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Abstract 

Peer to Peer (P2P) data sharing systems are 
emerging as a promising infrastructure for 
collaborative data sharing among multiple 
geographically distributed data centers within a 
large enterprise. This paper presents CubeCache, a 
peer-to-peer system for efficiently serving OLAP 
queries and data cube aggregations in a distributed 
data warehouse system. CubeCache combines 
multiple client caches into a single query 
processing and caching system. Compared to 
existing peer-to-peer systems the CubeCache 
solution has a number of unique features. First, we 
add a query processing layer to perform in-
network data aggregation over peer caches. 
Second, we introduce the concept of Query-Trails: 
a cache listing recent data requestors. Query-Trails 
make it easier to find caches that are likely to have 
data needed for a query. Third, we design a benefit 
measure that incorporates the 'rarity' of a chunk 
into the notion of benefit, allowing controlled 
replication of chunks in a system plagued by 
frequent node departures or failures. We report the 
results of analysis and an experimental study using 
simulations and an implemented prototype that 
shows the CubeCache solution reduces the server 
load, improves query throughput and reduces 
query latency for OLAP tasks.  

 
1.   Introduction 
 
Organizations frequently expand organically, adding 
geographically distributed branches and acquiring 
subsidiaries. As a result, a single centralized data 
warehouse may be too expensive or difficult to construct. 
Instead, the enterprise may temporarily or permanently 
decide to utilize a number of smaller, remotely located data 
warehouses. Decision support tasks then require answering 
queries by aggregating data over several of these smaller 
data-warehouses. In this scenario, since a single enterprise-
wide warehouse may not exist, the only options are to 
perform the aggregations at the client-side or in the middle-
tier such as the web-proxy. In particular, a large number of 
users located close to each other, at say the enterprise’s 

corporate headquarters, may be issuing OLAP queries to 
the remote data centres. Answering these queries can 
require vast quantities of static and possibly overlapping 
warehouse data to be transported from a remote location.  

Client-side caching [30, 10] is a technique that has been 
widely deployed to minimize the costs incurred during 
distributed OLAP operations. Usually, each node caches 
data independently. However, if instead these nodes were 
to collaborate and share cached data, we could build a 
system that was much more efficient than an individual 
client cache and far more scalable and fault tolerant than a 
large central cache.  The primary problems faced in such a 
distributed cache are the following: 

• Data Location - Searching and locating data in 
different caches with minimal network and 
processing overhead. 

• Cost-Aware Caching - Designing a caching policy 
that minimizes both computational and network 
costs of a miss. 

• Scalability & Fault Tolerance - Making the system 
scalable and tolerant to faults like the failure of 
nodes hosting a cache 

In this paper, we propose CubeCache – a peer-to-peer 
OLAP caching system that combines multiple clients into a 
distributed data caching and processing engine. CubeCache 
minimizes the cost of processing queries and performs 
distributed aggregation computations, with little or no 
additional investment in terms of hardware and 
administration. The peer-to-peer nature of CubeCache 
introduces a high degree of parallelism that enhances the 
scalability and cost-effectiveness of our system.  

CubeCache builds on the fundamental distributed 
caching techniques developed in PeerOLAP [3] by adding 
a layer to perform in-network query processing. In 
particular, CubeCache can perform aggregation queries in 
parallel at different peer caches. Moreover, we present 
techniques for efficient distributed location of cached data 
for use in aggregations, in order to minimize accesses to 
back-end data sources. We introduce a new technique – 
Query Trails, for efficient data location in the CubeCache 
network. Query-Trails improve object location by allowing 
peers to ‘reach’ up-to twice the depth of flooding with 
negligible additional costs. 



Given that a CubeCache system is built out of a 
network of cooperating client caches, query processing in 
the system is vulnerable to client failures. In order to 
preserve the efficiency of query processing despite failures, 
we introduce a weighted-benefit caching policy designed to 
enhance fault tolerance. Our policy assigns higher weight 
to “rare” data, so that widely replicated data is ejected from 
peer caches before less replicated data. This improves the 
likelihood that every data item is cached multiple times, 
minimizing the impact of client failures. Experiments show 
that the performance of the CubeCache system degrades 
gracefully with node failures unlike a central cache.  

We describe cache-based techniques for scalable 
processing of queries from multiple data centers. 
CubeCache peers use the chunk-based caching scheme [5, 
4] to cache the results of queries and share their cache with 
the rest of the network. Unlike with central caching of data 
cube chunks, our system is scalable, has no central point of 
failure and performs well even in with different user access 
patterns.  

1.1 Related Work and Background     

Peer-to-peer systems have applications ranging from 
data sharing such as in Gnutella [7] and Freenet [8] to 
massive parallel computations in projects like SETI [9]. 
Although Data Warehousing [2, 1] and P2P systems have 
individually received a lot of attention, not much work has 
been done on using P2P systems in Data Warehousing. 
PeerOLAP[3] was the first and to our knowledge, the only 
system reported so far, that uses a P2P network to perform 
distributed caching of OLAP queries. Our system enriches 
the PeerOLAP system by a number of important new 
features. First, we provide support for aggregations in the 
distributed cache. We perform in-network aggregations, 
reducing the bandwidth consumption, distributing the 
workload and allowing our system to be useful even in 
situations, where pre-aggregated data is not available in the 
warehouse. Next, we improve the efficiency of data 
location through the use of query trails. And finally, we 
present a benefit metric that incorporates the impact of 
‘node failures’, there by taking into consideration a very 
common feature of P2P systems into consideration.  

Distributed OLAP systems often have to deal with 
semantic issues, such as reconciling schemas from different 
data sources. Our focus in this paper is on performance 
issues. The semantic issues arising from cross-enterprise 
queries in decision support systems have been investigated 
in [6] and their techniques can be applied to handle tasks 
such as data-modelling and integration.  

Conceptually, cooperative Web-Cache systems which 
cache Internet objects among themselves [15, 23, 24, 25, 
26, 27] are very similar to our system.  However, query 
caching is quite different from object caching since apart 
from the data-location problem that is common to both, 
query caching has the additional problem of composing 
new results from partial results. Caching in web-proxies 
and the middle tier are discussed in [15, 16, 17]. 

Many P2P systems have been proposed for data-
management, including P2P databases such as PIER[28]. 
While these systems implement the database in a peer-to-
peer system, our approach uses a P2P system to cache and 
process OLAP queries at the client-end.  P2P systems have 
also been used as storage solutions [8] in systems such as 
Piazza [29] that focuses on the dynamic placement 
problem.  

Also related is Data Warehousing and OLAP query 
processing. Data Warehouses often store multidimensional 
data that can be viewed as a data-cube [1] and allow 
answering of OLAP aggregation queries. Several caching-
based approaches have been implemented to accelerate the 
processing of OLAP queries [5, 10, 11, 12, 18]. Many 
approaches including pre-computation of aggregates and 
caching in the middle tier [10, 11, 12, 13, 15], have been 
suggested and implemented to achieve better response.  

Our approach uses the chunk-based [5, 4] caching. 
Chunks [18] divide the data-cube into uniform semantic 
regions. The fine granularity of chunks allows better reuse 
and also saves the amount of cache space utilized since 
overlapping regions need to be stored only once.  

In this paper we present CubeCache – a scalable and 
efficient P2P system for caching and processing OLAP 
queries. In the next section we outline our major 
contributions and provide the organization of the paper.  

1.2 Contributions and Overview 

Our main contributions include: 
• A scalable technique to perform distributed in-place 

aggregation computations in client-side caches. 
• The concept of ‘Query-Trails’ which improves  data 

location in the CubeCache peer-to-peer network. 
• The Weighted-Benefit caching policy that takes into 

consideration the ‘rarity’ of a chunk while computing 
its cost for cache replacement decisions. This allows 
the system to be fault tolerant, minimizing the 
performance degradation due to node failures. 

We present in Section 2, the motivation behind the 
CubeCache system and provide some real-world situations 
where the system can be deployed. An overview and 
running example of the CubeCache system is described in 
Section 3. Each of the components of the system and the 
techniques used to perform query processing and 
aggregation are discussed in detail in Section 4. Section 5 
presents the details of the experiments conducted and an 
analysis of the results. We finally conclude in Section 6, 
providing our plans for future work and some insights 
gained while implementing the system.    

2.   Motivation and Applications 
In this section we describe several scenarios in which our 
system can prove to be useful. In each case, the absence of 
a single, centralized warehouse means that data must be 
aggregated in a network of clients, usually workstations 
connected by a high-speed LAN. These clients may only be 



able to access base data at distributed data sources over a 
slow Internet connection. 

2.1 Single Enterprise Single Schema  

   Warehouses consolidate vast quantities of enterprise data 
and decision support systems run complex OLAP queries 
on this data. However, building a warehouse, consolidating 
and maintaining data, is both a time-consuming and costly 
process and the returns on investment are uncertain. 
Moreover, many small enterprises do not utilize all the 
features of these systems, and may want to implement a 
low-cost system that allows them to aggregate data from 
across smaller data-marts.  Consider a retail chain with 
hundreds of stores all over the country. Each store records 
its daily transactions in a transactional database. Rather 
than build an enterprise data warehouse at a single go, the 
organization might prefer doing so in phases, or first 
implement a prototype. Using data marts, which are 
miniature data-warehouses, can make the process of 
implementing an enterprise-wide business intelligence 
system an incremental one there by spreading costs. For 
example, in the scenario described above, the retail chain 
may decide to implement its decision support system for 
one region at a time using small data-marts that conform to 
a single global schema. Users sitting at a remote location 
may issue queries like 'What is the total sales of a product 
over all the regions for the month of January?' to the 
system which involves gathering data from each region’s 
warehouse and performing aggregations over it.  

2.2  Single Enterprise Multiple Schema 

This scenario occurs frequently when an enterprise 
grows by acquisitions where the organization may now 
have to deal with multiple warehouses implemented 
according to multiple schemas. Although the primary 
concern in these scenarios is semantic in nature, there is 
still a need to answer OLAP queries where pre-aggregated 
results may not be available and vast amounts of data will 
have to be transported from more than one location in order 
to answer queries. 

2.3  Multiple Enterprise Multiple Schema 

Corporations may collaborate with each other in order 
to increase their sales. Consider a restaurant chain with 
outlets all over the country collaborating with a popular 
soft-drink manufacturer and selling the drink in their 
outlets. With both organizations providing each other 
restricted views of sales data an integrated decision making 
system in the absence of a central warehouse is required, 
since neither organization may be willing to invest and 
maintain a warehouse for such data.  

3.   System Overview and Example 
The CubeCache system consists of a set of peers 

(such as user workstations) that access remote data-sources 

and issue OLAP queries.  There is no inherent structure to 
the network, and peers can join or leave at any time. 
Queries could vary from simple queries - targeted at a 
single data source and involving no aggregation to complex 
ones - queries that require aggregation of results across 
single/multiple data-sources. Peers that retrieve results may 
cache them for future use. 

Let us now see an example of how the CubeCache 
system works. Consider an enterprise that has sales data for 
four regions – North, South, East and West, stored in four 
different data-marts maintained at the respective regional 
head offices.  Users sitting in the corporate head office at a 
different location need to access this data. The user PCs are 
connected in a peer-to-peer network as shown in Figure 1.  
The solid lines indicate connections between peers and the 
dotted lines are connections between end-systems in this 
network and a remote warehouse. Note that all peers may 
not be connected to the warehouses.  

Now, assume that the user at peer P1 issues a query for 
‘Total Sales’ which requires data to be aggregated over all 
regions.  P1 searches the CubeCache network for the 
results of ‘Total Sales’. Although ‘Total Sales’ results may 
not be found at any peer, partial results may be cached by 
several peers. For example, P2 has results for South and 
West regions and P10, for North and East regions. Peer P1 
can examine the query and determine that these cached 
partial results, called chunks [4, 5], and are sufficient to 
answer the query. Peer P1 can ask P2 and P10 to compute 
total sales for the regions (chunks) they do have, or request 
the chunks directly and compute the aggregates itself.  
Then, P1 can compute ‘Total Sales’ over all regions by 
combining these partial aggregates. Asking the peers to 
transfer just the aggregates, rather than the whole chunks, 
has 2 advantages – (1) it reduces bandwidth usage since, 
instead of entire chunks, only aggregated results are being 
transported and (2) P2 and P10 perform aggregation 
computation in parallel, making processing more efficient. 
Peer P1 may then cache the results of ‘Total Sales’ for use 
by other peers in the future. 

Implementing this system efficiently requires dealing 
with several challenges. First, if no peer has the full or 
partial results, then the querying peer must go directly to 
the back-end data mart, potentially incurring a long latency. 
Thus, we would like to improve the likelihood that chunks 
are cached somewhere in the peer-to-peer network. To 
address this issue, we introduce a cache replacement policy 
based on the benefit of a chunk, where benefit is 
determined by the relative cost of storing the chunk versus 
accessing the back-end. This caching policy is described in 
Section 4.4. 

Second, there must be an efficient way to determine if 
the chunk is available in the network. We could keep a 
directory of chunks, but this directory would be hard to 
maintain as we expect caches to add or remove chunks 
frequently. We could contact every peer and ask if they 
have the required chunks, but this “broadcast” approach is 
too expensive in a large system. Instead, we combine 



limited broadcast with a special lookup mechanism, called 
query-trails. Query trails are described in Section 4.2. 

4.   System Components 
The architecture of a CubeCache peer is shown in 

Figure 2. Each peer accepts SQL queries from a local 
client, parses the queries and retrieves results. It caches 
results in a local cache and shares this cache with other 
nodes in the network. A peer also processes search requests 
from other peers in the network and returns responses. The 
Request/Response Interface receives and begins 
processing requests from the local client and other peers. 
First, the query is passed to the SQL parser, which parses 
the query and returns a list of chunks that are required to 
answer the query. The selection predicates can either be on 
the ‘group-by’ or ‘non group-by’ attributes. Since 
selections on non group-by attributes are already factored 
in before the aggregations are performed, the selection 
predicates on non-group by attributes of a cached chunk 
and an incoming query should match exactly for the cached 
chunk to be ‘useful’ in answering the query [5]. 

Next, the list of chunks are passed to the Search and 
Forwarding logic (SFL) module, which invokes the Cache 
Control module to search the local caches (the Chunk 
Cache and the Query-Trail Cache) for the chunk. If the 
chunk is not found, depending upon the forwarding policy 
(described in Section 4.3) the SFL module returns a list of 
peers to which the request should be forwarded. After the 

query results have been computed, the Request/Response 
interface constructs and returns a response message 
containing the results. 

The Cache Control maintains the Chunk Cache, the 
Query-Trail Cache and the Connection Cache. The Chunk 
and Query-Trail caches are described in the next two 
sections. We use the Connection-Cache technique 
described in [3] to re-organize the peers into beneficial 
neighbourhoods. Each peer records in its connection-cache 
the performance (in terms of number of cache hits) of other 
known peers and periodically reviews its neighbour list.  
The peer then adds or drops neighbour links in order to 
maintain an optimal set of neighbors who provide more 
useful results. 

The Connection Repository maintains the connection 
details for the neighbours in the network and warehouses. 
At regular intervals, the Topology Control module 
reorganizes the set of neighbours, adding new links and 
dropping existing ones depending upon the performance of 
peers as recorded by the connection-cache [3]. 

Apart from these components, we assume that every 
peer either maintains locally or has knowledge of schema 
details like the levels, dimensions and hierarchies. Since 
this information is quite small, it could either be maintained 
locally or at a single small local database to which a fast 
connection is available.  

We also assume that every peer returns responses 
directly to the requesting node since anonymity is not a 
concern in our system. Also, since updates to the 

 
 

 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1.  The CubeCache System 
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warehouse data are infrequent, we assume that when an 
update occurs or when incremental loads are performed, 
the warehouse will broadcast a message to the system, 
instructing the peers to clear their caches.  

4.1 Chunk Cache 

Each peer caches query results in the form of chunks 
[4,5] and shares the cache with other peers in the network. 
Chunks divide the data cube into uniform semantic regions 
and allow finer grain caching. Chunks allow better 
utilization of the cache space, since overlapping regions of 
the result sets of different queries need to be stored only 
once.  

The chunk cache stores actual chunks along with the 
following information: a chunk id, dimension vector and 
benefit value. The chunk id is used to identify the chunk 
uniquely. This chunk id can be made unique across 
multiple data cubes by concatenating the namespace with 
the chunk id. The dimension vector can be viewed as a bit 
map representation of a chunk’s dimension. The benefit 
value is used by the caching policy to determine admission 
and replacement and represents the cost of computing this 
chunk. We describe the computation of this benefit value in 
Section 4.5.1 

When a peer receives a query, it determines the needed 
chunks. Some of these chunks may be available locally. 
Chunks that are not locally available must be retrieved 
from other peers or from the data mart back-end. 

4.2 Query Trail Cache 

If a peer does not have the right chunks, it must contact 
other peers to ask for that chunk. We could broadcast the 
request to all of the other peers. However, broadcast is 
expensive, and thus it is desirable to proactively seek out 
peers that are likely to have the right chunks. 

We make the following observation: if a peer has 
recently requested its neighbours for a particular chunk, it 
is very likely to have that chunk in its cache. In order to 
leverage this information to improve our search, we 
introduce the concept of a Query Trail Cache (QT-Cache), 
which caches recent requests received by the node. Each 
peer uses its query-trail cache to find peers that have 
recently requested for a chunk and forwards the current 
request to that node. Query-Trail requests are sent directly 
to the node and are not forwarded further.  

Consider again the example from Figure 1. Assume that 
peer P1 caches the results of the ‘Total Sales’ query.  A 
short while later, say, peer P11 issues a similar query for 
the total sales. P11 forwards this query to peer P8.  By 
maintaining a list of previous requests in its Query-Trail 
cache, P8 is able to immediately re-direct P11’s ‘total 
sales’ query to P1. Note that in the absence of this 
information, P11’s query would never have reached peer 
P1 since P1 is beyond 2 hops from P11.  

In this section, we explain the formal model of a Query-
Trail Cache.  We then describe two forwarding techniques 
based on query trails – Maximum Effort Query Forwarding 
(MEQF) and Least Effort Query Forwarding (LEQF).  But 
first, we discuss the advantage of using Query-Trails that 
makes it an attractive technique to us. 

 
4.2.1 Advantages of Query Trails – Improving Reach 

 We limit the scope of broadcast by specifying a 
hopcount, h: each request for a chunk is forwarded to all 
peers within h hops of the requesting peer. However, by 
maintaining query trails, even with a hop count of h, we are 
able to achieve a ‘reach’ of up to 2h, without flooding the 
network [Figure 3]. This is because every peer within h 
hops of the requesting peer has seen requests from other 
peers up to an additional h hops away. Query-trails allow 
us to make intelligent forwarding decisions thereby 
increasing the chances of locating the desired chunk. 
Query–trails are generic and can be applied to any peer-to-
peer system that supports an object location and where the 
query stream exhibits temporal locality.  
 
4.2.2 Terms and Definitions 
A query result is characterized by a set of chunks. Thus, for 
a query q, Result (q) = {c1, c2,…, cn}.  
Query Trail: A query trail (qt) is a tuple of the form  

chunk_id,requestor   where,  

 
 

 
 
  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
  

 
 
 

 
 

Figure 2. CubeCache Peer Architecture 
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    chunk_id  is the identifier of a data item, the request for 
which arrives at the node, and 
    requestor is a node belonging to the system that had 
originally requested for the chunk. (Note: The node 
identifiers may be IP addresses of the nodes or unique ids 
assigned to the nodes upon joining the system.)  
 
Query Trail Cache (QT-Cache):    A Query Trail Cache 
(QT- Cache) of node P is a set of qt entries stored at node P 
that may be refreshed based on the caching policy.  In 
CubeCache we use a simple LRU policy for query-trail 
cache admission and replacement. 

1 2( ) { , , , }nQT Cache P qt qt qt− = �   
where, each qti is a query trail entry.  
For a chunk ci, QT(P, ci) is the set of all nodes that have 
requested for the chunk ci at node P and is defined as 

QT(P,ci) = { ni  | (ci, ni) ∈  QT-Cache(P)} 
Thus  

QT(P,q) =  ( , )
Re ( )i

i

c

QT P c
sult q∈
�  

For instance, if nodes A, B, C, D and E have requested at 
node S for chunks {c1, c2}, {c1, c2}, {c1, c5}, {c2, c5} and 
{c5} respectively, node S has the following query trail 
entries: < c1, {A,B,C}>, < c2, {A,B,D}> and < c5, {C, D, 
E}>. Now, if a request for query q1 arrives at S, where  
               Result(q1) = {c1, c2, c3},  
then, 
               QT(P, c1) = {A, B, C}, 
               QT(P, c2) = {A, B, D} and 

               QT(P,q1) = {A, B, C, D} 

4.3 Chunk Searching Process 

   Our chunk searching process combines limited 
broadcast with search over query trails. Each peer that 
receives a request for chunks must determine whether to 
forward that query over neighbour links (broadcast), query-
trails, or both. The simplest case, flooding only, is to 
forward the query just to neighbour links. In this section we 
discuss two other policies that use query-trails – Maximum 
Effort Query Forwarding (MEQF) and Least Effort Query 
Forwarding (LEQF). Our query forwarding policies are 
complementary to the Eager, Lazy and Optimal query 
processing policies described in [3] and can be used in 
conjunction with any of the policies. 

 
4.3.1 Maximum Effort Query Forwarding (MEQF): 
    In this policy, we forward messages to both neighbors 
and query trail entries. Since messages are forwarded to 
more peers, and intelligently too, the possibility of a hit is 
very high. However, since the number of search messages 
are higher, maximum effort query forwarding is best suited 
for the systems where the cost of searching is much less 
compared to the cost of obtaining data from the warehouse. 
Assume that a user issues a query q at peer P. The MEQF 
policy works as follows:  
i. P checks its local cache for chunks required to answer 

q.  Let Cmiss be the set of chunks that are not available 
locally. 

ii. P forwards a request for the Cmiss chunks to 
a. All of the peers in neighbors(P) 
b. All of the peers in QT(P, Cmiss); that is, the 

query trail peers that have previously asked 
for any chunk in Cmiss 

iii. Each of P’s neighbors checks their local cache for the 
chunks in Cmiss, and sends a message to P listing the 
chunks it has. Let Cmiss’ be the set of chunks in Cmiss 
that the neighbour does not have. Each neighbor 
repeats the forwarding process, sending a request for 
Cmiss’ to each of its own neighbors as well as any query 
trail peers that might have chunks in Cmiss’. 

iv. This process repeats for h hops, where h is specified by 
peer P. The h value is stored in the request message, 
and decremented at each hop. 

v. Any peer that receives a request for chunks via a 
query-trail checks its local cache and returns any 
results to P. However, query-trail peers do not forward 
the request further. 

vi. Note that each node that receives a request for chunks 
also updates its QT-Cache to add P and the associated 
query. 

vii. P keeps receiving responses till a timer t expires, after 
which it assumes that no more results are expected. P 
then calculates the optimal peer to retrieve each chunk 
from, contacts that peer and retrieves the chunk from 
it. In case the chunk is not found at any peer in the 
network, P will retrieve the chunk from the warehouse. 

 
4.3.2 Least Effort Query Forwarding (LEQF) 

This policy is very similar to the MEQF except 
that, at each node Q, if a query-trail entry is found, then the 
request is sent only to that node and is not flooded to all 
neighbors.  However, if no such query-trail is found,  then 
the query is forwarded to all neighbors. This approach tries 
to minimize the number of search messages in the system 
and resorts to flooding only if query-trail that aids 
intelligent forwarding are not found. In systems where  the 
cost of searching is high, the LEQF policy tries to 
minimize search messages.  Our experiments show that this 
policy reduces search messages by nearly 10% while 
providing better performance than naïve flooding. 

 
4.3.3 Other forwarding approaches 

The MEQF policy forwards search messages to 
maximum number of peers and LEQF to the least number 
of peers. Other query forwarding policies are possible. A 
variant of the above two policies could be one in which we 
forward messages to the ‘top-k’ most promising nodes 
(neighbours or query trail peers), where k could be a 
tuneable parameter. This would be a good policy in a 
network where the degree of each node is very high and 
hence flooding results in exponential increases in the 
number of messages at every step. Yang and Garcia-
Molina [31] demonstrate that such a directed forwarding 



policy can improve performance in very large and densely-
connected networks. However, further study is required to 
see if this policy would be equally effective for a smaller 
network of OLAP caches. In ongoing work, we are 
examining these and other policies.  

4.4  Aggregate Computation Mechanism 

In this section, we describe our in-network aggregate 
computation technique. This technique relies on the closure 
property of chunks – that is, higher level chunks can be 
composed by aggregating a fixed set of lower level chunks. 
When a peer requests for a chunk, although it might not be 
readily available, lower level chunks that will yield the 
required chunk upon aggregation may be available at 
distributed locations. We propose an in-place, in-network 
aggregate computation mechanism by which a peer 
computes a higher level chunk by intelligently combining 
partial aggregates available from other peers. 

4.4.1. In-Network Aggregate Computation Technique 

    When a peer requires a particular chunk, it initiates a 
search in order to locate either the chunk or all the lower 
level chunks. If the required chunk is readily available in 
the network, the peer retrieves it. Otherwise, the peer 
explores the possibility of computing the chunk from the 
lower level chunks available at other peers.  Since all the 
lower level chunks may not be available at a single peer, 
partial aggregates (computed from available cache-resident 
lower-level chunks) have to be retrieved from distributed 
locations, to compute the final aggregate. The primary 
challenge in this is to generate a cost-effective query 
execution plan that minimizes the cost of in-network 
aggregate computation.  

In order to ensure the correctness, we must ensure that 
each lower level chunk appears exactly once in the final 
aggregate. Since this is an instance of the well known set-
partitioning problem which is NP-hard [31], we employ a 
greedy heuristic to determine the nodes which should 
compute the partial aggregates.  Computation of a higher 
level chunk can be done by aggregating lower level chunks 
along any one of several dimensions. Dimensions along 
which all the lower level chunks are available are selected 
as candidate dimensions as this requires no data to be 
fetched from the warehouse. Along a candidate dimension, 
the set of lower level chunks can be partitioned in more 
than one way. We define C, the set of lower level chunks as 
follows:  
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 where, N is the required aggregate result. We need to 
divide C into a set of partitions P such that the following 
criteria are satisfied: 
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For a partition set P to be a solution, the chunks in each 
partition should be available in their entirety at a single 

peer. In order to compute P, we first arrange nodes in the 
descending order of number of chunks along the selected 
dimension. We then greedily construct subsets using the 
following algorithm: 
 

Algorithm: Partitioning Algorithm 
Input: C                           //set of all lower level chunks. 
           Result[1…n]        //chunks available at a peer i 
 
Begin: 
fetch[1…n] := null; 
pendingList := C; 
while (PendingList != null ) do 
  assigned := 0; 
  max := 0; 
   for each i in 1..n loop  

      if( | Result[i] pendingList| > max∩ ) 

        assigned := i; 
        Max := | Result[i] pendingList|∩ ; 
      end if 
  end loop 
   fetch[assigned] := Result[i] pendingList∩ ;    
   pendingList := pendingList – fetch[assigned]; 
 end while 
End;   

 
Once the partition set along each candidate dimension 

has been computed, we then choose the set with the least 
cost as the query execution plan. Next, we describe a model 
that helps define this notion of cost. 

 
4.4.2 Cost Model 

The peer has to retrieve chunks that it does not have 
cached, either because the chunk was never cached locally, 
or because it was cached but then ejected from the cache. 
Let size(c) be the size of a requested chunk c. Let C denote 
the set of all chunks and P denote the set of all peers. Let 

1 2{ , , }i i i inC c c c= � denote the set of all lower level chunks 
of ci such that all ijc are along the same dimension and  
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n
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j

c Agg c
=

= , where Agg denotes aggregation. 

( )iCΡ  the Power Set of iC , denotes the set of all subsets 
of iC . We define a function A which denotes the cost of 
calculating a chunk c at a peer S as follows: 
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The function A is defined as a constant multiple of the 
size of the chunk if it exists and the cost of aggregating an 
available subset of lower level chunks otherwise. For 
example, if 10 of 30 lower level chunks of chunk ci ,but not 
chunk ci itself, are available at a peer, and the peer receives 



a request for ci, the peer will return to the requesting peer 
the details of the 10 chunks. The requesting peer may then 
ask this peer to return the aggregate of a subset of these 10 
chunks. The ‘rep’ term denotes the ‘reputation’ of the peer 
and takes into consideration the quality of results provided 
by a peer and the level of trust associated with it. If 
operating in an un-trusted environment, a node can 
associate low costs with trusted peers and high costs with 
untrusted peers.  In our experiments we assume that we are 
operating in an environment where security is not an issue 
and hence rep=1.  The ‘const’ term denotes the disk read 
rate.  

The cost (in terms of time) incurred in transferring a 
chunk available at peer S to peer R can be defined as 

size(c)
( , , ) constant + 

Bandwidth(R,S)
N c R S =  

where ‘constant’ can be taken to be the cost of setting up a 
connection between the two nodes R and S.  

The cost of sending request messages from R to S 
depends on the number of hops between the two nodes. We 
define the cost incurred by sending messages from R to S 
as size(msg)/delay x M(R � S), where M(R � S) is the cost 
of sending the message from R to S over one or more hops. 
The function M is defined as: 

max ,
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where recdh  is the hopcount of the system, size(msg) is a 
constant representing the size of a message, and hmax 
indicates the maximum hop-count for the system. In our 
system, request messages received through a query-trail 
lookup are tagged with a negative hop-count in order to 
indicate that these messages should not be forwarded, so if 
hrecd<0, we calculate M(R � S) as –hrecd. 

We define the Total Cost (TC) of chunk c obtained 
from a peer S by a peer P, TC(c, S � R) as  
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where, the weights w1, w2 and w3 are empirical parameters 
representing the relative costs of sending a chunk, sending 
a request message, and performing an aggregation. For 
example, if the cost of searching is high due to presence of 
high delays along the links between peer nodes, w1 will be 
high. We can interpret the cost TC as the time required to 
obtain a chunk. Thus, in order to minimize response time, 
chunks with high costs need to be cached locally. When 
peer P issues a request for a particular chunk, it may 
receive responses from multiple peers. P then chooses to 
obtain the chunk from the peer which provides it with the 
lowest cost.  The cost of answering a query would be a 
summation over the cost for each chunk required to answer 
the query. 

4.5 Caching Policy 

4.5.1 Caching Policy- Weighted Benefit 

Our system uses a cache admission and replacement policy 
that is a variant of LRU-CLOCK and takes the ‘Benefit’ of 
a chunk into consideration. Unlike previous caching 
schemes that take a notion of “benefit” into account [5, 3, 
18, 19], we consider the ‘rarity’ of a chunk besides its size 
and level of aggregation, Since nodes in our peer-to-peer 
cache might leave or fail at any time, we assign greater 
benefit to a chunk which is rare, than a chunk that is 
available at many nodes while considering it for caching.   

We define the benefit of caching a chunk as follows: 
Assume that peer P issues a request for chunk ch and 
receives responses from n peers 1 2, , , nP P P� . The chunk 
is available at the back-end data source wP  by default. Let 
the cost of retrieving the chunks from 1 2, , , ,n wP P P P�  be 

1 2, , ,n w C C C C� respectively, where i jC C  when i > j≥ . 

Also, we assume that [1, ]w iC C i n∀ ∈� . Each Ci is 
calculated as TC(ch, Pi � P) [defined in section 4.4.1]. 
(We assume that the warehouse will never be down since 
our system is not designed to deal with queries in the case 
of warehouse failures.) The benefit of caching a chunk is 
the cost that will be incurred by not caching the chunk. If 
each peer may go down with a probability p, we define 
Weighted Benefit WB(ch) as follows: 
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The formula calculates the benefit of a chunk depending 
upon its cost, size and degree of availability. When all n 
peers that possess the chunk are up, the cost of retrieving 
the chunk is equal to the cost of transferring the chunk 
from the peer offering the minimum cost. If this peer is 
down, then the cost incurred will equal the minimum cost 
offered by the remaining peers. If all the n peers that have 
the chunk cached are not available, then, the cost will be 
the cost of retrieving the chunk from the warehouse. (When 
the chunk is not available at any of the local peers, n=0 and 
B(ch) = Cw/size(ch) ).  

Our benefit metric takes into account the ‘rareness’ of a 
chunk and chunks that are available at many other known 
peers in the network are given lesser priority compared to 
chunks that are available only at say, one other peer. Note 
that chunks that are obtained from the backend are initially 
“rare” and thus are automatically replicated at other peers 
in the network. The probability p is a tuneable parameter.  
In systems that are expected to be very stable, where peers 
remain connected to the network for longer intervals of 
time this parameter can be set to a very small value, 
whereas in systems with greater churn, the value can be set 
high to allow greater replication of chunks. Since the peer 
will anyhow have to wait for all responses or a time-out to 
occur before calculating the minimum available cost, using 
our benefit measure does not involve the maintenance of 
any additional information.  We briefly explain the 
admission and replacement algorithms next. 

 



4.5.2 Replacement and Admission Algorithm 
    Each cached chunk is assigned a weight. Initially, 

this weight is equal to the calculated benefit. Each time 
there is a cache miss, the weight of each cached chunk is 
multiplied by a decay factor DF, where 0 < DF < 1. 
Whenever a chunk is accessed, its weight is restored to the 
calculated benefit. Thus chunks which are accessed 
frequently continue to have high weight, while a chunk that 
is only accessed once will soon have little weight. The 
value of DF determines the rate at which weights decay. 
For example, DF might equal 0.9. 

Whenever a peer receives a chunk that is not in its 
cache, it must decide whether to cache that chunk. To do 
this, we compare the benefit of the new chunk to the 
current weights of the chunks in the cache. If the new 
chunk has a lower benefit than all of the weights of the 
cached chunks, the new chunk is discarded. Otherwise, the 
chunks with the lowest weight are ejected from the cache to 
make room for the new chunk. Note that because chunks 
may be of different sizes, it may be necessary to eject 
multiple chunks from the cache. Note also that the benefit 
of a chunk obtained from the warehouse will be very high, 
and that chunk will almost certainly be cached. 
To minimize the number of chunks that are replaced as the 
result of a cache miss, we use the IVLR technique 
described in [20]. Traditional caching algorithms continue 
marking victims until there is enough space to insert the 
incoming item. However, removing the last item in this list 
might result in more than the required amount of space 
being released. IVLR arranges victim chunks in descending 
order of their sizes and composes a new set of victims by 
iteratively choosing the largest sized chunk from the 
existing victim-set till the required space is achieved. This 
results in a new victim-set that is a subset of the LRU 
victim-set.  

5.   Experiments 
We conducted experiments to evaluate our techniques 

using extensive simulations and an actual implementation 
of our system. Our aim was to measure the performance of 
the system with various query-forwarding techniques, its 
fault tolerance – i.e. how performance degrades with node 
failures, and finally compare the response-time and 
through-put of the system with a central-caching scheme. 
We used simulations because they allowed us to examine 
several different system parameters and forwarding 
techniques for a variety of scenarios. We also examined 
query throughput and response time using an implemented 
CubeCache prototype. In summary, our results show: 
• The MEQF and LEQF policies improve query processing 

performance by 20 and 10 percent (respectively) over 
naïve flooding. 

• A CubeCache of 32 peers connected in a standard 
internet topology offers 70% savings with a cache size of 
just 1% of the data-cube per peer, where as a central 
cache offers only 30% savings.  

• Our CubeCache system is affected minimally by node 
failures. 

• The response time of our CubeCache system is 23% 
better than that of a central cache.  

• The throughput of our CubeCache system is much higher 
than the central cache: for a system of 8 peers, offers 
almost 8 times the throughput of the central cache. 

5.1 Experimental Setup 

Our experiments were conducted using the TPC-D 
[22] benchmark with the Scale Factor (SF) set to 1. The 
size of the database was approximately 1GB.  

We generated a query stream of 10,000 queries 
following the 80-20 rule, where 80% of the queries access 
20% of the data cube.  We used a commercial database as 
our backend, although, our caching scheme is independent 
of the database used.  Since the chunk based caching 
scheme allows reuse of results only if the non-group by 
predicates match exactly, and since the TPC-D benchmark 
query does not provide us with enough variety to represent 
the access patterns of a large number of users, we 
generated our own query stream. Our query stream was a 
mixture of 30% proximity queries, 30% roll-up queries, 
30% drill down queries and 10% random queries.  

The prototype CubeCache system is implemented in 
Java and is used to compare the response-time and 
throughput of our system to the Central-Caching scheme. 
For the simulation experiments, we used 32 CubeCache 
peers connected in a realistic internet topology that was 
generated using GT-ITM [21], which is a tool to generate 
topologies.  
 
5.1.1 Metric 
We use the standard metric Detailed Cost Savings Ratio-
(DCSR), used in [22, 3] to measure savings. The DCSR is 
defined as the ratio of savings to the worst case cost. 
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where TC(chi) [described in Section 4.3.1] includes the 
cost of searching the CubeCache network and transferring 
the chunk chi. The cost of transfer for a chunk that has not 
been found in the CubeCache network will equal the cost 
of transfer from the warehouse.  Thus, a higher DCSR 
value indicates better system performance. 

5.2 Effect of Query-Trails 

In this experiment we study the effects of 
incorporating Query Trails in the CubeCache system. Each 
peer stored 20 recent requests in its query-trail cache.  The 
number of requests to be maintained in the query-trail 
cache was chosen to maintain small trail-caches. 

 First we look at MEQF. Recall that MEQF forwards 
a request to all peers that requested for the same chunk 
recently (query-trail peers) as well as all neighbors. Figure 
4 shows the cost savings as a function of the size of the 



cache at each peer. As the figure shows, MEQF provides 
20% more savings on an average than flooding (i.e. 
PeerOLAP). This is because query-trails increase the 
probability of a hit by intelligently forwarding queries.  

Next we looked at the LEQF policy. This policy 
forwards a request first based on the Query-Trail cache and 
then on all neighbour links if the query-trails are 
insufficient. As figure 5 shows, LEQF provides 10% more 
savings on an average than flooding. Since messages are 
forwarded intelligently, the probability of a hit is higher 
than in flooding. However, this policy contacts lesser 
number of peers than MEQF and hence offers lesser 
savings than MEQF.  

We also examined the number of search messages 
required under each method.  Figure 6 shows the results. 
As the figure shows, the MEQF method only requires 1% 
more search messages than flooding, even though it gave 
us a 20% improvement (i.e. Figure 4). Even though we are 
sending out messages on both neighbor links and query 
trails, each peer keeps only a small number of query trails, 
so the overhead is not large. LEQF actually requires 10% 
fewer messages than flooding, even though it produces 
10% more cost savings (i.e. Figure 5). Fewer messages 
result because query trails result in hits 70% of the time, so 
it is often not necessary to flood at all.  

5.3 Aggregations in CubeCache versus Central Cache. 

In this section we compare the CubeCache system 
with in-network aggregation with a central caching 
scheme.  (We did not compare with PeerOLAP in this case, 
since it does not support aggregations in the cache).  

Figure 7 shows the cache size at which the central 
cache equals the performance of our CubeCache system. 
The central cache achieves equal performance only at 
cache sizes of beyond 15%. Note that the CubeCache 
system gives nearly 70% savings with a cache size of just 
1% at each peer, whereas, the central cache provides only 
30% savings. This is obviously due to the fact that each 
peer in the CubeCache system can access the local caches 

of peers reachable within a hop-count of 2. At very large 
cache sizes, our system’s performance appears constant 
because most of the cache at each peer is unused. This is 
because each peer receives only a small fraction of the 
query stream where as all 10,000 queries are processed by 
the central cache.   

5.4 CubeCache performance with node failures 

Next, we examined the impact of node failures on our 
system. In this experiment we measure the hit-count (that 
is, the number of chunks successfully located in the cache) 
in the presence of node failures, compared to the 
PeerOLAP system. We simulated node failures to occur 
with a probability of 4% (a reasonable estimate for a P2P 
system with node departures). Figure 8 shows the 
comparison and CubeCache with its weighted-benefit 
caching policy clearly performs better. As the experiment 
progresses, and more nodes fail, we observe that the 
difference in performance is more pronounced, since 
CubeCache is more resilient to node failures due to its 
caching policy. 

5.5 Experiments on the Actual Implementation 

We conducted experiments to measure the response-time 
and throughput of the CubeCache system on a real 
implementation of the system. The experimental set-up 
consisted of eight CubeCache peers and two databases 
connected in a random network topology. We constructed 
the largest network possible given our installation. The 
experiment was conducted on Emulab[] using 10 nodes 
(Pentium4, 2800MHz, 512MB RAM running RedHat 
Linux 9.0). The inter-node delays between the peers set to 
~2ms and that between a peer and a warehouse set to 
~50ms. The peers are assumed to be part of an enterprise’s 
LAN and the bandwidth available between peer nodes was 
set to ~100Mbps and that between peers and warehouses 
was set to ~28Kbps.  Each database that functioned as a 
warehouse implemented the TPC-D dataset. Queries 

 
 
 
  
 
 
 
 
 
 
 
 
 
 

 
 
 
 

  
 
 
 

Figure 6.  Messaging Overhead of various 
Forwarding Policies 
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included those requiring data from a single warehouse to 
data to aggregation queries over data in both warehouses. 

Figure 9 shows the throughput (in terms of 
Queries/min) of the CubeCache system and that of a 
central-cache. The cache size of the central-cache system 
was 10% of the data-cube, and each peer was assigned a 
cache size of 2% of the data cube.  As the figure shows, the 
throughput of the CubeCache system is 8 times that of a 
central-cache. This is because each peer in the CubeCache 
system is able to process queries in parallel. On the other 
hand, in a central-cache system, all queries are processed at 
a single node. We also varied the number of clients and 
observed that increasing the number of clients increased 
throughput. 

Figure 10 shows the response time of the CubeCache 
system with hop-count 1 and 2 and that of a central-cache. 
The response time in this case was measured as an average 
over ~3000 queries. As the graph shows, our CubeCache 
system with hop-count set to 2 offers nearly 23% better 
response time than the central cache. This is due to the fact 
that the central cache had to handle all 3000 requests and 
when requests arrived simultaneously, the processing 
workload on the central cache machine became very high, 
affecting performance. In the CubeCache system on the 
other hand, the queries were spread over 8 machines. We 
observed that the effective cache size ( that is, not counting 
duplicate chunks in different caches) was roughly the same 
as the central-cache. However, at a hop-count of 1 though, 

the CubeCache system performs slightly worse than the 
central cache, since the amount of cache reachable is lesser 
in this case. Overall we conclude that our CubeCache 
system offers comparable or better response-times and 
much better throughput than a central cache. 

6.    Conclusion and Future Work 
In this paper we presented the CubeCache system – a P2P 
network that provides efficient and scalable processing of 
OLAP queries. Experiments performed on simulations and 
on a real implementation demonstrate that the CubeCache 
system performs better than existing flooding based P2P 
systems for OLAP query caching. Our system also 
outperforms a central cache in terms of both response-time 
and throughput. These improvements are a result of our 
primary contributions: an in-network data aggregation 
layer, the Query-Trails cache for efficient location of data 
chunks, and a smart caching algorithm to help preserve 
chunks despite failures. 

We plan to further investigate data-location techniques, 
such as cache summary exchanging in order to improve 
data location in our system. Another direction of interest 
would be techniques to sync the query-trail cache with the 
data caching algorithm in order to minimize false positives 
in query trail hits. Finally, cooperative data placement 
techniques, in which objects evicted from one peer’s cache 
may be accommodated at a neighboring peer’s cache would 
make CubeCache cooperative in the true sense. 
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