
.

Enforcing Configurable Trust in Client-side Software Stacks
by Splitting Information Flow

Lenin Singaravelu1, Bernhard Kauer2, Alexander Boettcher2, Hermann Härtig2,
Calton Pu1, Gueyoung Jung1, Carsten Weinhold2

1 Georgia Institute of Technology, 2 Technische Universität Dresden

{lenin, calton, gueyoung.jung}@cc.gatech.edu, {kauer, boettcher, haertig, cw183155}@os.inf.tu-dresden.de

ABSTRACT
Current client-server applications such as online banking
employ the same client-side software stack to handle infor-
mation with differing security and functionality require-
ments, thereby increasing the size and complexity of soft-
ware that needs to be trusted. While the high complexity of
existing software is a significant hindrance to testing and
analysis, existing software and interfaces are too widely used
to be entirely abandoned. We present a proxy-based ap-
proach called FlowGuard to address the problem of large
and complex client-side software stacks. FlowGuard’s proxy
employs mappings from sensitiveness of information to
trustworthiness of software stacks to demultiplex incoming
messages amongst multiple client-side software stacks. One
of these stacks is a fully-functional legacy software stack
and another is a small and simple stack designed to handle
sensitive information. In contrast to previous approaches,
FlowGuard not only reduces the complexity of software
handling sensitive information but also minimizes modifica-
tions to legacy software stacks. By allowing users and ser-
vice providers to define the mappings, FlowGuard also pro-
vides flexibility in determining functionality-security trade-
offs.

We demonstrate the feasibility of our approach by imple-
menting a FlowGuard, called BLAC, for https-based appli-
cations. BLAC relies on text patterns to identify sensitive
information in HTTP responses and redirects such responses
to a small and simple TrustedViewer, with an unmodified
legacy software stack handling the rest of the responses. We
developed a prototype implementation that works with a
prominent bank’s online banking site. Our evaluation shows
that BLAC reduces size and complexity of software that
needs to be trusted by an order of magnitude, with a man-
ageable overhead of few tens of milliseconds per HTTP
response.

1. INTRODUCTION
Security-sensitive client-server applications such as online
banking and electronic commerce are increasingly used by a
large number of people. These applications involve ex-
change of information with differing security and functional-
ity requirements, e.g., passwords, addresses, account status,
images, scripts, etc. Service providers realize this and use
security mechanisms such as SSL, dual-factor authentica-

tion, Transaction Authorization Numbers and keypads to
enter PIN to protect exchange of highly sensitive informa-
tion. However, these applications use the same client-side
software stack to handle all categories of information.

Employing the same software stack to handle information
with differing security and functionality requirements has
two implications: First, security-sensitive functionality resid-
ing in the same protection domain as non-sensitive function-
ality. Therefore, vulnerabilities in non-sensitive functionality
can be used to compromise security-sensitive functionality,
e.g., a buffer overflow in image processing subsystem of the
Internet Explorer browser can be used to install malicious
extensions [4]. Secondly, co-locating security-sensitive
functionality with non-sensitive functionality also increases
the size and complexity of software that needs to be trusted
(greater than 2 million LOC for the Mozilla Firefox
browser), which in turn makes analysis and testing of such
software harder.

One approach to mitigating this problem is by constructing
application-specific Trusted Computing Bases (TCBs) [22].
While this approach eliminates unnecessary software pro-
grams from the TCB, it does not address the large size and
complexity of software in the TCB and at the application
level. AppCore [44] extends this approach by refactoring
existing software into small and simple components which
are then used in security-sensitive applications. Doing so
reduces the complexity of the software components that
have to be trusted (Trusted Components), thereby, simplify-
ing the analysis and testing of Trusted Components. How-
ever, this approach requires considerable efforts in redesign-
ing or refactoring of current software stacks.

Alternatively, one can employ the Proxos system [46],
which allows application programs to configure their trust in
operating systems by partitioning the system call interface
into trusted and untrusted parts. The trusted part of the inter-
face is implemented by a trustworthy OS while the rest of
the interface is implemented by an untrusted commodity OS.
By limiting the flow of sensitive information to the applica-
tion and to the trusted portion of interface, Proxos provides
configurable trust in systems software. However, middle-
ware and application-level software too suffer from multiple
critical security vulnerabilities, threatening the flow of sensi-
tive information.

 2

This paper proposes FlowGuard, a system architecture that
combines the desirable features of both approaches: smaller
and simpler Trusted Components for handling security-
sensitive information and the reuse of existing software and
interfaces for handling non-sensitive information. The first
contribution of this paper is the FlowGuard architecture,
which consists of a proxy server and multiple client-side
software stacks of varying functionality and trustworthiness
executing on a microkernel or a virtual machine monitor
(VMM). The proxy server intercepts information flow from
the server and determines the sensitiveness of data items in
the flow. Based on its classification, the proxy server demul-
tiplexes information flow from the server amongst the vari-
ous client-side software stacks. FlowGuard supports soft-
ware stacks of varying complexity and functionality. At one
extreme is a fully-functional, lightly-modified, legacy soft-
ware stack and at the other extreme is a small and simple but
functionally constrained stack meant to perform a small set
of operations. Based on software engineering studies, we
expect the small and functionality constrained stack to be
more amenable to exhaustive testing, resulting in software
with fewer vulnerabilities [34][43].

The second contribution of this paper is a concrete instance
of the FlowGuard architecture for https-based applications
(called BLAC). BLAC consists of an https proxy executing
on top of a microkernel and two client-side software stacks:
a small and functionally limited application called the Trust-
edViewer, and a legacy software stack running a lightly-
modified, fully-functional browser. The https proxy employs
text patterns to identify HTTP responses containing sensi-
tive information and directs these responses to the Trusted-
Viewer. By allowing users to specify text patterns, BLAC
enforces the functionality-security tradeoffs preferred by the
user. In our prototype implementation, we show that the
TrustedViewer is two orders of magnitude smaller than the
Mozilla Firefox browser and the complete trusted software
stack is an order of magnitude smaller than a legacy soft-
ware stack. Even with an unoptimized implementation, we
show that the performance overhead of BLAC is in the range
of few tens of milliseconds per HTTP response, and well
within user expectations. Moreover, since the https proxy
implements the HTTP and the SSL protocols without any
modifications, it can be used with legacy service providers.
We successfully tested our prototype with the online bank-
ing site of a major international bank.

The rest of the paper is organized as follows: Section 2 dis-
cusses the challenges and opportunities in designing client-
side computing bases for client-server applications. Based
on the discussion, we also present a list of requirements for
an effective solution. Section 3 presents the FlowGuard ar-
chitecture and discusses the components of FlowGuard in
detail. Section 4 describes BLAC, an instance of the Flow-
Guard architecture for https-based applications and Section
5 evaluates BLAC. We discuss the general applicability of

FlowGuard in Section 6. Section 7 discusses the related
work and Section 8 concludes the paper.

2. MOTIVATION
In a client-server application, client-side software typically
consists of systems software (OS, VMM), middleware and
application level software. For a given client-server applica-
tion, we define its client-side software stack (also referred to
as software stack for brevity) as set of all software compo-
nents on the client-side that is needed satisfy the functional-
ity and security requirements of the application. We define
Trusted Components as a subset of the software stack that
can directly or indirectly compromise the flow of sensitive
information. Trusted Components include any application-
level software and middleware that have access to sensitive
data and the TCB for the application.

One should note that TCB or Trusted Components do not by
themselves imply trustworthiness. These software compo-
nents are trusted in the sense that they must be trusted to
protect the security properties of information flow associ-
ated with the application. Only by using secure components
do we transform these trusted components into trustworthy
components.

2.1 Challenges
There are two key challenges to building trustworthy client-
side software stacks. First, current software stacks are large
and complex, hindering analysis and testing. This results in
Trusted Components with multiple critical security vulner-
abilities. For example, the Mozilla Firefox browser is a
popular client-side software program that supports various
information exchange protocols such as HTTP, and FTP.
This browser contains about 2 MLOC (§ 5.1) and suffers
from multiple security vulnerabilities including arbitrary
code execution, information leak vulnerabilities and security
system bypass [4][5]. Application-level software typically
run on large commodity operating systems, e.g., 380 KLOC
for a typical Linux kernel configuration and 11 MLOC for
the complete Windows XP operating system and support
software [13]. In addition, these software programs also rely
on several support software (middleware) that run at the
same or higher privilege levels than the client application,
e.g., X server on Linux runs with superuser privileges. The
operating system kernels and middleware suffer from multi-
ple vulnerabilities, including arbitrary code execution, secu-
rity system bypass and information leaks [6][7].

The second challenge is the popularity and ubiquity of cur-
rent software and interfaces. For example, web browsers are
increasingly used in many online applications including mail,
spreadsheet and document editing. Users are very familiar
with the user-interface (UI) and the functionality provided
by the browser. Limiting the functionality or modifying the
UI will reduce the appeal of the modified software. Similarly
interfaces at various levels of the software stack are too
widely used to modified or abandoned outright, e.g., API

 3

between OS kernels and application-level software can be
enhanced with information flow primitives [25], but this
approach will not be applicable to the large number of exist-
ing software. Information exchange protocols between ser-
vice provider and client, e.g., HTTP protocol, too are well
entrenched that solution requiring modifications to the pro-
tocol will have limited appeal.

Previous efforts have addressed the first challenge, large and
complex software stacks, by proposing application-specific
TCBs (e.g., Terra [17]). While this reduces the size and
complexity of the TCB, it does not address complexity of
middleware and application-level software. AppCores [44]
extends this approach to all layers of the software stack by
reducing complexity of Trusted Components of application-
level software. However, reducing the complexity of Trusted
Components requires modifications such as curtailing the
functionality of the components and narrowing the interface
exported by the components.

The Proxos approach attempts to work around this problem
by allowing software developers to specify trust in one of
the interfaces – the OS-application (system call) interface –
by splitting the interface into a trusted and untrusted part.
The trusted part of the interface is implemented by a trusted
OS, whereas the untrusted part is implemented by a com-
modity operating system. By doing so, Proxos allows the
reuse of current application-level software and systems
software as far as possible, while at the same time minimiz-
ing modifications to the application-level software. However,
large and complex client software such as browsers and
middleware such as the display manager still need to be
completely trusted.

2.2 Opportunities
Client-server also applications possess many properties that
allow us to reduce complexity and reuse existing software
and interfaces as far as possible. First, information flow in a
session of interaction in client-server application contains
data items with differing security and functionality require-
ments. As a concrete example, consider a session in an
online banking application, where the user logs in, checks
her account, modifies her account and logs off. One can
argue that account status information is less sensitive than
user authorization for account modifications, e.g., transfer of
funds, ordering cheques or change of personal information.
Some banks already recognize this difference in sensitive-
ness of information and ask the user for an authorization
token, e.g., a one-time Transaction Authorization Number
(TAN), for account modifications to be approved [1]. From
a functionality point of view, account status information also
requires a richer presentation format, e.g., spreadsheets and
graphs, whereas account modification information typically
shows up in a tabular format on a confirm page. Sensitive
input consists of human input in the form of a sequence of
keystrokes or mouse clicks.

We can leverage this difference in security and functionality
requirements and construct small and simple components to
handle security-sensitive information and handling the rest
of the information in legacy components. Doing so allows us
to reuse existing interfaces as far as possible.

Another opportunity arises from the functionality and secu-
rity tradeoffs preferred by the user and the service provider.
For example, the user might be willing to use a legacy com-
puting base on her computer system to handle sensitive in-
formation, but prefers to use a small and reduced functional-
ity software stack to operate on all sensitive information
when operating on a public-access machine. Similarly, dur-
ing a virus outbreak, the service provider might ask users to
interact using a smaller and simpler software stack more
extensively than otherwise. By providing the user (and the
service provider, if necessary) with freedom in choosing the
software stack, we can ensure that security requirements are
balanced with the functionality requirements.

2.3 Requirements
Based on our discussion in the previous sub-sections, we
identify the following requirements for an effective solution:

R1. Reduce the complexity of the Trusted Components.
R2. Reuse existing software and interfaces as far as possi-

ble.
R3. Allow users and service providers to configure func-

tionality-security tradeoffs.
R4. Ensure that malicious software cannot spoof Trusted

Components, thereby minimizing the risk that the user
or the service provider is tricked into revealing security-
sensitive data.

R5. Minimize performance overheads.

3. FLOWGUARD

3.1 FlowGuard Architecture
The FlowGuard architecture takes a data-centric approach to
securing the flow of information. The user and the service
provider are allowed to classify data items in a session of
information flow based on their security requirements. They
also specify the trustworthiness of the different software
stacks available on the client system. Based on this informa-
tion, FlowGuard redirects the flow of information to appro-
priate software stack.

We assume that the user and service provider deem some
software stacks more trustworthy than others. This differ-
ence could arise because of differences in software size and
complexity, or because the trusted stack is instantiated from
a trustworthy read-only image, or because the trusted stack
uses high assurance components, e.g., hardened OS kernels.
Evaluating and comparing the trustworthiness of software
stacks is outside the scope of this paper.

Figure 1 presents an overview of the FlowGuard architec-
ture. At the base of FlowGuard is a Trusted Platform, which

 4

can be a VMMs, a microkernel or a hardened operating sys-
tem kernel [13][30]. On top of this Trusted Platform is a
group of software stacks of differing functionality and trust-
worthiness. Each of the software stacks contains an applica-
tion-level program and all necessary middleware and sys-
tems software to interact with other application-level soft-
ware, or hardware or with the service provider. The user of
the system acts as a source of input. Alternative input
sources such as disks and other IO devices also fit in Flow-
Guard as long as the software interface of a device (e.g., a
file server for a disk) does not send sensitive input to soft-
ware stacks that are not trustworthy enough to receive the
input.

The main component of FlowGuard is a configurable
FlowSplitter that functions as a proxy server. The FlowSplit-
ter multiplexes information flows from multiple software
stacks to the service provider. It also demultiplexes a single
flow from the service provider amongst multiple software
stacks. Demultiplexing is determined by configuration in-
formation provided by the user or the service provider. The
FlowSplitter is discussed in detail in Section 3.1.1.

The rest of FlowGuard consists of multiple configurations of
software stacks that are, from a security perspective, layered
on top of the Trusted Platform. The composition of these
stacks is discussed in Section 3.1.2

Hardware Requirements of FlowGuard. FlowGuard re-
lies on Trusted Computing (TC) hardware support, as speci-
fied by the Trusted Computing Group [9], to function cor-
rectly. Specifically, it requires authenticated booting to en-
sure that the correct and unmodified versions of software are
loaded. This information is displayed to the user via a trust

indicator, e.g., portion of screen or LED lights. In case the
service provider wants to ascertain the configuration of the
client-side software stack, FlowGuard also requires support
for remote attestation. In addition, sealed storage is required
to protect the confidentiality of the cryptographic keys that
are foundations for the security of the rest of the system.

3.1.1 FlowSplitter
The FlowSplitter has two functions: First, it has to act as a
proxy server for the client application. Second, it has to de-
multiplex information flow from the service provider
amongst multiple client applications (and their software
stacks) depending on the sensitiveness of information being
exchanged. As with every proxy server, the FlowSplitter has
to implement the application-layer protocol used for com-
munication by the service provider, e.g., HTTP over SSL,
POP3.

In addition to the regular proxy functionality, the FlowSplit-
ter has to demultiplex data items in a single information flow
amongst multiple software stacks. The recipient software
stack is determined by the sensitiveness of incoming infor-
mation and the trustworthiness of the stack, each of which is
in turn dependent on user or service provider preferences.

Figure 2 illustrates the processing of an incoming message
in the FlowSplitter. Since the FlowSplitter has to work with
legacy service providers, we cannot assume that incoming
flows are annotated with security classifications. Instead, the
FlowSplitter has to extract features from the response and
map them to security classifications. The security classifica-
tions are in turn mapped on to client-side software stacks
based on the trustworthiness of the stacks. These mappings
can be provided either by the user or the service provider.
The details of the mapping vary from application to applica-
tion. We discuss one such mapping in Section 4.3.2 for
https-based applications.

Since the FlowGuard architecture entails the use of multiple
software stacks in a single session, transfer of client-side
state between the stacks is essential to proper functioning of
the system. For purposes of discussion, we classify clients
into two categories: stateless clients and stateful clients. In
the case of stateless clients, switching between stacks is triv-
ial. On the other hand, stateful clients complicate switching

Figure 1. Overview of FlowGuard: Instead of passing on sensi-
tive data directly to a legacy software stack, or to a small and sim-
ple Trusted Components, data is first directed towards a FlowSplit-
ter. The FlowSplitter directs data to software stacks based on the
sensitiveness of information and the trustworthiness of the software
stack.

Figure 2. Incoming Message Processing in the FlowSplitter.

 5

of software stacks as the newly activated application-level
software might need the client state of the previously used
application-level software to carry out subsequent process-
ing, e.g., cookie information in many https-based applica-
tions. For stateful clients, we assume that the client-side
state is externally visible to the FlowSplitter or the applica-
tion software provides interfaces to export and import state.
When switching between stacks, the FlowSplitter extracts
state information from the old stack and passes it on to the
new stack.

In online banking, for example, client-side state consists of a
cookie that is visible in every outgoing message. The
FlowSplitter can easily capture this state information and
pass it on to the new stack. The application software in the
new stack has to be modified to import this state informa-
tion. In certain other applications, e.g., a remote desktop
session, application software maintains a lot of state that is
not externally visible. In such cases, either the application
software has to be modified to export and import state or the
server has to support storage and retrieval of client-side
state. Note that the second scenario is not far-fetched as
VNC implementations (e.g., TightVNC[8]) allow client-side
state to be stored at the server and restored at a later time.

The FlowSplitter should also export a control interface that
allows client-side software stacks or the service provider to
configure its behavior.

3.1.2 Client-side Software Stacks
Client-side software stacks contain application-level soft-
ware and the execution environment for the software. This
includes any middleware or systems-level software neces-
sary to satisfy the security and functionality requirements of
the application-level software. One should note that the
Trusted Platform is a component of all software stacks as it
is needed to satisfy security (isolation) and functionality
(access to hardware) requirements.

The simplest stack consists of standalone application that
uses the Trusted Platform as its execution environment.
However, application-level software typically requires
higher-level abstractions to access devices, e.g., files, sock-
ets. Hence, we need more complex stacks containing
(para)virtualized operating systems running the necessary
middleware and the application-level software, e.g., a web
browser running on top of X server and paravirtualized
Linux.

Client-side software stacks may have to be modified in three
ways for use with FlowGuard: First, application-level soft-
ware has to be programmed to use the proxy server instead
of directly contacting the service provider. This is a easily
accomplished as most application-level software provide
mechanisms to specify the use of a proxy.

Secondly, the application-level software may have to be
modified to export and import client state to and from the

FlowSplitter. Thirdly, if the software stack wants the ability
to configure the FlowSplitter, then the stack needs an addi-
tional component that can communicate with the control
interface of the FlowSplitter. Note that the third modifica-
tion is applicable only to trustworthy software stacks.

3.2 Properties of FlowGuard
In this section, we discuss how FlowGuard satisfies the re-
quirements mentioned in Section 2.3.

The first requirement specifies reducing the complexity
Trusted Components, i.e., components of the software stack
which handles sensitive information. FlowGuard relies on
two assumptions to reduce the complexity of these compo-
nents. First, it assumes that the proxy server does not have to
completely understand the information exchange protocol to
determine sensitiveness of information. Secondly, it assumes
that the functionality requirements of the Trusted Compo-
nents are lesser than that of a legacy software stack. Taken
together, we expect that the resulting Trusted Components
will be smaller and simpler than legacy software stacks.

FlowGuard uses legacy software stacks to handle non-
sensitive information, thereby maintaining the UI and inter-
face between various components of the system (e.g., system
call interface). FlowGuard also uses a proxy server that im-
plements an unmodified application layer protocol between
the client and the server, thereby enabling client-side
software to communicate with legacy service providers.

FlowGuard allows users (or service providers) to specify
mappings between security-sensitive information and soft-
ware stacks that will handle such information. Doing so pro-
vides users control over functionality-security tradeoffs and
minimizes the degradation in functionality due to the use of
functionally limited Trusted Components.

By using TC principles such as authenticated booting and
remote attestation, FlowGuard reduces the possibility that a
user or a service provider is tricked into communicating with
malicious software that is masquerading as trustworthy soft-
ware.

We expect that there will be performance degradation due to
the introduction of a proxy server. We discuss the
performance implications of the FlowGuard architecture for
https-based applications later on in the paper.

4. BLAC: A FLOWGUARD FOR HTTPS-

BASED APPLICATIONS
In this section we discuss a specific instance of the
FlowGuard architecture for https-based applications. First
we provide an overview of https-based applications and dis-
cuss the problems with Trusted Components in the current
software stack. Next, we present BLAC, a FlowGuard for
https-based applications. Finally, we discuss each of the
components of the BLAC in detail.

 6

4.1 Overview of https-based Applications
https is a URI (Uniform Resource Identifier) scheme that
augments the HTTP protocol with SSL or TLS and is widely
used in many applications such as online banking and elec-
tronic commerce. The user, typically a human, interacts with
a software stack that consists of a web browser, a window
manager and an operating system.

Figure 3 presents the stages in an interaction between a cli-
ent and a server in a typical https-based application. We
refer to the sequence of interactions as a session. Initially,
the client and the server employ plain-text, HTTP-based
communication. Therefore, information exchange is limited
to non-sensitive information in this stage. This stage might
be missing in servers that do not support the http URI. The
client has to authenticate itself, typically using a login and a
password, before it can access sensitive information. The
authentication step is carried out using https URLs. The au-
thentication information is encoded in a session identifier
(the cookie), thereby enabling the user to access sensitive-
data over multiple interactions without having to authenti-
cate repeatedly. Upon successful authentication, the web
server and the client exchange information over multiple
interactions. At any point during the session, the user is al-
lowed to logout, returning the interaction to unencrypted
communication.

Each stage in a session follows the HTTP protocol. The cli-
ent makes an HTTP request based on previous HTTP re-
sponses and/or user input. The server replies with an HTTP
response. The client parses this response to generate more
requests (e.g., for embedded images) or render it in a
viewer. The client now waits for user input to generate a
new request. In SSL enabled stages, requests and responses
are transmitted over a secure channel (SSL or TLS). The
client has to first establish an SSL connection with the web
server. The SSL connection could be a new connection or
the restoration of a previously suspended connection. Next,
the client transmits an HTTP request over the encrypted

channel and receives an HTTP response. The SSL connec-
tion is then suspended or closed. From HTTP/1.0 onwards,
more than one HTTP request and response can be ex-
changed before an SSL connection is closed or suspended.

Information flow in https-based applications can be classi-
fied into three categories: Non-sensitive, Low-sensitivity and
High-sensitivity information. Of the three, the first one is
accessed using http URIs and the later two are available only
through https URIs. This three level classification has justi-
fications in the realm of many online applications such as
online banking (described in Section 2.2) and electronic
commerce. In electronic commerce, the user is asked to
choose shipping address, select a payment method, enter a
new payment method (e.g., bank account or credit card in-
formation) and confirm the purchase. Clearly, information
on a new payment method is more sensitive than shipping
address. Since confirming a purchase modifies account
status and places a financial burden on the user, we also treat
user’s choice on confirmation as high-sensitivity data. We
argue that the user and the service provider want to use a
more trustworthy software stack to handle such high-
sensitivity information.

Currently, all information, including non-sensitive informa-
tion is handled by the same software stack. As mentioned
previously (Section 2.1), current software stacks suffer from
multiple security vulnerabilities. Using the same software
stack to handle various types of information flows increases
the stack’s vulnerability in three ways: First, since browsers
execute security-sensitive functionality in the same address
space and protection domain as security-insensitive func-
tionality, vulnerabilities in any part of the browser can be
used to comprise security-sensitive functionality. Secondly,
as the browser is designed to support multiple sessions,
cross-site scripting [37] or cross-site request forgery attacks
[15] become feasible. Finally, research has shown that time-
shifted attacks are possible on the Mozilla browser and op-
erating system kernels as they store data from security-
sensitive sessions, long after the session has ended [17].

The requirements for an effective solution (Section 2.3) are
applicable to BLAC. Particularly, we want a solution that
reuses the web browser as far as possible given the ubiquity
and the functionality of the browser. Similarly, the compo-
nents of the https URI, the HTTP and SSL protocols, are
widely used on the Internet. We cannot expect service pro-
viders to switch to a new or augmented protocol immedi-
ately. Therefore, BLAC has to confirm to existing protocols.

4.2 Design of BLAC
Figure 4 presents an overview of the BLAC architecture. It
is an instance of the more general Figure 1. We use the L4
microkernel [30] as the Trusted Platform. An enhanced https
proxy functions as the FlowSplitter. The https proxy uses the
microkernel and the execution environment of the microker-
nel (called L4Env) as its execution environment. We use

Figure 3. Stages in an https-based application; collectively

referred to as a Session. Shaded boxes indicate communication
over SSL. Partially shaded boxes indicate transition between
SSL and plain-text modes. Numbers indicate sequence of opera-
tions.

 7

two configurations of software stacks: one is an application-
level program called the TrustedViewer which acts as a ru-
dimentary browser. The TrustedViewer reuses the execution
environment of the https proxy. The second software stack is
a legacy software stack that consists of a paravirtualized
commodity operating system with a window manager and a
full-fledged browser.

We use the TrustedViewer to handle high-sensitivity infor-
mation and the legacy stack to handle low-sensitivity and
non-sensitive information. We feel that this is an appropriate
tradeoff between security and functionality. However, our
system is easily extensible to support low-sensitivity infor-
mation processing in the TrustedViewer (Section 4.3.1) or
the addition of a new stack to handle low-sensitivity infor-
mation (Section 4.5).

The https proxy accepts text patterns for identifying sensi-
tive data from the TrustedViewer. https messages (HTTP
responses) that contain the text patterns are forwarded to the
TrustedViewer and the rest of the messages are directed to
the legacy software stack. The proxy also multiplexes con-
nections from the TrustedViewer and the browser to the
service provider. We discuss the design of the proxy in de-
tail in Section 4.3.

The TrustedViewer consists of a simple HTML parser and a
GUI. It accepts an HTTP request and response and waits for
input from user. It then generates the corresponding HTTP
request and transfers it back to the https proxy. The Trust-
edViewer is discussed in Section 4.4.

The legacy software stack, discussed in Section 4.5, consists
of a paravirtualized operating system, middleware and a full-

fledged browser. Except for modifying the https-proxy set-
tings on the browser, we use an unmodified legacy software
stack.

4.3 The https Proxy
The https proxy has three functions: multiplex and
demultiplex requests and response amongst the multiple
software stacks, identify high-sensitivity information in http
responses, and finally, accept configuration information
from the TrustedViewer.

Since we require our solution to work with legacy service
providers, we cannot assume that incoming information will
be tagged with sensitivity levels. Therefore, we have to infer
sensitiveness of information based on HTTP requests or
responses.

4.3.1 Inferring Sensitive Information in https
There are two sources of high-sensitivity information in
https-based applications: the service provider and the user.
Since the https proxy lies in between the service provider
and the client-side software stacks, it can trap any high-
sensitivity information originating from the service provider.
However, the proxy cannot directly trap or control any high-
sensitivity input originating from user. However, the proxy
can be programmed to redirect all HTTP responses that re-
quest the user to enter high-sensitivity data to the Trusted-
Viewer. To do so, we have to expand the notion of high-
sensitivity responses to include even non-sensitive or low-
sensitivity responses that lead to high-sensitivity user input.

It is easy for users and service providers to identify high-
sensitivity information at the data item level, e.g., password,
payment information or a TAN. However, the values for
these sensitive data items varies considerably and we cannot
expect the proxy to be able to parse every response to de-
termine if a variable sequence of characters or numbers is
high-sensitivity data or not. Ideally, we would like to look
for static and unique content in HTTP responses to identify
responses containing high-sensitivity data. We assume that
the user or the service provider has identified possibly
unique text patterns in HTTP responses that contain high-
sensitivity data.

We employ a two stage filtering process on the client-side to
accurately identify high-sensitivity responses: first, we use
simple pattern matching in the https proxy to trap all HTTP
responses that contain the text pattern. While this leads to
false positives, i.e., a low-sensitivity response is treated as a
high-sensitivity response, it is conservative because with
proper keywords, we identify all high-sensitivity responses.
Next, we employ more complex parsing based on expected
HTML page structure in the TrustedViewer (Section 4.4) to
identify the high-sensitivity responses among the trapped
responses and redirect all false positives back to the un-
trusted software stack.

Figure 4. Architecture of BLAC. The https proxy functions as a
FlowSplitter. High sensitivity information, as identified by the text
patterns, is directed to a small trusted viewer and the rest of the
information is directed to a legacy software stack.

 8

Note that in the worst case, if the user or the service pro-
vider does not provide any keywords, all responses will have
to be trapped and parsed. If the parsing fails, the response is
redirected to the legacy browser. While this will increase the
response time for the user, it will prevent the flow of high-
sensitivity information to legacy or untrusted computing
bases.

As an example, while shopping on Amazon.com, user’s
choice on the confirmation page is high-sensitivity data.
This high-sensitivity data is encoded in an HTTP request,
which originates from the HTTP response that contains the
confirm page. The confirm page contains the string
`alt=”Place Your Order”`. So we trap all responses that
contain the above string. In the unlikely case that someone
has a product with the same title, that particular product
page will also be trapped. However, the confirm-page parser
that resides in the TrustedViewer will fail to parse the prod-
uct page and it will be redirected back to the legacy browser.

4.3.2 Demultiplexing HTTP Responses
Once high-sensitive HTTP responses have been identified,
the https proxy must direct them to the TrustedViewer. To
do so, the proxy must also transfer client-side state from the
legacy client software to the TrustedViewer. This is easy in
the case of https-based applications as client-side state is
embedded in a cookie. Since the cookie is transmitted with
every outgoing message, the proxy has to capture the outgo-
ing message and transfer it to the TrustedViewer along with
the high-sensitivity response.

Switching from the TrustedViewer to the legacy client soft-
ware is easier because the TrustedViewer does not modify
client-side state. Since the old cookie is still valid, the https
proxy does not have to take any additional steps to maintain
client-state coherency between the two software stacks.

4.3.3 Accepting Configurations from the

TrustedViewer
The third task of the https proxy is to accept configuration
information from the TrustedViewer. To do so, the https
proxy exports a control interface that accepts configuration
information from the TrustedViewer. As seen in Section
4.3.1, text patterns are the only configuration information
needed by the https proxy.

4.4 Trusted Viewer
The TrustedViewer consists of three parts: a configuration
file, a DOM tree builder that can be used to extract parser
and a GUI to interact with users. The configuration file lists
all text patterns that are associated with high-sensitivity in-
formation and will trigger the activation of the Trusted-
Viewer. The configuration file varies for each service pro-
vider. At startup, the TrustedViewer registers these patterns
with the https proxy. Upon receiving a HTTP response
which contains any of the keywords, the https proxy for-
wards the HTTP response and the corresponding HTTP

request to the TrustedViewer. Remember that the HTTP
request contains the cookie that is necessary for all subse-
quent interactions.

The second part of the TrustedViewer is a simple parser.
The parser contains two sets of configuration information:
(a) XPaths [11] in the response HTML document pointing to
data that must be extracted and (b) sanity check tuples. A
sanity check tuple is of the form <XPath, SanityPattern>.
This indicates that the parser must check for the occurrence
of the SanityPattern in the given XPath. For example, the
confirm page for electronic commerce transactions typically
contains standard patterns such as “Shipping Information”,
“Order Total” in predetermined XPaths.

The parser builds a DOM tree of the HTML document and
extracts content from all specified XPaths. At the same time,
the parser also checks if the SanityPatterns specified in the
sanity check tuple match the extracted content. On success,
the parser returns information in a tabular format to the
TrustedViewer. If either the extraction fails or SanityPattern
matching fails, the parser sends an error message to the GUI
component. For more robust parsing, HTML content extrac-
tion tools as described in [29] can be employed. If the page
cannot be parsed by the TrustedViewer, the user is given an
opportunity to cancel the interaction or forward the page to
the legacy software stack.

The third part of the TrustedViewer is a GUI component
that displays the high-sensitivity information extracted by
the parser. The GUI allows users to enter text input and con-
firm or cancel an interaction. The GUI also contains an op-
tion to forward the page to the browser, if the user feels that
the page was not properly parsed or if the user feels that the
tradeoff between functionality and security has changed.

Adding a new page to the TrustedViewer is easily accom-
plished. We have developed a script that operates on tem-
plates of HTML files that have to be handled by the Trust-
edViewer. The user clicks on content that she deems sensi-
tive and the script provides the XPath of the content. At this
point, the user can also select text patterns to generate sanity
check tuples. The user then provides the XPath values along
with the text patterns for the page to the TrustedViewer. The
TrustedViewer forwards the text patterns to the https parser
and uses the XPath and sanity check tuple to parse the new
page.

4.5 Client-side Software Stacks
The microkernel, its execution environment and the https
proxy are common components of all client-side software
stacks. The TrustedViewer along with the above mentioned
components forms the client-side software stack that is used
to handle high-sensitivity information. The web browser
along with the X server, the paravirtualized Linux kernel
(L4Linux) and the common components form the other soft-
ware stack. Except for modifying the https proxy setting of

 9

the browser, we do not make any modifications to the legacy
software stack.

Even though, BLAC uses only two software stack configura-
tions, it does not preclude other client-side software stack
configurations. For example, BLAC can handle two L4Linux
stacks, one of which is trusted. The difference in trustwor-
thiness could be due to the use of a browser which is exe-
cuted in safe mode or the L4Linux instance is booted up
from a fresh, read-only image. In order to replace the Trust-
edViewer with a trusted L4Linux stack, we have to make two
modifications to the browser. First, as before, we have to
change the https proxy settings of the browser and second,
we have to modify the browser to pull state information
from the https proxy. This is easily accomplished by install-
ing a browser extension or a plugin that contacts the https
proxy, retrieves cookie information and sets the cookie. If
the user desires to use this trusted L4Linux stack to configure
the https proxy, we also need to provide a configuration tool
(a browser extension or a standalone program), that pro-
grams the https proxy with new configuration information.
Note that the proxy configuration still remains the same. The
new stack is now ready to handle security-sensitive informa-
tion.

5. EVALUATION
We implemented a prototype of BLAC on top the L4 mi-
crokernel. The execution environment of the L4 microker-
nel, called L4Env, consists of a set of servers providing ba-
sic services such as naming, memory and IO management
and display manager. Similar components are described in
detail in [23]. The https proxy and the TrustedViewer are
executed directly on top of the microkernel and L4Env. The
browser, Mozilla Firefox, is executed in L4Linux, a paravir-
tualized operating system, along with the X Server. We
modified the proxy settings of the browser, requiring it
communicate with the https proxy instead of directly com-
municating with the service provider.

First, we present a qualitative evaluation of security proper-
ties of BLAC. As supporting evidence, we present quantita-
tive analysis of the complexity reductions in BLAC. We
show that the size and complexity of the Trusted Compo-

nents is reduced by an order of magnitude in BLAC. Next,
we analyze the performance of BLAC and show that the
performance overheads are manageable. Then, we discuss
the use of BLAC with real-world service providers and dis-
cuss the complications faced during our analysis. Finally, we
evaluate BLAC along the lines of requirements mentioned in
Section 2.3.

5.1 Security Properties
BLAC improves the security properties of client-side soft-
ware stack in three ways: First, BLAC switches software
stacks depending on the sensitiveness of information being
handled. In current systems, the same software stack is used
to handle different categories of information flows. There-
fore, an attacker can exploit vulnerabilities in handling of
non-sensitive information to either access sensitive informa-
tion (e.g., cross-site scripting attacks [15][37]) or to com-
promise the software stack (e.g., exploit arbitrary code exe-
cution vulnerabilities in browsers to install malicious exten-
sions [12]). Since BLAC separates the handling of different
categories of information flow, these attacks will no longer
succeed in compromising the flow of sensitive information.

Secondly, BLAC treats the browser and its execution envi-
ronment (L4Linux and X server) as untrusted components.
By preventing the flow of sensitive information to these
components, BLAC ensures that vulnerabilities in these
components cannot affect the confidentiality and integrity of
sensitive information. However, the current BLAC architec-
ture and implementation does not address availability issues.
This leaves open the possibility of Denial of Service attacks,
e.g., by crashing the network stack, the attacker can prevent
the https proxy from communicating with the service pro-
vider. We are exploring the use of replication to improve
availability properties of BLAC.

Thirdly, BLAC uses a small and simple application and
software stack to handle high-sensitivity information. A
small and simple application is expected to have fewer bugs
and should be more amenable to exhaustive testing or formal
verification. We use two well known software metrics:
source lines of code (LOC) and McCabe’s complexity met-
ric to illustrate the large reductions in complexity in BLAC.

Table 1: Complexity Comparison of BLAC and a Linux-based software stack. The Linux kernel includes networking, file
system, IO, memory management support. L4Env includes servers for bootstrapping the system and resource managers for mem-
ory and devices, IO manager, window manager and ABI support. The networking stack, which is executed as a separate service,
does not have to be trusted in BLAC, resulting in savings of about 170 KLOC.

BLAC Linux
Component

Composition LOC MCC Composition LOC MCC

OS L4 14,000 2,300 Linux Kernel 383,000 65,000

Middleware L4Env 86,300 11,300 X Server 1,015,000 140,300

https Proxy https Proxy 13,600 1,900 - - -

Application Trusted Viewer 5,000 290 Mozilla Firefox 2,208,000 328,300

Total 118,900 15,790 3,606,000 533,300

 10

Many software engineering studies have shown that the LOC
metric is roughly correlated with the number of defects [43].
MCC is based on McCabe’s definition [32] of a control flow
complexity metric. It is measured per function and it gives
the number of distinct execution paths in a given function.
The MCC metric represents the minimum number of tests
that need to be carried out on that function to verify control
flow properties. Studies have also shown that the MCC met-
ric correlates with the number of defects [34].

We compare the size and complexity of BLAC with a com-
parable Linux-based software stack. The Linux-based soft-
ware stack is configured to provide the same functionality as
provided by BLAC. Table 1 compares the software com-
plexity metrics of the two approaches. At the application
layer, we can see that the size and complexity of BLAC is
two orders of magnitude smaller than that of the browser.
Comparing the complexity of the full system, we see that
BLAC is an order of magnitude smaller than a comparable
Linux-based system.

This comparison might seem unfair, especially given that the
Mozilla Firefox browser possesses much more functionality
than the TrustedViewer. However, one should note that
BLAC employs the TrustedViewer to operate on high-
sensitivity data. The browser, with its varied functionality, is
still available to the user to operate on low-sensitivity or
non-sensitive data.

5.2 Performance
The performance of VMMs in general and the L4 microker-
nel and the paravirtualized L4Linux operating system in spe-
cific is well documented [13][24]. Therefore, we focus on
the overheads introduced by BLAC. Since the https proxy
introduces a layer of indirection between the user and the
service provider, we expect performance degradation. This
section attempts to quantify the overheads introduced by the
https proxy.

We used two identical machines, each with a 2.26 GHz,
Pentium-4 processor and 512 MB of RAM. The machines
were connected using a 100 Mbps switch. The standard de-
viation was less than 5% in most experiments and less than
10% in all our experiments. We used https traces from four
online sites in our experiments: Bank-A, Bank-B, Bank-C
and Amazon.com (Bank names changed for anonymity).

Table 2 presents a profile of the four data sets. Pages repre-
sent the number of complete pages that were in the trace.
Each page is the result of a user-initiated HTTPS request.
Since a page consists of many fragments, each of which has
to be requested separately by the client application, we also
list the number of fragments in the trace and the maximum
number of fragments per page. In all traces, the login request
resulted in the maximum number of fragments requested.

In our experiments, the server side consists of a simple pro-
gram that reads the traces, accepts HTTP requests over an
SSL channel and transmits the appropriate HTTP response
over the same SSL channel. We used three client-side con-
figurations. One is a Linux client that connects to the server
using SSL and generates HTTP requests. The client reads
the complete response and discards it. The second configu-
ration represents a legacy software stack configuration in
BLAC. We use the same client as before; however, it runs
on L4Linux and connects to the https proxy. For this con-
figuration, we also measured the performance of the proxy,
when it contacts the service provider. This allows us to iden-
tify the overheads introduced by the proxy. The third client
configuration consists of a TrustedViewer using IPC to con-
tact the https proxy and request files from the service pro-
vider.

First, we measure the retrieval times for individual files.
Figure 5 compares the performance of the various client
configurations. Accessing a page in the L4Linux client
through the https proxy is about 2 to 2.5 times slower than
the original Linux implementation. Regression analysis of
data showed that overhead is represented by the equation

ovhd = 0.535 * file_size + 17.9; and r2 = 0.998.

where ovhd is the overhead in milliseconds and file_size is
the size of the retrieved file in kilobytes. In absolute terms,
the overhead per file is of the order of few tens of millisec-
onds.

Figure 5. Comparison of File Access Times. Access time in-
creases linearly in all cases.

Table 2. Dataset for Measuring Page Access Times. Traces were
generated using the WebScarab proxy [3] and the Internet Explorer
web browser. Caching was enabled in the browser and the cache was
cleaned before generating the trace.

Dataset Pages Fragments Size (KB) Max. Frags/Page

Amazon 6 52 569 40

Bank-A 14 67 441 20

Bank-B 18 107 931 17

Bank-C 11 119 1433 59

 11

Since an HTML page is typically composed of multiple
fragments, we also measure “page” access times for the
dataset mentioned in Table 1. Figure 6 plots the CDF of
page access times for the Linux and the L4Linux client.
While the L4Linux client is slower than the Linux client, we
see that the page retrieval time is less than 0.5 seconds in
90% of the cases. The pathological cases occur when a page
has a large number of fragments, as illustrated in the figure.
Even in the worst case, the page retrieval time is around
2.25 seconds. A survey by Jupiter Research and Akamai
showed that about 75% of shoppers are willing to wait up to
four seconds for a page to load [2]. So, even in the worst
case, we are within the threshold for a majority of users.

We would like to note that the performance of our proxy can
be improved in many ways. One source of improvement is to
implement the HTTP/1.1 protocol in the https proxy that
allows multiple requests to be sent over a single SSL con-
nection. This amortizes the overhead of the CONNECT
message and SSL connection establishment phase (14.5 ms
in our current implementation). Techniques such as VMM-
bypass-IO [31] can also be employed to reduce the overhead
performing IO in virtual machine based systems.

5.3 Case Studies
Once again, we studied the four web sites mentioned in Ta-
ble 2. High-sensitivity interactions accounted for two pages
in all bank sites: login and confirm page. In Amazon.com,
three pages were deemed highly sensitive: login page, con-
firm page and payment page as the user could enter a new
payment method in the payment page. The payment page is
a good example of a page where the user might want to
transfer a page from the TrustedViewer to the legacy
browser, in the case that she is not entering any high-
sensitivity information. Compared to the total number of
pages in the session, we can see that the TrustedViewer is
sparingly used. We successfully tested our complete proto-
type using Bank-A’s demonstration account.

In out analysis of these sites, we came across some cases
which cannot be handled by our current implementation.
First, if the browser chooses to enable compression, then we
are not able to handle HTTP requests and responses. This
problem can be solved by adding a compression library to
the https proxy or by rejecting compressed requests from the
browser.

The second problem is more critical as there are some web
service provides who present the login page over an http
URL. The login request is still transferred using the https
URL. Since our proxy is an https proxy, we cannot currently
capture such pages. Once again there are two solutions: one
is to use the https URL instead of the http URL while re-
trieving the login page. This is not a problem as most sites
allow http URL content to be served over https URLs. Al-
ternatively, we could add an http proxy to the https proxy.
While this will lead to increased overheads, we will be able
to capture all requests for high-sensitivity data.

Another problem faced by the current version of BLAC is
that SSL and HTTP do not provide support for remote at-
testation. This opens up the possibility of a malicious, un-
trusted browser generating an HTTP request that mimics a
request generated by the TrustedViewer. For example, in
electronic commerce sites such as Amazon.com, the user’s
choice on Confim/Cancel is high-sensitivity data and this
data is encoded in the HTTP request. As there is no secret
information involved in generating the request such as a
TAN, the browser too can generate similar HTTP requests
and modify the state of the user’s account. We expect this
problem to be alleviated with the use of remote attestation.

5.4 Revisiting Requirements
In Section 2.3, we mentioned five requirements of an effec-
tive solution. Of the five requirements, we evaluated com-
plexity reductions and performance overheads in the previ-
ous sections. This section evaluates the design and imple-
mentation of BLAC with respect to the other three require-
ments.

R2. Reuse Legacy Software and Protocols. BLAC reuses
unmodified (excluding proxy settings), legacy software to
handle non-sensitive and low-sensitivity information flows.
The https proxy in BLAC does not require any modifications
to either SSL or the HTTP protocol. Hence, BLAC works
with legacy service providers. However, if service providers
need information on client-side software stack, then they
must be modified to use remote attestation features.

R3. Flexibility in Tradeoffs. In our implementation, BLAC
uses a very small Trusted Viewer, which is functionally lim-
ited, to operate on high-sensitivity data. However, BLAC
provides the user with flexibility in determining the stack to
use for processing various categories of information. If the
user is confident about the trustworthiness of a legacy soft-
ware stack, she can modify the https proxy settings to direct
high-sensitivity information to the legacy software stack

Figure 6. CDF of HTML Page Access Time based on HTML

pages from our traces.

 12

handling non-sensitive and low-sensitivity information. Al-
ternatively, the user can also create a new instance of a
modified legacy software stack, as discussed in Section 4.5,
to handle high-sensitivity data. In this case, the user retains
most of the functionality but the gains in software complex-
ity no longer apply.

R4. Protection against Spoofing Attacks. As mentioned in
Section 3.1, we rely on Trusted Computing hardware sup-
port to determine the software stack in use. The execution
environment of BLAC provides support for non-forgeable
trust indicators, e.g., portion of screen or external LEDs, that
communicates the trustworthiness of the software stack to a
human user. We assume that the end-user is reasonably
aware of trust indicators and will make use of the indicators
to protect sensitive information. We do not address the hu-
man aspects of deception and spoofing here.

6. DISCUSSION

6.1 Applicability to other VMM-based

approaches
We implemented BLAC on a microkernel platform. The
FlowGuard approach can be applied on other platforms,
including commodity operating systems. In any platform, the
first requirement is that the FlowSplitter and each of the
client-side software stacks need to be executed in different
protection domains to isolate the flow of sensitive informa-
tion. Second, each of the software stacks has to be able to
communicate with the FlowSplitter.

Environments such as Xen [13], Asbestos [20], Linux and
Microsoft Windows satisfy both above requirements. A
Xen-based implementation, for example, would have the
FlowSplitter and each of the client-side software stacks exe-
cuting in a separate VM. They can communicate with each
other using network stacks. In a Linux-based implementa-
tion, the FlowSplitter and each of the client-side software
stacks (browsers or User Mode Linux instances) are exe-
cuted as different users and they communicate using the
network stack or more efficient IPC such as shared memory.

6.2 Applicability to other client-server

applications
FlowGuard can be applied to other client-server applications
beyond https. The design and implementation of FlowGuard
contains two important aspects: (a) inferring sensitiveness of
information and (b) transferring client-side state between the
various software stacks. As described in previous section,
for https-based applications we used a set of text patterns to
identify high-sensitivity information and relied on externally
visible cookie information to transfer state between software
stacks. In this section, we briefly discuss potential designs
that address the above aspects when using other protocols,
including a POP3-based mail application and a remote ter-
minal.

The FlowSplitter for a POP3-based application [33] would
implement a POP3 proxy and handle incoming connections
from multiple software stacks. Since authorization informa-
tion (e.g., login and password) is sensitive, the end-user has
to employ a trustworthy software stack for the authorization
step. After this, the POP3 proxy will have to handle the
RETR and the DELE commands from the mail clients.
These commands are used to retrieve and delete mail respec-
tively. Sensitive information for responses to the RETR
commands can be easily identified by scanning mail headers
or mail senders or even mail content. Sensitive mail is then
redirected to trustworthy software stacks. However, the
POP3 protocol uniquely numbers messages in the mailbox
for every session and all commands are issued with the
unique number as a reference. Hence, the FlowSplitter will
have to forward dummy mail to stacks that are not trustwor-
thy enough to receive the sensitive mail. Handling the DELE
command is tricky, as malicious software stacks can issue
arbitrary DELE commands and compromise the integrity of
mail. To solve this problem, the FlowSplitter can maintain a
per-session list of valid mail handled by each software stack
and disregard all DELE commands on dummy mail.

If there are no other ways to distinguish security-sensitive
information, the FlowSplitter may have to refactor the appli-
cation level software to explicitly identify security-sensitive
information. As an example, consider a FlowGuard for a
command line shell (e.g., bash over SSH). Due to the ge-
neric nature of a shell, sensitive information comes in for-
mats as varied as applications handled by the shell, e.g.,
input to passwd command, contents of a file, directory list-
ings, etc. Consequently, the FlowSplitter for the shell would
need to add the code to distinguish sensitive information for
each application to be protected. One potential solution is to
use shell commands to identify the sensitiveness of data
processed by each shell command and redirect the response
to the security-sensitive software stack. Since shells do not
have client-side state, switching between software stacks can
be easily accomplished.

6.3 Server-Side Support
One of the key requirements for FlowGuard (and BLAC)
was support for legacy service providers. This complicates
our design and implementation of FlowGuard, e.g., we have
to indirectly infer the sensitiveness of information in the
responses. With server-side support, we can simplify the
Trusted Components in FlowGuard.

First, the service provider could label information in its re-
sponses with sensitivity levels. In HTTP responses, this
means adding an additional field to the response header:
Sensitivity= [Non | Low | High]. This step would reduce the
need for parsing of responses in the FlowSplitter. However,
to support user driven configurability, we would still have to
rely on indirect methods for inferring sensitiveness of re-
sponses.

 13

On a related note, if the service provider tags some re-
sponses as High-sensitivity, it could rely on a simple repre-
sentation format (e.g., tabular format for high-sensitivity
pages in BLAC) or provide template files for extracting
relevant data from the responses. This would simplify the
application-level Trusted Components.

Finally, the service provider can provide a mechanism to
save and restore client-side state, ala VNC implementations.
This would enable easy, albeit expensive, transfer of state
between client-side software stacks.

7. RELATED WORK
As mentioned in Section 2.1, Proxos [46], Terra [22] and
AppCores [44] are closely related to FlowGuard, in that they
advocate the use of small and simple TCBs or application
software. Efforts have also been directed towards building
small operating system kernels [13], VMMs [30], TCBs
[26][27][35] and system services [14][28][36][42].
FlowGuard reuses existing work on constructing small and
simple TCBs and application-level software and middleware.
FlowGuard combines this approach with a proxy-based sys-
tem to reuse legacy software whenever possible.

Mandatory access control systems such as Asbestos [20],
capability-based system such as EROS [41] and Authority
Based Access Control systems such as Polaris [45] aim to
control the flow of information or minimize the damage due
to compromise of software handling sensitive information.
Our work on FlowGuard is orthogonal to these approaches.
In fact, by splitting the flow of information in a single ses-
sion amongst multiple software stacks, FlowGuard allows
for more rigorous enforcement of access control. For exam-
ple, browsers have to be allowed to connect to the network,
opening up avenues for information leaks. On the other
hand, the TrustedViewer in BLAC is not expected to com-
municate over the network; it only needs to access the https
proxy and a limited number of system services such as the
display manager. Hence, the access rights of a Trusted-
Viewer can be constrained to a greater extent than those of a
full-fledged browser.

There is also considerable work on using static analysis to
find vulnerabilities in software, e.g., [19][48]. Castro et al.
[16] use static analysis to instrument loads and stores in pro-
grams to maintain the integrity of data flow. While these
techniques detect vulnerabilities or protect against a major
class of vulnerabilities (data corruption attacks), their scal-
ability, especially to software as large and complex as a
browser, is still an open question. FlowGuard attempts to
reduce the size and complexity of software that needs to be
trusted, enhancing the effectiveness of static analysis tech-
niques. Language based information flow analysis tools [40]
together with OS level mandatory access controls have been
employed to provide fine-grained control over flow of in-
formation [25]. However, these techniques are not applica-
ble to a large number of programs written in weakly-typed

languages such as the C programming language. XFI [21]
takes a novel approach by using an untrusted rewriter to
instrument an extension to a software program with control
flow guards and memory access guards. The guards are then
verified with a small trusted verifier and the extension is
now deemed safe for execution. Such techniques can be ap-
plied to protect software such as the browser from malicious
extensions. However, the original software program can still
be exploited if it contains vulnerabilities.

Lastly, given the large number of vulnerabilities in the
browsers, there is a lot of work addressing vulnerabilities in
the browser. Research efforts range from interface personal-
ization to thwart spoofing attacks [47], password hashing
using browser extensions to limit the damage done by leak-
ing of passwords [39], rewriting scripts in HTML pages to
prevent them from exploiting known vulnerabilities [38],
and trust indicator extensions for browsers to prevent inter-
face spoofing and phishing attacks [50]. All these systems
assume that the browser can be trusted with high-sensitivity
information. Given the large number of vulnerabilities (av-
erage of 2 per month [4][5]) and the types of vulnerabilities
(arbitrary code execution, security-system bypass) in current
browsers, attackers can exploit them to bypass the protection
afforded by many of these systems.

The Tahoma architecture [18], on the other hand, assumes
that the browser cannot be trusted. Tahoma proposes execut-
ing browser instances in separate VMs, similar to
VMWare’s Browser Appliance [10]. Additionally, Tahoma
requires service providers to define a manifest, which is
used to control behavior of the browser. Tahoma does not
address the issue of a multitude of browser extensions (e.g.,
weather forecast extensions) that periodically talk to a site
outside the service provider’s manifest. FlowGuard also
treats the browser as untrusted but it prevents the flow of
sensitive information to the browser, instead of controlling
the behavior of a browser instance that has access to sensi-
tive information. Therefore, it does not have to curtail the
browser’s functionality.

8. CONCLUSION
Current client-server applications use the same client-side
software stack to handle information with differing security
and functionality requirements. This has resulted in large
and complex software, with multiple security vulnerabilities.
However, current software and interfaces are too widely
used to be abandoned altogether. We presented a proxy-
based approach called FlowGuard to address the problem of
large and complex client-side software stacks. The main
component of FlowGuard is a proxy that uses mappings
from sensitiveness of information to trustworthiness of soft-
ware stack to demultiplex responses from the service pro-
vider amongst multiple client-side software stacks. By em-
ploying a legacy software stack as the untrusted software
stack and a small and simple trusted software stack allowed
FlowGuard to reduce the complexity of Trusted Components

 14

while at the same time allowing the reuse of the legacy soft-
ware stack as much as possible. FlowGuard also provided
mechanisms to allow users and service providers to deter-
mine the software stack the mappings, thereby providing
flexibility in determining the appropriate functionality-
security tradeoffs.

We demonstrated the feasibility of our approach by imple-
menting a FlowGuard for https-based applications that was
successful in interacting with a real-world bank’s web site.
Our evaluation showed that we were able to reduce com-
plexity by over an order of magnitude, while limiting over-
heads to few tens of milliseconds per HTTP response.

We also showed that FlowGuards can be ported to other
client-server applications and implementation platforms. We
also discussed how FlowGuard can be further simplified
with service provider support.

9. REFERENCES
[1] Anonymized.
[2] Jupiter Research. Retail Web Site Performance: Consumer
Reaction to a Poor Online Shopping Experience.
http://www.akamai.com/4seconds
[3] OWASP Web Scarab Project. http://www.owasp.org/index
.php/Category:OWASP_WebScarab_Project
[4] Secunia. Vulnerability Report – Microsoft Internet Explorer
6. http://secunia.com/product/11/?task=advisories
[5] Secunia. Vulnerability Report – Mozilla Firefox 1.x.
http://secunia.com/product/4227/?task=advisories
[6] Secunia. Vulnerability Report – X11 Windowing System
(X11) 6.x. http://secunia.com/product/3913/?task=advisories
[7] Secunia. Vulnerability Report – Linux Kernel 2.4.x.
http://secunia.com/product/763/?task=advisories
[8] TightVNC. http://www.tightvnc.com/download.html
[9] Trusted Computing Group. TCG Main Specification v1.1b,
https://www.trustedcomputinggroup.org/
[10] VMware, Inc. Browser appliance virtual machine.
http://www.vmware.com/vmtn/vm/browserapp.html
[11] W3C. XML Path Language. http://www.w3.org/TR/xpath
[12] J. Bambenek, SANS Institute. BHO scanning tool and New
Scam Targets Bank Customers. http://isc.sans.org
/diary.php?date=2004-06-29.
[13] P. Barham, et al. Xen and the Art of Virtualization. In Proc.

19th ACM SOSP 2003, NY, Oct. 2003.
[14] D. Brumley, D. X. Song. Privtrans: Automatically Partition-
ing Programs for Privilege Separation. In Proc. USENIX Security

Symposium, San Diego, USA. Aug 9-13, 2004.
[15] J. Burns. Cross Site Reference Forgery: An introduction to a
common web application weakness.
http://isecpartners.com/documents/XSRF_Paper.pdf
[16] M. Castro, M. Costa and T. Harris, Securing Software by
Enforcing Data-flow Integrity, In OSDI 2006, Seattle, Nov 2006.
[17] J. Chow, et al., Understanding Data Lifetime via Whole Sys-
tem Simulation. In Proc. USENIX Security 2004, pp 321-336,
Aug. 2004.
[18] R.S. Cox, S.D. Gribble, H.M. Levy, and J.G. Hansen, A
Safety-Oriented Platform for Web Applications, In IEEE Sympo-

sium on Security & Privacy, pp. 350-364, 2006.

[19] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs
as deviant behavior: A general approach to inferring errors in sys-
tems code. In 18th SOSP. Banff, Canada, Oct. 2001.
[20] P. Efstathopoulos et al., Labels and Event Processes in the
Asbestos Operating System. In 20th ACM SOSP, Brighton, UK,
October 2005.
[21] Ú. Erlingsson et al., XFI: Software Guards for System Ad-
dress Spaces, In OSDI 2006, Seattle, Nov 2006.
[22] T. Garfinkel, et al. Terra: A virtual machine-based platform
for trusted computing. In Proc. of the 19th SOSP, October 2003.
[23] H. Härtig, et al. The Nizza Secure-System Architecture. In
IEEE CollaborateCom 2005. San Jose, Dec 2005.
[24] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J.Wolter. The performance of µ-kernel-based systems. In Proc.
16th ACM SOSP, pp 66–77, Oct. 1997.
[25] B. Hicks, S. Rueda, T. Jaeger, and P. McDaniel. Integration
of SELinux and security-typed languages. In Proc. of the 2007

Security-Enhanced Linux Workshop, March 2007.
[26] Hohmuth, M., M. Peter, H. Härtig, and J. Shapiro. “Reducing
TCB size by using untrusted components – small kernels versus
virtual machine monitors”, in Proc. of the 11th ACM SIGOPS

European Workshop, Leuven, Belgium, 2004.
[27] T. Jaeger, R. Sailer, and X. Zhang, Analyzing Integrity Pro-
tection in the SELinux Example Policy, in 12th USENIX Security

Symposium, Washington D.C. USA, Aug. 2003.
[28] D. Kilpatrick, Privman: A Library for Partitioning Applica-
tions. In USENIX Annual Technical Conference, FREENIX Track

2003, pp 273-284. San Antonio USA, July 2003.
[29] A.H.F. Laender, B.A. Ribeiro-Neto, A.S. da Silva and J.S.
Teixeira, "A brief survey of web data extraction tools", In
SIGMOD Rec., 32(2), pp 84-93, 2002.
[30] J. Liedtke, On Micro-Kernel Construction, In 15th ACM

SOSP, Copper Mountain Resort, Colorado, USA. Dec. 1995.
[31] J. Liu, et al. High Performance VMM-Bypass I/O in Virtual
Machines. In USENIX ATC 2006, Boston, MA, May 2006.
[32] T.J. McCabe, A Complexity Measure, IEEE Transactions on

Software Engineering, SE-2 No. 4, pp. 308-320, Dec. 1976.
[33] J. Myers, M. Rose, Post Office Protocol - Version 3. RFC

1939. May 1996.
[34] N. Nagappan, T. Ball and A. Zeller, Mining Metrics to Pre-
dict Component Failures, In ICSE 2006, Shanghai, Nov. 2006
[35] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner and A.
Weber. The PERSEUS System Architecture. Research Report.

IBM Research Division. RZ 3335. Sept. 2001.
[36] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege
escalation. In 12th USENIX Security Symposium, Washington D.C,
Aug. 2003.
[37] J. Rafail, Cross-Site Scripting Vulnerabilities.
http://www.cert.org/archive/pdf/cross_site_scripting.pdf
[38] C. Reis, J.Dunagan, H.J. Wang, O. Dubrovsky, and S. Esmeir,
BrowserShield: Vulnerability-Driven Filtering of Dynamic HTML,
In OSDI 2006, Seattle, WA
[39] B. Ross, et al., Stronger Password Authentication Using
Browser Extensions. In 14th Usenix Security, Baltimore, 2005.
[40] Andrei Sabelfeld and Andrew C. Myers, Language-Based
Information-Flow Security. In IEEE Journal on Selected Areas in

Communications, 21(1):5–19, Jan. 2003.
[41] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A Fast
Capability System. In Proc. 17th ACM SOSP. Charleston, SC,
USA. Dec. 1999.
[42] J. S. Shapiro et al., Design of the EROS Trusted Window
System, In Proc. USENIX Security Symposium, San Diego, 2004

 15

[43] V. Y. Shen, T. Yu, S. M. Thebaut, and L. R. Paulsen, Identi-
fying Error-prone Software -- An Empirical Study, In IEEE TOSE,
Vol. SE-11, pp. 317--323, April 1985.
[44] L. Singaravelu, C. Pu, H. Haertig, C. Helmuth, Reducing
TCB Complexity for Security-Sensitive Applications:Three Case
Studies, In Proc. First Eurosys, Leuven, Belgium, April 2006.
[45] M. Stiegler, et al., Polaris: virus-safe computing for Windows
XP, In CACM, 49(9), pp 83-88, 2006
[46] R. Ta-Min, L. Litty and D. Lie. Splitting Interfaces: Making
Trust Between Applications and Operating Systems Configurable.
In Proc. of the 7th USENIX OSDI, pp. 279-292. Nov. 2006.

[47] J. D. Tygar and A. Whitten. WWW electronic commerce and
Java Trojan horses. In Proc. of the 2nd USENIX Workshop on

Electronic Commerce, Nov. 1996, pp. 243-250.
[48] D. Wagner, et al.. A first step towards automated detection of
buffer overrun vulnerabilities. In NDSS, 2000.
[49] D. Wheeler.SLOCCount.http://www.dwheeler.com/sloccount
[50] Y. Zhang, et al. Phinding Phish: Evaluating Anti-Phishing
Tools. In 14th NDSS, San Diego, CA, 2007.

