach that checks against all the alarms at each
wakeup. However, for the alarm grouping approach,
which uses a R-Tree [14] based lookup, the increase is
sub-linear. The Nearest Alarm Only and the Nearest
Road Network Distance Alarm Only offer almost con-
stant number of checks at each wakeup irrespective of
the number of the alarms installed. In reality, with
increase in number of alarms, the number of checks
for these two strategies can also go up but is almost
negligible in practical scenarios. Only in some extreme
cases where almost all the alarms are overlapping with
each other, these strategies would end up requiring
checks on all the alarms at each wakeup.

Figure 12(left and center-left) show the perfor-
mance comparison of periodic wakeup with the four
proposed wakeup algorithms with an increase in the
Clustering Factor. We see that as the Clustering fac-
tor increases, the Wake-Up algorithms tend to perform
better. This is simply because when the clustering
factor is high, it implies that the alarms are clustered
around a portion of the map, thus the minimum dis-
tance to the nearest alarm from the client’s current

Figure 13: Alarm Delivery Quality

location is higher, and the client has longer time to
sleep.

Figure 12(right and center-right) show the ef-
fect of changing clustering factor on the Alarm Check
Strategies. It is interesting to note that with increase
in clustering factor, the grouping near by alarms al-
gorithm performs particularly well in terms of perfor-
mance improvement. This is because the closer the
alarms are distributed, the smaller the size of the Min-
imum Bounding Rectangle (MBR) required to enclose
them, and hence the lesser the number of alarm checks
to be performed at each wakeup. It is also impor-
tant to note that at higher clustering factors there is
a slight increase in the number of alarm checks for the
Nearest Alarm Only algorithm. This is because when
alarms get very close to each other, grid cells used
by this strategy tend to have more than one ‘Nearest’
alarms which in turn result in checking of more than
one alarms for satisfaction.

6.3.2 Alarm Delivery Quality

Figure 13 evaluates the quality of the alarm delivery
provided by each of the wakeup algorithms with vari-
ations in the Number of Alarms and the Clustering
Factor respectively. Periodic, Safe Distance with Max-
imum Speed and Safe Road Distance with Maximum
Speed perform perfectly in terms of 100% delivery of
alarms. However, Safe Road Distance with Expected
Speed misses a few of alarms. Note that in some cases
only about 95% of the alarms are delivered. One would
expect the same behavior for the Safe Distance with
Expected Speed approach. But surprisingly in most of
the cases the Safe Distance with Expected Speed ap-



Figure 12: Effect of Clustering of Alarms

proach manages to have a 100% alarm recall rate. We
believe that this is because the use of Safe Euclidean
Distance played a critical role in offsetting the errors
produced in expected speed estimation. This experi-
ment shows that the Expected Speed algorithms per-
form better in terms of reducing the number of wake-
ups and saving energy. However they are not flaw-
less in delivering alarms with 100% recall, and hence
should be used with care. It is important to note that
the alarm check algorithms do not affect the alarm de-
livery quality. Due to the space constraint we omit the
corresponding experimental results in this paper.

6.3.3 Effect of Alarm Group Size

Figure 14(left) shows the effect of the alarm group sizes
on the final computation required for spatial alarm
processing. A maximum alarm group size of m implies
that the maximum fan out of the R Tree [14] used to
group the alarms is m. In other words, no more than
m alarms can be put together to form a group and no
more than m of such groups can be put together into
a higher level group, and so forth. It is interesting to
note that the larger the group size value of m is, the
higher the number of alarms will need to be checked,
and hence worse the performance of alarm process will
be. This is particularly the case when the alarms are
scattered all around the map (CF = 1).

6.3.4 Storage Cost for Nearest Alarm Check

We measure the tradeoffs between the Storage re-
quirement vs minimizing number of checks for the
Nearest Alarm Only Alarm Checking algorithm. In
order to make the effects more pronounced we used
forty alarms (on the same map tile of about 1.61km2

area) with a clustering factor of three such that a
large number of alarms would be clustered around
a small region. Our experimental results show that
with increase in number of grid cells per row of the
map tile, the storage requirements for the dense index
also increase rapidly (Figure 14(center-left), while
at the same time the number of checks required at
each wakeup is reduced at a very high rate (Figure
14(right)). However, the Network Nearest Alarm

Algorithm Battery Lines of Code Recall

Periodic 5.93 hrs 14 100%

SD Max 13.11 hrs 24 100%

SD Exp 14.84 hrs 55 100%

SD Road Max 17.26 hrs 410 100%

SD Road Exp 20.02 hrs 451 98%

Table 1: Wake-up Strategy Comparison (10 alarms case)

Algorithm Battery LOC Storage growth

Naive 2.96 hrs 41 constant

Group 5.44 hrs 567 linear

Nearest 6.47 hrs 132 quadratic

Road Nearest 6.42 hrs 359 linear

Table 2: Check Strategy Comparison (30 alarms case)

Only approach is more scalable as shown in Figure
14(center-right and center-left).

Finally, Table 1 and Table 2 compare the dif-
ferent algorithms along several different dimensions.
’Storage growth’ denotes the growth in storage re-
quirements in addition to the list of alarms. Clearly,
there is a trade off involved between simplicity (LOC),
efficiency (battery), quality/recall (for wake-up algo-
rithms) and storage (for check algorithms). Depending
on the intended usage scenario, the system implemen-
tation could choose between the different algorithms
to maximize the utility.

7 Related Work and Conclusion

The idea of location based reminder and its use
have been discussed in several human-computer inter-
action projects in the recent years [18, 23, 7, 17, 5, 22].
Most of them primarily concentrate on usability of
such location reminder systems from the human-
computer interaction point of view. Certain others like
[16] focused on identifying the user’s logical location by
mapping information such as IP Address, latitude and
longitude information in GPS readings. The logical lo-
cation could then be used to automatically connect the
mobile client to local resources such as printers. On
the other hand, there are several other works like [11],



Figure 14: Effect of Alarm Group Size and Storage Requirements for the Check Strategies

[10], [19] that are dedicated to general strategies for
minimizing energy consumptions on mobile devices.

[21] introduces the idea of Query Indexing and
Velocity Constrainted Indexing solves the more generic
problem of continous queries. However, given the
generic nature of the problem it does not exploit as-
pects related to the road network and optimizations
such as query grouping.

We have presented an energy efficient framework
for processing spatial alarms on mobile clients. Our
approach to spatial alarms provides two systematic
methods for minimizing energy consumption on mo-
bile clients. First, we introduce the concept of safe
period to reduce the number of unnecessary wakeups
for spatial alarm evaluation, enabling mobile clients
to sleep for longer periods of time. We show that our
safe period techniques can significantly minimize the
energy consumption on mobile clients compared to pe-
riodic wakeups while maintaining the desired accuracy
and timeliness of spatial alarms. Second, we develop a
suite of techniques for minimizing the number of loca-
tion triggers to be checked for spatial alarm evaluation
at each wakeup. This further reduces the computation
cost and energy expenditure on mobile clients. Our ex-
periments show that the proposed client-based spatial
alarms architecture offers significant improvements on
battery lifetime of mobile clients, while maintaining
high quality of spatial alarm services compared to the
conventional approach of periodic wakeup and check-
ing all alarms upon each wakeup.
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