
CubeCache: Efficient and Scalable Processing of OLAP
Aggregation Queries in a Peer-to-Peer Network

Sangeetha Seshadri†, Brian F.Cooper†, Ling Liu†

†College of Computing
Georgia Institute of Technology

{sangeeta, cooperb, lingliu}@cc.gatech.edu

Abstract

Peer to Peer (P2P) data sharing systems are
emerging as a promising infrastructure for
collaborative data sharing among multiple
geographically distributed data centers within a
large enterprise. This paper presents CubeCache, a
peer-to-peer system for efficiently serving OLAP
queries and data cube aggregations in a distributed
data warehouse system. CubeCache combines
multiple client caches into a single query
processing and caching system. Compared to
existing peer-to-peer systems the CubeCache
solution has a number of unique features. First, we
add a query processing layer to perform in-
network data aggregation over peer caches.
Second, we introduce the concept of Query-Trails:
a cache listing recent data requestors. Query-Trails
make it easier to find caches that are likely to have
data needed for a query. Third, we design a benefit
measure that incorporates the 'rarity' of a chunk
into the notion of benefit, allowing controlled
replication of chunks in a system plagued by
frequent node departures or failures. We report the
results of analysis and an experimental study using
simulations and an implemented prototype that
shows the CubeCache solution reduces the server
load, improves query throughput and reduces
query latency for OLAP tasks.

1. Introduction

Organizations frequently expand organically, adding
geographically distributed branches and acquiring
subsidiaries. As a result, a single centralized data
warehouse may be too expensive or difficult to construct.
Instead, the enterprise may temporarily or permanently
decide to utilize a number of smaller, remotely located data
warehouses. Decision support tasks then require answering
queries by aggregating data over several of these smaller
data-warehouses. In this scenario, since a single enterprise-
wide warehouse may not exist, the only options are to
perform the aggregations at the client-side or in the middle-
tier such as the web-proxy. In particular, a large number of
users located close to each other, at say the enterprise’s

corporate headquarters, may be issuing OLAP queries to
the remote data centres. Answering these queries can
require vast quantities of static and possibly overlapping
warehouse data to be transported from a remote location.

Client-side caching [30, 10] is a technique that has been
widely deployed to minimize the costs incurred during
distributed OLAP operations. Usually, each node caches
data independently. However, if instead these nodes were
to collaborate and share cached data, we could build a
system that was much more efficient than an individual
client cache and far more scalable and fault tolerant than a
large central cache. The primary problems faced in such a
distributed cache are the following:

• Data Location - Searching and locating data in
different caches with minimal network and
processing overhead.

• Cost-Aware Caching - Designing a caching policy
that minimizes both computational and network
costs of a miss.

• Scalability & Fault Tolerance - Making the system
scalable and tolerant to faults like the failure of
nodes hosting a cache

In this paper, we propose CubeCache – a peer-to-peer
OLAP caching system that combines multiple clients into a
distributed data caching and processing engine. CubeCache
minimizes the cost of processing queries and performs
distributed aggregation computations, with little or no
additional investment in terms of hardware and
administration. The peer-to-peer nature of CubeCache
introduces a high degree of parallelism that enhances the
scalability and cost-effectiveness of our system.

CubeCache builds on the fundamental distributed
caching techniques developed in PeerOLAP [3] by adding
a layer to perform in-network query processing. In
particular, CubeCache can perform aggregation queries in
parallel at different peer caches. Moreover, we present
techniques for efficient distributed location of cached data
for use in aggregations, in order to minimize accesses to
back-end data sources. We introduce a new technique –
Query Trails, for efficient data location in the CubeCache
network. Query-Trails improve object location by allowing
peers to ‘reach’ up-to twice the depth of flooding with
negligible additional costs.

Given that a CubeCache system is built out of a
network of cooperating client caches, query processing in
the system is vulnerable to client failures. In order to
preserve the efficiency of query processing despite failures,
we introduce a weighted-benefit caching policy designed to
enhance fault tolerance. Our policy assigns higher weight
to “rare” data, so that widely replicated data is ejected from
peer caches before less replicated data. This improves the
likelihood that every data item is cached multiple times,
minimizing the impact of client failures. Experiments show
that the performance of the CubeCache system degrades
gracefully with node failures unlike a central cache.

We describe cache-based techniques for scalable
processing of queries from multiple data centers.
CubeCache peers use the chunk-based caching scheme [5,
4] to cache the results of queries and share their cache with
the rest of the network. Unlike with central caching of data
cube chunks, our system is scalable, has no central point of
failure and performs well even in with different user access
patterns.

1.1 Related Work and Background

Peer-to-peer systems have applications ranging from
data sharing such as in Gnutella [7] and Freenet [8] to
massive parallel computations in projects like SETI [9].
Although Data Warehousing [2, 1] and P2P systems have
individually received a lot of attention, not much work has
been done on using P2P systems in Data Warehousing.
PeerOLAP[3] was the first and to our knowledge, the only
system reported so far, that uses a P2P network to perform
distributed caching of OLAP queries. Our system enriches
the PeerOLAP system by a number of important new
features. First, we provide support for aggregations in the
distributed cache. We perform in-network aggregations,
reducing the bandwidth consumption, distributing the
workload and allowing our system to be useful even in
situations, where pre-aggregated data is not available in the
warehouse. Next, we improve the efficiency of data
location through the use of query trails. And finally, we
present a benefit metric that incorporates the impact of
‘node failures’, there by taking into consideration a very
common feature of P2P systems into consideration.

Distributed OLAP systems often have to deal with
semantic issues, such as reconciling schemas from different
data sources. Our focus in this paper is on performance
issues. The semantic issues arising from cross-enterprise
queries in decision support systems have been investigated
in [6] and their techniques can be applied to handle tasks
such as data-modelling and integration.

Conceptually, cooperative Web-Cache systems which
cache Internet objects among themselves [15, 23, 24, 25,
26, 27] are very similar to our system. However, query
caching is quite different from object caching since apart
from the data-location problem that is common to both,
query caching has the additional problem of composing
new results from partial results. Caching in web-proxies
and the middle tier are discussed in [15, 16, 17].

Many P2P systems have been proposed for data-
management, including P2P databases such as PIER[28].
While these systems implement the database in a peer-to-
peer system, our approach uses a P2P system to cache and
process OLAP queries at the client-end. P2P systems have
also been used as storage solutions [8] in systems such as
Piazza [29] that focuses on the dynamic placement
problem.

Also related is Data Warehousing and OLAP query
processing. Data Warehouses often store multidimensional
data that can be viewed as a data-cube [1] and allow
answering of OLAP aggregation queries. Several caching-
based approaches have been implemented to accelerate the
processing of OLAP queries [5, 10, 11, 12, 18]. Many
approaches including pre-computation of aggregates and
caching in the middle tier [10, 11, 12, 13, 15], have been
suggested and implemented to achieve better response.

Our approach uses the chunk-based [5, 4] caching.
Chunks [18] divide the data-cube into uniform semantic
regions. The fine granularity of chunks allows better reuse
and also saves the amount of cache space utilized since
overlapping regions need to be stored only once.

In this paper we present CubeCache – a scalable and
efficient P2P system for caching and processing OLAP
queries. In the next section we outline our major
contributions and provide the organization of the paper.

1.2 Contributions and Overview

Our main contributions include:
• A scalable technique to perform distributed in-place

aggregation computations in client-side caches.
• The concept of ‘Query-Trails’ which improves data

location in the CubeCache peer-to-peer network.
• The Weighted-Benefit caching policy that takes into

consideration the ‘rarity’ of a chunk while computing
its cost for cache replacement decisions. This allows
the system to be fault tolerant, minimizing the
performance degradation due to node failures.

We present in Section 2, the motivation behind the
CubeCache system and provide some real-world situations
where the system can be deployed. An overview and
running example of the CubeCache system is described in
Section 3. Each of the components of the system and the
techniques used to perform query processing and
aggregation are discussed in detail in Section 4. Section 5
presents the details of the experiments conducted and an
analysis of the results. We finally conclude in Section 6,
providing our plans for future work and some insights
gained while implementing the system.

2. Motivation and Applications
In this section we describe several scenarios in which our
system can prove to be useful. In each case, the absence of
a single, centralized warehouse means that data must be
aggregated in a network of clients, usually workstations
connected by a high-speed LAN. These clients may only be

able to access base data at distributed data sources over a
slow Internet connection.

2.1 Single Enterprise Single Schema

 Warehouses consolidate vast quantities of enterprise data
and decision support systems run complex OLAP queries
on this data. However, building a warehouse, consolidating
and maintaining data, is both a time-consuming and costly
process and the returns on investment are uncertain.
Moreover, many small enterprises do not utilize all the
features of these systems, and may want to implement a
low-cost system that allows them to aggregate data from
across smaller data-marts. Consider a retail chain with
hundreds of stores all over the country. Each store records
its daily transactions in a transactional database. Rather
than build an enterprise data warehouse at a single go, the
organization might prefer doing so in phases, or first
implement a prototype. Using data marts, which are
miniature data-warehouses, can make the process of
implementing an enterprise-wide business intelligence
system an incremental one there by spreading costs. For
example, in the scenario described above, the retail chain
may decide to implement its decision support system for
one region at a time using small data-marts that conform to
a single global schema. Users sitting at a remote location
may issue queries like 'What is the total sales of a product
over all the regions for the month of January?' to the
system which involves gathering data from each region’s
warehouse and performing aggregations over it.

2.2 Single Enterprise Multiple Schema

This scenario occurs frequently when an enterprise
grows by acquisitions where the organization may now
have to deal with multiple warehouses implemented
according to multiple schemas. Although the primary
concern in these scenarios is semantic in nature, there is
still a need to answer OLAP queries where pre-aggregated
results may not be available and vast amounts of data will
have to be transported from more than one location in order
to answer queries.

2.3 Multiple Enterprise Multiple Schema

Corporations may collaborate with each other in order
to increase their sales. Consider a restaurant chain with
outlets all over the country collaborating with a popular
soft-drink manufacturer and selling the drink in their
outlets. With both organizations providing each other
restricted views of sales data an integrated decision making
system in the absence of a central warehouse is required,
since neither organization may be willing to invest and
maintain a warehouse for such data.

3. System Overview and Example
The CubeCache system consists of a set of peers

(such as user workstations) that access remote data-sources

and issue OLAP queries. There is no inherent structure to
the network, and peers can join or leave at any time.
Queries could vary from simple queries - targeted at a
single data source and involving no aggregation to complex
ones - queries that require aggregation of results across
single/multiple data-sources. Peers that retrieve results may
cache them for future use.

Let us now see an example of how the CubeCache
system works. Consider an enterprise that has sales data for
four regions – North, South, East and West, stored in four
different data-marts maintained at the respective regional
head offices. Users sitting in the corporate head office at a
different location need to access this data. The user PCs are
connected in a peer-to-peer network as shown in Figure 1.
The solid lines indicate connections between peers and the
dotted lines are connections between end-systems in this
network and a remote warehouse. Note that all peers may
not be connected to the warehouses.

Now, assume that the user at peer P1 issues a query for
‘Total Sales’ which requires data to be aggregated over all
regions. P1 searches the CubeCache network for the
results of ‘Total Sales’. Although ‘Total Sales’ results may
not be found at any peer, partial results may be cached by
several peers. For example, P2 has results for South and
West regions and P10, for North and East regions. Peer P1
can examine the query and determine that these cached
partial results, called chunks [4, 5], and are sufficient to
answer the query. Peer P1 can ask P2 and P10 to compute
total sales for the regions (chunks) they do have, or request
the chunks directly and compute the aggregates itself.
Then, P1 can compute ‘Total Sales’ over all regions by
combining these partial aggregates. Asking the peers to
transfer just the aggregates, rather than the whole chunks,
has 2 advantages – (1) it reduces bandwidth usage since,
instead of entire chunks, only aggregated results are being
transported and (2) P2 and P10 perform aggregation
computation in parallel, making processing more efficient.
Peer P1 may then cache the results of ‘Total Sales’ for use
by other peers in the future.

Implementing this system efficiently requires dealing
with several challenges. First, if no peer has the full or
partial results, then the querying peer must go directly to
the back-end data mart, potentially incurring a long latency.
Thus, we would like to improve the likelihood that chunks
are cached somewhere in the peer-to-peer network. To
address this issue, we introduce a cache replacement policy
based on the benefit of a chunk, where benefit is
determined by the relative cost of storing the chunk versus
accessing the back-end. This caching policy is described in
Section 4.4.

Second, there must be an efficient way to determine if
the chunk is available in the network. We could keep a
directory of chunks, but this directory would be hard to
maintain as we expect caches to add or remove chunks
frequently. We could contact every peer and ask if they
have the required chunks, but this “broadcast” approach is
too expensive in a large system. Instead, we combine

limited broadcast with a special lookup mechanism, called
query-trails. Query trails are described in Section 4.2.

4. System Components
The architecture of a CubeCache peer is shown in

Figure 2. Each peer accepts SQL queries from a local
client, parses the queries and retrieves results. It caches
results in a local cache and shares this cache with other
nodes in the network. A peer also processes search requests
from other peers in the network and returns responses. The
Request/Response Interface receives and begins
processing requests from the local client and other peers.
First, the query is passed to the SQL parser, which parses
the query and returns a list of chunks that are required to
answer the query. The selection predicates can either be on
the ‘group-by’ or ‘non group-by’ attributes. Since
selections on non group-by attributes are already factored
in before the aggregations are performed, the selection
predicates on non-group by attributes of a cached chunk
and an incoming query should match exactly for the cached
chunk to be ‘useful’ in answering the query [5].

Next, the list of chunks are passed to the Search and
Forwarding logic (SFL) module, which invokes the Cache
Control module to search the local caches (the Chunk
Cache and the Query-Trail Cache) for the chunk. If the
chunk is not found, depending upon the forwarding policy
(described in Section 4.3) the SFL module returns a list of
peers to which the request should be forwarded. After the

query results have been computed, the Request/Response
interface constructs and returns a response message
containing the results.

The Cache Control maintains the Chunk Cache, the
Query-Trail Cache and the Connection Cache. The Chunk
and Query-Trail caches are described in the next two
sections. We use the Connection-Cache technique
described in [3] to re-organize the peers into beneficial
neighbourhoods. Each peer records in its connection-cache
the performance (in terms of number of cache hits) of other
known peers and periodically reviews its neighbour list.
The peer then adds or drops neighbour links in order to
maintain an optimal set of neighbors who provide more
useful results.

The Connection Repository maintains the connection
details for the neighbours in the network and warehouses.
At regular intervals, the Topology Control module
reorganizes the set of neighbours, adding new links and
dropping existing ones depending upon the performance of
peers as recorded by the connection-cache [3].

Apart from these components, we assume that every
peer either maintains locally or has knowledge of schema
details like the levels, dimensions and hierarchies. Since
this information is quite small, it could either be maintained
locally or at a single small local database to which a fast
connection is available.

We also assume that every peer returns responses
directly to the requesting node since anonymity is not a
concern in our system. Also, since updates to the

Figure 1. The CubeCache System

SALES DW-4
 (North)

SALES DW-2
 (South)

P3

P4

P1

P5

P6
P10

P7

P11

P9

SALES DW-1
 (West)

Q1: Total
Sales?

Total
Sales?

Total
Sales?

Total
Sales?

Total
Sales?

Total
Sales?

SALES DW-3
 (East)

Q2: Total
Sales?

P8

Total
Sales?

P2

warehouse data are infrequent, we assume that when an
update occurs or when incremental loads are performed,
the warehouse will broadcast a message to the system,
instructing the peers to clear their caches.

4.1 Chunk Cache

Each peer caches query results in the form of chunks
[4,5] and shares the cache with other peers in the network.
Chunks divide the data cube into uniform semantic regions
and allow finer grain caching. Chunks allow better
utilization of the cache space, since overlapping regions of
the result sets of different queries need to be stored only
once.

The chunk cache stores actual chunks along with the
following information: a chunk id, dimension vector and
benefit value. The chunk id is used to identify the chunk
uniquely. This chunk id can be made unique across
multiple data cubes by concatenating the namespace with
the chunk id. The dimension vector can be viewed as a bit
map representation of a chunk’s dimension. The benefit
value is used by the caching policy to determine admission
and replacement and represents the cost of computing this
chunk. We describe the computation of this benefit value in
Section 4.5.1

When a peer receives a query, it determines the needed
chunks. Some of these chunks may be available locally.
Chunks that are not locally available must be retrieved
from other peers or from the data mart back-end.

4.2 Query Trail Cache

If a peer does not have the right chunks, it must contact
other peers to ask for that chunk. We could broadcast the
request to all of the other peers. However, broadcast is
expensive, and thus it is desirable to proactively seek out
peers that are likely to have the right chunks.

We make the following observation: if a peer has
recently requested its neighbours for a particular chunk, it
is very likely to have that chunk in its cache. In order to
leverage this information to improve our search, we
introduce the concept of a Query Trail Cache (QT-Cache),
which caches recent requests received by the node. Each
peer uses its query-trail cache to find peers that have
recently requested for a chunk and forwards the current
request to that node. Query-Trail requests are sent directly
to the node and are not forwarded further.

Consider again the example from Figure 1. Assume that
peer P1 caches the results of the ‘Total Sales’ query. A
short while later, say, peer P11 issues a similar query for
the total sales. P11 forwards this query to peer P8. By
maintaining a list of previous requests in its Query-Trail
cache, P8 is able to immediately re-direct P11’s ‘total
sales’ query to P1. Note that in the absence of this
information, P11’s query would never have reached peer
P1 since P1 is beyond 2 hops from P11.

In this section, we explain the formal model of a Query-
Trail Cache. We then describe two forwarding techniques
based on query trails – Maximum Effort Query Forwarding
(MEQF) and Least Effort Query Forwarding (LEQF). But
first, we discuss the advantage of using Query-Trails that
makes it an attractive technique to us.

4.2.1 Advantages of Query Trails – Improving Reach

 We limit the scope of broadcast by specifying a
hopcount, h: each request for a chunk is forwarded to all
peers within h hops of the requesting peer. However, by
maintaining query trails, even with a hop count of h, we are
able to achieve a ‘reach’ of up to 2h, without flooding the
network [Figure 3]. This is because every peer within h
hops of the requesting peer has seen requests from other
peers up to an additional h hops away. Query-trails allow
us to make intelligent forwarding decisions thereby
increasing the chances of locating the desired chunk.
Query–trails are generic and can be applied to any peer-to-
peer system that supports an object location and where the
query stream exhibits temporal locality.

4.2.2 Terms and Definitions
A query result is characterized by a set of chunks. Thus, for
a query q, Result (q) = {c1, c2,…, cn}.
Query Trail: A query trail (qt) is a tuple of the form

chunk_id,requestor where,

Figure 2. CubeCache Peer Architecture

Request Response

SFL- Search /
Forwarding Logic

Request/Response
Interface

SQL
Parser

Connection
Repository

Connection
Cache

Query-
Trail

Chunk
Cache

Cache Control

Local
Client

Query

Topology
Control

Result

R P Q
h h

2

Flood Request

Query-Trail

Figure 3. Reach of a peer P

 chunk_id is the identifier of a data item, the request for
which arrives at the node, and
 requestor is a node belonging to the system that had
originally requested for the chunk. (Note: The node
identifiers may be IP addresses of the nodes or unique ids
assigned to the nodes upon joining the system.)

Query Trail Cache (QT-Cache): A Query Trail Cache
(QT- Cache) of node P is a set of qt entries stored at node P
that may be refreshed based on the caching policy. In
CubeCache we use a simple LRU policy for query-trail
cache admission and replacement.

1 2() { , , , }nQT Cache P qt qt qt− = �
where, each qti is a query trail entry.
For a chunk ci, QT(P, ci) is the set of all nodes that have
requested for the chunk ci at node P and is defined as

QT(P,ci) = { ni | (ci, ni) ∈ QT-Cache(P)}
Thus

QT(P,q) = (,)
Re ()i

i

c

QT P c
sult q∈
�

For instance, if nodes A, B, C, D and E have requested at
node S for chunks {c1, c2}, {c1, c2}, {c1, c5}, {c2, c5} and
{c5} respectively, node S has the following query trail
entries: < c1, {A,B,C}>, < c2, {A,B,D}> and < c5, {C, D,
E}>. Now, if a request for query q1 arrives at S, where
 Result(q1) = {c1, c2, c3},
then,
 QT(P, c1) = {A, B, C},
 QT(P, c2) = {A, B, D} and

 QT(P,q1) = {A, B, C, D}

4.3 Chunk Searching Process

 Our chunk searching process combines limited
broadcast with search over query trails. Each peer that
receives a request for chunks must determine whether to
forward that query over neighbour links (broadcast), query-
trails, or both. The simplest case, flooding only, is to
forward the query just to neighbour links. In this section we
discuss two other policies that use query-trails – Maximum
Effort Query Forwarding (MEQF) and Least Effort Query
Forwarding (LEQF). Our query forwarding policies are
complementary to the Eager, Lazy and Optimal query
processing policies described in [3] and can be used in
conjunction with any of the policies.

4.3.1 Maximum Effort Query Forwarding (MEQF):
 In this policy, we forward messages to both neighbors
and query trail entries. Since messages are forwarded to
more peers, and intelligently too, the possibility of a hit is
very high. However, since the number of search messages
are higher, maximum effort query forwarding is best suited
for the systems where the cost of searching is much less
compared to the cost of obtaining data from the warehouse.
Assume that a user issues a query q at peer P. The MEQF
policy works as follows:
i. P checks its local cache for chunks required to answer

q. Let Cmiss be the set of chunks that are not available
locally.

ii. P forwards a request for the Cmiss chunks to
a. All of the peers in neighbors(P)
b. All of the peers in QT(P, Cmiss); that is, the

query trail peers that have previously asked
for any chunk in Cmiss

iii. Each of P’s neighbors checks their local cache for the
chunks in Cmiss, and sends a message to P listing the
chunks it has. Let Cmiss’ be the set of chunks in Cmiss
that the neighbour does not have. Each neighbor
repeats the forwarding process, sending a request for
Cmiss’ to each of its own neighbors as well as any query
trail peers that might have chunks in Cmiss’.

iv. This process repeats for h hops, where h is specified by
peer P. The h value is stored in the request message,
and decremented at each hop.

v. Any peer that receives a request for chunks via a
query-trail checks its local cache and returns any
results to P. However, query-trail peers do not forward
the request further.

vi. Note that each node that receives a request for chunks
also updates its QT-Cache to add P and the associated
query.

vii. P keeps receiving responses till a timer t expires, after
which it assumes that no more results are expected. P
then calculates the optimal peer to retrieve each chunk
from, contacts that peer and retrieves the chunk from
it. In case the chunk is not found at any peer in the
network, P will retrieve the chunk from the warehouse.

4.3.2 Least Effort Query Forwarding (LEQF)

This policy is very similar to the MEQF except
that, at each node Q, if a query-trail entry is found, then the
request is sent only to that node and is not flooded to all
neighbors. However, if no such query-trail is found, then
the query is forwarded to all neighbors. This approach tries
to minimize the number of search messages in the system
and resorts to flooding only if query-trail that aids
intelligent forwarding are not found. In systems where the
cost of searching is high, the LEQF policy tries to
minimize search messages. Our experiments show that this
policy reduces search messages by nearly 10% while
providing better performance than naïve flooding.

4.3.3 Other forwarding approaches

The MEQF policy forwards search messages to
maximum number of peers and LEQF to the least number
of peers. Other query forwarding policies are possible. A
variant of the above two policies could be one in which we
forward messages to the ‘top-k’ most promising nodes
(neighbours or query trail peers), where k could be a
tuneable parameter. This would be a good policy in a
network where the degree of each node is very high and
hence flooding results in exponential increases in the
number of messages at every step. Yang and Garcia-
Molina [31] demonstrate that such a directed forwarding

policy can improve performance in very large and densely-
connected networks. However, further study is required to
see if this policy would be equally effective for a smaller
network of OLAP caches. In ongoing work, we are
examining these and other policies.

4.4 Aggregate Computation Mechanism

In this section, we describe our in-network aggregate
computation technique. This technique relies on the closure
property of chunks – that is, higher level chunks can be
composed by aggregating a fixed set of lower level chunks.
When a peer requests for a chunk, although it might not be
readily available, lower level chunks that will yield the
required chunk upon aggregation may be available at
distributed locations. We propose an in-place, in-network
aggregate computation mechanism by which a peer
computes a higher level chunk by intelligently combining
partial aggregates available from other peers.

4.4.1. In-Network Aggregate Computation Technique

 When a peer requires a particular chunk, it initiates a
search in order to locate either the chunk or all the lower
level chunks. If the required chunk is readily available in
the network, the peer retrieves it. Otherwise, the peer
explores the possibility of computing the chunk from the
lower level chunks available at other peers. Since all the
lower level chunks may not be available at a single peer,
partial aggregates (computed from available cache-resident
lower-level chunks) have to be retrieved from distributed
locations, to compute the final aggregate. The primary
challenge in this is to generate a cost-effective query
execution plan that minimizes the cost of in-network
aggregate computation.

In order to ensure the correctness, we must ensure that
each lower level chunk appears exactly once in the final
aggregate. Since this is an instance of the well known set-
partitioning problem which is NP-hard [31], we employ a
greedy heuristic to determine the nodes which should
compute the partial aggregates. Computation of a higher
level chunk can be done by aggregating lower level chunks
along any one of several dimensions. Dimensions along
which all the lower level chunks are available are selected
as candidate dimensions as this requires no data to be
fetched from the warehouse. Along a candidate dimension,
the set of lower level chunks can be partitioned in more
than one way. We define C, the set of lower level chunks as
follows:

1
{ | () }

n
lower lower
i i

i
C c Agg c N

=
= =

 where, N is the required aggregate result. We need to
divide C into a set of partitions P such that the following
criteria are satisfied:

1 1
{ | }

k k

i i i
i i

P PR PR PR C
= =

= = ∅ ∧ =� �

For a partition set P to be a solution, the chunks in each
partition should be available in their entirety at a single

peer. In order to compute P, we first arrange nodes in the
descending order of number of chunks along the selected
dimension. We then greedily construct subsets using the
following algorithm:

Algorithm: Partitioning Algorithm
Input: C //set of all lower level chunks.
 Result[1…n] //chunks available at a peer i

Begin:
fetch[1…n] := null;
pendingList := C;
while (PendingList != null) do
 assigned := 0;
 max := 0;
 for each i in 1..n loop

 if(| Result[i] pendingList| > max∩)

 assigned := i;
 Max := | Result[i] pendingList|∩ ;
 end if
 end loop
 fetch[assigned] := Result[i] pendingList∩ ;
 pendingList := pendingList – fetch[assigned];
 end while
End;

Once the partition set along each candidate dimension

has been computed, we then choose the set with the least
cost as the query execution plan. Next, we describe a model
that helps define this notion of cost.

4.4.2 Cost Model

The peer has to retrieve chunks that it does not have
cached, either because the chunk was never cached locally,
or because it was cached but then ejected from the cache.
Let size(c) be the size of a requested chunk c. Let C denote
the set of all chunks and P denote the set of all peers. Let

1 2{ , , }i i i inC c c c= � denote the set of all lower level chunks
of ci such that all ijc are along the same dimension and

1
()

n

i i j
j

c Agg c
=

= , where Agg denotes aggregation.

()iCΡ the Power Set of iC , denotes the set of all subsets
of iC . We define a function A which denotes the cost of
calculating a chunk c at a peer S as follows:

+: C P A × → �

,

1 1

()
()

(,), ()

i i

nni
ik ik i

k k

rep const size c , if c exists
A c S

A c S if c P C
= =

× ×� �
� �= � �∈�� �� �

�

The function A is defined as a constant multiple of the
size of the chunk if it exists and the cost of aggregating an
available subset of lower level chunks otherwise. For
example, if 10 of 30 lower level chunks of chunk ci ,but not
chunk ci itself, are available at a peer, and the peer receives

a request for ci, the peer will return to the requesting peer
the details of the 10 chunks. The requesting peer may then
ask this peer to return the aggregate of a subset of these 10
chunks. The ‘rep’ term denotes the ‘reputation’ of the peer
and takes into consideration the quality of results provided
by a peer and the level of trust associated with it. If
operating in an un-trusted environment, a node can
associate low costs with trusted peers and high costs with
untrusted peers. In our experiments we assume that we are
operating in an environment where security is not an issue
and hence rep=1. The ‘const’ term denotes the disk read
rate.

The cost (in terms of time) incurred in transferring a
chunk available at peer S to peer R can be defined as

size(c)
(, ,) constant +

Bandwidth(R,S)
N c R S =

where ‘constant’ can be taken to be the cost of setting up a
connection between the two nodes R and S.

The cost of sending request messages from R to S
depends on the number of hops between the two nodes. We
define the cost incurred by sending messages from R to S
as size(msg)/delay x M(R � S), where M(R � S) is the cost
of sending the message from R to S over one or more hops.
The function M is defined as:

max ,
()

recd recd

recd recd

h h if h 0
M R S

-(h), if h 0

− ≥� �
→ = � �<� �

where recdh is the hopcount of the system, size(msg) is a
constant representing the size of a message, and hmax
indicates the maximum hop-count for the system. In our
system, request messages received through a query-trail
lookup are tagged with a negative hop-count in order to
indicate that these messages should not be forwarded, so if
hrecd<0, we calculate M(R � S) as –hrecd.

We define the Total Cost (TC) of chunk c obtained
from a peer S by a peer P, TC(c, S � R) as

1 2

3

((()) ((,))
((,))

w delay M R S w A c S

 w N c S R

× → +
+ →

where, the weights w1, w2 and w3 are empirical parameters
representing the relative costs of sending a chunk, sending
a request message, and performing an aggregation. For
example, if the cost of searching is high due to presence of
high delays along the links between peer nodes, w1 will be
high. We can interpret the cost TC as the time required to
obtain a chunk. Thus, in order to minimize response time,
chunks with high costs need to be cached locally. When
peer P issues a request for a particular chunk, it may
receive responses from multiple peers. P then chooses to
obtain the chunk from the peer which provides it with the
lowest cost. The cost of answering a query would be a
summation over the cost for each chunk required to answer
the query.

4.5 Caching Policy

4.5.1 Caching Policy- Weighted Benefit

Our system uses a cache admission and replacement policy
that is a variant of LRU-CLOCK and takes the ‘Benefit’ of
a chunk into consideration. Unlike previous caching
schemes that take a notion of “benefit” into account [5, 3,
18, 19], we consider the ‘rarity’ of a chunk besides its size
and level of aggregation, Since nodes in our peer-to-peer
cache might leave or fail at any time, we assign greater
benefit to a chunk which is rare, than a chunk that is
available at many nodes while considering it for caching.

We define the benefit of caching a chunk as follows:
Assume that peer P issues a request for chunk ch and
receives responses from n peers 1 2, , , nP P P� . The chunk
is available at the back-end data source wP by default. Let
the cost of retrieving the chunks from 1 2, , , ,n wP P P P� be

1 2, , ,n w C C C C� respectively, where i jC C when i > j≥ .

Also, we assume that [1,]w iC C i n∀ ∈� . Each Ci is
calculated as TC(ch, Pi � P) [defined in section 4.4.1].
(We assume that the warehouse will never be down since
our system is not designed to deal with queries in the case
of warehouse failures.) The benefit of caching a chunk is
the cost that will be incurred by not caching the chunk. If
each peer may go down with a probability p, we define
Weighted Benefit WB(ch) as follows:

(1)

1

(1)
()

()

n
j n

j w
j

p p C p C
WB ch

size ch

−

=

− +
=
�

The formula calculates the benefit of a chunk depending
upon its cost, size and degree of availability. When all n
peers that possess the chunk are up, the cost of retrieving
the chunk is equal to the cost of transferring the chunk
from the peer offering the minimum cost. If this peer is
down, then the cost incurred will equal the minimum cost
offered by the remaining peers. If all the n peers that have
the chunk cached are not available, then, the cost will be
the cost of retrieving the chunk from the warehouse. (When
the chunk is not available at any of the local peers, n=0 and
B(ch) = Cw/size(ch)).

Our benefit metric takes into account the ‘rareness’ of a
chunk and chunks that are available at many other known
peers in the network are given lesser priority compared to
chunks that are available only at say, one other peer. Note
that chunks that are obtained from the backend are initially
“rare” and thus are automatically replicated at other peers
in the network. The probability p is a tuneable parameter.
In systems that are expected to be very stable, where peers
remain connected to the network for longer intervals of
time this parameter can be set to a very small value,
whereas in systems with greater churn, the value can be set
high to allow greater replication of chunks. Since the peer
will anyhow have to wait for all responses or a time-out to
occur before calculating the minimum available cost, using
our benefit measure does not involve the maintenance of
any additional information. We briefly explain the
admission and replacement algorithms next.

4.5.2 Replacement and Admission Algorithm
 Each cached chunk is assigned a weight. Initially,

this weight is equal to the calculated benefit. Each time
there is a cache miss, the weight of each cached chunk is
multiplied by a decay factor DF, where 0 < DF < 1.
Whenever a chunk is accessed, its weight is restored to the
calculated benefit. Thus chunks which are accessed
frequently continue to have high weight, while a chunk that
is only accessed once will soon have little weight. The
value of DF determines the rate at which weights decay.
For example, DF might equal 0.9.

Whenever a peer receives a chunk that is not in its
cache, it must decide whether to cache that chunk. To do
this, we compare the benefit of the new chunk to the
current weights of the chunks in the cache. If the new
chunk has a lower benefit than all of the weights of the
cached chunks, the new chunk is discarded. Otherwise, the
chunks with the lowest weight are ejected from the cache to
make room for the new chunk. Note that because chunks
may be of different sizes, it may be necessary to eject
multiple chunks from the cache. Note also that the benefit
of a chunk obtained from the warehouse will be very high,
and that chunk will almost certainly be cached.
To minimize the number of chunks that are replaced as the
result of a cache miss, we use the IVLR technique
described in [20]. Traditional caching algorithms continue
marking victims until there is enough space to insert the
incoming item. However, removing the last item in this list
might result in more than the required amount of space
being released. IVLR arranges victim chunks in descending
order of their sizes and composes a new set of victims by
iteratively choosing the largest sized chunk from the
existing victim-set till the required space is achieved. This
results in a new victim-set that is a subset of the LRU
victim-set.

5. Experiments
We conducted experiments to evaluate our techniques

using extensive simulations and an actual implementation
of our system. Our aim was to measure the performance of
the system with various query-forwarding techniques, its
fault tolerance – i.e. how performance degrades with node
failures, and finally compare the response-time and
through-put of the system with a central-caching scheme.
We used simulations because they allowed us to examine
several different system parameters and forwarding
techniques for a variety of scenarios. We also examined
query throughput and response time using an implemented
CubeCache prototype. In summary, our results show:
• The MEQF and LEQF policies improve query processing

performance by 20 and 10 percent (respectively) over
naïve flooding.

• A CubeCache of 32 peers connected in a standard
internet topology offers 70% savings with a cache size of
just 1% of the data-cube per peer, where as a central
cache offers only 30% savings.

• Our CubeCache system is affected minimally by node
failures.

• The response time of our CubeCache system is 23%
better than that of a central cache.

• The throughput of our CubeCache system is much higher
than the central cache: for a system of 8 peers, offers
almost 8 times the throughput of the central cache.

5.1 Experimental Setup

Our experiments were conducted using the TPC-D
[22] benchmark with the Scale Factor (SF) set to 1. The
size of the database was approximately 1GB.

We generated a query stream of 10,000 queries
following the 80-20 rule, where 80% of the queries access
20% of the data cube. We used a commercial database as
our backend, although, our caching scheme is independent
of the database used. Since the chunk based caching
scheme allows reuse of results only if the non-group by
predicates match exactly, and since the TPC-D benchmark
query does not provide us with enough variety to represent
the access patterns of a large number of users, we
generated our own query stream. Our query stream was a
mixture of 30% proximity queries, 30% roll-up queries,
30% drill down queries and 10% random queries.

The prototype CubeCache system is implemented in
Java and is used to compare the response-time and
throughput of our system to the Central-Caching scheme.
For the simulation experiments, we used 32 CubeCache
peers connected in a realistic internet topology that was
generated using GT-ITM [21], which is a tool to generate
topologies.

5.1.1 Metric
We use the standard metric Detailed Cost Savings Ratio-
(DCSR), used in [22, 3] to measure savings. The DCSR is
defined as the ratio of savings to the worst case cost.

(,) ()
()

(,)
i

i i

ch Q i

Cost ch warehouse TC ch
DCSR Q

Cost ch warehouse∈

−
= �

where TC(chi) [described in Section 4.3.1] includes the
cost of searching the CubeCache network and transferring
the chunk chi. The cost of transfer for a chunk that has not
been found in the CubeCache network will equal the cost
of transfer from the warehouse. Thus, a higher DCSR
value indicates better system performance.

5.2 Effect of Query-Trails

In this experiment we study the effects of
incorporating Query Trails in the CubeCache system. Each
peer stored 20 recent requests in its query-trail cache. The
number of requests to be maintained in the query-trail
cache was chosen to maintain small trail-caches.

 First we look at MEQF. Recall that MEQF forwards
a request to all peers that requested for the same chunk
recently (query-trail peers) as well as all neighbors. Figure
4 shows the cost savings as a function of the size of the

cache at each peer. As the figure shows, MEQF provides
20% more savings on an average than flooding (i.e.
PeerOLAP). This is because query-trails increase the
probability of a hit by intelligently forwarding queries.

Next we looked at the LEQF policy. This policy
forwards a request first based on the Query-Trail cache and
then on all neighbour links if the query-trails are
insufficient. As figure 5 shows, LEQF provides 10% more
savings on an average than flooding. Since messages are
forwarded intelligently, the probability of a hit is higher
than in flooding. However, this policy contacts lesser
number of peers than MEQF and hence offers lesser
savings than MEQF.

We also examined the number of search messages
required under each method. Figure 6 shows the results.
As the figure shows, the MEQF method only requires 1%
more search messages than flooding, even though it gave
us a 20% improvement (i.e. Figure 4). Even though we are
sending out messages on both neighbor links and query
trails, each peer keeps only a small number of query trails,
so the overhead is not large. LEQF actually requires 10%
fewer messages than flooding, even though it produces
10% more cost savings (i.e. Figure 5). Fewer messages
result because query trails result in hits 70% of the time, so
it is often not necessary to flood at all.

5.3 Aggregations in CubeCache versus Central Cache.

In this section we compare the CubeCache system
with in-network aggregation with a central caching
scheme. (We did not compare with PeerOLAP in this case,
since it does not support aggregations in the cache).

Figure 7 shows the cache size at which the central
cache equals the performance of our CubeCache system.
The central cache achieves equal performance only at
cache sizes of beyond 15%. Note that the CubeCache
system gives nearly 70% savings with a cache size of just
1% at each peer, whereas, the central cache provides only
30% savings. This is obviously due to the fact that each
peer in the CubeCache system can access the local caches

of peers reachable within a hop-count of 2. At very large
cache sizes, our system’s performance appears constant
because most of the cache at each peer is unused. This is
because each peer receives only a small fraction of the
query stream where as all 10,000 queries are processed by
the central cache.

5.4 CubeCache performance with node failures

Next, we examined the impact of node failures on our
system. In this experiment we measure the hit-count (that
is, the number of chunks successfully located in the cache)
in the presence of node failures, compared to the
PeerOLAP system. We simulated node failures to occur
with a probability of 4% (a reasonable estimate for a P2P
system with node departures). Figure 8 shows the
comparison and CubeCache with its weighted-benefit
caching policy clearly performs better. As the experiment
progresses, and more nodes fail, we observe that the
difference in performance is more pronounced, since
CubeCache is more resilient to node failures due to its
caching policy.

5.5 Experiments on the Actual Implementation

We conducted experiments to measure the response-time
and throughput of the CubeCache system on a real
implementation of the system. The experimental set-up
consisted of eight CubeCache peers and two databases
connected in a random network topology. We constructed
the largest network possible given our installation. The
experiment was conducted on Emulab[] using 10 nodes
(Pentium4, 2800MHz, 512MB RAM running RedHat
Linux 9.0). The inter-node delays between the peers set to
~2ms and that between a peer and a warehouse set to
~50ms. The peers are assumed to be part of an enterprise’s
LAN and the bandwidth available between peer nodes was
set to ~100Mbps and that between peers and warehouses
was set to ~28Kbps. Each database that functioned as a
warehouse implemented the TPC-D dataset. Queries

Figure 6. Messaging Overhead of various
Forwarding Policies

Figure 4. Maximum Effort Query Forwarding Figure 5. Least Effort Query Forwarding

included those requiring data from a single warehouse to
data to aggregation queries over data in both warehouses.

Figure 9 shows the throughput (in terms of
Queries/min) of the CubeCache system and that of a
central-cache. The cache size of the central-cache system
was 10% of the data-cube, and each peer was assigned a
cache size of 2% of the data cube. As the figure shows, the
throughput of the CubeCache system is 8 times that of a
central-cache. This is because each peer in the CubeCache
system is able to process queries in parallel. On the other
hand, in a central-cache system, all queries are processed at
a single node. We also varied the number of clients and
observed that increasing the number of clients increased
throughput.

Figure 10 shows the response time of the CubeCache
system with hop-count 1 and 2 and that of a central-cache.
The response time in this case was measured as an average
over ~3000 queries. As the graph shows, our CubeCache
system with hop-count set to 2 offers nearly 23% better
response time than the central cache. This is due to the fact
that the central cache had to handle all 3000 requests and
when requests arrived simultaneously, the processing
workload on the central cache machine became very high,
affecting performance. In the CubeCache system on the
other hand, the queries were spread over 8 machines. We
observed that the effective cache size (that is, not counting
duplicate chunks in different caches) was roughly the same
as the central-cache. However, at a hop-count of 1 though,

the CubeCache system performs slightly worse than the
central cache, since the amount of cache reachable is lesser
in this case. Overall we conclude that our CubeCache
system offers comparable or better response-times and
much better throughput than a central cache.

6. Conclusion and Future Work
In this paper we presented the CubeCache system – a P2P
network that provides efficient and scalable processing of
OLAP queries. Experiments performed on simulations and
on a real implementation demonstrate that the CubeCache
system performs better than existing flooding based P2P
systems for OLAP query caching. Our system also
outperforms a central cache in terms of both response-time
and throughput. These improvements are a result of our
primary contributions: an in-network data aggregation
layer, the Query-Trails cache for efficient location of data
chunks, and a smart caching algorithm to help preserve
chunks despite failures.

We plan to further investigate data-location techniques,
such as cache summary exchanging in order to improve
data location in our system. Another direction of interest
would be techniques to sync the query-trail cache with the
data caching algorithm in order to minimize false positives
in query trail hits. Finally, cooperative data placement
techniques, in which objects evicted from one peer’s cache
may be accommodated at a neighboring peer’s cache would
make CubeCache cooperative in the true sense.

 Figure 7. Comparison of CubeCache vs Central Cache Figure 8. Effect of Weighted-Benefit Caching Policy

 Figure 9. System Throughput Figure 10. Response Time

References
[1] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow and H. Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab and
subtotals. Data Mining and Knowledge Discovery, 1:29-54, 1997.
[2] S. Chaudhuri and U. Dayal. An overview of data warehousing
and OLAP technology. SIGMOD Record, 26:65-74, 1997.
[3] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K. L. Tan.
An adaptive peer-to-peer network for distributed caching of olap
results. In ACM SIGMOD, pages 25–36, Madison ,Wisconsin,
USA, 2002.
[4] P. Deshpande and J. F. Naughton. Aggregate aware caching
for multi-dimensional queries. In EDBT, pages 167-182, 2000.
[5] P. Deshpande, K. Ramasamy, A. Shukla, and J. F.Naughton.
Caching multidimensional queries using chunks. In SIGMOD,
pages 259-270, 1998.
[6] Mauricio Minuto, Alejandro Vaisman. Aggregate Queries in
Peer-to-Peer OLAP. DOLAP 2004, Washington DC.
[7] Gnutella. http://gnutella.wego.com.
[8] Open Source Community, “The Free Network Project –
Rewiring the Internet”, http://freenet.sourceforge.net
[9] Seti@home. http://setiathome.ssl.berkely.edu.
[10] P. Scheuermann, J. Shim, R. Vingralek, WATCHMAN: A
Data Warehouse Intelligent Cache Manager, Proceedings of the
VLDB, 1996.
[11] D.Srivastava, S.Dar, H.V.Jagadish and A.Levy.
Answering Queries with Aggregation Using Views. VLDB,
1996
[12] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava,
and M. Tan. Semantic data caching and replacement. In
VLDB, pages 330-341, 1996
[13] R. Smith, C. Li, V. Castelli, and A. Jhingran. Dynamic
Assembly of Views in Data Cubes. In PODS, pages 274--283,
Seattle, Washington, June 1998.
[14] A. Shukla, P. Deshpande, and J. F. Naughton.
Materialized view selection for multi-cube data models. In
EDBT, pages 269-284, 2000.
[15] T. Loukopoulos, P. Kalnis, I. Ahmad, and D. Papadias.
Active caching of on-line-analytical-processing queries in www
proxies. In International Conference On Parallel Processing,
pages 419-426, 2001.
[16] P. Cao, J. Zhang, and P. B. Beach. Active cache: Caching
dynamic contents on the web. In Middleware Conference, 1998.
[17] P. Kalnis and D. Papadias. Proxy-server architectures
for olap. In SIGMOD, pages 367-378, 2001.
[18] Y. Kotidis and N. Roussopoulos. Dynamat: A dynamic view
management system for data warehouses. In SIGMOD, pages
371-382, 1999.
[19] Y. Zhao, P. Deshpande, and J. F. Naughton. An array-based
algorithm for simultaneous multidimensional aggregates. In
SIGMOD, pages 159{170, 1997P. Scheuermann, J. Shim, and R.
Vingralek.
[20] Hosseini-Khayat.S “Replacement Algorithms for Object
Caching”, In ACM Symposium on Applied Computing, 1998
[21] E. Zegura, K. Calvert and S. Bhattacharjee. How to Model
an Internetwork. Proceedings of IEEE Infocom '96, San
Francisco, CA.
[22] Transaction Processing Performance Council, TPC
Benchmark D, 1995
[23]SQURRIEL

[24] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and
M. F. Schwartz. The Harvest information discovery and access
system. Computer Networks and ISDN Systems, 28(1{2):119-
125, Dec. 1995
[25] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond
hierarchies: Design considerations for distributed caching on the
internet. Technical Report CS98-04, Department of Computer
Science, University of Texas at Austin, May 1998.
 [26] J. Wang. A survey of web caching schemes for the internet.
ACM Computer Communication Review, 29(5):36{46, Oct.
1999.
[27] D. Wessel. Squid internet object cache.http://squid.nlanr.net
[28] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon
Thau Loo, Scott Shenker and Ion Stoica, Querying the Internet
with PIER. VLDB 2003
[29] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu.
What can databases do for peer-to-peer? In WebDB Workshop,
2001
[30] A. M. Keller and J. Basu. A predicate-based caching scheme
for client-server database architectures. VLDB Journal, 5(1):35-
47, 1996.
[31] B.Yang and H.Garcia-Molina. Efficient Search in
Peer-to-Peer Networks. In Proceedings of the 22nd IEEE
International Conference on Distributed Computing
Systems (ICDCS), July 2002

