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ABSTRACT
Management and automation are important issues in enterprise en-
vironments, often consuming the largest fraction of the overall IT
budget. A key challenge here is co-ordination across multiple man-
agement solutions deployed in different management domains, in-
cluding across hardware and software, across different levels of ab-
straction, and across different hosts. This paper makes three contri-
butions to addressing this problem. First, we propose a novel man-
agement co-ordination architecture for virtualized environments.
Our architecture includes two powerful abstractions – m-channels,
which provide mechanisms for communication between the hard-
ware, virtual machines, and applications and m-brokers, which al-
low high-level policy co-ordination across different management
agents. Second, we discuss Dom-M, an instantiation of our archi-
tecture in the context of the Xen hypervisor, and identify tradeoffs
between different implementations of such management domains.
Finally, to demonstrate the effectiveness of our approach, we im-
plement and evaluate different cross-level solutions for power man-
agement using our abstractions, and also discuss qualitatively other
applications including storage backup, inventory management, and
trust management.

1. INTRODUCTION
Rising complexity in modern data centers has led to increased

costs for managing data center resources and applications. Indeed,
various studies have shown that management and automation often
consume the largest fraction (in some cases, 60-70%) of the total
IT budgets for data centers today.

In response to these trends, a spectrum of management solutions
have been deployed in the data center, including hardware moni-
toring, power and thermal management, diagnostics, provisioning,
SLA management, storage backup, etc. A key challenge, however,
is co-ordination across different management domains, including
across hardware and software, across different levels of abstraction,
and across different hosts.

Recent trends towards increased adoption of multicores and vir-
tual machines exacerbate the co-ordination problem. For example,
management applications running inside virtual machines (VMs)
often lack the ability/privilege to access management hardware,
because of the virtualization abstractions. Similarly, management
agents in different VMs in a virtualized environment have the po-
tential to conflict with each other because of the autonomous, un-
coordinated nature of policies. Lack of visibility into the SLA and
performance requirements of the guest VM applications at other
layers is another cause.

Power management provides an interesting illustration of these
problems. Power management agents in the guest VMs (e.g., the
Linux P-state scheduler [17]) react to local resource usage and
make changes to actuators corresponding to virtualized hardware.
The virtualization layer, may in turn, do its own power management

across a collection of VMs, for example, by migrating virtual ma-
chines to reduce power. At the physical platform layer, hardware
controllers may manage the power based on aggregate information
visible at that layer. Similar scenarios can be identified for other
management applications, as discussed in Section 6 of this paper.

Prior solutions addressing the isolation across guest applications
and operating systems, virtualization layer, and management hard-
ware have typically relied on ad-hoc approaches. They include pro-
prietary approaches to interface across different management do-
mains and system-specific implementations and are limited in the
co-ordination they provide. With the growing proliferation of man-
agement applications, a more general-purpose approach is needed.
This paper addresses this problem of management co-ordination,
with the following three contributions:

• We present two building-block abstractions that are key to
co-ordinated management in virtualized systems. M-channels
define seamless communication between layers with well-
defined and restricted semantics and APIs to abstract from
underlying implementation and platform details. M-brokers
define policy managers with well-defined application-level
protocols to perform information exchange, co-ordination,
and actuation across layers. We instantiate these abstractions
under Xen, and identify tradeoffs between different imple-
mentations of these management abstractions in this instan-
tiation.

• We discuss Dom-M, a dedicated and privileged management
VM (MVM) which runs M-brokers responsible for overall
management of the platform, and coordinates with other Dom-
Ms in the data center for the overall data center management.
We also discuss the advantages and tradeoffs of implement-
ing Dom-M as a separate MVM in the management infras-
tructure.

• Finally, to demonstrate the effectiveness of our approach, we
implement and evaluate different solutions for power man-
agement using our proposed abstractions. Results show the
flexibility and power of our m-channel and m-broker abstrac-
tions for improved management functionality at reduced ap-
plication complexity.

The remainder of the paper is organized as follows. Section 2
provides additional background. Sections 3 and 4 discuss our pro-
posed M-channel and M-broker abstractions and the implementa-
tion tradeoffs under Xen. Section 5 discusses the use of M-channels
and M-brokers to implement several power management solutions
that cross-cut management domains. Section 7 qualitatively dis-
cusses other applications of our abstractions. Section 8 discusses
prior work and Section 9 summarizes the paper.

2. PROBLEM BACKGROUND



2.1 Existing Management Solutions
Management (or Manageability) refers to the range of opera-

tions required to maintain system resources through their lifecycle
phases – bring up, operation, failures/changes, and retire/shutdown.
Tasks performed at each of these lifecycle stages include provision-
ing and installation of servers; monitoring performance and health
of systems; security protection against viruses and spyware; run-
time performance and resource management; backup protection
against disasters; disk maintenance to improve performance; fault
diagnostics and recovery; and asset management to track resources.
With rising complexity and scale in today’s enterprise IT, several of
these management tasks have become non-trivial in computation,
design, and in the number of execution steps performed. Further,
although virtualization technology helps in managing data centers
by providing isolation, consolidation, VM mobility, and VM appli-
ances, it also creates a new set of challenges to manageability be-
cause of virtualization hazards like VM migration, dynamic map-
ping between virtual and physical resources etc. As a result, we
are seeing substantial growth in the development of manageability
applications, and an adoption of automation software that reduces
overall maintenance costs.

Contemporary manageability solutions can be classified as hardware-
based and software-based solutions. Examples of hardware-based
solutions are those related to hardware monitoring, power manage-
ment, thermal management, and diagnostics. These solutions are
deployed in firmware either at the management processor or other
hardware peripherals such as BIOS, smart disks, or sensors. Exam-
ples of software-based solutions are those related to provisioning,
SLA management, and file-based backup. These solutions are de-
ployed at the host system, typically as user space programs.

2.2 Co-ordination Problems and Challenges
While individual hardware- and software-based management so-

lutions have proved useful, their use in virtualized environments
provides new challenges for three main reasons. (1) Since VMs are
not the privileged entities on a platform, they typically lack the abil-
ity to access management hardware, since that requires certain priv-
ileges. This prevents them from carrying out VM- or application-
specific management actions. (2) Even with privileged access, since
VMs are highly ‘autonomous’ and usually run their own manage-
ment policies, a coordination problem arises among multiple VMs,
since they may try to manage the underlying system with poten-
tially different policies. (3) Virtualization creates virtual resources,
and does VM migration, preventing VM-level management from
taking care of tasks like inventory management or any per plat-
form management actions, thereby further worsening the problem
of hardware-software co-ordination. We illustrate these problems
through specific examples below.

Power management exploits hardware support for dynamic volt-
age and frequency scaling (DVFS) [8], scheduling to increase de-
vice or component idle times [13, 16], and a plethora of methods
for improving the power behavior of individual subsystems, such
as network devices [10, 21]. Thermal management further deep-
ens this work, including with load balancing methods to idle se-
lected system components [14]. Virtualization threatens the ability
of these techniques to operate as intended, not only because of lack
of access to DVFS hardware controls, but also because the man-
agement actions of any single VM do not understand and therefore,
cannot take into account the aggregate behavior of the set of VMs
currently running on the same platform. Further, they cannot con-
sider differences among VMs, such as different degrees of memory
boundedness, I/O utilization, etc. In fact, even platform-level so-
lutions cannot understand how the choices they make for different
VMs affect VM behavior and performance, unless VMs can share
with such solutions their SLA requirements and in addition, pro-
vide feedback concerning the effects of certain actuation decisions
on these requirements.

Storage backup is another important management activity in
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enterprise data centers, to improve fault tolerance and recovery.
Backup in virtualized environments can be done either from inside
the VM (just like in non-virtualized environments) or from outside
the VM, such as VMWare’s Consolidated Backup. The latter has
the problem that it is hard to find out which files have been modi-
fied by the VM and hence which files to backup. The former can
potentially lead to performance interference with other VMs shar-
ing the disk, and it has the associated property that it cannot take
disk health into consideration. With many modern drives providing
disk health related SMART data, such information can be used for
proactive backup and hence reduce data losses and recovery time.
Similar issues and opportunities arise for fault diagnosis. A fault
diagnosis method running in a single VM will only have a partial
view of underlying hardware behavior, and a method running at
platform level may not have sufficient information about the sys-
tem or applications actions that triggered faults.

Inventory management relates to the capture of assets - both
hardware and software – in the data center, to provide for a view of
the actual state of components comprising the infrastructure. Spe-
cific examples of inventory information include those relating to
processor and peripherals configuration, applications hosted, sys-
tem software and middleware stack, as well as monitoring sensors
installed at the servers. With emerging trends towards virtualiza-
tion, consolidation, and hardware advancements, the amount of
inventory information relating to the software and hardware per
server in modern data centers is growing exponentially. Exist-
ing designs, however, collect such growing inventory information
through multiple agent end-points. For example, hardware inven-
tory information is provided through agents typically hosted in firmware
at the management processor; inventory information related to the
hypervisor is provided through agents in the Control Domain (e.g.,
Dom0 in Xen); and agents in each guest VM provide software and
application inventory information. The inventory information ob-
tained from these individual agent end-points is uncorrelated. This
is a hindrance towards a unified management in the data center.
Additionally, having multiple non-coordinated agents leads to in-
creased administrator workload which leads to higher overall costs
in the data center.

In all of these examples, hardware/software coordination and
coordination among VMs is either non-existent or uses some ad-
hoc mechanisms leading to overall inefficiency and reduced func-
tionality of management applications.

3. CO-ORDINATED MANAGEMENT IN VIR-
TUALIZED SYSTEMS

The discussion in the previous section motivates the need for
general abstractions to enable coordinated management in the data
center. In this section, we propose and discuss some such abstrac-
tions. We first present the assumed system environment, and then
describe details of the abstractions.

3.1 System Model
Figure 1 depicts the system model as a distributed environment



wherein each of the nodes is a virtualized system. The system hard-
ware is assumed to have platform management controllers that per-
form hardware management. Further, we assume the existence of a
special privileged management VM (MVM) that hosts system wide
control and management software.

In today’s systems, these individual management entities – those
at the guest VMs, MVM, and the platforms management hardware
– operate within separate isolated silos non-coordinated among each
other. As was explained in Section 2, this leads to reduced manage-
ment functionality and potential in-efficiency. This paper seeks to
determine the key abstractions that we need to support for effective
co-ordination among the different management entities in virtual-
ized systems. Specifically we propose two building block abstrac-
tions we believe to be fundamental for co-ordinated management:
M-channels and M-brokers. M-channels provide bi-directional in-
formation exchange among the hardware, virtual machines, and ap-
plications. M-brokers provide a framework for implementing co-
ordination policies, leveraging information provided through M-
channels. Figure 2 shows the deployment stack with the proposed
abstractions. As seen in the figure, M-channels are an abstraction
built on top of existing physical channels, such as shared mem-
ory and sockets. M-brokers use these M-channels for communi-
cation and execute co-ordination policies. They interact closely
with existing management applications and enhance their function-
ality. M-channel and M-brokers do not prescribe how management
tasks are carried out, permitting applications to either use one M-
broker servicing multiple platforms or distributed implementations
in which multiple broker instantiations cooperate. Similarly, M-
channels can simply carry simple monitoring data, like system-
provided information about current CPU usage, or they could be
used for rich data and control exchanges between VMs and man-
agement VM. The M-agents explained below play an important
role in determining M-channel usage. The remainder of this sec-
tion presents details of the proposed abstractions.

3.2 M-Channels
The M-channels or management channels are special inter-VM

and hardware-software communication channels which transfer com-
mands and information between MVM and other VMs, as well as
between MVM and management hardware. These channels can ei-
ther be instantiated at a single system or in a distributed system
context, as seen in Figure 3. At a single system, different M-
channels are used for communication among VMs and communi-
cation among hardware components, with the help of a M-channel
communication bridge instantiated at the MVMs. The bridge re-
directs the messages from one channel to the other according to
some set of policies. This re-direction is transparent to the sending
and receiving management entities. At a distributed system, the
M-channels are used for exchanging information among the man-
agement virtual machines (MVMs), as shown in Figure 3.

M-channels are bi-directional in nature and can be used for ex-
change of both control information and actual data. To continue
to function under VM migration, M-channels support dynamic dis-
connection and reconnection between VMs and management VM,
and for flexibility, they deliver messages using both point-to-point
and broadcast semantics. Both of these semantics have uses for
the co-ordination applications we are considering. Similarly, de-
livery of messages can be synchronous or asynchronous depending
on the co-ordination application being supported. Our implementa-
tion currently uses asynchronous messaging which we found to be
useful when streaming monitoring data on a continuous basis. We
rely on underlying physical channels for the reliable, unreliable,
or ordered delivery of messages, and wherever the physical chan-
nel supports these options, we provide support for the same. The
event notification model uses interrupts to notify the co-ordination
application.

We also note that the M-channels among hardware components
can be built on top of the IPMI standard [7].

3.3 M-Brokers
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Figure 6: Message Exchange between the M-broker and Agents

The M-brokers are policy managers that execute co-ordination
policies. Co-ordination is between management hardware and ap-
plications, as well as across virtual machines. A given system
may have several M-brokers, one for each management applica-
tion. Further, M-brokers may be distributed across guest VMs,
MVM, and the hardware. Figure 4 shows how M-brokers fit into
the bigger picture, serving as a bridge between existing application
level management and platform management, with actuations ap-
plied to applications and hardware. Closely tied with the notion
of M-broker is that of a M-agent (or agent). Such an agent is a
software module that interacts with existing application and hard-
ware management applications and serves as a proxy for sending
management information to other agents or broker. Unlike brokers,
however, an agent does not execute any co-ordination code as such
and is only responsible for monitoring, passing information and re-
ceiving actuation commands.

M-brokers can be instantiated with different deployment strate-
gies at a single and distributed system, as illustrated in Figure 5.
Figure 5(a) shows the case when the broker is at the MVM and all
the agents are in the guest VMs and hardware. In this case, the
broker can cater to the co-ordination across VMs and also across
hardware and software. The other possibility (Figure 5(b) is for
the broker to reside at the guest VMs themselves, or at the plat-
forms’ management controllers. In this case, the co-ordination of
interest is hardware-software co-ordination either initiated at the
guest VM or at the hardware. Finally, Figure 5(c) shows the case
when we have distributed brokers either in a single system or in a
distributed system context. Here, the brokers in the different VMs
communicate and jointly make co-ordination decisions. In the case
of distributed systems, these correspond to brokers in the MVMs.

The brokers and agents periodically exchange messages for pur-
poses of co-ordination. As mentioned, these messages are exchanged
using m-channels. A well-defined application-level protocol is used
by the brokers and agents to perform information exchange, co-
ordination, and actuation. Figure 6 shows an example timeline of
message exchanges between a broker and agent. The messages in
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the figure are annotated with the message types. Overall, mes-
sage exchanges belong to the phases of discovery, communica-
tion establishment, message exchange, and connection termination.
The addressing among the brokers and agents take place using a
unique identifier associated with each of them. Such an addressing
needs to span both hardware and software components, and must
be uniquely identifiable over a distributed systems. We use a tuple
< Component ID, App ID > as the identifier. For the agent or
M-broker in the hardware component, < Component ID > cor-
responds to the machine serial number. For the agent/M-broker in
VM, < Component ID > corresponds to the < MV M IP, V M ID >
where MV M IP is the IP address of the management VM and
V M ID is the unique virtual machine ID assigned by the manage-
ment VM to the VMs in the system (including itself). App ID is
the unique name given to the management application for which the
co-ordination is being done, for example, “Power”, “Storage”, etc.
These names for management applications are uniquely assigned
by administrators.

Figure 4 also shows a skeleton structure of the m-broker frame-
work. As shown in Figure 2, the M-broker builds on top of m-
channels, and it uses the M-channel APIs to implement the co-
ordination modules. There are some core co-ordination modules
that implement the basic protocol for communication among the
brokers and agents. These modules can be reused by all co-ordination
brokers for the different management applications. Extensions spe-
cific to management applications can then be provided over the ba-
sic framework, thus constituting an extensible design.

3.4 Benefits
Overall Benefits. The proposed abstractions provide a generalized
framework for manageability co-ordination in virtualized systems.
A distinctive aspect is the co-ordination across hardware and soft-
ware layers, as well as across VMs. Having better interaction be-
tween guest VMs, privileged VMs, hypervisor, and the hardware
platform provides the management applications with the holistic
view of the system and helps them take better management deci-
sions. The addressing scheme and M-channel abstractions hide the
hardware type details from the VMs allowing the brokering to not
be concerned about low level hardware component nuances. This
also ensures management continuity across VM migrations. Fi-
nally, M-channel names and access are independent of VM loca-

tion, essentially implementing a publish/subscribe paradigm. As
a result, VMs use the same M-channels throughout their opera-
tion, including upon migration. The MVM implementation of M-
channels performs the appropriate name resolution to ensure this
property. In summary, our approach results in improved and en-
hanced capabilities for management applications. Given the im-
portance and growth of management applications in next gener-
ation enterprises, these improvements provide significant benefits
over current state of the art.
M-Channel Specific Benefits. M-channels provide seamless com-
munication among VMs, hardware, and MVM. This not only pro-
vides for new management possibilities but from an infrastructure
development point of view, it also hides the details of the under-
lying platforms and physical channels from the management co-
ordination applications. Further, its restricted and clear set of APIs
can be used for co-ordination, with pre-built support and error check-
ing for management control structures. The delivery model of mes-
sages is flexible thus catering to the needs of a wide variety of man-
agement applications.

M-Broker Specific Benefits. The well defined structure and model
provided by M-brokers provides for a systematic development and
deployment of co-ordination systems in virtualized environments.
Leveraging m-channels allows the broker code to be seamless across
various deployment strategies and configurations. The design of
the framework allows for re-usability of modules across different
usage scenarios and is easily extensible.

4. XEN IMPLEMENTATION
In this section, we show how the abstractions presented in Sec-

tion 3 map onto a real virtualization environment. We use Xen as an
example VMM to implement the abstractions. Figure 7 shows the
Xen specific implementation. The MVM is instantiated as“”Dom-
M” and the guest VMs are referred to as “DomUs”. The intra-
machine M-channels are implemented using Xen provided inter-
domain shared memory communication API. The M-broker and
M-agent interface to M-channel supports user and kernel based im-
plementations. The rest of the section describes each of these com-
ponents in more detail.

4.1 M-Channel Implementation
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Challenges in realizing M-channels are caused by their use in
different settings and for different management strategies. For in-
stance, since M-channels must continue to operate even when VMs
migrate between different computing platforms, they must be ca-
pable of using message-based data transports. At the same time,
potentially high rate interactions between VMs and management
domains when monitoring for failures in reliability management
require an implementation enabling substantial data exchanges be-
tween VMs and MVMs. To accommodate diverse requirements,
our Xen realization of M-channels uses multiple implementation
methods, described in more detail below.

M-channel is an abstraction which can be realized through dif-
ferent implementations. M-channel between MVM and manage-
ment hardware can be implemented by using a device driver in
MVM which handles the particular hardware and exports device
specific interfaces to M-brokers. The M-channels between VMs
and MVM can be implemented in three ways, Specially (1) Using
traps/interrupts, in which case the VMs implicitly generate traps
or interrupts (e.g. by executing some privileged instruction) which
causes the VMM to transfer control from one VM to another. The
data can be transferred using processor registers or through mem-
ory. This method usually doesn’t require any changes to the guest
VM but at the same time this method is not generic and may not
work for all management applications. (1) The M-channel can
be implemented explicitly using the VMM provided inter-domain
communication channels. These channels typically use shared mem-
ory communication with very good latency characteristics which
could enable management applications to react quickly to various
notifications. This method usually requires modifications to the
guest VMs (to provide explicit communication) but at the same
time it is a generic solution for an M-channel which should work
for all management agents. (2) The M-channel can also be imple-
mented over the network (e.g. using Socket APIs). This is also
an explicit communication channel and hence a generic solution
to be used with management agents. This solution, however, has
higher latency compared to shared memory communication. This
solution, however, enables M-channels to span multiple physical
machines creating M-channels between MVMs running on differ-
ent platforms. Table 1 evaluates the latency characteristics of the
two realizations of M-channels.

Table 1: Latency characteristics of different M-channels
M-channel type Latency of small (64b) data transfer

Trap Based 8 micro sec.
Shared Memory Based 7 micro sec.

Socket Based 14 micro sec.

The last two implementations of M-channels are used for inter-
VM communication depending on whether the VMs are on the
same machine or on the network. The M-channels between lo-

cal VMs utilize the inter-domain communication APIs provided by
Xenbus to provide shared memory communication. A management
frontend (FE) driver module runs inside guest VM which commu-
nicates with the management backend (BE) inside MVM. FE and
BE represent the M-channel endpoints for the guest VM and MVM
respectively. The communication is asynchronous and hence uses
two different communication rings for the two directions (send and
receive). When the FE driver loads, it allocates pages for the two
rings and shares with the backend. Both FE and BE export a file
interface (e.g /dev/mgmt in Dom-M) to user-level brokers and ap-
plications and an API interface to broker and agents running in ker-
nel level. If the sent or received data size is more than the ring
element size, the data is passed by sharing the page containing the
data and passing pointers to it. A typical M-channel ring data el-
ement consists of three fields; an M-channel header, followed by
an application-specific header and followed by application specific
data if any. This design creates a generic, simple and yet flexible in-
frastructure for transferring management related messages between
VMs.

For distributed M-channel implementation, it uses a socket based
communication interface which provides the same APIs as the shared
memory based implementation. Specifically, all the M-channel
endpoints run a TCP/IP server which listens on a well-known port
and accepts connections from other M-channel endpoints. While
currently not implemented, authentication mechanisms can be used
to implement to establish secure channels between different VMs.
In both the implementations the application specific agents and bro-
kers define their own message formats for M-channels which pro-
vides flexibility to the applications.

The M-channel to the management hardware is implemented as
a device driver which communicates with the hardware provided
communication interfaces (e.g. PCI interface in case of the man-
agement processor). This driver also exports a file interface and
API interface (similar to shared memory M-channels) and provides
the same basic interfaces as the VM-VM M-channels. As shown in
Figure 7, the M-channel communication bridge (MCB) between the
various FEs and the BE are implemented as part of the BE which
routes messages based on the address contained in the M-channel
header. Similarly the bridge between the VMs and the manage-
ment hardware is implemented as part of M-broker inside Dom-M
which routes messages between them according to its policies (e.g.
pass-though vs. virtualized access).

The M-channel enables the brokers and agents to co-ordinate
over VM migrations. During VM migration, the mgmtfront and
mgmtback modules get notified of the VM migration event which
triggers a new set of disconnections and reconnections i.e., the
older mgmtback breaks its connection with the mgmtfront and new
mgmtback establishes a new connection with the mgmtfront. This
enables the agents and brokers inside guest VMs to remain trans-
parent to migration and still be able to communicate with the cur-
rent platform’s M-broker in Dom-M.

4.2 M-Broker Implementation
The M-brokers and their agents, as presented in Figure 4(b)

are implemented as multi-threaded applications. The actual man-
agement application-specific broker code is implemented as an-
other thread in this application. These brokers and agents, how-
ever, are application specific and may be implemented in kernel
level as well. It needs to be multi-threaded because it has to com-
municate with multiple entities which usually operate independent
of each other (e.g., management h/w, policy maker, M-channel
etc.). Different threads of the M-broker handle the communica-
tion with other VMs, management h/w and decision making algo-
rithms. These brokers communicate with other agents and brokers
on local machine using shared memory M-channels and with bro-
kers on other machines using socket based M-channels. To access
the management h/w, the M-broker utilizes the “driver” provided
M-channel interface (similar to /dev/mgmt) to read from and write



to the device. In the current implementation, the M-Broker’s inter-
face channel component also works as the bridge between the VMs
and the management h/w, i.e. all the accesses to the management
h/w from VMs must go through the M-broker.

Security (i.e., authentication and authorization) is not imple-
mented in the current M-Broker and M-channel interfaces and is
an on-going work. Because of the M-channel handling of VM mi-
gration, the Brokers and agents remain oblivious to such events,
and local M-channels get re-established as local channels after mi-
gration. We have implemented a power-broker for power manage-
ment which evaluates various power management policies and an
inventory registry broker which builds co-ordinated inventory ta-
bles. Section 6 qualitatively describes other use cases surrounding
a storage backup broker and a “trust management broker”.

4.3 Dom-M: The Management VM
Dom-M is a privileged management VM which is the dedicated

point to control all management tasks on a single platform. E.g.,
Dom-M co-ordinates between VM requirements and platform man-
agement policies with the help of specific management hardware
and inputs from VM’s applications. Dom-M internally consists of
three main components: (1) one or more M-brokers, (2) a high-
level policy maker, and (3) various M-channels. The policy maker
is a management application that provides access to various pol-
icy controls to the system administrator. It can set the policies and
goals for the M-broker and provide the status of management ac-
tions to the administrator. Dom-M is a privileged and trusted VM
with direct access to platform’s hardware which sense and actuate
useful management actions (e.g., management processor).

In some VMM solutions (e.g., VMWare’s ESX server) where
there is no existing management VM, Dom-M will be a separate,
new entity. Other VMM solutions, which already have a privileged
and trusted VM as part of their architecture (e.g., Dom0 in Xen or
the host VM in VMWare’s GSX server), permit Dom-M to be re-
alized as part of such specialized and privileged VMs. However,
there are several advantages of separating and isolating Dom-M
which are: (1) Security and Isolation:- since Dom-M has direct ac-
cess to management hardware, running it as a separate VM will iso-
late it with respect to driver failures/hardware misbehavior (similar
to driver domains for I/O devices in Xen). (2) Selective Privileges:-
Although Dom-M requires certain privileges to do management,
its applications don’t require all the privileges of privileged VM
like Dom0. Hence, to further improve the reliability of the system,
it is advisable to use a separate VM to which selective privileges
can be provided. (3) Specialized Management Cores:- Future het-
erogeneous multicore systems will contain cores which would be
specialized to certain type of processing. One such type would be
management cores (e.g., the current off-chip management proces-
sor could move inside the chip). In such scenarios, it would be more
efficient to abstract out all management applications inside a VM
and run this VM on a dedicated management core. (4) Virtual Ap-
pliances: future virtualized environments are likely to make heavy
use of virtual appliances [25]. Having a separate virtual machine
for Dom-M simplifies its deployment in the form of a virtual ma-
chine appliance, since in this form, Dom-M can be independently
deployed from the VMM, i.e., it can be dynamically added or re-
moved from a system.

In our deployment Dom-0 is used to implement Dom-M. Cur-
rently we are working on creating Dom-M as a separate privileged
VM and packaging it as virtual appliance.

5. BENEFITS FOR POWER MANAGEMENT
Effective power management requires timely and intelligent use

of underlying management capabilities in order to balance possible
savings with application performance requirements. Our architec-
ture allows for management methods that meet this criteria with its
abstractions of M-channels and M-brokers. Specifically, our evalu-
ation of its usefulness in power management highlights two signif-

icant aspects of the system: (1) the M-channel abstraction provides
flexibility in the implementation of coordination allowing for ei-
ther a distributed or centralized M-broker for power management
and (2) the ability to define management specific data to be passed
through M-channels provides generality for utilizing varying lev-
els of abstractions and also allows for richer information flow for
improved management. In the remainder of this section, we de-
scribe and evaluate three M-brokers applied for coordinated power
management with our architecture.

We utilize two different testbeds in our experiments to evalu-
ate the benefits of power management across platforms based on
both AMD and Intel processors. Table 2 summarizes the exper-
imental methodology for the three M-brokers. Our implementa-
tion is based around active management of power via dynamic fre-
quency and voltage scaling (DVFS) of the CPUs and VM migra-
tion. The purpose of these implementations is to show that M-
channel and M-broker abstractions can be easily used to implement
various power management policies ranging from traditional uti-
lization based management to novel SLA based management and
in co-ordination with other VMs and platform requirements. In the
next few sections, we detail the particular implementations of these
brokers and complete the section with a review of the evaluation
summary.

Table 2: Experimental Methodology
Platform Broker Co-ord. Type Actuator Metric

AMD Opt. B1 VM-VM DVFS SLA and Util.
AMD Opt. B2 VM-Platform VM Migra. Power Cap

Intel P4 B3 VM-VM DVFS SLA

5.1 Implementation of M-brokers for Power
Management

5.1.1 M-Broker1
The first power management M-broker instantiated on this ar-

chitecture corresponds to Figure 5(a). In this approach, a power M-
broker runs inside Dom-M and VM agents run inside guest VMs.
The power broker establishes M-channels with VM Agents. The
VMs run an application with some service level agreements (SLAs)
specified for them which is monitored by VM agents. The individ-
ual agents use the M-channel to notify the broker of SLA violations
which helps the broker in doing power management. The broker
runs administrator specified policies, which sets the power state of
the physical CPUs by using the SLA violations as inputs and co-
ordinating among them. The application specific message formats
within the generic M-channel headers allow the power manage-
ment algorithms to have the flexibility of implementing arbitrary
SLA models (e.g. hard and soft SLA violations, different metrics
for SLA violations etc.) The M-broker, then, uses inputs from the
M-channels to drive decision algorithms that set power states of
resources.

Our first testbed consists of dual-core dual-socket (total 4 cores)
AMD 64-bit Opeteron based HP ’s C-class blades. These proces-
sors provide hardware frequencies of 2.4 GHz, 2.2 GHz, 2.0 GHz,
1.8 GHz and 1.0 GHz. This testbed is used to experiment with
SLA based power management using this broker for co-ordination
among VMs. Guest VMs are non-SMP and run the HTTP server
workload, and httperf is used to generate load for the server. The
VM agent monitors the server side response time of individual re-
quests as the SLA parameter.
SLA Model: With this evaluation setup, three sample power man-
agement policies are evaluated.
(1) Basic Policy: the agent records the number of SLA violations
within epochs (500 ms each) and at the end of each epoch if the
percentage of violations exceeds a threshold (1%), a SLA violation
notification is sent to the power broker which increases the p-state
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Figure 8: CPU frequency traces for various policies

of the VM’s vcpu to the next higher value. A parallel thread also
monitors VM’s cpu utilization and whenever the utilization goes
below a certain threshold (80%) the VM’s vcpu is reduced to next
lower p-state. For a particular physical CPU, all the VMs’ vcpu
p-states are examined and the highest p-state is set as the p-state of
the CPU.
(2) Richer policy: In the second policy, we deploy a more sophis-
ticated notification criteria where the SLAs are defined as hard
(higher response time threshold) and soft SLAs (lower response
time threshold). With each notification, then, the VM agent sends
information whether a hard SLA violation or a soft SLA violation
was experienced. The power broker can, then, employ more so-
phisticated management policies. In our example, on hard viola-
tions the policy reacts the same as SLA Policy 1. For soft viola-
tions, however, the policy records these violations for 10 consecu-
tive epochs and if the soft violations happen more than 30%, it is
treated as a hard SLA violation and action is taken according to Ba-
sic Policy, otherwise soft violations are ignored. Here, the richness
of M-channel interface allows the agent to define various degrees
of sophistication in notification to the power broker which further
allows the broker to implement more sophisticated policies.
(3) Utilization-based: In the third policy, we use an agent, which
utilizes a Linux VM based ondemand power governor to decide the
power state of the vcpu based on its current vcpu utilization. This
power state information is notified to the power broker through an
M-channel which uses the coordination policy of Basic Policy to
decide the final p-state of the CPU. We compare the three policies
against the ”no power management (No PM)” case for a varying
httperf workload. It is important to note that all the thresholds and
parameters in the above policies were chosen arbitrarily and the
purpose was to demonstrate the flexibility and richness of M-broker
and M-channel abstractions.
Results: Figure 8 shows the trace of the speed of the CPU running
the http server VM as the experiment progresses. We note that,
the Utilization Based policy runs the CPU at the highest speed for
most of the time because it sees the virtual CPU utilization to be
high most of the time. Although this leads to less power savings as
is shown in Figure 11, it is still able to save about 10% power by
putting the three other less-utilized cores into lower power states.
Figure 9 shows the VM’s cpu utilization trace as seen from Dom-
M and as the VM is run. We see that Dom-M actually sees the real
CPU utilization for Utilization based policy to be less than Basic
and Richer policies underscoring the fact that VM based policies
are often inefficient in system monitoring because of virtualization
layer and must coordinate with Dom-M’s M-broker. The Basic Pol-
icy reacts well to SLA violations and changing domain utilization
because it coordinates with Dom-M using its view of CPU utiliza-
tion and Dom-M in turn uses SLA violations as input in taking
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Figure 9: Domain utilization traces for various policies

 0

 20

 40

 60

 80

 100

 120

 140

 0  200  400  600  800  1000  1200  1400
C

um
ul

at
iv

e 
SL

A 
Vi

ol
at

io
ns

Timeline (sec)

No PM
Basic Policy

Richer Policy
Utilization Based

Figure 10: Cumulative SLA violations for various policies

decisions. It saves power by operating mostly at the smaller CPU
speeds while still trying to maintain the SLA. The Richer Policy in
even more aggressive in saving power because of the more flexible
SLA model defined for it (hard and soft SLAs with threshold values
of 6ms and 3 ms respectively). This leads to lesser number of to-
tal hard violations over intervals which allows the policy to run the
CPU predominantly at the lowest speed. Figure 11 shows that this
leads to the Richer Policy providing the most power savings. Fig-
ure 10 shows the cumulative number of SLA violations for different
policies. We see that ‘No PM’ policy expectedly performs the best.
However, Basic Policy, Richer Policy and Utilization Based poli-
cies show similar characteristics with Utilization based policy only
slightly outperforming the Basic one. The results also demonstrate
that for policies focused on SLA violations instead of CPU utiliza-
tion, SLA based power management prove to be more efficient at
power savings that traditional utilization based policies.

5.1.2 M-Broker2
To demonstrate the hardware/software co-ordination between

the VMs and platform’s power limitations, we have extended the
Basic Policy broker which takes SLA inputs from the VMs and
platform’s power limits (both average and peak power) and en-
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forces the limits while trying to maintain the SLA levels for the
VM. We have used HP’s C-class blades, which have a management
processor called iLO (integrated lights out) built into them which
records current power consumption of the platform. The M-broker
establishes M-channels with other M-brokers running on other ma-
chines in the data center to co-ordinate for VM migration as well
as an M-channel with iLO management processor.
SLA Model: The M-broker periodically (every 5 minutes) queries
the management processor for current avg. and peak power con-
sumption. If these limits are violated (probably because of increase
in the VM load), as an example policy, the broker first reduces the
p-state of a processor (or a set of processors) to bring the power
consumption within the limits. If this action causes a sharp increase
in SLA violations, the M-broker queries other broker’s in the data
center to find a less heavily loaded machine (with power consump-
tions well within limits) and migrates the VM to that machine to
maintain the SLA levels of the application. The current prototype
implements VM migration and the final version of the paper will
include numbers in co-ordination with SLA based power manage-
ment.
Results: Figure 12 shows the results of this experiment. A machine
is running 4 VMs containing a WebServer which get heavily loaded
by httperf clients. The avg. and peak power limits are defined as
185 and 200 watts respectively. We see that after 10 minutes, as
the load increases in all the VMs, the power limits (both avg. and
peak) are violated. The broker finds out a suitable machine and
migrates the most heavily loaded VM. This brings down the power
consumption slightly but it is still above the set limit. The broker
(at 20 minutes) migrates another VM which finally brings down
the power consumption within limits. The channel between the
broker and the iLO processor enables the system to react quickly
to power limit violations, which otherwise is not possible or will
have to use some other metric (e.g. cpu utilization) as a proxy for
power consumption which will not be as accurate. This example
clearly shows the the importance of having co-ordination between
the management policies and the platform hardware to ensure effi-
cient operation of the data center.

5.1.3 M-Broker3
In this design, the functionality of application aware power man-

agement is distributed between the Dom-M and the guest VMs (see
Figure 5). In particular, each guest VM runs its own application
specific power management broker based upon power states ex-
ported to it via ACPI [5]. These brokers are charged with perform-
ing power management themselves by determining power states for
the respective VM’s resources based on certain policies (e.g. CPU
utilization based, SLA violations based etc.). These brokers, then,
send the requested power states to the M-broker in Dom-M over
M-channel interface.

This M-broker uses the testbed consisting of dual core Intel Pen-
tium 4 based platform. These processors provide hardware fre-
quencies of 3.2GHz and 2.8GHz. In addition, we implement the
use of soft scaling [17] wherein the service time provided to VMs
is reduced in addition to frequency scaling in order to increase idle
time thereby reducing power consumption and thus providing 3 ad-
ditional virtual frequencies 2 GHz, 1.6 GHz and 800 MHz. This
testbed is used for experimentation with the distributed M-broker
usage model and a workload based upon the Nutch open source
web search engine.
SLA Model: To drive the system, we define a differentiated service
model wherein there are three levels of client classes. We define a
light request and a heavy request where the heavy request needs
twice as many search responses to be found for completion. The
three client classes are defined as 1, 2 and 3 which consist of light,
a mix of light-heavy and heavy requests respectively. Their SLA
metric is defined as request execution time which is set to 20ms,
25ms and 30ms respectively for the three classes. The M-broker
inside VMs monitors the request execution times for each client

Figure 13: SLA results with
Nutch

Figure 14: Power Saving with
Nutch

class and calculates averages within epochs lasting five seconds.
Within these epochs, at each second interval the policy looks at
the current measured average, and if there is performance slack
greater than 25% of the SLA, the policy requests a reduced power
state. If the performance slack is less than 25% but positive, the
policy leaves performance where it is, and if it drops below the
SLA, it requests an increased power state. The second half of the
distributed M-broker in Dom-M, responds to these requests with
direct mappings to physical frequencies and processor allocation
capacities [17].
Results: Figure 13 presents performance results with our Nutch
based experimentation. We see that across all of the runs, the co-
ordinated management based upon the distributed M-broker is able
to meet SLA requirements. Figure 14 presents the power savings
resulting from coordinated management of Nutch. The results pro-
vide power savings compared to a system without M-channel sup-
port wherein the M-broker in Dom-M cannot perform any manage-
ment since it has no application specific information. Moreover,
with the Nutch workload, even utilization based management based
on observing VM CPU usage is ineffective since utilization is al-
ways high.

5.1.4 Summary
The ability to easily implement various power management poli-

cies architectures with different characteristics using M-broker ap-
proach to utilize M-channels underscores the generality and flex-
ibility of the M-channel abstraction and therefore its appropriate-
ness for providing general management functionality. All the above
experiments underscore the importance of co-ordinated manage-
ment in virtualized environments, both across VMs and across hard-
ware and software. Another key insight shown by these experi-
ments is that different policies have different performance charac-
teristics under different situations and the management infrastruc-
ture should be able to provide a flexible model to implement those
policies and our M-broker and M-channel abstractions provide just
that.

6. BENEFITS FOR OTHER USE CASES

6.1 Storage Backup
Storage backup can be improved in many ways by using this

management architecture. Storage virtualization involves every disk
access from VMs being handled by the VMM (or in many cases
the disk driver domain) which accesses the disk on the VM’s be-
half, thereby providing the opportunity of externally tracking VM
disk activity. Hence Dom-M can co-ordinate with the VMM or
disk driver domain using an M-channel to keep track of all the disk
blocks a VM modifies. This information can be used to create a
replica by writing modified blocks to a replicated disk in parallel
(essentially implementing a software based RAID-1) and using the
replica for backup, incurring zero freeze time. This information can
also be used do efficient incremental backup since a list of modified
blocks is maintained.



Most disk drives implement the S.M.A.R.T. system which pro-
vides online information about disk health and performance. An
M-channel to the disk drive can be used to efficiently use this infor-
mation for predicting impending failures and thus doing proactive
backup. In such cases, to minimize possible data loss, the backup
system can prioritize blocks that are known to be modified. Since
Dom-M’s backup broker can also monitor disk activity of VMs us-
ing M-Channels to the disk driver domain, it can dynamically trig-
ger backup when a VM’s disk activity is relatively low and pause
backup when disk activity becomes high.

6.2 Inventory Management
Inventory management presents a different category of manage-

ment applications dealing with systems management issues in data
centers. Our proposed Dom-M implementation addresses the in-
ventory management problem by providing the abstractions through
M-channels for information exchange among the various inventory
agents at the hardware, software, and virtualization layers. The co-
ordination m-brokers in this solution are distributed at the guest
VM, the firmware, and the Dom-M. These brokers perform co-
ordination across hardware and software, as well as across VMs.
For example, if a correlation is desired between the software and
hardware inventory, then the M-brokers at the guest VM and firmware
unify such information. If a correlation is desired for all of the
information at the hardware, software, and virtualization layers,
then the m-broker at the Dom-M can perform the unification. The
m-broker at the Dom-M management VM also provides a single
client-facing interface to simplify administrator access to inventory
information. In such a design, the m-broker at the Dom-M hosts
an inventory registry broker to which all of the inventory agents at
the guest VMs, firmware, and Dom0 register themselves. On re-
ceiving a request, the inventory registry broker acts as a proxy and
re-directs the request to one or more of the agents at the guest VMs,
at the Dom0, and the one hosted at the management processor. The
communication takes place using m-channels. On receiving the re-
sults from the inventory agents, the m-broker may do correlation
and unification of data as needed before sending it to the client.

This enables the creation of a unified picture with inventory in-
formation collected from the hardware, hypervisor, and guest VMs,
even in the absence of any common attributes across the individ-
ual inventory tables. This information can now be used for better
unified management in the data center. Further, as mentioned ear-
lier, leveraging a single access point at the Dom-M aids in reduced
administrator cost. This holds even greater significance with ad-
vances in virtualization wherein several VMs would be hosted per
host each of which containing a separate inventory agent. Even if
we assume 10 access points per server/blade, with a single plain
point interface provided by our solution, an administrator reduces
his number of steps by 90% - a huge complexity and cost savings.

6.3 Trust Management
Virtualization can be used to implement entirely new platform-

level functionality, enabled by management activities transparently
associated with platforms and applied to the VMs that use them.
One example of such functionality concerns the trust placed in
a platform to faithfully and securely carry out certain application
tasks. The problem, of course, is that these trust levels vary over
time, depending on current platform properties (e.g., temperature
levels or observed recent failure rates) and depending on static or
dynamic VM properties (e.g., OS configuration with/without cer-
tain virus checkers or recently observed OS behaviors). Hardware/
software management, then, can (1) observe components and VMs,
(2) use observations as inputs to dynamic trust models, and (3) run
policies that continually improve total platform trust and/or ensure
certain minimum levels of trust to be present for running applica-
tions. Here, trust is built incrementally by the hypervisor using
the Trusted Platform Module (TPM) for basic platform guarantees,
then using these to certify trust in Dom-M, (termed ‘trust controllers

in the literature [9]), then having Dom-M perform monitoring, exe-
cute trust models, and finally, trigger actuators to maintain the lev-
els of trust desired by applications or data center administrators.

Here, VMs’ M-agents can assist in VM monitoring, using M-
channels to provide trust data to Dom-M, but Dom-M must have
its own, additional monitoring methods to deal with misbehaving
VMs. All policies are run in Dom-Ms, with each single Dom-M
responsible for its platform and platform-resident VMs, but multi-
ple Dom-Ms cooperating to establish the end-to-end notions of trust
required by applications. For instance, for a multi-tier application,
trust is not a meaningful concept unless it can be applied across
all tiers used by requests, thus requiring co-ordination across all
Dom-Ms involved in tier execution. Further, to deal with untrusted
platforms, Dom-Ms must coordinate to move VMs from less to bet-
ter trusted machines, and/or to kill and reinstate VMs if necessary.

7. DISCUSSION AND LESSONS LEARNED
The M-channel and M-broker abstractions improve system man-

ageability by making it possible to coordinate management actions
intended by VMs, carried out by management domains, and as-
sisted or partly implemented by hardware. Further, the cost of man-
ageability is reduced by provision of a common framework for de-
veloping and deploying rich, automated management applications.

Several interesting lessons were learned from this research. First,
there is a need for multiple M-channel implementations, so that it
is equally easy to interact with local management hardware as it
is to remotely access and perform management actions (e.g., due
to VM migration). Further, such channels must persist under dis-
connection and reconnection and use naming schemes suitable for
these facts. In other words, M-channels must provide a relatively
reliable communication model. Second, the M-channels and M-
brokers must be flexible and rich in that, they should provide man-
agement applications the flexibility to implement various policies
and define their own communication formats. Having this flexi-
bility further improves manageability and generic nature of these
abstractions. Third, M-channels and M-brokers must permit multi-
ple implementations of management policies, distributed spatially
as per platform or per rack, distributed by the kind of management
being performed (e.g., power or reliability management), etc. Re-
gardless of this fact, however, it is always the case that they must
facilitate potentially extensive co-ordination across such policies.

Our realization of the M-channel and M-broker abstractions has
several implications on participating or affected system compo-
nents. Specifically, while they provide a convenient infrastructure
for deploying and running management applications, they also re-
quire changes to VMs (e.g., to provide M-channel interfaces) and to
management applications (i.e., to provide M-brokers and agents).
We believe, however, that with para-virtualization becoming in-
creasingly popular, these modifications do not constitute an undue
burden. Moreover, we do not require changes to hypervisors, other
than creating MVMs and imbuing them with the levels of privilege
required by the management actions they carry out.

8. RELATED WORK
Modern data centers require the simultaneous deployment of

multiple management solutions. Examples include hardware based
management solutions such as temperature control, cooling,. . . etc.
Multiple vendors have built-in support for management capabili-
ties in their systems e.g. iLO from HP, iAMT from Intel, ALOM
from SUN, SP from IBM etc. These solutions, however, are not
seamlessly integrated into the host OS’s management applications.
Additionally, multiple management standards have been defined
to manage resource in distributed environments, such as SNMP,
WBEM, CIM etc. These are mainly software based solutions and
usually do not co-ordinate with the platform hardware on which
they run.

With virtualization technologies such as Xen and VMWare [1,



23] entering the data center, the manageability and co-ordination
problem is becoming increasingly important, underscoring the need
to integrate system support for effective management into virtual-
ization architectures.

Various management methods have been proposed to address
power characteristics of platforms. Mechanisms for exploiting dy-
namic voltage and frequency scaling (DVFS) capabilities in mod-
ern processors while minimizing performance degradation have lever-
aged memory bound phases of workloads. These solutions can be
extended using hardware solutions [12] or OS-level techniques that
set processor states based upon predicted application behavior [8].
Other methods utilize the notion of performance slack for real-time
workloads to aggressively reduce frequencies while meeting dead-
lines [18, 19]. Power budgeting solutions for single platforms have
also utilized processor control to provide fine grain power capping
capabilities [11]. In the presence of virtualization, the ability to per-
form energy accounting can also allow for power budgeting [22].

Addressing multiple platforms, methods for reducing power by
turning servers on and off based on demand have been proposed [2].
Since datacenter environments often consist of heterogeneous sets
of resources, intelligent distribution of service requests [4] and al-
location of workloads based upon varying platform characteristics
or management capabilities [15] have proven to be valuable ways to
manage power as well. Solutions for power budgeting across multi-
ple systems have considered non-uniform allocations to maximize
performance within envelopes [3] as well as intelligently enforc-
ing power budgets at blade enclosure granularities [20]. Providing
system support for extending such management techniques to vir-
tualized environments with existing virtual machine interfaces has
also been studied [17].

Modern disks support the self-monitoring, analysis, and report-
ing technology (S.M.A.R.T.). Systems can utilize this support to
actively predict impending disk failures and perform associated ac-
tions to prevent data loss. Industry is also addressing the need for
intelligent backup systems, including integrated solutions for com-
modity systems [6] and extensions to virtualization solutions [24].

9. CONCLUSIONS AND FUTURE WORK
This paper presents two powerful abstractions, termed M-channel

and M-broker, for co-ordinated management in virtualized execu-
tion environments and an abstraction of a dynamic, and privileged
management VM termed Dom-M. These abstractions provide high
level generic interfaces for implementing diverse management poli-
cies, resident in VMs, in management domains, and in hardware.
We have shown the usefulness of these abstractions by implement-
ing them in the Xen environment and using them to realize co-
ordinated power management policies. We also present a quali-
tative analysis of a few other management applications, including
storage backup, inventory management, and trust management, to
further demonstrate the utility of these abstractions and the gener-
ality of our approach.

This remains an active work in progress, with future steps to
include implementing additional management applications using
these abstractions and implementing the infrastructure required for
co-ordination across the many, distributed systems resident in the
data center. Further, the current Dom-M implementation is being
generalized to become a virtual appliance, suitable for dynamic
deployment in realistic enterprise systems Additional work in this
context involves using specialized or dedicated cores in heteroge-
neous multicore systems for running Dom-M, to enable rich, con-
tinuous management with low overheads and costs.

Overall, as management applications continue to grow in im-
portance, we believe that abstractions like the ones we proposed in
this paper will become even more important in the future. With the
final paper, we also plan to release the the M-channel and M-broker
APIs as libraries to the open source community, and our hope is that
this will encourage broader development around these abstractions

and subsequent refinement.
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