
The Design and Evaluation of
Techniques for Route Diversity in Distributed Hash Tables

Cyrus Harvesf and Douglas M. Blough
Georgia Institute of Technology

School of Electrical and Computer Engineering
Atlanta, GA 30332-0250

{charvesf,dblough}@ece.gatech.edu

Abstract

To achieve higher efficiency over their unstructured
counterparts, structured peer-to-peer systems hold each
node responsible for serving a specified set of keys and cor-
rectly routing lookups. Unfortunately, malicious partici-
pants can abuse these responsibilities to deny access to a
set of keys or misroute lookups. We look to address both
of these problems through replica placement. We present
a replica placement scheme for any distributed hash table
that uses a prefix-matching routing scheme and evaluate the
number of replicas necessary to produce a desired number
of disjoint routes. We show through simulation that this
placement can make a significant improvement in routing
robustness over other placements. Furthermore, we con-
sider another route diversity mechanism that we call neigh-
bor set routing and show that, when used with our replica
placement, it can successfully route messages to a correct
replica even with a quarter of the nodes in the system failed
at random. Finally, we demonstrate a family of replica
query strategies that can trade off response time and sys-
tem load. We present a hybrid query strategy that keeps
response time low without producing too high a load.

1. Introduction

Structured peer-to-peer networks provide the benefits
of efficiency, scalability, resilience, and self-organization
when building distributed applications. As such, this ar-
chitecture has been used in constructing lookup services
(e.g., Chord [21], Pastry [16]) that can serve as a platform
for a multitude of applications, including multicast, pub-
lish/subscribe, and persistent storage.

The structured architecture holds each node responsible
for serving data items and correctly routing messages. Ma-
licious nodes may abuse these responsibilities and act to

tamper with the correct functioning of the system. Because
of the multitude of potentially unforeseen vulnerabilities,
it is important to design robustness into the system so it
has the ability to function properly, even in the presence of
unexpected attacks. For example, providing diverse routes
between nodes can improve routing robustness and protect
against many routing attacks.

In our work, we consider two classes of attacks: (1) mali-
cious routing and (2) storage and retrieval attacks. The most
commonly accepted defenses to these attacks are route di-
versity and replication, respectively. Our solution integrates
these two approaches into a replica placement scheme that
can be tuned to produce a desired number of disjoint routes.

2. Background

Sit and Morris [18] identify the major threats to struc-
tured peer-to-peer systems to be:

1. Routing attacks, in which a malicious node may mis-
route lookups or attempt to corrupt routing tables;

2. Storage and retrieval attacks, in which a malicious
node may deny access to a key it serves; and

3. Miscellaneous attacks, in which a node may act arbi-
trarily to tamper with the correct operation of the sys-
tem. These attacks include Sybil and Eclipse [6, 17] as
well as denial of service (DoS) attacks [8, 20].

Our work mitigates the first two threat types. As suggested
in [19], routing attacks can be mitigated with alternative
lookup paths. To this end, they propose the notion ofin-
dependent lookup paths. Two routes are said to be in-
dependent if they share no common node other than the
source and destination nodes. Independent routes help im-
prove routing robustness, but do not address storage and re-
trieval attacks because the routes share a common destina-
tion node. We definedisjoint routesto be routes that share

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50%

Percent Failed

1 2 4 8 16

n = 100000, b = 4

Figure 1. Routing Success Probability with
Increasing Failure Rate for 1, 2, 4, 8 and 16
Disjoint Routes.

no common node other than the source. This is a more ro-
bust notion of route diversity.

To address storage and retrieval attacks, we use replica-
tion as Sit and Morris recommend. The novel contribution
of our approach is that the replicaplacementnaturally pro-
duces disjoint routes without significant modification to the
underlying peer-to-peer system.

The impact of disjoint routes on routing robustness can
be understood with a little analysis. If we assume that the
probability that a node has failed isf and the average route
length (for Pastry) isR = log

2b n, whereb is the num-
ber of bits per digit in the prefix-matching scheme andn is
the number of nodes, then the probabilityPR that a route
contains a failed node isPR = 1 − (1 − f)R. If we as-
sume we haved disjoint routes, then the probabilityP that
at least one of thed disjoint routes contains no failed nodes
is P = 1 − PR

d. We callP the routing success probabil-
ity. The routing success probabilities for 1, 2, 4, 8 and 16
disjoint routes in a DHT withn = 100, 000 andb = 4 are
shown in Figure 1.

In order for disjoint routes to improve the robustness of
our system, we require that the keys stored in the system
be self-verifying; that is, we assume that a key’s integrity
can be verified by the client. This is necessary to detect
when a node returns an incorrect entry. For types of data
where self-verification is not natural, we can generate key
identifiers by hashing the key object as in [5]. The client
can verify the key’s integrity by comparing its hash with the
key identifier. Castro et al. [3] discuss self-verifying data as
well as a method for managing mutable self-verifying data.

Under these assumptions, our system can tolerate attacks
by up tod − 1 malicious nodes, whered is the number of
disjoint routes. A similar approach was proven for Chord
in [10]; however, we present a general solution applicable

to all DHTs that use prefix-matching routing.

3. Related Work

To our knowledge, outside of our own research, no pre-
vious work has considered using replica placement to im-
prove routing robustness in DHTs. However, many works
have looked at peer-to-peer routing and replica placement
independently. We outline these works in the following sub-
sections and distinguish them from our work.

3.1. Peer-to-Peer Routing

Many works have looked to improve the security and ro-
bustness of peer-to-peer routing. Several approaches have
been centered around the notion of alternative paths [19].

Artigas, et al. [2] use a multipath concept to secure rout-
ing. They propose Cyclone, an equivalence-based routing
scheme that is built upon an existing peer-to-peer structured
overlay. Independent lookup paths can be created by rout-
ing along different equivalence classes. The key difference
between Cyclone and our work is that Cyclone creates in-
dependent lookup paths rather than disjoint paths. Since the
paths created do not differ in the destination node, Cyclone
will not prevent storage and retrieval attacks. Our work pro-
duces disjoint routes to several appropriately placed repli-
cas, thereby preventing a limited number of attacks of this
kind. Furthermore, Cyclone requires additional routing
overhead per node and employs a complex routing scheme.
We use a replica placement scheme that automatically pro-
duces disjoint routes without significant modification to the
underlying routing mechanism.

The notion of independent paths has been considered in
other works as well. In an effort to provide message con-
fidentiality, [14] suggests that messages be split, encrypted,
and sent to the destination along independent paths. Empir-
ically, [14] determines the finger table offsets to minimize
route overlap with high probability. We will show analyti-
cally that our placement scheme creates disjoint routes.

Castro et al. [3] propose a secure routing primitive us-
ing replication and two routing mechanisms. They com-
bine efficient, locality-based routing with constrained rout-
ing mechanisms to find diverse routes to the replica set in
the event of routing failure. The key mechanism in cre-
ating route diversity is the notion ofneighbor set anycast.
Rather than modifying the underlying routing mechanism,
we improve routing robustness by carefully placing repli-
cas. Using the robustness properties we prove herein for
our replica placement, we will show that it can be combined
with a neighbor set routing approach similar to Castro’s to
achieve even greater security.

Mickens and Noble [12] develop a framework for di-
agnosing broken overlay routes, whether they result from

2

IP-level link failures or malicious routers at the overlay-
level. Once the source of the error is detected, the DHT
can circumnavigate broken IP-level links or exclude misbe-
having nodes to improve the routing robustness of the sys-
tem. Rather than excluding misbehaving nodes (which may
have been falsely diagnosed), our replica placement builds
robustness by providing disjoint routes, which can be used
to avoid faulty nodes.

3.2. Replica Placement

Replica placement has long been studied in realms out-
side of peer-to-peer systems. As more work has been done
within peer-to-peer systems, it has become clear that replica
placement can be used to manage load and satisfy capac-
ity constraints while improving the quality of service in the
system. Many studies have compared the performance of
several placement schemes in terms of quality of service,
availability, and time to recovery [4, 7, 11, 13]. However, to
our knowledge, none have considered routing robustness as
it relates to replica placement.

Ghodsi et al. [9] present thesymmetricreplica place-
ment scheme, which is equivalent toequally-spacedreplica
placement. They present the benefits that can be achieved
in terms of message overhead in node joins and leaves, load
balance, and fault tolerance by using this placement. Al-
though such a placement can improve routing robustness,
as shown in [10], it is not efficient in the creation of dis-
joint routes for all DHTs. Our placement efficiently creates
disjoint routes while preservingadaptivity, or the ability to
change the replication degree with minimal overhead.

4. Route Diversity Techniques

In this section, we consider two methods for creating di-
verse routes in a DHT. First, we will present a replica place-
ment such that the routes to a replica set form a set of dis-
joint routes. Second, we will describe the route diversifying
technique employed by [3] and defineneighbor set routing,
a mechanism that can be used to increase route diversity.

4.1. MaxDisjoint Replica Placement

In the following discussion, we assume that node rout-
ing tables are organized as in Pastry [16] and that each en-
try may be optimized for locality awareness or constrained
as suggested by [3]. Furthermore, we assume that routing
is performed in an identifier space of sizeN and that the
prefix-matching occurs in digits of baseB, whereB = 2b

for b bits per digit.
We defineshl(i, j) to be the length (in base-B digits) of

the shared prefix between the identifiersi andj as in [16].
All of our analytical results are proven within the context

of a full DHT, which we define to be a DHT wherein every
identifier in the identifier space is represented by a node.

The simplest method for generating disjoint routes is to
ensure that each route uses a different routing table entry as
its first hop. The following lemma embodies the premise
of our approach and will be used to prove that our replica
placement can be used to produce any desired number of
disjoint routes.

Lemma. In a full distributed hash table that uses prefix-
matching routing, routes originating at the same source
node that differ in the first hop are disjoint.

Proof. Consider a query nodeq and two routes originating
at q destined for keysk1 andk2. Suppose that the first hop
of the routes aren1 andn2 (n1 6= n2), respectively. The
identifiers of nodesn1 andn2 differ in the(i + 1)-th most
significant digit, wherei = min{shl(q, k1), shl(q, k2)}.
Furthermore, the subsequent hops in each route will share
at least the first(i + 1) digits with the first hop. Therefore,
the two routes cannot share any common nodes and are dis-
joint.

Next, we present our replica placement algorithm and a
theorem, which prescribes the replication degree necessary
to produce any desired number of disjoint routes.

MaxDisjoint Algorithm. The replica placement is per-
formed inm + 1 rounds, wherem = ⌊ d−1

B−1
⌋. The first

m rounds each consist ofB − 1 steps and the final round
consists ofn steps, wheren = (d − 1) mod (B − 1). In
the i-th round,Bi−1 replicas are placed at equally-spaced
locations over the entire identifier space at each step (spac-
ing si = N

Bi−1). In stepj of roundi, the replica locations
are given by:

Ri,j = {ki,j , ki,j + si, ki,j + 2si, . . .

. . . , ki,j + (Bi−1 − 1)si} (mod N),

whereki,j = k + j N
Bi .

Theorem. To produced disjoint routes from any query
node to a keyk in a full distributed hash table using
prefix-matching routing with baseB > 1, the keyk must
be replicated at(n + 1)Bm locations determined by the
MaxDisjoint Algorithm, wherem = ⌊ d−1

B−1
⌋ and n =

(d − 1) mod (B − 1).

Proof. (By induction) Whend = 2, the replica placement
is performed in one step wherein a single replica is placed
in addition to the master key location. Therefore, the key is
replicated atk andk+ N

B
mod N . These two replicas differ

in the first digit. Therefore, any query node would route
to these replicas using two different routing table entries,
which produces two disjoint routes.

3

Assume that the replica placement correctly createsd

disjoint routes. We will show that performing an additional
step in the algorithm produces one additional disjoint route.
Let this additional step be stepj in round i. Consider a
query nodeq and select the replicar ∈ Ri,j such that
shl(r, q) ≥ (i − 1). Such a replica exists and is unique
because the replicas inRi,j take on allBi−1 possible com-
binations in the first(i − 1) digits and share the remaining
digits. Leti∗ = shl(r, q). The query nodeq will create an
additional disjoint route tor by using the appropriate entry
in thei∗-th row of its routing table (the column corresponds
to the value ofr in the (i∗ + 1)-th digit). No other replica
can use this entry becauser differs from all other replicas
(outside its own step) in thei-th digit.

The number of replicas necessary to created disjoint
routes can be computed by summing the number of repli-
cas used in each step. The master key accounts for one
route and the remainingd−1 are created through the replica
placement. The number of full rounds is determined by the
number of timesB − 1 dividesd − 1 (m = ⌊ d−1

B−1
⌋) and

the remaining routes are created in the final (partial) round
(n = (d−1) mod (B−1)). Since,Bi−1 replicas are placed
at each step in roundi, the total number of replicas is given
by:

1 +

[

m
∑

i=1

(B − 1)Bi−1

]

+ nBm = (n + 1)Bm

Since each step creates an additional route by using a sin-
gle routing table entry and the number of disjoint routes is
bounded by the outgoing node degree, it is straightforward
to show that this placement creates the maximum number
of disjoint routes for the given replication degree. For this
reason, we give our placement the name MaxDisjoint.

It is worth noting that disjoint routes are created without
modifying the underlying routing mechanism. MaxDisjoint
naturally creates disjoint routes using the prefix-matching
property of the routing scheme. It can be shown rather
easily that this result is consistent with the equally-spaced
replica placement for Chord prescribed in [10].

As described in the replica placement algorithm, in each
round replicas are placed starting at the master key and
working in the direction of increasing identifiers. The al-
gorithm is presented as such for its simplicity. However,
the steps within each round can be performed in any or-
der. Each step is functionally equivalent to the others in
its round. Therefore, a real implementation may reorder
the steps in each round to distribute the replicas more uni-
formly across the identifier space. This will help to provide
load balance and tolerate runs of contiguous failed nodes.

Note that whenn = 0, MaxDisjoint is equivalent to
equal-spacing. However, whenB > 2, equal-spacing is not

1

10

100

1000

0 8 16 24 32

Disjoint Routes

MaxDisjoint Adaptive Equally-Spaced

Figure 2. Required Replication Degree for In-
creasing Numbers of Disjoint Routes.

a low cost,adaptivereplica placement. An adaptive solu-
tion allows for the replication degree to be changed with
minimal cost. In order for equal-spacing to be adaptive
without shifting replicas, the replication degree must be in-
creased by a factor of two. Each time the number of repli-
cas is doubled, a single replica is introduced between each
pair of existing replicas, splitting the existing spacing in
half. Thus, an adaptive equally-spaced solution must have
a replication degree that is a power of two. The MaxDis-
joint placement is a low cost alternative. A comparison of
the number of replicas needed to produce a desired number
of disjoint routes for MaxDisjoint and an adaptive equally-
spaced placement is depicted in Figure 2. In most cases,
an adaptive equal-spacing uses excessive replicas to achieve
the same number of disjoint routes as our placement.

4.2. Neighbor Set Routing

Castro et al. [3] construct aneighbor set anycastto route
to a clustered replica set. The premise is to route to nodes
that contain the master key in their neighbor set. Using
knowledge of the neighbor sets of those nodes, the correct
nodes that are home to the replica set can be determined.

In order to reach the nodes containing the master key in
their neighbor set, messages must be routed along diverse
routes. To create diverse routes, messages are routed using
the neighbor set of the query node. We call thisneighbor
set routing. Neighbor set routing sufficiently creates diverse
routes when the replicas are distributed uniformly over the
identifier space, as in CAN [15] and Tapestry [22]. How-
ever, when replicas are clustered, most routes will likely
converge at the nodes preceding the replica set in the identi-
fier space. In our experiments, we consider how well route
diversity is created when replicas are clustered and measure
the impact of combining it with our replica placement.

4

5. Experiments

Three experiments were run to evaluate our replica
placement. First, we evaluated how well the placement im-
proves routing robustness compared to other replica place-
ments, even in DHTs that are not fully populated. Second,
we measured the degree to which neighbor set routing im-
proves routing robustness over replica placement alone. Fi-
nally, we considered the impact of our replica placement on
response time and system load.

All experiments were performed using a Java-based sim-
ulator we developed. For the first two experiments, it is suf-
ficient to use a simple route computer to compute the routes
between any two nodes in a DHT. To accurately measure
response time and, more importantly, the impact of queuing
on response time, it was necessary to build a discrete event
simulator over the route computer.

For all experiments, 1024 nodes were modeled in a Pas-
try DHT with a 20-bit identifier space andb = 4 (hexadec-
imal digits are used in prefix-matching). For the first two
experiments, each data point in the results is the average of
over 100,000 lookups. Because of the extended runtime for
discrete event simulations, each data point in the response
time experiments is the average of over 10,000 lookups.

5.1. Replica Placement

Experiments were performed to compare several replica
placements in terms of the number of disjoint routes created
and the impact on routing robustness. In addition to our
replica placement, we also considered random placement,
where replica locations are randomly selected from a uni-
form distribution; neighbor set placement, where replicas
are placed within the neighborhood (leaf set in Pastry terms)
of the master key; and spaced placement, where replicas are
separated by a fixed spacing. For the spaced placement, we
used spacings of 1024 and 8192.

The average number of disjoint routes created for each
replica placement is depicted in Figure 3. For the param-
eters tested, our replica placement outperforms the other
placements in creating disjoint routes. The random place-
ment performs second best, but our replica placement pro-
duces an average of 10-15% more disjoint routes than a ran-
dom placement and nearly 50% more for 16 replicas. Fur-
thermore, in the worst case, a random placement could pro-
duce as few disjoint routes as neighbor set placement. Our
placement creates a provable number of disjoint routes for
every possible query.

The spaced replica placements perform quite poorly
compared to our placement because the spacing should vary
with the number of replicas to effectively create additional
disjoint routes. Note that 1024-spacing creates about as

0

2

4

6

8

10

12

14

16

18

0 4 8 12 16

Replicas

MaxDisjoint Random Neighbor Set 1024-Spaced 8192-Spaced

N = 2
20

, b = 4, n = 1024

Figure 3. Number of Disjoint Routes with In-
creasing Replication Degree.

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50%

Percent Failed

MaxDisjoint Random Neighbor Set 1024-Spaced 8192-Spaced

N = 2
20

, b = 4, n = 1024, d = 8

Figure 4. Probability of Routing Success with
Increasing Failure Rate.

many disjoint routes as neighbor set placement. This is be-
cause the average inter-node spacing is 1024.

To measure the impact on routing robustness, we ran-
domly selected nodes within the system to fail. We assume
that a route that contains only correct nodes returns a cor-
rect result. For each query, the query node computes routes
to the entire replica set. If there exists a route that returns a
correct result, the lookup is deemed successful.

The impact of the placement of eight replicas on routing
robustness can be seen in Figure 4. Our replica placement
routes messages with the highest success rate over the range
of failure rates tested. Even with a quarter of nodes failed,
99% of lookups are successful This is a dramatic improve-
ment over the neighbor set placement, which only routes
75% of all messages succcessfully with a quarter of nodes
failed. The random placement performs comparably to our
placement, but introduces bias toward particular queries that

5

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50%

Percent Failed

NBR+RP RP NBR No Route Diversity

N = 2
20

, b = 4, n = 1024, d = 8, Neighbor Set Size = 8

Figure 5. Probability of Routing Success of
Replica Placement (RP) and Neighbor Set
Routing (NBR) with Increasing Failure Rate.

could be exploited by an adversary.
The spaced and neighbor set placement do not suffi-

ciently create route diversity to have a significant impact on
routing robustness. The 1024-spaced placement performs
worse than the neighbor set placement because spaced repli-
cas may actually reside on the same node. Replicas placed
in a neighbor set reside on distinct nodes, which creates
more diversity over spaced placements with small spacings
relative to the inter-node spacing.

5.2. Combining Route Diversity Techniques

To evaluate the relative impact of replica placement and
neighbor set routing on routing robustness, we conducted a
set of experiments to measure the routing success rate. We
measured the success rate with neither route diversity mech-
anism, with each mechanism individually, and with both
mechanisms together. When both mechanisms are used to-
gether, the query node routes to each replica using its neigh-
bor set nodes as the first hop. The results for eight replicas
and a neighbor set size of eight are shown in Figure 5.

Both replica placement and neighbor set routing can
make a significant improvement in routing robustness over
no route diversity at all. However, replica placement has a
stronger impact on the routing success rate. This is because
neighbor set routing cannot create disjoint routes. Instead,
it attempts to create diverse routes, which at best share no
nodes other than the destination node.

Nonetheless, there is benefit in using neighbor set rout-
ing in conjunction with replica placement. Especially at
higher failure rates, neighbor set routing can introduce ad-
ditional diversity that can increase routing robustness. With
half of the nodes in the system compromised, using neigh-
bor set routing and replica placement together can route

90% of all lookups successfully compared to only a 66%
success rate with replica placement alone.

5.3. Response Time and System Load

Finally, since replica placement seems to be a reason-
able method for improving routing robustness, it is natural
to consider some of the practical concerns with using repli-
cation. When querying a replica set, response time can be
reduced by querying the entire replica set in parallel. How-
ever, this may have a significant impact on the system load.
Therefore, we consider three replica query strategies: par-
allel, sequential and hybrid.

Contrary to the parallel strategy, the sequential strategy
queries replicas one at a time waiting for a response be-
fore querying the next replica. This strategy controls system
load at the expense of response time.

We also considered a hybrid approach in which replicas
are queried in sets of two or more replicas. Sets are queried
one at a time waiting for a response before querying the
next set. With this strategy, the trade-off can be tuned us-
ing the set size to achieve the desired response time with a
reasonable system load.

To present realistic response times, we modeled the inter-
node delay with a log-normal distribution with mean 60ms
and standard deviation 50ms and total response time as the
sum of inter-node delays along a route. The log-normal
distribution parameters were selected using results from a
study of TCP connection round trip times [1].

We extended our fault model to assume that failed nodes
correctly forward lookups to create added system load, but
return incorrect responses that the query node is able to de-
tect. Therefore, a failed route will result in the same system
load as a successful route, but will add to the overall re-
sponse time of the lookup. In a real system where a failure
may result in no response at all, it would be necessary to use
a timeout for the sequential and hybrid schemes. Correctly
tuning these timeouts is beyond the scope of this paper.

The average response time and system load for eight
replicas are shown in Figure 6. For the hybrid strategy, set
sizes of two and four (marked “Hybrid-2” and “Hybrid-4”,
respectively) were used. These experiments used a rela-
tively low lookup rate of 100 lookups per second, which
results in little or no queuing. Therefore, these results are
representative of near ideal conditions.

In the presence of ideal conditions, the trade-off between
response time and system load is clear. The parallel strategy
provides less variability in response time. With increasing
failure rate, the response time of the sequential strategy in-
creases rapidly while the parallel strategy slowly increases.
However, this comes at the expense of system resources.
Using a hybrid strategy can exploit the trade-off to have the
reduced response time variability of parallelization while

6

0.0

0.2

0.4

0.6

0.8

R
e

s
p

o
n

s
e

 T
im

e

N = 2
20

, b = 4, n = 1024, d = 8

0

50

100

150

200

0% 10% 20% 30% 40% 50%

Percent Failed

S
y

s
te

m
 L

o
a

d

Sequential Parallel Hybrid-2 Hybrid-4

Figure 6. Average Response Time (in Sec-
onds) and System Load (in Messages) for
Successful Lookups.

reasonably controlling the system load.
To measure the effect of message queuing on response

time, the above experiment was repeated for lookup rates
varying from1× 102 to 1× 107 lookups per second. Since
the underlying physical topology is difficult to predict and
we are more concerned with the queuing that results from
our query strategy, we modeled queuing in the overlay,
rather than in the physical network. We assume that each
node in the overlay is a leaf node in the underlying physical
topology and has a 1 megabit per second link to its gateway
router. Furthermore, we assume that the message size is 1
kilobyte, which is consistent with real Pastry implementa-
tions. The average response time in a system with 25% of
nodes failed is shown in Figure 7.

For applications with relatively low lookup rates (less
than 1000 lookups per second), response times close to ideal
can be expected. However, as the lookup rate increases, the
response time of the parallel strategy degrades rapidly to
nearly double the response time of the sequential strategy.
This effect can be compounded with a larger replication de-
gree. If the lookup rate of the application is known a priori,
then the appropriate degree of parallelization can be chosen
to achieve minimal response time without causing excessive
strain on the system. When the lookup rate cannot be known
a priori, the use of a hybrid strategy can help manage the
trade-off. A potential area for future work is a distributed
protocol for congestion control that can detect congestion
in the system and tune the degree of parallelization appro-
priately to minimize response time.

6. Discussion

We have described a replica placement scheme that cre-
ates disjoint routes, which can be applied to any DHT that

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

100 1000 10000 100000 1000000 10000000

Lookups Per Second

Sequential Parallel Hybrid-2 Hybrid-4

N = 2
20

, b = 4, n = 1024, d = 8

Figure 7. Average Response Time for Suc-
cessful Lookups (in Seconds) with Increas-
ing Lookup Rate (25% of Nodes Failed).

uses prefix-matching routing. Furthermore, we have shown
through simulation that such a scheme can improve routing
robustness. This solution requires no modification to the
underlying routing scheme and produces desirable results,
even for sparsely populated DHTs. Our experiments have
shown that using our replica placement can be used to cor-
rectly respond to all queries with high probability even with
a quarter of the system nodes failed.

Furthermore, we considered neighbor set routing as an-
other route diversity mechanism and showed that it can be
used to improve on replica placement in terms of routing ro-
bustness. With half of the nodes failed, using neighbor set
routing with replica placement can improve the routing suc-
cess rate substantially over replica placement alone. There-
fore, using two route diversity mechanisms, like replica
placement and neighbor set routing, can have a positive im-
pact on routing robustness. The development of new route
diversity mechanisms that can be used in concert to improve
routing robustness is a topic for future work.

Finally, we considered some practical ramifications of
using replica placement in a real implementation; that is,
we evaluated the impact of the replica query strategy on re-
sponse time and system load. In particular, we considered
three query strategies: parallel, sequential and hybrid. As
expected, there is a trade-off between response time and
system load with the strategy used. The parallel strategy
gives a low variability, fast response time at the expense of
high system load. To the contrary, the sequential strategy re-
duces system load at the cost of response time. The hybrid
strategy allows the application to tune the response time and
system load to tolerable levels. The consideration of alter-
native query strategies is a potential area for research.

Further experiments were run to measure how quickly
the added system load of the parallel strategy degrades the

7

benefits in response time. For lookup rates less than 1000
lookups per second, the parallel strategy was able to main-
tain a response time better than the other strategies consid-
ered. However, as the lookup rate increases, the response
time quickly degrades and the parallel strategy is outper-
formed by the sequential strategy. A hybrid strategy can be
used to control the rate at which the response time degrades.

Congestion resulting from the replica query strategy
brings about several potential areas for future work. First,
the development of a distributed congestion control protocol
that detects when the query strategy is straining the system
and changes the strategy to reduce the strain would be of
great benefit to applications that have volatile lookup rates.
For example, in a peer-to-peer voice over IP application,
caller lookup rates may vary wildly with the time of day.

Second, we have studied congestion at the overlay layer.
A more involved study would be concerned with the under-
lying physical topology and how congestion occurs there as
a result of the query strategy. This may lead to strategies
that vary the order in which replicas are queried such that
replicas that are likely to return correct responses quickly
are queried first. This approach should result in better re-
sponse times and reduced system load.

Lastly, our replica placement assumes that data in the
system is self-verifying. Since it is not always feasible to
assume self-verifying data, we would like to eliminate this
assumption. Byzantine fault tolerant algorithms exist that
can be used to elect a correct value from a set of candi-
dates. However, we cannot apply these algorithms blindly
since the set of values returned do not necessarily contribute
equally to the result. Two replicas may have come from
routes that share a common malicious node. However, if we
find the correlation between each replica and the route along
which it was returned, we can assign appropriate weights
and construct a working agreement protocol.

References

[1] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay. Variability in
tcp round-trip times. InProceedings of ACM SIGCOMM
IMC’03, pages 279–284, 2003.

[2] M. S. Artigas, P. G. Lopez, and A. F. G. Skarmeta. A
novel methodology for constructing secure multipath over-
lays. IEEE Internet Computing, 9(6):50–57, 2005.

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. Wallach. Secure routing for structured peer-to-peer over-
lay networks. InProceedings of OSDI ’02, pages 299–314,
2002.

[4] Y. Chen, R. H. Katz, and J. Kubiatowicz. Dynamic replica
placement for scalable content delivery. InProceedings of
IPTPS’02, pages 306–318, 2002.

[5] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. InProceedings of
ACM SOSP’01, pages 202–215, 2001.

[6] J. R. Douceur. The sybil attack. InProceedings of IPTPS’02,
pages 251–260, 2002.

[7] J. R. Douceur and R. P. Wattenhofer. Large-scale simulation
of replica placement algorithms for a serverless distributed
file system. InProceedings of MASCOTS’01, pages 311–9,
2001.

[8] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and
W. Zwaenepoel. Denial-of-service resilience in peer-to-peer
file sharing systems.SIGMETRICS Perform. Eval. Rev.,
33(1):38–49, 2005.

[9] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric replica-
tion for structured peer-to-peer systems. InProceedings of
DBISP2P’05, pages 74–85, 2005.

[10] C. Harvesf and D. M. Blough. The effect of replica place-
ment on routing robustness in distributed hash tables. In
Proceedings of P2P’06, pages 57–6, 2006.

[11] Q. Lian, W. Chen, and Z. Zhang. On the impact of replica
placement to the reliability of distributed block storage sys-
tems. InProceedings of ICDCS’05, pages 187–196, 2005.

[12] J. W. Mickens and B. D. Noble. Concilium: Collabora-
tive diagnosis of broken overlay routes. InProceedings of
DSN’07 (to appear), 2007.

[13] G. On, J. Schmitt, and R. Steinmetz. The effectiveness of
realistic replication strategies on quality of availability for
peer-to-peer systems. InProceedings of P2P’03, pages 57–
64, 2003.

[14] M. Portmann, S. Ardon, and A. Seneviratne. Mitigating
routing misbehaviour of rational nodes in chord. InPro-
ceedings of SAINT’04, pages 541–545, 2004.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proceedings of SIGCOMM ’01, pages 161–172, 2001.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems. InProceedings of ACM Middleware’01, pages
329–350, 2001.

[17] A. Singh, M. Castro, P. Druschel, and A. Rowstron. Defend-
ing against eclipse attacks on overlay networks. InProceed-
ings of ACM SIGOPS’04, pages 115–120, 2004.

[18] E. Sit and R. Morris. Security considerations for peer-to-
peer distributed hash tables. InProceedings of IPTPS’02,
pages 261–9, 2002.

[19] M. Srivatsa and L. Liu. Vulnerabilities and security threats
in structured peer-to-peer systems: A quantative analysis. In
Proceedings of IEEE ACSAC’04, pages 252–261, 2004.

[20] A. Stavrou, A. Keromytis, and D. Rubenstein. Exploiting
structure in DHT overlays for DoS protection. Technical
report, Columbia University, 2004.

[21] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. InProceedings of ACM SIG-
COMM’01, pages 149–160, 2001.

[22] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment.IEEE Journal on Selected
Areas in Communications, 22(1):41–53, 2004.

8

