
Improving Cache Efficiency via Resizing + Remapping

Technical Report: GIT-CERCS-07-18
Subramanian Ramaswamy, Sudhakar Yalamanchili

Computational Architectures and Systems Laboratory
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332

ramaswamy@gatech.edu, sudha@ece.gatech.edu

Abstract

In this paper we propose techniques to dynamically
downsize or upsize a cache accompanied by cache set/line
shutdown to produce efficient caches. Unlike previous ap-
proaches, resizing is accompanied by a non-uniform remap-
ping of memory into the resized cache, thus avoiding misses
to sets/lines that are shut off. The paper first provides an
analysis into the causes of energy inefficiencies revealing
a simple model for improving efficiency. Based on this
model we propose the concept of “folding” - memory re-
gions mapping to disjoint cache resources are combined to
share cache sets producing a new placement function. Fold-
ing enables powering down cache sets at the expense of pos-
sibly increasing conflict misses. Effective folding heuristics
can substantially increase energy efficiency at the expense
of acceptable increase in execution time. We target the L2
cache because of its larger size and greater energy con-
sumption. Our techniques increase cache energy efficiency
by 20%, and reduce the EDP (energy delay product) by up
to 45% with an IPC degradation of less than 4%. The re-
sults also indicate opportunity for improving cache efficien-
cies further via cooperative compiler interactions.

1 Introduction

The shift from scaling frequency to scaling the number
of cores continues the trend of stressing off-chip memory
bandwidth and reliance on on-chip caches. However the
costs of larger caches are significant and growing. They
typically occupy 40–60% of the chip area [14] and with
leakage power exceeding switching power at sub-micron
technologies [11, 10], they are dominant consumers of en-
ergy. Furthermore, analysis of benchmarks have shown that
cache utilization is typically low - below 20% for a majority
of benchmarks [8, 4] with performance efficiency averaging
4.7% and energy efficiency averaging 0.17%!(Section 2).

This is in large part due to the fact that the majority of the
cache (especially L2 and L3) is idle most of the time but
contributes significantly to leakage power. The state of the
practice in making caches more energy efficient has been
to power down cache components such as cache lines, sets
or ways - turn them off or maintain them in a low voltage
state (examples include Albonesi [3], Abella et al.[2], Kaxi-
ras et al.[9], Powell et al.[12], Zhang. C et al.[19], Zhang
M. and Asanovic [20], Zhou et al.[21], Flautner et al. [7],
and, Abella and González [1].) Strategies focus on when to
turn of which components. Poor decisions lead to expensive
misses and power up events and therefore strategies tend to
be conservative.

In this paper we propose an evolution to the dynamic
scaling of cache resources for improving both cache perfor-
mance and power efficiency. Resource scaling differs from
prior approaches such as those identified earlier in that the
subset of active cache resources represent fully functional
caches - segments that are turned “off” will not be refer-
enced, and neither is the scaling uniform, i.e., certain mem-
ory lines will have relatively less cache resources allocated.
We view resource scaling as a natural extension to the prior
techniques for intelligently turning off portions of the cache
for short periods of time, and which requires solving a ba-
sic problem of mapping all of memory into the scaled down
cache or a scaled up cache i.e., computing a new placement
function. We combine the abstraction of conflict sets [13]
with run-time reference counts to realize simple (hardware)
techniques to dynamically resize the cache to a subset of
active components and recompute the placement function.
We target the L2 cache because of its larger size and conse-
quently greater impact on energy consumption.

The paper analyzes the causes of energy inefficiencies
revealing a simple model for improving energy efficiency.
Based on this model we propose the concept of folding -
memory regions that normally map to disjoint cache re-
sources are combined to share one or more cache sets pro-



ducing a new placement function. Folding enables pow-
ering down cache sets at the expense of possibly increas-
ing conflict misses. The concepts of resizing and folding
can be applied in different ways; for example, sizing and
folding can be applied statically if memory access patterns
are known at compile-time as happens with many scientific
computing kernels. In this paper, we focus on applying fold-
ing strategies at run-time. Effective folding heuristics can
substantially increase energy efficiency at the expense of an
acceptable increase in execution time. Section 2 describes
the model and metrics for computing cache efficiency and
the application to a set of benchmarks. The resulting in-
sights lead into several folding heuristics described in Sec-
tion 3. The proposed heuristics are evaluated in Section 4
and the paper concludes with summary remarks and direc-
tions for future research.

2 An Efficiency Model for Caches

2.1 The Model

At a clock cycle, a cache line may be active (powered) or
inactive (turned off). Thus, in the absence of energy man-
agement, all lines are active. Further, an active cache line is
live on a clock cycle if it contains data that will be reused
prior to eviction, and is dead otherwise [4, 9]. Thus, on any
clock cycle, a cache line will be live, dead, or inactive. Thus
the (L∗T ) cycles expended for a L line cache over T cycles
is the sum of live cycles, dead cycles, and inactive cycles,
with each cache line contributing one live, dead, or, inactive
cycle per clock cycle.

Cache utilization,ηu is the average percentage of cache
lines containing live data at a clock cycle [4, 9], and is
computed per Equation 1. The effectiveness of the cache,
E, is computed as the percentage of cache cycles devoted
to live or inactive lines as shown in Equation 2 where
(total cycles) is the program execution time. This met-
ric captures the effectiveness of strategies for programmed
shutdown - the higher the value the greater the percentage
of the active cache that retains live data. The most effec-
tive scheme is one where all cache cycles are either live or
inactive. In the absence of any energy management - effec-
tiveness is equivalent to utilization. Equation 2 and Equa-
tion 3 are equivalent because the number of active cycles is
the sum of the number of dead cycles and live cycles.

ηu =
∑i=L−1

i=0 live cycleslinei∑i=L−1
i=0 active cycleslinei

(1)

E = 1.0−
∑i=L−1

i=0 dead cycleslinei

total cycles ∗ L
(2)

E =
∑i=L−1

i=0 (live cycleslinei + inactive cycleslinei)∑i=L−1
i=0 (active cycleslinei + inactive cycleslinei)

(3)

Effectiveness as defined can be increased at the expense
of a high miss rate. For example, shutting down all except
one line in a direct mapped cache can produce high effec-
tiveness for structured accesses. An efficient cache should
be effective with minimal compromises in execution per-
formance. Cache performance efficiency, ηp, is defined in
Equation 4 as the product of effectiveness and a scaling fac-
tor shown below, where tc is the cache access time, tp is the
miss penalty, and, m is the miss rate. A cache has 100%
performance efficiency if it does not contribute any dead
cycles, and has a 100% hit rate.

ηp = E ∗ tc
tc + m ∗ tp

(4)

Energy efficiency, ηe, is the ratio of useful work to total
work. We regard useful work as the cache switching en-
ergy expended in servicing a cache hit. The total work is
the sum of the switching energy consumed during all cache
accesses (hits and misses), and leakage energy. A cache
will have an energy efficiency of unity, if all energy con-
sumed by the cache equals the switching energy consumed
during cache hits. Energy efficiency is defined in Equa-
tion 5, where swenergy represents the switching energy, and
leakenergy represents the leakage energy.

ηe =
swenergy ∗ numhits

swenergy ∗ (numhits + nummisses) + leakenergy

(5)
Although cache sets/lines may be turned off to reduce

leakage energy losses, if additional misses are created as
a result, program execution time increases. The increase
in execution cycles leads to greater energy consumption by
all active lines and therefore the choice of lines to turn off
are critical. Effectiveness and utilization can be expected
to drop as misses generally increase the percentage of dead
cycles due to conflict misses with a live cache line. An im-
portant question now becomes the line size - will smaller
line size enable a finer degree of control over energy dis-
sipation? Can we exercise this control effectively? The
preceding model provides a simple classification of cache
cycles that can be used to reason about cache efficiency, es-
pecially, as it relates to energy efficiency. This paper does
not explore the impact of cache parameters on the model
parameters. Rather we use this model to identify good fold-
ing heuristics. An analysis of benchmark kernels towards
that end is provided in the following section.



2.2 Empirical Analysis

We simulated the execution of benchmarks from the
SPEC2000 [18], Olden [15] and DIS [6] suites using the
SimpleScalar [17] simulator which was modified to ob-
tain cache efficiency. We used simulation windows for
SPEC programs given in the study performed by Sair and
Charney [16]. Our energy estimates were derived using
Cacti 4.2 [5] for 70nm technology. We assume the L2
cache access latency to be fixed at 15 cycles independent of
the size and associativity of the cache. Varying the cache
latency affected execution time by less than 2%. Our def-
inition assumes that the switching energy for a read is the
same as that of a write. This artificially increases energy ef-
ficiency because switching energy for a write is lower than
that for a read, as only one bank has to be accessed for a
write compared to all banks for a read. Leakage constitutes
95% of the total cache power at 70nm for cache sizes at
256KB or greater [5], and cache writes constitute a small
fraction of the total number of accesses, therefore this as-
sumption affected efficiency by less than 1%. Finally, the
energy was calculated with the cache operating at the high-
est expected frequency as given by Cacti.

Cache utilization for a 256KB 8-way L2 cache with 128-
byte lines averages 24% and that for the L1 cache averages
12% as seen from Figure 1. The utilization for the L2 cache
is higher than the L1 cache because the L2 cache is able
to house data structures that conflict in the L1 due to its
larger size for some of the applications (gzip, field etc.) The
utilization numbers suggest that both cache levels maintain
more dead lines than live lines, and therefore the majority
of cache costs are spent in maintaining data that will not be
re-used. Performance efficiency is shown in Figure 2 and
averages 4.7% for the L2 cache. Cache energy efficiency
with current designs averages 0.17% as observed from Fig-
ure 3 with leakage being the primary source of inefficiency.

Utilization captures the temporal residency of live data
in the cache. Performance efficiency captures how well this
residency in the cache is exploited. Thus, a live line that
is accessed 10 times during its period of residence is more
efficient than if it was accessed only twice during its period
of residence. Energy efficiency simply captures the percent-
age of overall energy that is devoted to useful work which
in this paper is regarded as servicing cache hits.

The sensitivity of energy and performance efficiencies
to cache sizes and associativity averaged across all applica-
tions is shown in Figures 4 and 5. Efficiencies drop with
cache size, and increase slightly with associativity. Larger
cache sizes can increase utilization if application footprints
fit in the cache, however as cache sizes are increased fur-
ther, the percentage of dead lines increases which lowers
efficiency. Thus, we see a drop in efficiency for higher
caches. When associativity is increased, miss rates are low-
ered with a resultant drop in execution time which improves

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

ammp
art bzip2

equake

field
gzip

health
mcf

mesa
perimeter

pointer

transitive

twolf
update

U
til

iz
at

io
n,

 η
u 

%

Benchmarks

L1 32KB, 64B, 2-way
L2 256KB, 256B, 8-way

Figure 1. Cache utilization with current de-
signs

 0

 10

 20

 30

 40

 50

ammp
art bzip2

equake

field
gzip

health
mcf

mesa
perimeter

pointer

transitive

twolf
update

P
er

fo
rm

an
ce

 E
ffi

ci
en

cy
 η

e 
%

Benchmarks

L2 256KB, 256B, 8-way

Figure 2. Cache performance efficiency with
current designs

efficiency. However, each dead cache line stays longer in
the cache due to the deeper LRU stack and the added dead
cycles can compensate for any utilization gains. Accord-
ingly, performance efficiency remains almost flat with asso-
ciativity. Energy efficiency improves slightly with associa-
tivity due to switching energy increases and reductions in
execution time, and is an artifact of the manner we define
energy efficiency. Cache line sizes also had a limited im-
pact on efficiencies and varied less than 5% for a range of
128 to 512 byte line sizes.

The primary source of inefficiency from an energy per-



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

ammp
art bzip2

equake

field
gzip

health
mcf

mesa
perimeter

pointer

transitive

twolf
update

E
ne

rg
y 

E
ffi

ci
en

cy
 η

e 
%

Benchmarks

L2 256KB, 256B, 8-way

Figure 3. Cache energy efficiency with cur-
rent designs

 0

 1

 2

 3

 4

 5

 6

256K 512K 1024K

A
ve

ra
ge

 E
ffi

ci
en

cy
 (

12
8B

,8
-w

ay
 L

2)

Cache Size

Performance Efficiency ηp 
Energy Efficiency ηe

Figure 4. Efficiencies as a function of cache
size

spective is that the number of accesses/cycle to an L2 is
very low. Detailed analysis of the reference behavior of
benchmark kernels [2] have identified inter-reference inter-
vals from thousands to tens of thousands of clock cycles -
during which time millions of cache transistors remain pow-
ered up. The goal now is to dramatically scale back the
cache size while remapping memory to the smaller cache.
This scaling (up or down) happens periodically to match the
program reference behavior that is modeled as described in
the following section.

 0

 1

 2

 3

 4

 5

 6

4 8 16

A
ve

ra
ge

 E
ffi

ci
en

cy
 (

25
6K

B
,1

28
B

 L
2)

Associativity

Performance Efficiency ηp 
Energy Efficiency ηe

Figure 5. Efficiencies as a function of asso-
ciativity

2.3 Improving Efficiency

The sharing of cache resources by memory lines is repre-
sented by the construction of conflict sets, where a conflict
set is the set of main memory lines that is mapped to a cache
set. The conflict sets in modern caches are constructed us-
ing modulo placement, where a memory line at address L is
placed in the cache set L mod S, with S sets in the cache.

The key to improving cache energy and performance ef-
ficiencies is sharing the cache among memory lines effi-
ciently. For this, we advocate extending the notion of live-
ness of program variables to main memory lines. A memory
line is live if any of the variables resident in the memory
line are live. Ideally, during the execution of a procedure
or function, if the set of live memory lines are resident in
the cache all remaining cache lines can powered off. The
cache resizing implementation would ideally track the size
of the set of live memory lines at any point during the pro-
gram execution. This paper captures our initial application
of this view where we apply heuristics to resize the cache
in an attempt to track the live range as represented by the
generational model of caches [8].

The concepts of liveness, resizing, folding and conflict
sets can be applied at multiple program execution points.
They may be applied statically, if information regarding
access behavior is available at compile-time, or they may
be applied as a one-time reconfiguration technique for em-
bedded processors that run pre-defined workloads, etc. In
this paper, we apply these techniques at runtime to improve
cache energy and performance efficiency.



P L1 L2 Memory

Placement Fn

Figure 6. Architecture Model

3 Cache Resizing

If two conflict sets have non-overlapping live ranges, the
two may be merged and a cache set corresponding to one of
those sets can be turned off without any increase in the num-
ber of misses. This merging of conflict sets is referred to as
folding. Folding requires remapping a set of main memory
lines to a new set. Conversely, splitting is the reverse pro-
cess and is accompanied by a corresponding upsizing of the
cache. In this paper splitting is confined to folded conflict
sets.

3.1 Customizing Cache Placement

Re-constructing conflict sets alters the mapping from
memory lines to cache sets, i.e., the cache placement is al-
tered. Conflict set folding, splitting and cache sizing cus-
tomize the placement for energy and performance. All con-
flict sets do not necessarily have the same cardinality as op-
posed to conflict sets in traditional caches which have the
same cardinality. That is, the number of memory lines con-
tained in a conflict set may vary over time using customized
placement. A newly created conflict set by merging original
conflict sets has a higher cardinality than other conflict sets
which were not altered.

Associated with each set is a reference counter that is
used to approximate the “liveness” of the lines in a cache
set. This reference count is used in the heuristics described
later in this section.

3.2 Architecture Model

Customized placement is implemented for the L2 cache
in an uni-processor architecture with L1 and L2 caches as
shown in Figure 6. The L2 access is overlapped with the L1
access - details for the individual heuristics are provided in
the following section. Operationally, when a down sizing or
upsizing operation is be performed a remapping table must
be reloaded with address translations - this is performed in
software.

Finally, we assume the existence of the ability to turn
off cache lines using the Gated-Vdd approach proposed by

Powell et al.[12] which enables turning off the supply volt-
ages to caches lines, and has an additional area cost of 3%.
A wide transistor in the supply voltage or the ground path of
the cache’s SRAM cells is introduced which reduces leak-
age because of the stacking effect of the self reverse-biasing
series-connected transistors.

3.3 Folding Heuristics

3.3.1 Decay Resizing

This technique is an extension to the cache decay strategy
proposed by Kaxiras et al.[8]. Based on a 4-bit counter
value, cache sets are turned off. If a cache set is accessed
while it is turned off, a cache miss results and the cache set
is powered back on during the servicing of the miss.

Our technique extends this by folding conflict sets that
that have long periods of inactivity or little activity. Fine
grained control at the granularity of cache sets is possible
through this approach. The hardware implementation con-
sists of a look up table which contains the new set indexes as
shown in Figure 7. On an L2 cache access, the lookup table
is accessed for the new set index, which may be different
from the original set index if the conflict set corresponding
to the original set index was one of those chosen for merg-
ing. The look up table access can be performed in parallel
with L1 access to save latency, however, the serial access
add only a single cycle which increases execution time by
only 1%.

Parameters that can be tuned include the frequency at
which the counter is sampled and the number of bits in the
counter. We experimented with two and four bit counters,
and turn off intervals were varied from 128K to 512K cy-
cles. Our technique merges all unused conflict sets to two
or four conflict sets, which is again a design parameter that
was explored. Our technique splits an original conflict set
from the merged conflict set if there are multiple accesses
(four) to the original conflict set within the sampling pe-
riod. Eager write-backs of dirty lines are required whenever
the cache is resized. Two lines with the same tag can now
map to the same cache set. Therefore to ensure unique tags
across all memory lines that map to a cache set, the new
tags are comprised of the old tags concatenated with the in-
dex bits. For a 256KB 8-way L2 with 128 byte lines, the
extended tag adds another 8 bits per cache set or a total of
256 bytes additional overhead to the entire cache which is
insignificant compared to the cache size.

3.3.2 Power of Two Resizing

A simple version of customized placement is downsiz-
ing or sizing the cache upwards in powers of two. Pow-
ell et al.[12] adopt such a mechanism for instruction caches
where the active cache size is increased or decreased based



Figure 7. Cache Decay Resizing

on miss rates being within a certain bound determined by
profiling. The advantage of this strategy is the simple ad-
dress translation mechanism which uses simple bit masking
as shown in Figure 8. We adopt this scheme to unified L2
caches. The number of references for a time interval is used
as our basis for sizing the cache. If the references within
a particular window are lower than a preset threshold, the
cache can be downsized, and if it is greater, the cache can
be resized upwards, with eager write-backs of dirty lines on
both occasions. Parameters that can be varied include the
thresholds and the turn off intervals, or using the hit count
in lieu of the reference count. This scheme creates a smaller
number of uniformly sized denser conflict sets upon down-
sizing.

Figure 8. Power of Two Resizing

3.3.3 Segment Resizing

In this approach, the cache is split into segments that are
a power of two, where a segment is a group of contiguous
cache sets. For example, a cache with 256 sets can be split
into 8 segments of 32 sets each, or 16 segments of 16 sets,
and so on. Conflict sets from one segment are folded with
those in another segment based on reference count within
a time interval. For example, if there are eight segments
and 256 conflict sets originally, conflict sets belonging to
two segments can be folded resulting in 224 conflict sets,
allowing 32 cache sets to be turned off.

This strategy sizes the cache on utilization. For example,
if the utilization was 12.5%, and if the cache was divided

into eight segments, ideally only one of the eight segments
has to be turned on if the application footprint in the cache
is contiguous. On the other hand, if the application footprint
was small but non-contiguous, finer grained approaches are
better suited.

The incoming address is split into a segment offset and
the segment index. The lookup table is indexed using the
original segment index to identify the new segment. The
new segment index concatenated with the segment offset
gives the new cache set index to be sent to the cache de-
coder. A simple implementation is to merge all segments
that are under-referenced to one segment in the cache. More
complicated schemes which merge segments according to
conflict set live ranges are possible and are a focus of future
efforts. The new tag is the original tag appended with the
segment index to ensure unique tags. Parameters that were
varied include thresholds, the number of segments and time
intervals for sampling the reference counters.

Figure 9. Cache Segment Resizing

4 Evaluation and Results

4.1 Simulation Setup

Our simulation infrastructure is the same as described in
Section 2. We performed our studies on a subset of appli-
cations from the SPEC2000 and Olden benchmark suites.
(Some were not included due to compilation or simulation
issues). Cache configurations similar to those in existing
Intel Pentium 4 architectures were studied, with 256KB L2
caches and a 32KB 64-byte, 2-way L1. If larger cache sizes
were chosen, the efficiencies of caches that were sized will
be further skewed upwards as many applications will fit in
the cache enabling customized placement to turn off a larger
number of cache sets without affecting performance. Our
evaluation metrics included effectiveness, energy and per-
formance efficiency, execution time and energy-delay prod-
uct (EDP).

The decision models used for folding were discussed in
Section 3.3. The models are invoked at a fixed time inter-
val, 512K cycles in the following discussion. The decision
models themselves used up less than 1% of this time frame



to perform the cache set remapping necessary for folding.
The philosophy is similar to dynamic optimizers which are
invoked by traps.

4.2 Results and Analysis

We evaluate the heuristics described earlier and com-
pare it with the original cache decay technique [8], and ob-
serve that for the L2 caches, sampling the access counters
every 512K cycles yields the best results. The heuristics
shown in the plots are: i) decay representing the cache de-
cay technique with a sample interval of 512K cycles, ii) dec-
res:4b:2s, representing the decay resizing heuristic with a
4-bit counter with all folded conflict sets merged to two sets
with the other dec-res heuristics representing changed pa-
rameters, iii) pow-res represents the power of two resizing
technique with a threshold of 1000 accesses for downsizing,
iv) seg-res:125:8S represents segment resizing with eight
segments and a threshold of 125 accesses per segment per
512K cycles. The thresholds were chosen on the basis that
on average access to an L2 cache line occurs once every
80000 cycles.

 0

 10

 20

 30

 40

 50

 60

baseline-256KB
decay

dec-si:4b:2s
dec-si:4b:4s
dec-si:2b:4s
dec-si:2b:2s
pow-si:1000
seg-si:125:8S

E
ffe

ct
iv

en
es

s

Techniques

Figure 10. Utilization Comparison

Figures 10 and 11 capture the effectiveness and perfor-
mance efficiency averaged over all benchmarks. Average
energy efficiency is shown in Figure 12. The normalized
average execution time (w.r.t. 256KB base cache) is shown
in Figure 13 and the maximum increase is less than 4% for
the heuristics, compared to a 5.5% increase for the cache
decay technique.

The folding heuristics have each memory line mapped to
an active cache set. This provides resilience against occa-
sional accesses to a conflict set that was folded, because the
active cache set can satisfy the request. This feature allows
more conflict sets to be folded and more aggressive turn offs
to be scheduled.

Performance efficiency improves indicating that the
heuristics folded conflict sets with large inactivity periods

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

baseline-256KB
decay

dec-si:4b:2s
dec-si:4b:4s
dec-si:2b:4s
dec-si:2b:2s
pow-si:1000
seg-si:125:8S

P
er

fo
rm

an
ce

 E
ffi

ci
en

cy

Techniques

Figure 11. Performance Efficiency Compari-
son

and therefore cache misses were kept low. Energy efficiency
increases by about 20% relative to the base line. If half the
cache was turned off to halve leakage energy was halved,
the number of hits must stay constant for energy efficiency
to double. Every added miss will add to execution time, and
to leakage energy increasing the denominator and lowering
the numerator in the energy efficiency equation. These ef-
fects provide the context for evaluating the efficiency im-
provement of 20%. This improvement is captured more ef-
fectively in the drop in EDP shown in Figure 14 - the EDP
improves by up to 45% compared to the base line cache.

 0.16

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 0.21

baseline-256KB
decay

dec-si:4b:2s
dec-si:4b:4s
dec-si:2b:4s
dec-si:2b:2s
pow-si:1000
seg-si:125:8S

E
ne

rg
y 

E
ffi

ci
en

cy

Techniques

Figure 12. Energy Efficiency Comparison

Among the heuristics studied, the 2-bit hierarchical
counters for the decay resizing heuristic provide the largest



 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 1.045

 1.05

 1.055

 1.06

decay

dec-si:4b:2s

dec-si:4b:4s

dec-si:2b:4s

dec-si:2b:2s

pow-si:1000

seg-si:125:8S

E
xe

cu
tio

n 
tim

e 
(N

or
m

al
iz

ed
)

Techniques

Figure 13. Execution Time Comparison

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

decay

dec-si:4b:2s

dec-si:4b:4s

dec-si:2b:4s

dec-si:2b:2s

pow-si:1000

seg-si:125:8S

 E
D

P
 (

N
or

m
al

iz
ed

) 

Techniques

Figure 14. EDP Comparison

improvements in EDP, because of the aggressive turn offs
folding all unused conflict sets into just two sets. The seg-
ment resizing technique, reduces the EDP by 30%, but af-
fects the execution time by less than 1%. We varied the
thresholds for the techniques (for example, from 1000 to
256 accesses per bank with 8 banks) and increased the num-
ber of banks to 16, however, this was not found to have a
significant effect, affecting results by less than 10%. EDP
improvements for individual benchmarks were significant,
ranging from 40–60%, and had low variance from the av-
erage. The benchmark bzip2 however, did not have any
appreciable drop in EDP–accesses and conflicts among the
three major data structures prevented the technique from
folding cache sets to improve energy efficiencies.

The power of two sizing heuristic lowered EDP by 20%,

and performed worse than the original cache decay ap-
proach and the other heuristics. The reason for the under-
performance is that it tries to create different “conventional
caches”, by resizing conflict sets uniformly, and therefore
the sources of inefficiency remained.

The folding heuristics were found to be stable indepen-
dent of the exact thresholds, counters or banks chosen, indi-
cating that the techniques are robust to the variance in mem-
ory reference behaviors, as long as the parameters chosen
were in the expected reference range. The IPC degradation
followed the execution time pattern, and was limited to less
than 4% for all the heuristics.

We also evaluated the hardware overhead our proposed
heuristics require. For example, the decay resizing heuristic
requires a lookup table of 256 ∗ 8 = 1024 bits for a 256
set cache. This 256 byte investment is less than 1% of a
256 KB cache, because no tag circuitry is required. As for
energy consumption, if lookup table is accessed on every
L1 access to minimize added latency, the switching energy
for the lookup plus the leakage energy constitutes a negli-
gible amount (<< 1%.) Similarly, the extended tag that
is required because of folding constitutes an insignificant
overhead in terms of area and power, once again being less
than 1%.

The results indicate a significant headroom for improv-
ing cache efficiency remains, notwithstanding the benefits
gained by the heuristics. A more focused approach using
inputs from and controlled by the compiler exploiting live-
ness and predictability of memory access patterns may be
successful in improving efficiencies further. This is espe-
cially suited for scientific computation, where access pat-
terns are often known and predictable.

Compilers may have to schedule accesses to the cache in
a burst to minimize leakage energy in future. Conflict set
construction with compiler inputs and compiler control is
one of the extensions we are exploring.

5 Conclusion and Future Extensions

Modern caches have poor efficiencies and were the tar-
get of the work reported in this paper. Our hypothesis is that
efficiency can be improved by extending the state of prac-
tice that involves intelligent shutdown of cache components
to scaling caches by remapping main memory to a reduced
size cache. We first proposed a model of cache behavior for
quantifying operational aspects of efficiency. This model
motivated the proposal of several heuristics based in the
concept of folding to improve efficiency. We found that
efficiencies and the EDP are increased by up to 20% and
40% using these simple heuristics. Significant headroom
for improving efficiency still exists, and our current efforts
are targeted towards refining our approach towards that end.
Extensions include using compiler generated liveness anal-
ysis and folding-aware data layouts.



References

[1] J. Abella and A. González. Heterogeneous way-size cache.
In ICS, pages 239–248, New York, NY, USA, 2006. ACM
Press.

[2] J. Abella, A. González, X. Vera, and M. F. P. O’Boyle.
IATAC: a smart predictor to turn-off l2 cache lines. ACM
Trans. Archit. Code Optim., 2(1):55–77, 2005.

[3] D. H. Albonesi. Selective cache ways: On-demand cache
resource allocation. In MICRO, 1999.

[4] D. C. Burger, J. R. Goodman, and A. Kagi. The Declining
Effectiveness of Dynamic Caching for General-Purpose Mi-
croprocessors. Technical Report UWMADISONCS CS-TR-
95-1261, University of Wisconsin, Madison, January 1995.

[5] N. P. J. David Tarjan, Shyamkumar Thoziyoor. CACTI 4.0.
Technical Report HPL-2006-86, HP Laboratories, 2006.

[6] DIS Stressmark Suite: Specifications for the Stressmarks of
the DIS Benchmark Project v 1.0., 2000.

[7] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: Simple techniques for reducing leakage
power. In ISCA, 2002.

[8] Z. Hu, M. Martonosi, and S. Kaxiras. Improving cache
power efficiency with an asymmetric set-associative cache.
In Workshop on Memory Performance Issues, 2001.

[9] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploit-
ing generational behavior to reduce cache leakage power. In
ISCA, pages 240–251, 2001.

[10] N. S. Kim, T. M. Austin, D. Blaauw, T. N. Mudge, K. Flaut-
ner, J. S. Hu, M. J. Irwin, M. T. Kandemir, and N. Vijaykr-
ishnan. Leakage current: Moore’s law meets static power.
IEEE Computer, 36(12):68–75, 2003.

[11] L. Li, I. Kadayif, Y.-F. Tsai, N. Vijaykrishnan, M. T. Kan-
demir, M. J. Irwin, and A. Sivasubramaniam. Managing
leakage energy in cache hierarchies. J. Instruction-Level
Parallelism, 5, 2003.

[12] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vi-
jaykumar. Gated Vdd: A circuit technique to reduce leakage
in deep-submicron cache memories. In ISLPED, pages 90–
95, 2000.

[13] S. Ramaswamy and S. Yalamanchili. Customizable fault tol-
erant caches for embedded processors. In ICCD, 2006.

[14] P. Ranganathan, S. Adve, and N. P. Jouppi. Reconfigurable
caches and their application to media processing. In ISCA
’00, pages 214–224, 2000.

[15] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren.
Supporting dynamic data structures on distributed-memory
machines. ACM TOPLAS, 17(2):233–263, March 1995.

[16] S. Sair and M. Charney. Memory behavior of the spec2000
benchmark suite. Technical Report RC-21852, IBM Thomas
J. Watson Research Center, October 2000.

[17] The Simplescalar toolset version 3.0. Available online at
http://www.simplescalar.com.

[18] The SPEC CPU2000 Benchmark suite. Information avail-
able at http://www.spec.org.

[19] C. Zhang, F. Vahid, and W. Najjar. A highly configurable
cache architecture for embedded systems. In ISCA, pages
136–146, 2003.

[20] M. Zhang and K. Asanovi. Fine-grain CAM-tag cache re-
sizing using miss tags. In ISLPED, pages 130–135, 2002.

[21] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte.
Adaptive mode control: A static-power-efficient cache de-
sign. ACM TECS, 2(3):347–372, 2003.


