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Abstract

Memory-to-memory latency is a critical performandeterminant of scalable computing
systems. The use of modern interconnect fabridstlyigcoupled to the processor-memory
hierarchy such as AMD’s HyperTransp8r(HT) have the potential to provide the lowest end-
to-end transfer latency for systems comprised d te thousands of multicore nodes. However,
to productively harness this raw capability, it inibs exercised in the context of a global system
model that defines how the system wide addressespateployed and utilized. Towards this end
we advocate and explore the implications and implaation of a Partitioned Global Address
Space (PGAS) model for the implementation of sdalatluster systems. A prototype
implementation based on HT-Over-Ethernet (HTOE) peoposed that is suitable for
experimentation and measurement. In particularareeconcerned about the portability of the
model and software implementations across futumeeiggions of processors with increasing
physical address ranges. The paper concludes Wehidentification of several potential
directions for future research.

1 Introduction

The purpose of this paper is to describe a moddl @mopose a set of mechanisms for the
realization of a partitioned global address spd&@AS) using commodity interconnects and
outline an experimental implementation for Hypengport based computing systems. The latter
is intended to serve as a basis for applicatiovedrexperimentation and measurement for PGAS
systems. In such systems, physically addressabheonyein all nodes is part of a global address
space with non-uniform access time from any speaidide. From the perspective of a node, the
global address space is comprisedlocél partitions andremote partitions where the former can
be accessed with the lowest latency and the letterbe accessed with larger and possibly non-
uniform latencies (across distinct remote partgjorin our model, a local partition refers to
DRAM accessed through a tightly integrated memamgtoller (MC). Remote partitions are

accessed via read/write transactionsget/put operations that are implemented via message
passing. The PGAS memory systems are an activeoiresearch in the high performance and
high productivity computing arenas, particularlytivim the language and optimizing compiler
communities. The PGAS model can support both shanemnory and message passing
communication models. The simple semantics of getperations enables effective reasoning
about performance and correctness and thus leadsptimizations and opportunities for
performance and productivity enhancements that avotherwise be infeasible. Note that we
are focused on the lowest latency accesses acragsbally non-coherent shared physical
address space.

We anticipate designs that should scale from 1080@0s of compute nodes. This end-to-end
latency is currently dominated by software (pattdy for message passing) amutra-node
delays (wire- memory) at the end points of communication. Otategy is to focus first on a
minimal set of mechanisms and abstractions to oactskarge scale systems capablenofimal
latency implementations for data transfers betw&emote memory partitions, i.e., an

implementation of thget/put model. Shared memory and message passing abstisaetill be

layered on this basic functionality. Finally, oapproach rests on the presumption of the
eventuality of 64-bit physical address spaces. Tthesnear term realizations proposed here are




viewed as emulations of 64-bit address spaces umiltijessability of current cores and is
approached with the goal of ensuring software pditg across generations of machines with
the increasing physical addressability of futureeso

The remainder of this document describes an exierisithe PGAS model - Dynamic PGAS or
D-PGAS - and its realization for systems intercatee with Ethernet and using HyperTransport
at the end nodes for reducing the (wisememory) latency. This model is distinguished iiewa
ways from the traditional high performance compytfhlPC) version of the PGAS model. This
paper concludes with some thoughts and recommemdatior novel, high-value research
directions enabled by this model.

2 The Dynamic PGAS Model

This section describes extensions to a well-kno@AE model [13] to permit flexible, dynamic
management of a physical address space. The twparwents of this model are the architecture
model and the memory model.

2.1 Architecture Model

Future high-end systems are anticipated to compfsenulti-core processors that access a
distributed global 64-bit physical address spaaae€ nominally have dedicated L1 caches for
instructions and data, but may share additionalgeaf cache amongst themselves in groups of 2
cores, 4 cores, etc. A set of cores on a chipshidire one or more memory controllers and low
latency link interfaces integrated onto the die. &xample of the latter includes AMD’s
HyperTranspoft' (HT) protocol [9]. All of the cores also will staraccess to a memory
management function that will examine a physicalrasls and route this request (read or write)
to the correct memory controller (MC) — either llooca remote. For example, in the current
generation Opteron systems such a memory managdéumetion resides in the System Request
Interface (SRI) which is integrated on chip witle tNorthbridge [14]. Several such multicore
chips can be directly connected via point to ptimks. This is the configuration made feasible
by AMD’s Opteron series multi-core processors legdp 2, 4 and 8 socket configurations with
low latency access across 2, 4, and 8 nodes \@atdfT connections.

Alternatively, the remote memory controller may betdirectly accessible over a few HT links,
but rather may be accessible through a switchedanktsuch as Infiniband [10] or a custom
interconnect such as employed in high-end compuorgigurations by Cray [3]. In this case a

get or put operation must be encapsulated into a messagtarsinitted to be serviced by the
remote MC that will subsequently generate a respéoghe local MC. In this model memory

controllers receiveput and get transactions from any core. Finally, we believe tbwest
latency is achieved when the MC is tightly integtatwith the Network Interface (NI)
minimizing the distance from the DRAM to the wik&e explore some of the options for such
integration, although the prototype we are constigccannot implement such a feature, since
the MCs and NIs are integrated on-chip. However, are constructing independent
microarchitecture models of such integrated comptme

The architecture model is memory-centric in théofwing sense. Cores are becoming primitive
architectural elements that are no longer the pgirdaterminant of performance because clock




frequency is bounded by heat dissipation and e¥eahstruction issue width is bounded by
control and data dependencies. Thus, computatialingcwill come from the availability of
additional cores and thread-level and data-levealjgdism. Power dissipation concerns will
accelerate the move to simpler streamlined coitfle, dr no speculation, and doubling of cores
across technology generations. Memory bandwidthiatglconnection bandwidth will have to
track the increase in the number of cores and theyg will need to be effectively utilized to
sustain Moore's Law performance growth with thelisgaof cores.Consequently, we are
focused on the distribution of memory controllers in the system and their interaction with the
interconnection network, which must deliver the lowest latency and highest bandwidth.

2.2 Memory Model

The memory model is that of a 64-bit partitionedbgll physical address space. Each partition
corresponds to a contiguous physical memory regmntrolled by a single memory controller
and in this document all partitions are assumethecof the same size. For example, in the
Opteron (prior to Barcelona core) partitions ardByte corresponding to the 40-bit Opteron
physical address. Thus, a system can hateatitions with a physical address space ¥f 2
bytes for each partition. Although large local gems would be desirable for many applications
such as databases, as we will point to in Sectiothere are non-intuitive tradeoffs between
partition size, network diameter, and end-to-ertdniey that may motivate smaller partitions.
Further, smaller partitions may occur due to patiggonstraints, for example, the amount of
memory attached to an FPGA or GPU accelerator \8mgle MC is typically far less than 1
Thyte. Thus we view the system as a network of mgneoontrollers accessed from cores,
accelerators, and I/O devices.

We need to distinguish between two classes of mgimperations generated by a local core - i)
load/store operations that are issued by corefdw tocal partition and are serviced as per

specified core-semantics, and ggt/put operations that correspond to one-sided read/write
operations on memory locations in remote partitioftse get/put operations are native to the

hardware in the same sense as load/store operafitiesexecution of get operation will
trigger a read transaction on a remote partiticoh thie transfer of data to a location in the local

partition, while the execution of put operation will trigger a write of local data tor@mote

partition. Transactions may have posted or nongabsemantics. Thget/put operations are
typically visible to and optimized by the compil@he address space is non-coherent, although
we discuss the layering of on-demand coherencehisni-PGAS model in Section 4.2. We
intentionally separate the issue of coherence ftloenissues central to realizing a low latency
PGAS model in the interests of opportunities toalley scalable coherence techniques. Now

consider get transaction on a memory location in a remote f@nti This read transaction must
be forwarded over some sort of network to the tangemory controller and a read response is
transmitted back over the same network. The speo#diwork is not germane to the D-PGAS
model implementation. However the fact that Nistagktly integrated with the MCs is relevant.
Being constrained by commodity parts, our prototypkzes HT-over-Ethernet (HTOE).

An application (or process) now is allocated a plalsaddress space that may span multiple
partitions, i.e., local and remote partitions. Bglently, the processes’ physical address space is
mapped to multiple MCs, and thus an applicationtual address space may map to physical




pages distributed across local and remote parsitiorhere are a number of reasons to physically
distribute an application’s physical address spate most intuitive one is for sharing where
processes from an application may share physicgégpdy having portions of their virtual
address spaces mapped to the same physical pdgesssumptions need to be made about how
that shared space is managed, leaving open odboroptimized management that are specific
to the type of shared interactions, e.g., commuioicand shared libraries. There is a significant
body of knowledge on managing remote storage tatbe brought to bear in this context. One
of our principal research directions is to explo@v such flexible mappings can be used to
optimize all aspects of memory system behaviowigiclg coherence, consistency and sharing.

The set of physical pages allocated to a procesdeastatic (compile-time) or dynamic (run-
time). The nature of the page management changssalable systems due to the hierarchy of
latencies necessitating optimizations that havk lielevance in traditional operating systems,
e.g., page placement. Physical partition and pdlpeation can affect the communication
support that must be provided. For example, it lp@ynecessary to maintain a list of remote
partitions that can be accessed or informatiortedléo coherence/consistency management that
may be maintained on a per page basis (more inocGet)

To summarize, our model specifiggt/put transactions for accessing physically distributed
pages of a process and these transactions maybated or non-posted semantics. The location
of physical pages may be changed under compilaperating system control, but the pages
remain in a global 64-bit physical address spadkereinote transactions are necessarily split
phase. We now turn our attention to the processnplementing an experimental D-PGAS
system.

3 Implementation of a D-PGAS Prototype

To evaluate the new functional capabilities affordey the model we are constructing a
prototype for experimentation and measurement. protype defines how individual physical
address spaces of each core are mapped into tha&l gloysical address space and the tunneling

of associatedet/put transactions through Ethernet.

3.1 Implementing Global Addresses

Our plan is to implement a test bed using AMD Ogteprocessors coupled via HT/Ethernet
with PGAS support implemented in an FPGA-based kieinet bridge. While the model is
based on a 64-bit flat address space, the AMD x8@@hitecture supports a 52-bit physical
address and each individual Opteron core genesat3-bit address while the Barcelona core
will generate 48-bit addresses. We can expectlilgsigal address range to continue to change in
future generation cores, and consequently our isokit should anticipate such changes.
Therefore, we implement mechanisms today that &ffg can emulate a 64-bit address space.
The physical address space of a process is mamgpesisahe MCs in the system, and memory
accesses must be directed to the correct MC. Aesdsslocal MCs, i.e., local partitions, are
handled as they are today, for example in the ©ptdRemote accesses are handled by mapping
the address to a remote MC. We propose to impleth&mapping by adapting simple well-
known architectural techniques for extending adslraages.




Recall that the memory management function (se¢idde2.1) determines the MC that is to
service the request. If it is a remote MC, the esfjus sent to the HToE bridge rather than the
local memory controller. The basic principle is gelect some number of upper bits of the
physical address generated by a core to index dauof partition registers. The contents of the
indexed partition register are concatenated with rémaining bits of the physical address to
produce a system wide 64-bit address. The uppmiess bits for this 64-bit address can be used
to route the read or write transaction to the atrremote MC. For example, in the case of the
Opteron that produces a 40-bit physical addressufper two bits can be used to index one of
four 26-bit partition registers. The concatenatainthe two addresses will produce a 64-bit
address. By changing the contents of the partitemisters, a core can address system wide
memory. In our prototype, the HT-to-Ethernet (HTd&)dge will perform this function as
illustrated in Figure 1 (from [6]).
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Figure 1: Logical Implementation of D-PGAS Address Transation

This preceding implementation will allow two nodesaccess the same remote partition- the
partition whose address is stored in the individpaltition registers of their individual
translation tables. Alternatively, the shared piarti may be local to one node (i.e., does not
traverse HToE) while it is remote to the other n@ide, traverses HTOE). If partition registers
are not modified over time, i.e., statically asgigrat initialization, communication between two
processes requires that i) their physical addrpases overlap, or ii) they exchange memory
regions for data transfers as is done in modern RByktems and then use this information to
update their partition registers. If partition r&grs are modified over time, different areas can b
used for communication. In the extreme case wherarition register is modified prior to each
remote access, we have the equivalent to messagm@dthe partition register is effectively set
with the destination node ID) with remote DMA capigo

This model provides a great deal of flexibility.rkostance, a given process may have access to
multiple remote partitions at a given instant mei If certain partitions are only used by a host
core, these partitions become private memory ncessible by other cores. If certain partitions
are accessible from different cores, this enabt@ancunication among them through shared
memory. If a given partition is accessible to oty cores, this enables private communication




among that pair of cores. Finally, the ability tgndmically change the value of the mapping
means that each core can get access to a rangli@saes (over time) larger than the range
defined by 40-bit addresses. This dynamic addreggping could prove useful in implementing
a flexible hardware virtualization scheme.

Once the system is initialized, global addressgbiéi used for creating, possibly dynamically,
shared memory partitions or message passing paditiThe latter can implement traditional
push messaging or alternatively a pull message imdte overhead of message passing can be
significantly reduced. Specifically, for pair wisemmunication, we anticipate that the overhead
of remote DMA or RDMA can be significantly reduceBinally, with 48-bit addressing
providing global physical address spaces of 256td@®yincreasing physical address space may
initially be viewed as unnecessary. However, ttehne@ues proposed here are useful for i)
implementing PGAS models for cores that providehb®®-bit and 40-bit addresses, ii) for
extending these address spaces across a varigtienfonnection fabrics, iii) hosting a variety
of optimizations concerning inter-cluster commutiara iv) implementing sharing between
clusters across the network, v) enabling more lflexpartitioning and provisioning of resources
in large scale compute and data server configursitiand vi) managing special purpose devices
and compute accelerators. Further, it is possiblsupport a very large number of nodes with
each potentially accessing a large (on the ord&rabytes) physical memory. For example, note
the products offered by Violin Memory Inc. [8].

This integration of memory and communication hagessd consequences. First, it will move
communication from the 1/0O space to the memory sp8y virtue of having communication
reside in the memory space, we believe that tlbtimaal high overhead of mediated NI access
mechanisms can be removed from the latency crifpzh. Logically and physically, the
interconnection network is now viewed as intercating memory controllers across the system
rather than interconnecting cores via I/O subsyst€dommunication services supported via I/0O
devices require mediation (operating system/virtnathine monitor (VMM)). Such mediation
is a high latency operation, and a substantial lddyork has evolved in amortizing, reducing,
and hiding network interface (NI) latency. We albelieve this integration enables new
capabilities for cluster-based systems includinge{fgrained remote direct memory access
(RDMA), page-based memory semantics, and simpiahiéty models for service provisioning
in data centers (some thoughts in Section 4). BEcthe tightly integrated network-memory
system supports flexible provisioning of resouraesoss nodes in support of virtualization. For
example, a virtual machine (VM) executing on onéle@an have its physical memory space
span multiple nodes. Finally, we anticipate thatyatem-wide name space simplifies service
management and deployment, service redundancy amd tblerance, service isolation for
security purposes, and sharing in large data center

3.2 The HyperTransport-over-Ethernet Bridge

It is useful to first provide a simple overview iy operational attributes of HyperTransport. In
its simplest instantiation, HT devices are conmécia a point-to-point, one-dimensional
topology anchored at one end by the host bridge.hidst bridge implements the interface to the
rest of the system. Data and control packets arstnitted over three classes of virtual channels
- posted, non-posted, and response. HT device segaekets travel upstream to a host bridge
where they are either a) routed upstream to a higlrel device or main memory b) routed back




downstream to the target device. As an examplel addd request command packet with 40-bit
addressing is shown in Figure 2.

The fields of this command packet are used to §pegtions for the read transaction, and to
preserve ordering and deadlock freedom. The mopbitant fields for our example are the
UnitlD, SrcTag, SeqlD and address. The UnitlD sjesithe source or destination device and
allows the local host bridge to direct requestgploeses. The SrcTag and SeqlD are used to
specify ordering constraints between requests feomevice, for example ordering between
outstanding, distinct transactions. Finally, thelrads field is used to access memory that is
mapped to either main memory or HT connected deviées shown in the next section, an
extended HT packet builds on this format to spe@#fbit addresses [9].

8 bits
A
( Seq ID [1:0] | HT Command field (Rd Req)
Pass | Seq ID [3:2] Unit ID
Cnt[1:0] | Compat Source Tag
< Address [7:2] | Cnt [3:2]

8 Bytes

Address [39:8]

Figure2: HT Request Packet

The HToE bridge implementation uses the UniversitiMannheim’s HyperTransport Verilog
implementation [7]. We retain their applicationarface to communicate between the local HT
link and the HToE bridge.

3.2.1 Address Translation and Ethernet Encapsulation

As a practical matter, our implementation will beesed on Opteron nodes where each Opteron
node will have an Ethernet-enabled FPGA card availan the HTX connector slot. Several
nodes will be connected via an inexpensive Ethesmétich. Depending on the specific board
and FPGA implementations, the HT FPGA may be abkilan the I/O or memory address
space. This impacts efficiency but not the fundaidy we wish to test. The functionality has
been implemented in synthesizable Verilog and talintegrated into the Opteron-based test
bed. We may be able to access the Northbridge ssladnapping tables (via the BIOS perhaps)
and specify the physical address space mappingsev#y, if not, and if the FPGA card is in the
I/O space, this document assumes that the MMU disliinguish between accesses to the local
memory and the 1/0O address space (or some mechawifnand HT packets will be sent for
non-local addresses through a HT-Ethernet bridge.

Consider a system that has been properly initidjize., all of the partition registers in the D-

PGAS bridges have been loaded for the applicatiow consider a parallel, shared memory
application that generates a read operation toddreas that is in a remote partition. There are
three stages in each individual communication dmerale.g. a read request command) at a




given source host and attached devices: a) exterisan the 40-bit physical address in the
Opteron to the 64-bit physical addresses, b) aeaif a HyperTransport packet which includes
a 64-bit extended address and c¢) mapping the ngrsfisant 24 bits in the destination address
to a 48-bit MAC address and encapsulation into trefaet frame. Obviously, implementations
can pipeline the stages to minimize latency, btaimeng the three stages has the following
advantages: i) it separates the issues due tontymrecessor core addressing limitations from the
rest of the system, which will offer a clean, glblshared address space, thus allowing
implementations with other true 64-bit processasd ii) it will be easy to port to other
platforms that do not encapsulate by using Ethdraetes, but use other link layer formats, for
example, Infiniband.

40 b address  Destination HT Packet
is extended to Ethernet MAC  encapsulated
global 64 b address in Ethernet
address lookup frame
Local HT N
addr HT | [Ethernet | — Ethernat
Fen P acket - Frame [— frames are
HT packet Gen Canstr queued and
arrives then sent over
from local X K Gigahbit
system v Ethernet
B Fequests store
2Sp0nses UnitlD
Response nitib,
4 |DD.k u[.:l Matching SrCTag, Seq # Etherﬁet
estination and source Mac
MAC here MAC
L 4
Local HT
o < [
Packet|
<3| | Gen [« fErtract
Remote HT packet

enters local

system Unit 1D is set

to attached
cave's UnitlD

Figure 3: The D-PGAS Bridge with Read Request

The detailed transmit behavior of the HToOE Bridge & read request to a remote partition is
described by Figure 3. Note that this figure shavgsngle end point. In the description below the
transmit side of the request and the receive sfdie request takes place at two physically
distinct end points. We use the same figure to rid@sdhe processing of the message at the
source node and destination node since their designidentical to that shown in the figure.

First, the HT packet type is decoded into a requesponse, or command packet. For request
packets the two most significant bits of the 40dditiress are decoded to select one of four
partition registers to access the 24 bit partiaddress - the 2 most significant bits in the 40-bit
address used to address the partition registeeset in parallel with the access to the partition
register. Now we need three pieces of informatigrihe extended 24-bit address to form an HT




read request packet with extended address, 2) &€ atldress of the destination bridge to
encapsulate the extended HT packet into Etherndt3athe local MAC address, according to
Ethernet frame format to enable the response. Btéiars been set during initialization, and
access to the source MAC address is not in thiearjtath. ltems 1 and 2 have a direct
correspondence among them (given a destination ilbdeequivalently the remote partition
address there is a unigue MAC address associatkdtyviTherefore, the partition register can
store both the 24-bit partition address (or laagediscussed above), and the destination MAC
address together, thus reducing access time whennig the Ethernet frame. Once the remote
MAC address and the 64-bit address have been fiouith@ partition table, the new HT packet is
constructed and encapsulated in a standard Ethgeinkét. The encapsulated packet is then
buffered until it can be sent using the local nedethernet MAC and the physical Ethernet
interface. For packets that send a set amounttaf ttee control and data packets must be
buffered until all the data has been encapsulatiedithernet frames.

The receive behavior of the bridge on the remotienill require a “response matching” table
where it will store, for every non-posted HT reguesquest that requires a response), all the
information required to route the response badkéosource when it arrives. Since the formats
of HT request and response packets differ andrtiptementation desires not to change local
HT operation, the SrcTag field of each packet edu® match MAC addresses from an
incoming request packet with an outgoing respoias&qt. Note that each request packet
contains the source MAC address, and this is theead stored in the "response matching" table
and later used as destination MAC address forah@sponding response. Encapsulation and
buffering occur once again until the response atd dan be transmitted over Ethernet.

It should also be noted that since HT SrcTags ari#s a maximum of 32 outstanding requests
can be handled concurrently by this approach. b t@quest packets arrive with the same
SrcTag, then the latter packet is remapped befa@i@gbstored in the table. When the
corresponding response leaves the HT-Ethernetdyritig SrcTag is mapped back to its original
value to ensure proper HT routing on the requestiogl node.

Once the response reaches the local HT-Ethernggeotthat initiated the read request, the HT
packet is removed from its Ethernet encapsulafidre UnitID is changed again to that of the

local host bridge and the bridge bit is set to stedpacket upstream. This allows the local host
bridge to route responses to the originating HTickev

Other transactions such as a posted write or aposted write involve similar sequences of
events. The differences in these transactionshatefdr posted writes, no data is stored to create
a response. For non-posted writes, only a “Targe¢Doesponse is returned and no data needs
to be buffered before the response is sent ovesrigh Similarly, atomic Read Modify Write
commands can be treated as non-posted write conmfianthe purposes of our model.

3.2.2 HToE Performance Results

Early synthesis tests using Xilinx software hawdicated that the four modules that make up the
bridge are individually capable of speeds in excés200 MHz — combined, unoptimized results
indicate that the HT bridge is more than capabléeetling a 1 Gbps or faster Ethernet adapter
with a maximum speed of 166 MHz. Additionally, esdites using a conservative 125 Mhz (1
Gbps) clock speed and evaluations for each ofdaheast and reply critical paths suggest that the




latency overhead of such a bridge is on the orfi@0el0 ns. In a Xilinx Virtex 4 FX60 FPGA,
an unoptimized placement of the bridge uses apprabaly 1300-1500 slices, or approximately
5-6% of the chip. These preliminary statistics pdm the HTOE bridge being a small, fast
implementation that is appropriate for investiggtimgh-performance D-PGAS models.

Our current efforts are focused on stabilizatiord daaning of the implementation pending
implementation on a hardware prototype.

4 Research Directions

The prototype HToOE implementation provides a testl o investigate a number of issues
surrounding scalable PGAS systems. Several spessiies are described below.

4.1 D-PGAS Programming Interface

Our initial programming interface is inspired byetBerkeley GASNet [4] specification. Our
long-term goals include working towards a nativeplementation of D-PGAS where the
primitives should be implementable via extensiamshie core instruction set architecture. The
basic operations will be identified and implementa new instructions or short sequences of
existing instructions. The evaluation of the instion set extensions will be via simulation while
the functional evaluation will be in software, fxample via the message handlers of GASNet.
Several classes of operations that this interfaceild support beyond the obvious (read/write
transactions) are immediately evident and are lgrigiuched on below — message ordering
constraints, memory consistency, and synchronizatio

Ordering constraints typically arise to ensure ectniess (e.g., deadlock, coherence, etc.) of the
protocol — in this case corresponding to the tighltbupled NI e.g., HT. These ordering
constraints on messages must be honored when cagatian is extended across many nodes.
In particular, HyperTransport specifies certain ewndg constraints between subsets of
transactions originating from a device, and in fagie of these constraints are specified or
recorded in the packet headers. The HT protoadipation was designed for a specific target
size and set of topologies (via HT bridges as desdrin the specification) and the ordering
constraints rely on the anticipated implementatwohitectures which our proposal seeks to
change. Preservation of these behaviors acrosstehsed network is not straightforward. The
situation is in fact analogous to the developmédnthe Advanced Switching Interconnect for
extending PCle across multiple nodes.

A second class of constraints that must be honigrédwse arising from the memory consistency
model. Ideally we would like to support several noeynconsistency behaviors using the
primitives defined in the local protocol. Operasodefined within HyperTransport for this
purpose include fence and flush operations. Thet effisient way to implement these types of
messages and to conform to HyperTransport deadiee#dom requirements is to provide
support in the bridge to handle and prioritize ¢stesicy-related packets. For example, a flush or
fence operation normally pushes posted writes iocal HT system to memory so that all
following reads will have the most up-to-date imf@tion. Each operation only operates on
posted writes, but they allow for consistency greatransaction basis (flush) or on a per-device
basis (fence). Extending these operations acrogiolaal address space requires additional
support at the end points. One option is the falhgw use of remote-flush and remote-fence




operations. This would involve using a special dsirite packet addressed to the local bridge,
which then would generate a remote-flush or renfeee command to be transmitted to the
receiver. When the remote-flush or remote-fencemand reaches the remote node, the remote
bridge correctly interprets and propagates theectrocal flush or fence command so that it
operates like a locally generated HyperTranspammand. In effect this model is one wherein
the HyperTransport segment at the originating nisdegically (and transparently) extended
across the network.

The availability of remote atomic operations isessary for coordinating multiple requesters. In
the case of HyperTransport, the read-modify-writansaction is available to implement
synchronized transfers. Further, we anticipate tbatote-fence and remote-flush operations in
conjunction with non-posted communication can bedus affect fine grained as well as coarse
grained synchronized transfers - in fact to impletmeehaviors such asait andtry in the
GASNet specification. This aspect of our work willoceed initially with the definition and
adoption of a memory consistency model followedHhw®ydefinition of the base primitives for the
prototype implementation of D-PGAS.

4.2 Scalable Coherence

The prevalent shared memory coherence protocols imnerent barriers to scalability primarily
because they possess two characteristics — i) ramifoeatment of accesses to any memory
address, and ii) application agnostic behavior hat tall memory references are treated
equivalently. Mechanisms such as snooping, flooding the use of directories are global
mechanisms for synchronizing updates to sharedbas. By enabling non-uniform treatment
of memory references or memory regions, one camrldpvapproaches to coherence that are
tailored to the reference behavior of the applorai and the sharing pattern amongst cores
(equivalently memory controllers). Such limited,ndynic, or on-demand coherence can be
effectively supported via the flexible global adekespace mapping mechanisms described here
supported by optimized page management policiege. rBsearch direction here begins with
revisiting past research in scalable coherenceopotd as a prelude to an effort focused on
limited, dynamic, page-based, on-demand coherermteqols. For example, the address space
mappings implicitly define the set of MCs that mpatticipate in coherence at any given point
in time and one can envision that MCs have two rmaafeoperation — coherence mode and
standard mode where the former requires checksiticat an additional cycle or more of
latency. Furthermore, we plan to consider replachey Ethernet prototype with a many-core
network. We can consider support within the netwéok dynamically created coherence
domains (partitions of the system) whereby cohereilscmaintained only within the current
constructed coherence domain. Required functignaditiudes flexible data structures that can
be tailored to the current set of pages that afeetcoherent and managing traffic accordingly
without penalizing non-coherent traffic.

4.3 Memory Latency Optimizations

Critical to remote access latency is the path betwee wire and the DRAM. Tightly coupling
the NI with the memory controller is a step towardduction in remote latency. However, the
DRAM memory access latency is a major componenthf overall end-to-end latency and
DRAM access latency is a function of the organ@atnd capacity of DRAM. The interesting
research question here is whether one can tradeMD&%ess latency for network latency, i.e., it




may be preferable to reduce the size of a DRAMitpant at the expense of increasing the
number of partitions and therefore nodes on thevorét For example, if one can recover 75 ns
by using smaller partitions but increase the nunaberetwork hops by 2-4 links at a cost of 2-4
ns/link, this may be a good tradeoff. We are afgerested in the microarchitecture of the
interconnect between the wire, memory controllensl éocal cache/core, with the goal of
ensuring the fastest path from/to the memory cdletrand the wire, in this case HT.
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Figure 4: Integrated Memory Controller and NIC

Figure 4 illustrates an integrated DDR memory cafgr and queue-pair based NI. The example
DDR controller excludes pre-fetch logic, ECC checkietc. but captures the basic interface
issues. The response matching table is necess&gefpinformation regarding remote requests
such as the request source address, which is adceksing response generation. Other
messages may not access the response matchingRabexample, remote store operations with
posted semantics will not generate responses aréftine will not need to store the source
address of the request. Finally, this integrated-WiGnust provide support (not shown) for
remote atomic operations which will be necessary doncurrently serving multiple remote
requests and models such as fine grained RDMA camuation models. Note that a local
memory controller can share a partition with remmaides without local host interaction.

Such integration is particularly useful when usiGA co-processor accelerators where the on-
FPGA memory controller is integrated with the hiogérface to enable shared memory between
the host and the FPGA. In our model, the FPGA DR&M be mapped into the system wide




address space making the FPGA accessible to afisniodthe system and we hypothesize that
this will enable efficient sharing of the FPGA aslWas optimization of data transfers between
the host and FPGA DRAM. Such aspects currentlypaneg explored.

4.4 Message Passing

Of significant importance is efficient support fonessage passing. In the implementation
proposed here header construction is performedardware and there is efficient support for
zero-copy implementations. Of particular interestthe manner in which the semantics of
standardized layers such as MPI and remote DMA (RDPban be supported. A useful place to
start is with porting low-level software layers tisapport the PGAS model such as Berkeley's
GASNet [4]. We propose the pursuit of an implemeaitaof GASNet over our HTOE prototype
as a vehicle for benchmarking and measurement.

The availability of a D-PGAS system enables usetasit communication optimizations such as
pull messaging where the availability of data isted or communicated (possibly via a message)
and the data transfer is scheduled and affectedhbeyreceiver. Working with Ohio State
University, we also plan to explore the implemeontaand optimization of MPI over D-PGAS.

4.5 Memory Provisioning for VMs

An application (or process) now is allocated a pajsaddress space whose partitions may span
multiple MCs, i.e., local and remote partitionsdaherefore its virtual address space maps to
MCs distributed across the system. This abilitaggregate physical memory resources across a
machine via a low latency interconnect fabric istca to ability to consolidate and manage
memory resources in the construction and deployméntirtual machines (VMs). The Virtual
Machine Monitor (VMM) or hypervisor is responsibler allocating memory to VMs and as
necessary updating the address translation tabldeeiintegrated NI-MC to reflect the physical
addresses accessible by the VM. Therefore VMs neeldnger be limited by the memory at a
single node, nor is the number of VMs supported abde a function of the size of the local
memory. We anticipate that this can be particuladipable for data intensive applications and
those that benefit from in-core databases sincesacto remote DRAM is several orders of
magnitude faster than access to disk. Finally, dkailability of global address spaces also
presents some advantages for the migration VMslange scale system since the memory state
will not have to be migrated.

4.6 Related Research

Distributed shared memory machines have been ungestigation for the past two decades
including the Stanford DASH and Flash multiprocessfb], and SGI Origin [11]. These
machines were driven by the need to support a Isirggde coherent address space whereas at
lowest level we are interested in first support@mgion-coherent address space over which
smaller coherency domains can be dynamically défened implemented as necessary. We are
also motivated to find solutions compatible withmsaodity interconnects. Furthermore, the high
productivity computing community is investigatingsRS solutions driven primarily from the
perspective of productivity. PGAS languages, thetimized compilation, and efficient run-time
execution are the object of several projects inolgdJPC [2] and X10. We are patrticularly
motivated to utilize the GASNet [4] primitives ingort of our work. They include support for




fine-grained message-passing operations and hamerdrated the flexibility for data-intensive
scientific computing operations that traditionallgave driven the development and
implementation of large cluster-based supercomput®ltilizing this implementation is a natural
point of departure for us.

5 Summary

This paper has advocated the use of a dynamidipaed global address space (D-PGAS) for
future high performance computing systems. Spedificwe argue that the advent of integrated
high speed interconnects such as HyperTransportiteaded new opportunities for managing
address spaces in these large cluster systemsptoven performance and scalability and more
than an effective and productive compilation andgpgmming model. The model we have
proposed differs from current models in that ijsifocused on physical addresses spaces, ii) is
dynamically managed, and iii) seeks tight integratof memory controllers and networks. We
are currently implementing an experimental versigming Ethernet as the communication
substrate to gather application specific informatizat will guide future architecture efforts.
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