
A SpatioTemporal Placement Model for Caching
Location Dependent Queries

Anand Murugappan and Ling Liu
College of Computing, Georgia Institute of Technology, Atlanta, USA

{anandm, lingliu}@cc.gatech.edu

Abstract—Client side caching of location dependent queries is
an important technique for improving performance of location-
based services. Most of the existing research in this area has
focused on cache replacement and invalidation through incor-
porating some aspects of the spatial and temporal semantics
embedded in the location queries, while assuming an ad hoc
cache placement. Very few have studied the impact of spatial and
temporal validity semantics and the motion behavior of mobile
clients on the effectiveness of cache placement and ultimately
the performance of the client cache. This paper proposes an
adaptive spatio-temporal placement scheme for caching loca-
tion dependent queries. The cache placement decision is made
according to the potential cache benefit of the query results
based on the spatio-temporal properties of query results and
the movement patterns of the mobile client, aiming at increasing
the cache hit ratio. We introduce the concept of ‘Overlapping
Cache Benefit’ as a measure of the hit rate of a cached item,
and present three spatio-temporal cache placement schemes,
which provide a step-by-step in-depth analysis of various factors
that may affect the performance of a client cache in mobile
environments. We implemented the spatio-temporal placement
model in the first prototype of the MOBICACHE system. Our
experimental evaluation shows that the spatial locality and the
movement patterns of mobile clients are critical factors that
impact the effectiveness of cache placement and the performance
of client cache, and the proposed adaptive spatio-temporal cache
placement approach yields higher hit ratio and better response
time compared to existing mobile cache solutions.

I. INTRODUCTION

One of the critical issues in mobile environments is the
growing demand of scalable solutions for efficient delivery of
content and information services. Location Dependent Queries
(LDQ) form a special class of location-based information
services in the sense that location dependent queries are issued
by mobile clients on the move, thus the query results are
dependent on the movement patterns and the current location
of the mobile client, no matter whether target objects of
the location queries are still objects such as gas stations,
restaurants, or moving objects such as taxi on the road.

Location-dependent information delivery faces many new
difficulties inherent to mobile computing environments in ad-
dition to the scalability and performance challenges confronted
by Web content delivery in wired networks. Caching of fre-
quently accessed data items on the client side is an important
general technique that helps address some of these challenges.
By storing copies of data objects locally, data accessibility
can be enhanced and access cost can be reduced. However,
frequent network disconnections, mobility of the clients, and

limited local resources on the mobile clients, complicate the
provision of information delivery services to mobile users,
making location-aware client caching a challenging problem.

We argue that in a mobile computing environment, the cache
placement decision should take into account both the temporal
validity and the spatial locality of the data items to be placed
in the client cache and the motion behavior of the mobile
client. Consider a simple example in which a mobile user
is driving on the I85 North highway at 60 mph speed, and
wants to find the nearest gas stations within certain range.
If the query is asking for gas stations within 5 miles, then
the spatial validity of the gas stations returned is 5 miles.
Obviously, these gas stations will no longer be relevant after 5
minutes of driving. If the query interval of this mobile client is
typically longer than 5 minutes, then placing these gas stations
in her cache is a waste in terms of both placement cost and
replacement/invalidation cost.

Bearing these challenges in mind, in this paper we propose
an adaptive spatio-temporal placement scheme for caching
location dependent queries, which predicts the potential cache
benefit of the query results based on multiple spatio-temporal
properties of mobile clients. The main design idea of this
new placement model is based on two observations. First,
in a mobile environment, some query results may have an
extremely low likelihood of being used in the near future due
to mobility and spatio-temporal constraints. Thus the ability
of identifying such items and dropping them earlier instead of
placing them in the client cache and replacing them later can
greatly increase the cache hit ratio and improve the overall
cache performance. Second, due to the motion dynamics of
mobile clients, such as changing speeds and changing query
intervals, an adaptive cache placement scheme can better
respond to the dynamic motion behavior and changing query
requirements of mobile clients.

Our contributions in this paper can be summarized in two
folds. First, we present three spatio-temporal cache placement
schemes, which provide step-by-step in-depth understanding
of various factors that may affect the performance of a client
cache in mobile environments. The first one is called threshold
based STP scheme, which emphasizes on the importance of
combining temporal locality and spatial locality on cache
efficiency. The second approach is called Bound-based STP,
which highlights the importance of adequate control of the
coordination between the spatio-temporal placement and the
ad hoc placement. The third one is the speed and query interval

adaptive STP scheme (SQI STP), which stresses the impor-
tance of incorporating both motion pattern and query pattern
into the cache placement decision. Second, we implement and
evaluate the proposed schemes in a prototype system, called
MOBICACHE.

The remaining of the paper proceeds as follows. We give an
overview of the MobiCache system, including the reference
system model and the problem statement in Section II. We
describe the three spatio-temporal cache placement schemes
in Section III. The experimental evaluation of the proposed
solutions are provided in Section IV. We conclude the paper
with a discussion on related work and a summary in Section V
and Section VI respectively.

II. MOBICACHE SYSTEM OVERVIEW

We briefly describe the reference system model, including
the basic notions and assumptions used in the paper, and
the problem statement, including two concrete scenarios and
the set of critical factors to be considered in making the
cache placement decision and how they would impact cache
performance.

A. Reference System Model

In this paper we assume a cellular network as the underlying
infrastructure. The system consists of mobile clients, stationary
servers and mobile support stations. We also assume a geomet-
rical location model where locations are represented in terms
of two dimensional coordinates. The clients can move from
one location to another and communicate (submit queries and
obtain results) with the stationary servers through the mobile
support stations.

A Location Dependent Query (LDQ) denoted by Qi (1 ≤
i ≤ n), is defined as a tuple < Oi, Lx, Ly, Ri, Fi > where Oi

is the object type being queried,(Lx, Ly) the location of the
mobile client making the query, Ri denotes the spatial range
of the query, and Fi denotes the filter condition of the query.
For simplicity, all queries are assumed to be associated with
a circular range. For example, <restaurants,-77,38,2 miles,
restaurant type = French > represents the query “Show me
all French restaurants within 2 miles radius from my current
location (-77,38)”.

Queries are issued by the mobile client to the respective
servers through its mobile support station. For each moving
query over moving objects, the MOBICACHE system on the
mobile client will assign a query dependent time-to-live (TTL)
timestamp to each query result set returned by the server based
on the query range and location, speeds of the mobile target
objects. For instance, a moving location query “find the nearest
taxi within 5 miles of my current location” will be processed
by the taxi service provider in the area and return a list of
taxi cars ordered by the distance to the current location of
the mobile client. Assuming the typical speed of taxi on the
city street is 30mph, the MobiCache system will associate
10 minutes as the maximum TTL for the query results −
the taxi objects returned by the server. By default, all query
result objects are assigned a system-supplied large value as the

maximum TTL. For all moving queries over static objects,
such as “find the nearest gas station within 5 miles of my
current location”, the result objects will have their TTL set to
the system default.

B. Problem Statement and Important Parameters

In mobile information delivery systems, ad-hoc cache place-
ment suffers from a number of problems. In this section we
first describe these problems and then discuss the set of pa-
rameters that are critical for improving the cache performance
of a mobile client cache.

The fundamental objective of cache placement is to keep all
items that will potentially be requested by subsequent queries.
Due to the limited bandwidth, intermittent connectivity, and
restricted computing capacity at mobile clients, the cache
placement strategy for a mobile client should make effort to
avoid placing data items that will unlikely be used by subse-
quent queries in the near future. There are certain situations
where we can predict the potential cache benefit of the query
results with reasonable accuracy.

Fig. 1. Importance of spatial locality in cache placement

Figure 1 provides two example scenarios. The scenario on
the left side of Figure 1 illustrates an example where the
mobile user driving across a city at the speed of 50 mph issues
a continuous location query: “Show me all restaurants within
5 miles (of the user’s current location) every 5 minutes in
the next hour”. This continuous query will be evaluated at the
interval of every 5 minutes (equivalent to every 4.1 miles) from
its installation for twenty consecutive times (since the stop
condition of this query is 1 hour). Each execution is shown
as a circle (with the mobile user at the center) in Figure 1.
In such a scenario, caching the query results is beneficial due
to the overlap of query results between two consecutive query
evaluations. However, if the mobile user issued the following
query instead: “Show me all restaurants within 5 miles radius
(of the user’s current location) every 20 minutes for the next
hour”, then the placement of this query results in the mobile
client cache will not generate a cache hit for the next query
(and other subsequent queries), because the query ranges of the
two consecutive evaluations do not overlap at all, as shown in
Figure 1(right). In fact, storing the results of this query in the
cache not only generates zero cache benefit but incurs both
the cost of placement and the cost of replacement, because
placement of such results might trigger replacement of some
other entries from the cache that might be more useful. This
example scenario amounts to say that when the mobile client

moves far away from the spatial scope of the current query
results long before posing the next query, even if the next query
is posed on the same object type at the future location, there
will unlikely be any spatial overlapping between the current
query results and the next query results due to the relatively
small spatial validity scope of the query results with respect
to the query interval and the movement speed of the mobile
client. Hence it is cost-effective if we can detect such scenarios
and avoid unnecessary placement.

Another situation where early detection of unnecessary
placement is obviously beneficial is when the query results
are valid only for a short period of time. A typical example
of such scenarios includes those in response to LDQs made
over moving objects. Thus, even if the very same query is
made from the very same location at a later time the cached
results may no longer be valid due to the query rate and the
movement patterns of the query result objects. For instance,
consider a LDQ issued by a mobile client: “Find all AAA
vehicles moving on the road and within 10 miles of my current
location”. Given that the AAA vehicles in question are on the
move, the query results might not be valid for a long time.
If the AAA vehicles in question are moving at 50 mph on
average, the results will be invalid after 12 minutes. If the
predicted query interval for the next query is 20 minutes, then
the query results will have expired quite some time ago. Hence,
it will be prudent not to place such results into the cache
and thus avoid both the cost of placement and the potential
problem of replacement of a potentially more useful entry in
the client cache. Typically when the temporal validity period
of the query results is short with respect to the query interval,
the placement decision should be made with care.

By closely examining scenarios like those in above exam-
ples, we made two observations. First, ad-hoc placement is not
always beneficial in mobile environments. Second, the spatial
relationship between the two consecutive query ranges and the
distance between the current and the next query locations are
critical measures for determining the effectiveness of the cache
placement decision. More interestingly, the distance between
the two consecutive query locations depends greatly on the
query interval and the movement speed of the mobile client.

III. ADAPTIVE SPATIO-TEMPORAL CACHE PLACEMENT

In this section we first describe the concept of spatial area
overlapping and the general metric for computing the overlap-
ping cache benefit. We then present an in-depth analysis of the
adaptive placement model through the step-wise development
of three spatio-temporal placement (STP) schemes: Threshold-
based STP, Bound-based STP, and Speed-Interval adaptive
STP. Each of these three schemes shows one specific way
of measuring the overlapping cache benefit. We describe our
experimental evaluation of the effectiveness of these schemes
in Section IV.

A. Basic Concepts and Threshold Based STP Scheme

In MOBICACHE we introduce two basic concepts:
spatial area overlapping and overlapping cache benefit. The

overlapping cache benefit is defined in the spirit of spatial
area overlapping, and is used as the core technique for
developing adaptive spatio-temporal placement schemes.

Fig. 2. Accurately measuring the Area of Overlap

Area Overlapping Function: Recall example scenarios in
Section II, we show that if there is a possibility that the next
query to be made might overlap with the current query range,
then the results should be placed in the cache since there is
a potential for cache hit. On the other hand, if there is an
indication that there is no chance of overlapping in the near
future it is better not to place the current query results into the
cache. Thus, the expected overlapping serves as a measure of
the likelihood that the query result will generate a cache hit.
To perform this test we first predict where and when the next
query is likely to be made based on the client’s movement
pattern and query interval history. Then we perform the area
overlapping test by considering a scenario that maximizes the
possibility of an overlapping. One such scenario would be
when the immediate next query is for the same object type.
Query results that fail to pass the test will not be placed in
the cache.

Formally, let two range queries be Q1 and Q2, let the
query range of Q1 centered at A(x1, y1) with radius r1 and
the range of Q2 centered at B(x2, y2) with radius r2. Let the
two points of intersection between Q1 and Q2 denote by C
and D as shown in Figure 2. The area overlap function of
two location queries Q1 and Q2, denoted by AOF (Q1, Q2),
can be computed as follows:

AOF (Q1, Q2) = r2
2(6 CBD−sin(6 CBD))+r1

2(6 CAD−sin(6 CAD))
2

Where, 6 CBD = 2 cos−1(r2
2+AB2−r1

2

2×r2×AB
) and 6 CAD =

2 cos−1(r1
2+AB2−r2

2

2×r1×AB
)

The computation of the area overlapping between Q1 and
Q2 shows that the bigger the overlapping area, the higher the
likelihood that Q1s results will be reused to answer Q2, thus
the more benefit we will gain by placement of the results of
Q1 into the client cache.

Given that the location where the next query (i.e., Q2) will
be issued is typically unknown at the time when we determine
whether to place the results of the current query (say Q1) into
the client cache, one approach is to use the distance between
the location where the current query (Q1) is issued and the
expected location where the next query (Q2) will be issued,
denoted by d, to approximate the overlapping effect. This leads
us to introduce the concept of Overlapping Cache Benefit.
Overlapping cache benefit: Let ri denote the radius of the

current query Qi and di denote the distance between the
location where the current query Qi is issued and the expected
location where the next query Qi+1 will be issued. Let αc de-
note a system-defined constant and wi be the weight function
that balances the measurement of overlapping benefit through
query-dependent adaptation. We define the Overlapping Cache
Benefit for a given query Qi as follows:

OCB(Qi) =
ri
di
− wiαc (1)

The intuition behind the Overlapping Cache Benefit formula
can be illustrated through the discussion of the three variables
di, ri, and wi. We first describe how to compute di, the dis-
tance between the location where the current query (Qi) is is-
sued and the expected location where the next query Qi+1 will
be issued. The distance di can be computed as the Euclidean
distance between the two center points of the two query
ranges, using the formula d =

√
(cx − lx)2 + (cy − ly)2,

where (cx,cy) denotes the location of the current query Qi

and (lx,ly) denotes the expected future location when the next
query is likely to be made. The future location (lx, ly) can
be predicted using the current location (cx, cy), the current
velocity (vx, vy), and the expected query interval qi+1 of the
mobile client, i.e., lx = cx + vxqi+1 and ly = cy + vyqi+1.
The estimated query interval (qi+1) is determined based on the
query history of the mobile client. By replacing (lx, ly) in the
above formula for computing d, we have d = qi+1

√
v2

x + v2
y .

Let t1 denote the time when the initial query issued by the
mobile client and t2 be the next query issued by the same
client. The expected query interval after the current query Qi,
denoted by qi+1, can be estimated using an exponential aver-
aging scheme: q2 = t2−t1 and qi+1 = β(ti−ti−1)+(1−β)qi
where i > 2 and t1, t2, ti, ti−1 represent the timestamps when
the mobile client issued the first query, the second query, the
current query, and the previous query respectively. qi and qi−1

represent the query interval for the current query Qi and the
query interval for the previous query Qi−1 respectively. β is
a constant between 0 and 1.

Now we discuss the role of variable ri in measuring the
overlapping cache benefit OCB(Qi). For any two queries Qi

with radius ri and Qi+1 with radius ri+1 to overlap, the sum
of ri and ri+1 should be larger than the distance di between
the two query centers. Namely ri + ri+1 > di holds. Given
that at time ti when the current query Qi is processed, it
is not always obvious when and where the next query Qi+1

will be posed. One way to approximate the next query for the
same query object type is by assuming that it is similar to the
current query (i.e., ri = ri+1). Thus, the following condition
holds: ri/di < 1/2. This implies that the results of query Qi

will be placed in the cache only if ri/di is higher than the
specified threshold constant αc and αc should be set greater
than 1/2.

Finally, we discuss the role of wiαc in measuring the
overlapping cache benefit. αc is a system-defined parameter
and is typically set by a constant. The weight wi can be
set as a query independent constant or a query dependent

variable. The product wiαc serves as the ‘Control Knob’ to
enable the incorporation of spatio-temporal placement to the
cache placement decision whenever the overlapping cache
benefit OCB(Qi) is greater than zero. For example, by setting
wi = 1 and αc = 10, the above Overlapping Cache Benefit
computation will be instantiated to the following threshold-
based formula with αc = 10.
OCBthreshold(Qi) = ri

di
− αc

Clearly, keeping the ‘Control Knob’ value very high can
be risky because it could result in eliminating most of the
data items, while keeping a very low value of wiαc (close
to zero) would make the ad-hoc cache placement dominate
the placement decision. Thus, an important challenge is to
determine the setting of the weight wi and thus the ‘Control
Knob’ to meet the objective of the chosen cache placement
scheme.
Temporal Cache Benefit Measure: The Overlapping Cache
Benefit measure can be seen as a technique used in MOBI-
CACHE to capture the spatial locality of cached data items.
Recall Section II-B, in mobile environments, location queries
may be posed over moving objects, when the expected query
interval for the next query is much longer than the time-to-live
(TTL) timestamp of the moving objects returned by the current
query, such query results should not be placed in the client
cache. One straightforward and yet effective way to model the
temporal locality of cached data items is to compare the TTL
of the query results with the expected query interval of the
next query. Only when the TTL of a data item is greater than
the expected query interval, the placement of such an item
in the client cache can be granted. Thus, if the TTL of the
query result items will expire much sooner than the expected
query interval for the next query, then such items should not
be placed into the client cache.
Threshold-based STP Scheme: Threshold-based STP scheme
implements the most basic spatio-temporal placement strategy.
In this scheme, the placement decision is made by analyzing
two orthogonal and yet complimentary factors: (1) the over-
lapping cache benefit measure to determine if the following
spatial placement condition r

d ≤ αc holds, and (2) the temporal
cache benefit measure which uses the TTL of the target objects
from the current query against the expected query interval of
the next query and test if TTL(Qi) > qi+1 holds. Only the
data items that pass the test of both overlapping cache benefit
measure and the temporal cache benefit measure are placed in
the client cache.
Setting αc in MobiCache: In MOBICACHE, the spatial con-
trol knob constant αc is typically set to a positive value greater
than 0.5, favoring placement of those query results that are
likely to overlap with the next expected query. Naturally, the
larger the αc value is, the higher degree of spatial overlapping
is preferred for cache placement. Thus choosing a slightly
higher value for αc would ensure that only the query results
that are highly likely to overlap with the next expected query
would be placed in the cache. However, setting the αc value
too high may cause too few query results to enter the cache,
affecting hit ratio unfavorably.

The Threshold based Spatio-Temporal Placement scheme is
non-adaptive because the ‘Control Knob’ in the Overlapping
Cache Benefit calculation remains fixed throughout the life
time of the cache. This motivates us to develop the Bound
based STP and the Speed and Query Interval (SQI) adaptive
STP scheme.

B. Bound-based Spatio-Temporal Placement Scheme (Bound
STP)

One of the reasons that the threshold-based STP scheme
improves ad-hoc placement is the fact that the threshold-based
STP selectively discards certain query results based on their
overlapping cache benefit measure and their temporal cache
benefit measure. It is also observed that when the mobile
client moves at higher speeds the threshold-based STP drops
much more items than when the mobile client travels at lower
speeds. In order to maintain a reasonable hit ratio for the client
cache, we need to avoid extremely high drop rate or extremely
low drop rate during cache placement when responding to
changing motion behavior and changing query patterns. A
simple and straightforward way to address this problem is
to configure the system with a lower discard bound, denoted
by TLower, and an upper discard bound, denoted by TUpper.
Instead of setting the STP Control Knob as a fixed system-
wide parameter, we devise an adaptive approach. Whenever
the percentage of discarded items (denoted by λdiscard) drops
below the specified lower bound TLower, the Bound-based
STP scheme will increase the Control Knob weight by a
pre-configured constant γc. Similarly, when the percentage
of discarded items becomes greater than the specified upper
discard bound TUpper, the Bound STP scheme will be relaxed
by reducing the Control Knob weight by the pre-defined
constant γc. The testing of λDiscard against TUpper and
TLower is performed at the end of each epoch, which is when
the adaptation happens. The goal of this placement scheme
is to keep the amount of discarded items during the cache
placement within the upper and lower bound in each epoch.
This is achieved by comparing the percentage of the discarded
items (λDiscard) during the cache placement decision in the
current epoch against the system-supplied lower and upper
bound TLower and TUpper, and adapting the setting of the
control knob weight wi (one γc step at a time) for the next
epoch. If the percentage of discarded items (λDiscard in one
epoch continues to be greater than TUpper (system-supplied
parameter), then the weight for the next epoch will be further
reduced by one γc at the end of the current epoch. On the
other hand if the percentage of discarded items is lesser than
TLower the weight for the next epoch will be increased by one
γc at the end of the current epoch. Eventually, the percentage
of discarded items during the cache placement will fall into the
range specified by the lower and upper bound and stabilize. As
expected, this Bound STP scheme offers better performance
than the Threshold-based STP scheme when the movement
speed of the mobile client changes more frequently.

Now we formally describe the Bound-based STP scheme.
Let wi and wi−1 denote the weight to be set and the previous

weight respectively and γc denotes the constant increment or
decrement step, such as 10 (a lower value of γc would result
in slower but more stable adaptation while a higher value
would result in faster but potentially unstable adaptation). Let
λDiscard denote the percentage of discarded entries for the
current epoch, TUpper and TLower denote the upper discard
bound and the lower discard bound respectively. We can define
the control knob weight wi as follows:

wi =

 wi−1 − γc if λdiscard > TUpper

wi−1 + γc if λdiscard < TLower

wi−1 otherwise

Thus the Overlapping Cache Benefit for a query with radius
ri and the expected distance of di from the center of the
current query (Qi) to the center of the next query (Qi+1) is
defined as follows:

OCBbound(Qi) =
ri
di
− wiαc. (2)

In the Bound-based STP, the control knob weight wi is
determined at the end of each epoch based on the weight
wi−1, the percentage of discarded items λDiscard, and the
pre-defined system-wide parameters γc, TUpper, and TLower.
In MOBICACHE the lifetime of the client cache is divided into
epochs of equal duration. Adaptations happen only at the end
of each epoch. By introducing epochs, the system adapts only
when there is a consistent drop or increase in the percentage
of items discarded.

C. Speed and Query Interval Adaptive STP Scheme (SQI STP)

The Bound STP offers better performance in comparison
to threshold-based STP in most cases. On one hand, bound
STP is able to adapt the STP control knob weight periodically
through increasing or decreasing the weight by a constant
γc at the end of each epoch. By maintaining the percentage
of discarded items (λDiscard) during the cache placement
within the specified upper and lower bound, one can avoid
making over pessimistic or over-optimistic placement decision.
On the other hand, the threshold STP uses a fixed threshold
throughout the lifetime of a client cache, which severely limits
the flexibility of the placement scheme to adapt to changing
movement pattern and query interval of the mobile client.
However, the flexibility of adaptation supported by the Bound
STP scheme is limited by the pre-defined lower and upper
bound on the percentage of discarded items, TLower and
TUpper.

In order to support dynamic adaptation of cache placement
to the changing movement speed and changing query interval
of the mobile client, we develop the third spatio-temporal
placement scheme, called the Speed-Query Interval Adaptive
STP scheme (SQI-Adaptive STP or simply SQI STP for short).
In this scheme, the ‘STP Control Knob weight’ is determined
based on both the query interval and the movement speed of
the mobile client. Intuitively, we observe that the higher the
movement speed and the longer the query interval a mobile
client has, the lower the overlap cache benefit will be. This is
because at higher speeds or higher query intervals the query

ranges of consecutive queries are further apart and the chances
of spatial overlapping are greatly reduced. Thus, instead of
using the fixed upper and lower bound to tune the control knot
weight and thus the cache placement quality, the ‘STP Control
Knob weight’ should be set to be inversely proportional to the
speed and the query interval for better cache performance.
Based on this rationale we define the ‘STP Control Knob
weight’ based on the movement speed of the mobile client at
the time when the ith query Qi was issued, denoted by speedi,
and the expected movement speed when the next query Qi+1

is expected to be posed, denoted by ExpSpeed.

wi =
1

ExpSpeedi+1 × qi+1
(3)

Where i > 1, qi+1 is the expected query interval when the
next query will be posed, and

ExpSpeed2 = speed1 (4)

ExpSpeedi+1 = ζ(speedi − speedi−1) + (1− ζ)ExpSpeedi

(5)
q2 = t2 − t1 (6)

qi+1 = β(ti − ti−1) + (1− β)qi (7)

Where i ≤ 2, ti, ti−1 represent timestamps for the mobile
client to ask the current query and the previous query re-
spectively, qi and qi−1 denote the current query interval and
the previous query interval respectively, and β is a constant
between 0 and 1, and usually set to 0.5 in our experiments.

In the Speed-Query Interval Adaptive STP scheme, the
Overlapping Cache Benefit measure for a query Qi with radius
ri and expected distance of di from the center of the current
query to the next query is defined as follows:

OCBSQIadapt(Qi) =
ri
di
−
(

1
ExpSpeedi+1 × qi+1

)
αc (8)

where αc is set by the system default (recall the discussion in
Section III-A).

IV. EXPERIMENTAL EVALUATION

In this section we conduct the experimental evaluation on
the proposed three spatio-temporal placement schemes and
compare them with the popular ad-hoc placement scheme
used in most of existing mobile cache systems [10], [16],
[5], [4], [13], [11], [6], [12]. The experiments are divided
into two sets. One set of experiments is designed to study the
impact of different characteristics of mobile clients on cache
performance in terms of hit ratio. Another set of experiments
is designed to study the impact of different characteristics of
location-dependent queries on cache performance. We show
that spatio-temporal placement schemes can significantly im-
prove the cache hit ratio (between 5% to 10% improvement).
Among the three STP schemes, the SQI adaptive placement
offers the highest hit ratio and at the same time is highly
robust in responding to changes in speed and query interval
of the mobile client. We also show that the proposed STP
placement schemes work well with both temporal replacement

policy like LRU and spatial replacement policy like FAR [10].
The combination of our SQI-adaptive STP with FAR offers
higher hit ratio than any other combination of placement and
replacement strategies, be it ad-hoc and FAR, ad-hoc and
LRU, Bound and FAR, threshold-based STP and FAR, or SQI-
adaptive placement and LRU replacement. In the rest of this
section we first describe the mobility simulation model used
for our experiments, including the input generator and the play
module. Then we report our experimental results in detail.

A. Simulation Model

We use a variant of the popular Random Walk Model [2]
for simulation of client mobility and motion behavior of
moving objects. The client starts at location (0,0) with an
initial velocity (vx, vy). vx and vy represent the x component
and y component of the velocity vector. A positive value
indicates that the movement of the client is along the positive
axis while a negative value indicates the movement along
the negative axis. Thus, the velocity values represent both
speed and direction. The client is modeled to move with a
given velocity for some time (movement interval), then wait
for a duration at the new destination (pause interval) and
then change its velocity randomly (speed and direction). This
process repeats over time. The client makes a large number
of queries based on the given query intervals while on the
move. By varying the input parameters for the model, such as
the movement interval, pause interval, query interval, several
different work loads can be generated. For instance, having
a very large movement interval would force the client to
travel in a straight line for longer durations (e.g., simulating
a vehicle such as truck traveling from city to city on the
highway), while having a small movement interval would
allow a mobile client moving along a straight line only for
a short duration (e.g., simulating tourists traveling within a
city or a tourist attraction). Our simulation model consists of
two components - (a) Input Generator and (b) Play module.
The input generator takes parameters, such as client velocity,
static or moving objects, per object query radius distribution,
query interval, movement interval, and generates a sequence of
location dependent queries, each of such queries is associated
with the time when the query was made, the size of the result,
and the TTL of the result. The TTL for queries on moving
objects is calculated using the radius of the query range and
the speed of the moving target object, which is randomly set
between 30 to 60 mph. Null values are used for query results
that are still objects such as restaurants, gas stations, and so
forth. Queries were generated and assigned random values of
range (R) using a normal distribution on R. For example, if
the object type (O) is ‘restaurant’ and the range R is 10 miles
then the queries with restaurant as the object type would set
the radius following a normal distribution around 10 miles.
The object types used in the queries are generated based on
a zipf distribution, namely a few object types are queried
very often while most of other object types are queried once
in a while. This module is representative of the real-world
query scenarios in mobile environments. The Play module

simply ‘plays’ the location-dependent queries generated by the
input module under different cache placement and replacement
policies and different cache sizes. The play module consists
of implementations of various placement, invalidation and
replacement policies. This module simulates the mobile client.
It estimates the query interval, the movement speed and other
parameter of the mobile client at run time and uses them in the
spatio-temporal placement algorithms described in Section III.
The advantage of separating the input generator module from
the play module is to enable the exact same set of queries at
the exact same set of locations to be replayed under different
placement and replacement policies and different cache sizes,
allowing us to conduct an in-depth study of these parameters
and their impacts on cache performance.

The key parameters used in the experiments reported in this
paper are summarized in Table 1. The number of location
queries used in the experiments is 30,000. For the constants,
we set αc to 10, β to 0.5, γc to 10, ζ to 0.8, TUpper to 60%,
TLower to 50% and epoch size to 100 . All the simulations
were run on a Linux server with 4 3GHz processors and a
total memory of 4GB. The results are reproducible on any
other machine, since the mobile client specific information is
implemented as a part of the play module.

B. Experimental results

We first report the experimental evaluation of the effective-
ness of our spatio-temporal placement schemes by studying the
impact of the characteristics of mobile client, such as changes
in cache size, query interval, movement interval and movement
speed on hit ratio. Then we report the experimental results on
the impact of different query characteristics on cache hit ratio,
including the percentage of queries over moving objects and
the number of objects returned by queries. Finally we report
the study on the effect of using different replacement policies
on the performance of our spatio-temporal cache placement
schemes in terms of hit ratio.

1) Mobile Client Characteristics on Cache Hit Ratio:
Impact of Cache Size on Hit Ratio: Figure 3(leftmost) shows
the impact of cache size on hit ratio on cache sizes of the
mobile devices. The spatial placement refers to using only
the Overlapping cache benefit measure to make the placement
decision, whereas the temporal placement refers to using only

the temporal cache benefit measure (TTL against query inter-
val) to make the placement decision. This experiment shows
that both spatial and temporal placement strategies perform
better compared to the ad hoc placement. By combining
spatial and temporal cache benefit measures together as the
Threshold-based STP, the cache performance is even better. It
is important to note that, in the Threshold-based STP scheme,
the STP Control Knob is fixed with wi = 1 and αc = 10.
However, in the Bound STP, the overlap benefit factor varies
depending on the percentage of discarded items in each epoch,
the system-supplied bound parameters, TLower and TUpper,
and the system-defined increment/decrement constant γc. Sim-
ilarly, in the Speed-Query Interval adaptive STP scheme, the
overlapping cache benefit measure rises and falls depending
on the movement speeds and query intervals of the mobile
clients. Hence, the adaptive STP schemes offer better overall
cache performance than threshold-based or ad-hoc placement
approaches.
Impact of Query Interval on Hit Ratio: Figure 3(center-left)
shows the variation of hit ratio with changes in query interval.
When the client frequently poses queries, the hit ratios for
all the placement strategies (including the Ad hoc placement)
are high. This is intuitive because the client is not likely to
have traveled far away between the queries. With an increase
in query interval, the hit ratio drops for all the placement
schemes (except for Spatial and Threshold STP initially). The
deviation for spatial and threshold STP schemes for smaller
query intervals is because they have fixed overlapping benefit
factors and hence cannot adapt to the changes in query interval.
Impact of Client Movement Interval on Hit Ratio: Figure
3(center-right) shows the variation of hit ratio with changes
in movement interval. Movement interval is defined as the
average time interval between stops when the client is on the
move. At the end of every movement interval the client pauses
for a fixed amount of time (pause interval). As the movement
interval increases, the probability of the mobile client changing
its velocity is small, and thus the chance of overlapping
with previous queries is smaller (since the client would turn
around less often). In all the three STP schemes the STP
Control Knob weight is chosen to maximize the overlapping
cache benefit. As a result, with increase in movement interval
(taking a longer time for velocity changes), the hit ratio
for spatial placement and hence all STP schemes but bound
STP increases. However, this improvement is limited to the
beginning stage of the adaptation to the STP Control Knob
weight.
Impact of Client Movement Speed on Hit Ratio: Figure
3(rightmost) shows the variation of the hit ratio as the move-
ment speed of the mobile client changes. In the experiments
the radius of spatial range of the queries is set between 1 to
100 miles with 90% of the objects having the radius range less
than 10 miles. The gain in hit ratio due to spatio-temporal
placement is higher at lower speeds. At higher speeds like
50 mph to 100 mph, the hit ratio reduces for all placement
schemes. Not surprisingly, in all cases the Bound scheme or
speed and query interval adaptive STP scheme offer the best

Fig. 3. Effect of Characteristics of Mobile Client on Cache Hit Ratio

performance.

Fig. 4. Effect of Query Characteristic on Hit Ratio

Fig. 5. Effect of Replacement Algorithm

2) Query Characteristics on Mobile Cache Performance:
Percentage of Queries for Moving Objects on Hit Ratio:
In the MOBICACHE system, clients can make queries for both
static objects and other moving objects. Queries over moving
objects are important to study because they represent results
which have very low TTLs since the target objects may soon
move out of the area of interest and hence the query results
may quickly become invalid. Figure 4(left) shows that when
the percentage of queries on moving objects is extremely
low (close to 0%), the gain because of temporal placement
is close to zero. This is simply because all queries are over
static objects such as gas stations, restaurants, and the query
results will only expire when the mobile client moves out of
the current query range.
Number of Query Object Types on Hit Ratio: Figure
4(right) shows how the varying number of query object types
impacts the hit ratio. Clearly, with the increase in the number
of object types, the hit ratio drops irrespective of which cache
placement scheme one uses. This is because, with increase in
object types, the probability of overlapping will drop and so
does the hit ratio.

C. Effect of replacement algorithm

From the graph 5 it can be seen that irrespective of which
cache replacement algorithm we use, either purely tempo-
ral like LRU or spatial like FAR [10], the spatio-temporal
placement schemes always outperform the corresponding ad
hoc placement-replacement algorithm combination. Another
interesting observation is that the difference in the cache hit
ratio between SQI STP+FAR combination and Ad hoc+FAR
combination is higher than that between SQI STP+LRU and
Ad hoc+LRU. This demonstrates that the cache performance
can be improved to an even higher extent by incorporating the
spatio-temporal techniques in both cache placement and cache
replacement decision.

V. RELATED WORK

Client side caching of location dependent queries is an
important technique for improving performance of location-
based services. Most of the existing research in this area has
focused on cache replacement and invalidation through incor-
porating some aspects of the spatial and temporal semantics
embedded in the query result objects or the location queries,
while assuming an ad hoc cache placement. Examples include
cache invalidation work [1], [7], [16], [3], [14] and cache
replacement proposals [10], [16], [5], [4], [13], [11], [6], [9],
[8], [15], [12]. FAR [10] is one of the pioneer work on spatial
cache replacement algorithm using distance as a parameter
in addition to temporal parameters like those in LRU. PA and
PAID [16] offered improved cache replacement algorithms for
caching nearest neighbor queries. MARS [5] continued the
research by adding frequency of access, query rate, velocity
to further improve the cache replacement efficiency. Surpris-
ingly, all existing research efforts have focused on employing
spatiotemporal strategies for improving cache invalidation and
cache replacement.

To our best knowledge, none have studied the potential of
incorporating spatio-temporal aspects and the motion behavior
of mobile clients into the cache placement decision and the
impact of spatio-temporal placement on the performance (hit
ratio) of the client cache. Furthermore, the development of
spatio-temporal strategies for cache replacement and invali-
dation are different in both design principle and engineering
algorithms, and cannot be directly applied to cache placement
for obvious reasons. The factors that affect the decision of
cache placement are quite different than those that are critical
to cache replacement simply because placement happens much
earlier in the life cycle of cached items, thus the parameters

that are significant for cache replacement are not available for
making cache placement decision.

VI. CONCLUSION

We have described a spatio-temporal placement model for
caching location-dependent queries. This paper makes three
unqiue contributions. First, we introduce the concept of ‘Over-
lapping Cache Benefit’ as a measure of the potential hit
rate of cached data items and predicts the potential cache
benefit of the query results based on multiple spatio-temporal
properties of mobile clients. Second, we develop three spatio-
temporal cache placement schemes, which provide step-by-
step in-depth understanding of various factors that may affect
the performance of a client cache in mobile environments. In
our spatio-temporal placement model, the decision of whether
to place an item into the cache of a mobile client is made by
combining both the spatial validity and temporal validity of
query results and the motion behavior and query patterns of
the mobile client.

REFERENCES

[1] D. Barbara and T. Imieliski. Sleepers and workaholics: caching
strategies in mobile environments. In SIGMOD ’94: Proceed-
ings of the 1994 ACM SIGMOD international conference on
Management of data, pages 1–12, New York, NY, USA, 1994.
ACM Press.

[2] T. Camp, J. Boleng, and V. Davies. A survey of mobility models
for ad hoc network research. Wireless Communications and
Mobile Computing (WCMC): Special issue on Mobile Ad Hoc
Networking: Research, Trends and Applications, 2(5):483–502,
2002.

[3] H. Chung and H. Cho. Data caching with incremental update
propagation in mobile computing environments. volume 30,
pages 77–86. The Australian Computer Journal, 1998.

[4] I.-D. Jung, Y.-H. You, J.-H. Lee, and K. Kim. Broadcasting and
caching policies for location-dependent queries in urban areas.
In WMC ’02: Proceedings of the 2nd international workshop
on Mobile commerce, pages 54–60, New York, NY, USA, 2002.
ACM Press.

[5] K. Y. Lai, Z. Tari, and P. Bertok. Location-Aware Cache Re-
placement for Mobile Environments. In IEEE Global Telecom-
munications Conference (Globecom 2004), pages 3441–3447,
December 2004.

[6] K. C. K. Lee, H. V. Leong, and A. Si. Semantic query caching
in a mobile environment. SIGMOBILE Mob. Comput. Commun.
Rev., 3(2):28–36, 1999.

[7] H. V. Leong and A. Si. On adaptive caching in mobile databases.
In SAC ’97: Proceedings of the 1997 ACM symposium on
Applied computing, pages 302–309, New York, NY, USA, 1997.
ACM Press.

[8] M. H. K. V. Ren, Q. Dunham. Semantic caching and query
processing. volume 15, pages 192–210. IEEE INSTITUTE OF
ELECTRICAL AND ELECTRONICS, 2003.

[9] Q. Ren and M. Dunham. Semantic caching in mobile computing.
98-CSE-04.

[10] Q. Ren and M. H. Dunham. Using semantic caching to manage
location dependent data in mobile computing. In MobiCom
’00: Proceedings of the 6th annual international conference on
Mobile computing and networking, pages 210–221, New York,
NY, USA, 2000. ACM Press.

[11] G. Santhanakrishnan, A. Amer, and P. K. Chrysanthis. Towards
universal mobile caching. In MobiDE ’05: Proceedings of
the 4th ACM international workshop on Data engineering for
wireless and mobile access, pages 73–80, New York, NY, USA,
2005. ACM Press.

[12] B. J. D. S. M. T. Shaul Dar, Michael J. Franklin. Semantic data
caching and replacement. pages 330–341. In Proc. of VLDB,
1996.

[13] K.-L. Wu, P. S. Yu, and M.-S. Chen. Energy-efficient caching
for wireless mobile computing. In ICDE ’96: Proceedings of the
Twelfth International Conference on Data Engineering, pages
336–343, Washington, DC, USA, 1996. IEEE Computer Society.

[14] J. C.-H. Yuen, E. Chan, K.-Y. Lam, and H. W. Leung. Cache
invalidation scheme for mobile computing systems with real-
time data. SIGMOD Record (ACM Special Interest Group on
Management of Data), 29(4):34–39, 2000.

[15] B. Zheng and D. L. Lee. Semantic caching in location-
dependent query processing. pages 97–116. Springer-Verlag,
2001.

[16] B. Zheng, J. Xu, and D. L. Lee. Cache Invalidation and
Replacement Strategies for Location-Dependent Data in Mobile
Environments. IEEE Transactions on Computers, 51(10):1141–
1153, 2002.

	Introduction
	MobiCache System Overview
	Reference System Model
	Problem Statement and Important Parameters

	Adaptive Spatio-Temporal Cache Placement
	Basic Concepts and Threshold Based STP Scheme
	Bound-based Spatio-Temporal Placement Scheme (Bound STP)
	Speed and Query Interval Adaptive STP Scheme (SQI STP)

	Experimental Evaluation
	Simulation Model
	Experimental results
	Mobile Client Characteristics on Cache Hit Ratio
	Query Characteristics on Mobile Cache Performance

	Effect of replacement algorithm

	Related work
	Conclusion
	References

