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ABSTRACT 
Current client-server applications such as online banking 
employ the same client-side software stack to handle infor-
mation with differing security and functionality require-
ments, thereby increasing the size and complexity of soft-
ware that needs to be trusted. While the high complexity of 
existing software is a significant hindrance to testing and 
analysis, existing software and interfaces are too widely used 
to be entirely abandoned. We present a proxy-based ap-
proach called FlowGuard to address the problem of large 
and complex client-side software stacks. FlowGuard’s proxy 
employs mappings from sensitiveness of information to 
trustworthiness of software stacks to demultiplex incoming 
messages amongst multiple client-side software stacks. One 
of these stacks is a fully-functional legacy software stack 
and another is a small and simple stack designed to handle 
sensitive information. In contrast to previous approaches, 
FlowGuard not only reduces the complexity of software 
handling sensitive information but also minimizes modifica-
tions to legacy software stacks. By allowing users and ser-
vice providers to define the mappings, FlowGuard also pro-
vides flexibility in determining functionality-security trade-
offs. 

We demonstrate the feasibility of our approach by imple-
menting a FlowGuard, called BLAC, for https-based appli-
cations. BLAC relies on text patterns to identify sensitive 
information in HTTP responses and redirects such responses 
to a small and simple TrustedViewer, with an unmodified 
legacy software stack handling the rest of the responses. We 
developed a prototype implementation that works with a 
prominent bank’s online banking site. Our evaluation shows 
that BLAC reduces size and complexity of software that 
needs to be trusted by an order of magnitude, with a man-
ageable overhead of few tens of milliseconds per HTTP 
response.  

1. INTRODUCTION 
Security-sensitive client-server applications such as online 
banking and electronic commerce are increasingly used by a 
large number of people. These applications involve ex-
change of information with differing security and functional-
ity requirements, e.g., passwords, addresses, account status, 
images, scripts, etc. Service providers realize this and use 
security mechanisms such as SSL, dual-factor authentica-

tion, Transaction Authorization Numbers and keypads to 
enter PIN to protect exchange of highly sensitive informa-
tion. However, these applications use the same client-side 
software stack to handle all categories of information. 

Employing the same software stack to handle information 
with differing security and functionality requirements has 
two implications: First, security-sensitive functionality resid-
ing in the same protection domain as non-sensitive function-
ality. Therefore, vulnerabilities in non-sensitive functionality 
can be used to compromise security-sensitive functionality, 
e.g., a buffer overflow in image processing subsystem of the 
Internet Explorer browser can be used to install malicious 
extensions [4]. Secondly, co-locating security-sensitive 
functionality with non-sensitive functionality also increases 
the size and complexity of software that needs to be trusted 
(greater than 2 million LOC for the Mozilla Firefox 
browser), which in turn makes analysis and testing of such 
software harder.  

One approach to mitigating this problem is by constructing 
application-specific Trusted Computing Bases (TCBs) [22]. 
While this approach eliminates unnecessary software pro-
grams from the TCB, it does not address the large size and 
complexity of software in the TCB and at the application 
level. AppCore [44] extends this approach by refactoring 
existing software into small and simple components which 
are then used in security-sensitive applications. Doing so 
reduces the complexity of the software components that 
have to be trusted (Trusted Components), thereby, simplify-
ing the analysis and testing of Trusted Components. How-
ever, this approach requires considerable efforts in redesign-
ing or refactoring of current software stacks.  

Alternatively, one can employ the Proxos system [46], 
which allows application programs to configure their trust in 
operating systems by partitioning the system call interface 
into trusted and untrusted parts. The trusted part of the inter-
face is implemented by a trustworthy OS while the rest of 
the interface is implemented by an untrusted commodity OS. 
By limiting the flow of sensitive information to the applica-
tion and to the trusted portion of interface, Proxos provides 
configurable trust in systems software. However, middle-
ware and application-level software too suffer from multiple 
critical security vulnerabilities, threatening the flow of sensi-
tive information.  
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This paper proposes FlowGuard, a system architecture that 
combines the desirable features of both approaches: smaller 
and simpler Trusted Components for handling security-
sensitive information and the reuse of existing software and 
interfaces for handling non-sensitive information. The first 
contribution of this paper is the FlowGuard architecture, 
which consists of a proxy server and multiple client-side 
software stacks of varying functionality and trustworthiness 
executing on a microkernel or a virtual machine monitor 
(VMM). The proxy server intercepts information flow from 
the server and determines the sensitiveness of data items in 
the flow. Based on its classification, the proxy server demul-
tiplexes information flow from the server amongst the vari-
ous client-side software stacks. FlowGuard supports soft-
ware stacks of varying complexity and functionality. At one 
extreme is a fully-functional, lightly-modified, legacy soft-
ware stack and at the other extreme is a small and simple but 
functionally constrained stack meant to perform a small set 
of operations. Based on software engineering studies, we 
expect the small and functionality constrained stack to be 
more amenable to exhaustive testing, resulting in software 
with fewer vulnerabilities [34][43].  

The second contribution of this paper is a concrete instance 
of the FlowGuard architecture for https-based applications 
(called BLAC). BLAC consists of an https proxy executing 
on top of a microkernel and two client-side software stacks: 
a small and functionally limited application called the Trust-
edViewer, and a legacy software stack running a lightly-
modified, fully-functional browser. The https proxy employs 
text patterns to identify HTTP responses containing sensi-
tive information and directs these responses to the Trusted-
Viewer. By allowing users to specify text patterns, BLAC 
enforces the functionality-security tradeoffs preferred by the 
user. In our prototype implementation, we show that the 
TrustedViewer is two orders of magnitude smaller than the 
Mozilla Firefox browser and the complete trusted software 
stack is an order of magnitude smaller than a legacy soft-
ware stack. Even with an unoptimized implementation, we 
show that the performance overhead of BLAC is in the range 
of few tens of milliseconds per HTTP response, and well 
within user expectations. Moreover, since the https proxy 
implements the HTTP and the SSL protocols without any 
modifications, it can be used with legacy service providers. 
We successfully tested our prototype with the online bank-
ing site of a major international bank.  

The rest of the paper is organized as follows: Section 2 dis-
cusses the challenges and opportunities in designing client-
side computing bases for client-server applications. Based 
on the discussion, we also present a list of requirements for 
an effective solution. Section 3 presents the FlowGuard ar-
chitecture and discusses the components of FlowGuard in 
detail. Section 4 describes BLAC, an instance of the Flow-
Guard architecture for https-based applications and Section 
5 evaluates BLAC. We discuss the general applicability of 

FlowGuard in Section 6. Section 7 discusses the related 
work and Section 8 concludes the paper. 

2. MOTIVATION 
In a client-server application, client-side software typically 
consists of systems software (OS, VMM), middleware and 
application level software. For a given client-server applica-
tion, we define its client-side software stack (also referred to 
as software stack for brevity) as set of all software compo-
nents on the client-side that is needed satisfy the functional-
ity and security requirements of the application. We define 
Trusted Components as a subset of the software stack that 
can directly or indirectly compromise the flow of sensitive 
information. Trusted Components include any application-
level software and middleware that have access to sensitive 
data and the TCB for the application. 

One should note that TCB or Trusted Components do not by 
themselves imply trustworthiness. These software compo-
nents are trusted in the sense that they must be trusted to 
protect the security properties of information flow associ-
ated with the application. Only by using secure components 
do we transform these trusted components into trustworthy 
components. 

2.1 Challenges 
There are two key challenges to building trustworthy client-
side software stacks. First, current software stacks are large 
and complex, hindering analysis and testing. This results in 
Trusted Components with multiple critical security vulner-
abilities. For example, the Mozilla Firefox browser is a 
popular client-side software program that supports various 
information exchange protocols such as HTTP, and FTP. 
This browser contains about 2 MLOC (§ 5.1) and suffers 
from multiple security vulnerabilities including arbitrary 
code execution, information leak vulnerabilities and security 
system bypass [4][5]. Application-level software typically 
run on large commodity operating systems, e.g., 380 KLOC 
for a typical Linux kernel configuration and 11 MLOC for 
the complete Windows XP operating system and support 
software [13]. In addition, these software programs also rely 
on several support software (middleware) that run at the 
same or higher privilege levels than the client application, 
e.g., X server on Linux runs with superuser privileges. The 
operating system kernels and middleware suffer from multi-
ple vulnerabilities, including arbitrary code execution, secu-
rity system bypass and information leaks [6][7].  

The second challenge is the popularity and ubiquity of cur-
rent software and interfaces. For example, web browsers are 
increasingly used in many online applications including mail, 
spreadsheet and document editing. Users are very familiar 
with the user-interface (UI) and the functionality provided 
by the browser. Limiting the functionality or modifying the 
UI will reduce the appeal of the modified software. Similarly 
interfaces at various levels of the software stack are too 
widely used to modified or abandoned outright, e.g., API 
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between OS kernels and application-level software can be 
enhanced with information flow primitives [25], but this 
approach will not be applicable to the large number of exist-
ing software. Information exchange protocols between ser-
vice provider and client, e.g., HTTP protocol, too are well 
entrenched that solution requiring modifications to the pro-
tocol will have limited appeal. 

Previous efforts have addressed the first challenge, large and 
complex software stacks, by proposing application-specific 
TCBs (e.g., Terra [17]). While this reduces the size and 
complexity of the TCB, it does not address complexity of 
middleware and application-level software. AppCores [44] 
extends this approach to all layers of the software stack by 
reducing complexity of Trusted Components of application-
level software. However, reducing the complexity of Trusted 
Components requires modifications such as curtailing the 
functionality of the components and narrowing the interface 
exported by the components.  

The Proxos approach attempts to work around this problem 
by allowing software developers to specify trust in one of 
the interfaces – the OS-application (system call) interface – 
by splitting the interface into a trusted and untrusted part. 
The trusted part of the interface is implemented by a trusted 
OS, whereas the untrusted part is implemented by a com-
modity operating system. By doing so, Proxos allows the 
reuse of current application-level software and systems 
software as far as possible, while at the same time minimiz-
ing modifications to the application-level software. However, 
large and complex client software such as browsers and 
middleware such as the display manager still need to be 
completely trusted. 

2.2 Opportunities 
Client-server also applications possess many properties that 
allow us to reduce complexity and reuse existing software 
and interfaces as far as possible. First, information flow in a 
session of interaction in client-server application contains 
data items with differing security and functionality require-
ments. As a concrete example, consider a session in an 
online banking application, where the user logs in, checks 
her account, modifies her account and logs off. One can 
argue that account status information is less sensitive than 
user authorization for account modifications, e.g., transfer of 
funds, ordering cheques or change of personal information. 
Some banks already recognize this difference in sensitive-
ness of information and ask the user for an authorization 
token, e.g., a one-time Transaction Authorization Number 
(TAN), for account modifications to be approved [1]. From 
a functionality point of view, account status information also 
requires a richer presentation format, e.g., spreadsheets and 
graphs, whereas account modification information typically 
shows up in a tabular format on a confirm page. Sensitive 
input consists of human input in the form of a sequence of 
keystrokes or mouse clicks.  

We can leverage this difference in security and functionality 
requirements and construct small and simple components to 
handle security-sensitive information and handling the rest 
of the information in legacy components. Doing so allows us 
to reuse existing interfaces as far as possible.  

Another opportunity arises from the functionality and secu-
rity tradeoffs preferred by the user and the service provider. 
For example, the user might be willing to use a legacy com-
puting base on her computer system to handle sensitive in-
formation, but prefers to use a small and reduced functional-
ity software stack to operate on all sensitive information 
when operating on a public-access machine. Similarly, dur-
ing a virus outbreak, the service provider might ask users to 
interact using a smaller and simpler software stack more 
extensively than otherwise. By providing the user (and the 
service provider, if necessary) with freedom in choosing the 
software stack, we can ensure that security requirements are 
balanced with the functionality requirements. 

2.3 Requirements 
Based on our discussion in the previous sub-sections, we 
identify the following requirements for an effective solution: 

R1. Reduce the complexity of the Trusted Components. 
R2. Reuse existing software and interfaces as far as possi-

ble.  
R3. Allow users and service providers to configure func-

tionality-security tradeoffs. 
R4. Ensure that malicious software cannot spoof Trusted 

Components, thereby minimizing the risk that the user 
or the service provider is tricked into revealing security-
sensitive data. 

R5. Minimize performance overheads. 

3. FLOWGUARD 

3.1 FlowGuard Architecture 
The FlowGuard architecture takes a data-centric approach to 
securing the flow of information. The user and the service 
provider are allowed to classify data items in a session of 
information flow based on their security requirements. They 
also specify the trustworthiness of the different software 
stacks available on the client system. Based on this informa-
tion, FlowGuard redirects the flow of information to appro-
priate software stack. 

We assume that the user and service provider deem some 
software stacks more trustworthy than others. This differ-
ence could arise because of differences in software size and 
complexity, or because the trusted stack is instantiated from 
a trustworthy read-only image, or because the trusted stack 
uses high assurance components, e.g., hardened OS kernels. 
Evaluating and comparing the trustworthiness of software 
stacks is outside the scope of this paper. 

Figure 1 presents an overview of the FlowGuard architec-
ture. At the base of FlowGuard is a Trusted Platform, which 
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can be a VMMs, a microkernel or a hardened operating sys-
tem kernel [13][30]. On top of this Trusted Platform is a 
group of software stacks of differing functionality and trust-
worthiness. Each of the software stacks contains an applica-
tion-level program and all necessary middleware and sys-
tems software to interact with other application-level soft-
ware, or hardware or with the service provider. The user of 
the system acts as a source of input. Alternative input 
sources such as disks and other IO devices also fit in Flow-
Guard as long as the software interface of a device (e.g., a 
file server for a disk) does not send sensitive input to soft-
ware stacks that are not trustworthy enough to receive the 
input.  

The main component of FlowGuard is a configurable 
FlowSplitter that functions as a proxy server. The FlowSplit-
ter multiplexes information flows from multiple software 
stacks to the service provider. It also demultiplexes a single 
flow from the service provider amongst multiple software 
stacks. Demultiplexing is determined by configuration in-
formation provided by the user or the service provider. The 
FlowSplitter is discussed in detail in Section 3.1.1. 

The rest of FlowGuard consists of multiple configurations of 
software stacks that are, from a security perspective, layered 
on top of the Trusted Platform. The composition of these 
stacks is discussed in Section 3.1.2  

Hardware Requirements of FlowGuard. FlowGuard re-
lies on Trusted Computing (TC) hardware support, as speci-
fied by the Trusted Computing Group [9], to function cor-
rectly. Specifically, it requires authenticated booting to en-
sure that the correct and unmodified versions of software are 
loaded. This information is displayed to the user via a trust 

indicator, e.g., portion of screen or LED lights. In case the 
service provider wants to ascertain the configuration of the 
client-side software stack, FlowGuard also requires support 
for remote attestation. In addition, sealed storage is required 
to protect the confidentiality of the cryptographic keys that 
are foundations for the security of the rest of the system. 

3.1.1 FlowSplitter 
The FlowSplitter has two functions: First, it has to act as a 
proxy server for the client application. Second, it has to de-
multiplex information flow from the service provider 
amongst multiple client applications (and their software 
stacks) depending on the sensitiveness of information being 
exchanged. As with every proxy server, the FlowSplitter has 
to implement the application-layer protocol used for com-
munication by the service provider, e.g., HTTP over SSL, 
POP3.  

In addition to the regular proxy functionality, the FlowSplit-
ter has to demultiplex data items in a single information flow 
amongst multiple software stacks. The recipient software 
stack is determined by the sensitiveness of incoming infor-
mation and the trustworthiness of the stack, each of which is 
in turn dependent on user or service provider preferences.  

Figure 2 illustrates the processing of an incoming message 
in the FlowSplitter. Since the FlowSplitter has to work with 
legacy service providers, we cannot assume that incoming 
flows are annotated with security classifications. Instead, the 
FlowSplitter has to extract features from the response and 
map them to security classifications. The security classifica-
tions are in turn mapped on to client-side software stacks 
based on the trustworthiness of the stacks. These mappings 
can be provided either by the user or the service provider. 
The details of the mapping vary from application to applica-
tion. We discuss one such mapping in Section 4.3.2 for 
https-based applications. 

Since the FlowGuard architecture entails the use of multiple 
software stacks in a single session, transfer of client-side 
state between the stacks is essential to proper functioning of 
the system. For purposes of discussion, we classify clients 
into two categories: stateless clients and stateful clients. In 
the case of stateless clients, switching between stacks is triv-
ial. On the other hand, stateful clients complicate switching 

 

Figure 1. Overview of FlowGuard: Instead of passing on sensi-
tive data directly to a legacy software stack, or to a small and sim-
ple Trusted Components, data is first directed towards a FlowSplit-
ter. The FlowSplitter directs data to software stacks based on the 
sensitiveness of information and the trustworthiness of the software 
stack.  

 

Figure 2. Incoming Message Processing in the FlowSplitter. 
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of software stacks as the newly activated application-level 
software might need the client state of the previously used 
application-level software to carry out subsequent process-
ing, e.g., cookie information in many https-based applica-
tions. For stateful clients, we assume that the client-side 
state is externally visible to the FlowSplitter or the applica-
tion software provides interfaces to export and import state. 
When switching between stacks, the FlowSplitter extracts 
state information from the old stack and passes it on to the 
new stack.  

In online banking, for example, client-side state consists of a 
cookie that is visible in every outgoing message. The 
FlowSplitter can easily capture this state information and 
pass it on to the new stack. The application software in the 
new stack has to be modified to import this state informa-
tion. In certain other applications, e.g., a remote desktop 
session, application software maintains a lot of state that is 
not externally visible. In such cases, either the application 
software has to be modified to export and import state or the 
server has to support storage and retrieval of client-side 
state. Note that the second scenario is not far-fetched as 
VNC implementations (e.g., TightVNC[8]) allow client-side 
state to be stored at the server and restored at a later time. 

The FlowSplitter should also export a control interface that 
allows client-side software stacks or the service provider to 
configure its behavior.  

3.1.2 Client-side Software Stacks 
Client-side software stacks contain application-level soft-
ware and the execution environment for the software. This 
includes any middleware or systems-level software neces-
sary to satisfy the security and functionality requirements of 
the application-level software. One should note that the 
Trusted Platform is a component of all software stacks as it 
is needed to satisfy security (isolation) and functionality 
(access to hardware) requirements.  

The simplest stack consists of standalone application that 
uses the Trusted Platform as its execution environment. 
However, application-level software typically requires 
higher-level abstractions to access devices, e.g., files, sock-
ets. Hence, we need more complex stacks containing 
(para)virtualized operating systems running the necessary 
middleware and the application-level software, e.g., a web 
browser running on top of X server and paravirtualized 
Linux. 

Client-side software stacks may have to be modified in three 
ways for use with FlowGuard: First, application-level soft-
ware has to be programmed to use the proxy server instead 
of directly contacting the service provider. This is a easily 
accomplished as most application-level software provide 
mechanisms to specify the use of a proxy. 

Secondly, the application-level software may have to be 
modified to export and import client state to and from the 

FlowSplitter. Thirdly, if the software stack wants the ability 
to configure the FlowSplitter, then the stack needs an addi-
tional component that can communicate with the control 
interface of the FlowSplitter. Note that the third modifica-
tion is applicable only to trustworthy software stacks. 

3.2 Properties of FlowGuard 
In this section, we discuss how FlowGuard satisfies the re-
quirements mentioned in Section 2.3. 

The first requirement specifies reducing the complexity 
Trusted Components, i.e., components of the software stack 
which handles sensitive information. FlowGuard relies on 
two assumptions to reduce the complexity of these compo-
nents. First, it assumes that the proxy server does not have to 
completely understand the information exchange protocol to 
determine sensitiveness of information. Secondly, it assumes 
that the functionality requirements of the Trusted Compo-
nents are lesser than that of a legacy software stack. Taken 
together, we expect that the resulting Trusted Components 
will be smaller and simpler than legacy software stacks.  

FlowGuard uses legacy software stacks to handle non-
sensitive information, thereby maintaining the UI and inter-
face between various components of the system (e.g., system 
call interface). FlowGuard also uses a proxy server that im-
plements an unmodified application layer protocol between 
the client and the server, thereby enabling client-side 
software to communicate with legacy service providers.  

FlowGuard allows users (or service providers) to specify 
mappings between security-sensitive information and soft-
ware stacks that will handle such information. Doing so pro-
vides users control over functionality-security tradeoffs and 
minimizes the degradation in functionality due to the use of 
functionally limited Trusted Components. 

By using TC principles such as authenticated booting and 
remote attestation, FlowGuard reduces the possibility that a 
user or a service provider is tricked into communicating with 
malicious software that is masquerading as trustworthy soft-
ware. 

We expect that there will be performance degradation due to 
the introduction of a proxy server. We discuss the 
performance implications of the FlowGuard architecture for 
https-based applications later on in the paper. 

4. BLAC: A FLOWGUARD FOR HTTPS-

BASED APPLICATIONS 
In this section we discuss a specific instance of the 
FlowGuard architecture for https-based applications. First 
we provide an overview of https-based applications and dis-
cuss the problems with Trusted Components in the current 
software stack. Next, we present BLAC, a FlowGuard for 
https-based applications. Finally, we discuss each of the 
components of the BLAC in detail. 
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4.1 Overview of https-based Applications 
https is a URI (Uniform Resource Identifier) scheme that 
augments the HTTP protocol with SSL or TLS and is widely 
used in many applications such as online banking and elec-
tronic commerce. The user, typically a human, interacts with 
a software stack that consists of a web browser, a window 
manager and an operating system.  

Figure 3 presents the stages in an interaction between a cli-
ent and a server in a typical https-based application. We 
refer to the sequence of interactions as a session. Initially, 
the client and the server employ plain-text, HTTP-based 
communication. Therefore, information exchange is limited 
to non-sensitive information in this stage. This stage might 
be missing in servers that do not support the http URI. The 
client has to authenticate itself, typically using a login and a 
password, before it can access sensitive information. The 
authentication step is carried out using https URLs. The au-
thentication information is encoded in a session identifier 
(the cookie), thereby enabling the user to access sensitive-
data over multiple interactions without having to authenti-
cate repeatedly. Upon successful authentication, the web 
server and the client exchange information over multiple 
interactions. At any point during the session, the user is al-
lowed to logout, returning the interaction to unencrypted 
communication.  

Each stage in a session follows the HTTP protocol. The cli-
ent makes an HTTP request based on previous HTTP re-
sponses and/or user input. The server replies with an HTTP 
response. The client parses this response to generate more 
requests (e.g., for embedded images) or render it in a 
viewer. The client now waits for user input to generate a 
new request.  In SSL enabled stages, requests and responses 
are transmitted over a secure channel (SSL or TLS). The 
client has to first establish an SSL connection with the web 
server. The SSL connection could be a new connection or 
the restoration of a previously suspended connection. Next, 
the client transmits an HTTP request over the encrypted 

channel and receives an HTTP response. The SSL connec-
tion is then suspended or closed. From HTTP/1.0 onwards, 
more than one HTTP request and response can be ex-
changed before an SSL connection is closed or suspended. 

Information flow in https-based applications can be classi-
fied into three categories: Non-sensitive, Low-sensitivity and 
High-sensitivity information. Of the three, the first one is 
accessed using http URIs and the later two are available only 
through https URIs. This three level classification has justi-
fications in the realm of many online applications such as 
online banking (described in Section 2.2) and electronic 
commerce. In electronic commerce, the user is asked to 
choose shipping address, select a payment method, enter a 
new payment method (e.g., bank account or credit card in-
formation) and confirm the purchase. Clearly, information 
on a new payment method is more sensitive than shipping 
address. Since confirming a purchase modifies account 
status and places a financial burden on the user, we also treat 
user’s choice on confirmation as high-sensitivity data. We 
argue that the user and the service provider want to use a 
more trustworthy software stack to handle such high-
sensitivity information.  

Currently, all information, including non-sensitive informa-
tion is handled by the same software stack. As mentioned 
previously (Section 2.1), current software stacks suffer from 
multiple security vulnerabilities. Using the same software 
stack to handle various types of information flows increases 
the stack’s vulnerability in three ways: First, since browsers 
execute security-sensitive functionality in the same address 
space and protection domain as security-insensitive func-
tionality, vulnerabilities in any part of the browser can be 
used to comprise security-sensitive functionality. Secondly, 
as the browser is designed to support multiple sessions, 
cross-site scripting [37] or cross-site request forgery attacks 
[15] become feasible. Finally, research has shown that time-
shifted attacks are possible on the Mozilla browser and op-
erating system kernels as they store data from security-
sensitive sessions, long after the session has ended [17]. 

The requirements for an effective solution (Section 2.3) are 
applicable to BLAC. Particularly, we want a solution that 
reuses the web browser as far as possible given the ubiquity 
and the functionality of the browser. Similarly, the compo-
nents of the https URI, the HTTP and SSL protocols, are 
widely used on the Internet. We cannot expect service pro-
viders to switch to a new or augmented protocol immedi-
ately. Therefore, BLAC has to confirm to existing protocols. 

4.2 Design of BLAC 
Figure 4 presents an overview of the BLAC architecture. It 
is an instance of the more general Figure 1. We use the L4 
microkernel [30] as the Trusted Platform. An enhanced https 
proxy functions as the FlowSplitter. The https proxy uses the 
microkernel and the execution environment of the microker-
nel (called L4Env) as its execution environment. We use 

 

Figure 3. Stages in an https-based application; collectively 

referred to as a Session. Shaded boxes indicate communication 
over SSL. Partially shaded boxes indicate transition between 
SSL and plain-text modes. Numbers indicate sequence of opera-
tions. 
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two configurations of software stacks: one is an application-
level program called the TrustedViewer which acts as a ru-
dimentary browser. The TrustedViewer reuses the execution 
environment of the https proxy. The second software stack is 
a legacy software stack that consists of a paravirtualized 
commodity operating system with a window manager and a 
full-fledged browser.  

We use the TrustedViewer to handle high-sensitivity infor-
mation and the legacy stack to handle low-sensitivity and 
non-sensitive information. We feel that this is an appropriate 
tradeoff between security and functionality. However, our 
system is easily extensible to support low-sensitivity infor-
mation processing in the TrustedViewer (Section 4.3.1) or 
the addition of a new stack to handle low-sensitivity infor-
mation (Section 4.5). 

The https proxy accepts text patterns for identifying sensi-
tive data from the TrustedViewer. https messages (HTTP 
responses) that contain the text patterns are forwarded to the 
TrustedViewer and the rest of the messages are directed to 
the legacy software stack. The proxy also multiplexes con-
nections from the TrustedViewer and the browser to the 
service provider. We discuss the design of the proxy in de-
tail in Section 4.3.  

The TrustedViewer consists of a simple HTML parser and a 
GUI. It accepts an HTTP request and response and waits for 
input from user. It then generates the corresponding HTTP 
request and transfers it back to the https proxy. The Trust-
edViewer is discussed in Section 4.4. 

The legacy software stack, discussed in Section 4.5, consists 
of a paravirtualized operating system, middleware and a full-

fledged browser. Except for modifying the https-proxy set-
tings on the browser, we use an unmodified legacy software 
stack. 

4.3 The https Proxy 
The https proxy has three functions: multiplex and 
demultiplex requests and response amongst the multiple 
software stacks, identify high-sensitivity information in http 
responses, and finally, accept configuration information 
from the TrustedViewer. 

Since we require our solution to work with legacy service 
providers, we cannot assume that incoming information will 
be tagged with sensitivity levels. Therefore, we have to infer 
sensitiveness of information based on HTTP requests or 
responses.  

4.3.1 Inferring Sensitive Information in https  
There are two sources of high-sensitivity information in 
https-based applications: the service provider and the user. 
Since the https proxy lies in between the service provider 
and the client-side software stacks, it can trap any high-
sensitivity information originating from the service provider. 
However, the proxy cannot directly trap or control any high-
sensitivity input originating from user. However, the proxy 
can be programmed to redirect all HTTP responses that re-
quest the user to enter high-sensitivity data to the Trusted-
Viewer. To do so, we have to expand the notion of high-
sensitivity responses to include even non-sensitive or low-
sensitivity responses that lead to high-sensitivity user input.  

It is easy for users and service providers to identify high-
sensitivity information at the data item level, e.g., password, 
payment information or a TAN. However, the values for 
these sensitive data items varies considerably and we cannot 
expect the proxy to be able to parse every response to de-
termine if a variable sequence of characters or numbers is 
high-sensitivity data or not. Ideally, we would like to look 
for static and unique content in HTTP responses to identify 
responses containing high-sensitivity data. We assume that 
the user or the service provider has identified possibly 
unique text patterns in HTTP responses that contain high-
sensitivity data.  

We employ a two stage filtering process on the client-side to 
accurately identify high-sensitivity responses: first, we use 
simple pattern matching in the https proxy to trap all HTTP 
responses that contain the text pattern. While this leads to 
false positives, i.e., a low-sensitivity response is treated as a 
high-sensitivity response, it is conservative because with 
proper keywords, we identify all high-sensitivity responses. 
Next, we employ more complex parsing based on expected 
HTML page structure in the TrustedViewer (Section 4.4) to 
identify the high-sensitivity responses among the trapped 
responses and redirect all false positives back to the un-
trusted software stack.  

 

Figure 4. Architecture of BLAC. The https proxy functions as a 
FlowSplitter. High sensitivity information, as identified by the text 
patterns, is directed to a small trusted viewer and the rest of the 
information is directed to a legacy software stack. 
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Note that in the worst case, if the user or the service pro-
vider does not provide any keywords, all responses will have 
to be trapped and parsed. If the parsing fails, the response is 
redirected to the legacy browser. While this will increase the 
response time for the user, it will prevent the flow of high-
sensitivity information to legacy or untrusted computing 
bases.  

As an example, while shopping on Amazon.com, user’s 
choice on the confirmation page is high-sensitivity data. 
This high-sensitivity data is encoded in an HTTP request, 
which originates from the HTTP response that contains the 
confirm page. The confirm page contains the string 
`alt=”Place Your Order”`.  So we trap all responses that 
contain the above string. In the unlikely case that someone 
has a product with the same title, that particular product 
page will also be trapped. However, the confirm-page parser 
that resides in the TrustedViewer will fail to parse the prod-
uct page and it will be redirected back to the legacy browser. 

4.3.2 Demultiplexing HTTP Responses 
Once high-sensitive HTTP responses have been identified, 
the https proxy must direct them to the TrustedViewer. To 
do so, the proxy must also transfer client-side state from the 
legacy client software to the TrustedViewer. This is easy in 
the case of https-based applications as client-side state is 
embedded in a cookie. Since the cookie is transmitted with 
every outgoing message, the proxy has to capture the outgo-
ing message and transfer it to the TrustedViewer along with 
the high-sensitivity response.  

Switching from the TrustedViewer to the legacy client soft-
ware is easier because the TrustedViewer does not modify 
client-side state. Since the old cookie is still valid, the https 
proxy does not have to take any additional steps to maintain 
client-state coherency between the two software stacks. 

4.3.3 Accepting Configurations from the 

TrustedViewer 
The third task of the https proxy is to accept configuration 
information from the TrustedViewer. To do so, the https 
proxy exports a control interface that accepts configuration 
information from the TrustedViewer. As seen in Section 
4.3.1, text patterns are the only configuration information 
needed by the https proxy. 

4.4 Trusted Viewer 
The TrustedViewer consists of three parts: a configuration 
file, a DOM tree builder that can be used to extract parser 
and a GUI to interact with users. The configuration file lists 
all text patterns that are associated with high-sensitivity in-
formation and will trigger the activation of the Trusted-
Viewer. The configuration file varies for each service pro-
vider. At startup, the TrustedViewer registers these patterns 
with the https proxy. Upon receiving a HTTP response 
which contains any of the keywords, the https proxy for-
wards the HTTP response and the corresponding HTTP 

request to the TrustedViewer. Remember that the HTTP 
request contains the cookie that is necessary for all subse-
quent interactions. 

The second part of the TrustedViewer is a simple parser. 
The parser contains two sets of configuration information: 
(a) XPaths [11] in the response HTML document pointing to 
data that must be extracted and (b) sanity check tuples. A 
sanity check tuple is of the form <XPath, SanityPattern>. 
This indicates that the parser must check for the occurrence 
of the SanityPattern in the given XPath. For example, the 
confirm page for electronic commerce transactions typically 
contains standard patterns such as “Shipping Information”, 
“Order Total” in predetermined XPaths.  

The parser builds a DOM tree of the HTML document and 
extracts content from all specified XPaths. At the same time, 
the parser also checks if the SanityPatterns specified in the 
sanity check tuple match the extracted content. On success, 
the parser returns information in a tabular format to the 
TrustedViewer. If either the extraction fails or SanityPattern 
matching fails, the parser sends an error message to the GUI 
component. For more robust parsing, HTML content extrac-
tion tools as described in [29] can be employed. If the page 
cannot be parsed by the TrustedViewer, the user is given an 
opportunity to cancel the interaction or forward the page to 
the legacy software stack. 

The third part of the TrustedViewer is a GUI component 
that displays the high-sensitivity information extracted by 
the parser. The GUI allows users to enter text input and con-
firm or cancel an interaction. The GUI also contains an op-
tion to forward the page to the browser, if the user feels that 
the page was not properly parsed or if the user feels that the 
tradeoff between functionality and security has changed. 

Adding a new page to the TrustedViewer is easily accom-
plished. We have developed a script that operates on tem-
plates of HTML files that have to be handled by the Trust-
edViewer. The user clicks on content that she deems sensi-
tive and the script provides the XPath of the content. At this 
point, the user can also select text patterns to generate sanity 
check tuples. The user then provides the XPath values along 
with the text patterns for the page to the TrustedViewer. The 
TrustedViewer forwards the text patterns to the https parser 
and uses the XPath and sanity check tuple to parse the new 
page. 

4.5 Client-side Software Stacks 
The microkernel, its execution environment and the https 
proxy are common components of all client-side software 
stacks. The TrustedViewer along with the above mentioned 
components forms the client-side software stack that is used 
to handle high-sensitivity information. The web browser 
along with the X server, the paravirtualized Linux kernel 
(L4Linux) and the common components form the other soft-
ware stack. Except for modifying the https proxy setting of 
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the browser, we do not make any modifications to the legacy 
software stack.  

Even though, BLAC uses only two software stack configura-
tions, it does not preclude other client-side software stack 
configurations. For example, BLAC can handle two L4Linux 
stacks, one of which is trusted. The difference in trustwor-
thiness could be due to the use of a browser which is exe-
cuted in safe mode or the L4Linux instance is booted up 
from a fresh, read-only image. In order to replace the Trust-
edViewer with a trusted L4Linux stack, we have to make two 
modifications to the browser. First, as before, we have to 
change the https proxy settings of the browser and second, 
we have to modify the browser to pull state information 
from the https proxy. This is easily accomplished by install-
ing a browser extension or a plugin that contacts the https 
proxy, retrieves cookie information and sets the cookie. If 
the user desires to use this trusted L4Linux stack to configure 
the https proxy, we also need to provide a configuration tool 
(a browser extension or a standalone program), that pro-
grams the https proxy with new configuration information. 
Note that the proxy configuration still remains the same. The 
new stack is now ready to handle security-sensitive informa-
tion.  

5. EVALUATION 
We implemented a prototype of BLAC on top the L4 mi-
crokernel. The execution environment of the L4 microker-
nel, called L4Env, consists of a set of servers providing ba-
sic services such as naming, memory and IO management 
and display manager. Similar components are described in 
detail in [23]. The https proxy and the TrustedViewer are 
executed directly on top of the microkernel and L4Env. The 
browser, Mozilla Firefox, is executed in L4Linux, a paravir-
tualized operating system, along with the X Server. We 
modified the proxy settings of the browser, requiring it 
communicate with the https proxy instead of directly com-
municating with the service provider. 

First, we present a qualitative evaluation of security proper-
ties of BLAC. As supporting evidence, we present quantita-
tive analysis of the complexity reductions in BLAC. We 
show that the size and complexity of the Trusted Compo-

nents is reduced by an order of magnitude in BLAC. Next, 
we analyze the performance of BLAC and show that the 
performance overheads are manageable. Then, we discuss 
the use of BLAC with real-world service providers and dis-
cuss the complications faced during our analysis. Finally, we 
evaluate BLAC along the lines of requirements mentioned in 
Section 2.3. 

5.1 Security Properties 
BLAC improves the security properties of client-side soft-
ware stack in three ways: First, BLAC switches software 
stacks depending on the sensitiveness of information being 
handled. In current systems, the same software stack is used 
to handle different categories of information flows. There-
fore, an attacker can exploit vulnerabilities in handling of 
non-sensitive information to either access sensitive informa-
tion (e.g., cross-site scripting attacks [15][37]) or to com-
promise the software stack (e.g., exploit arbitrary code exe-
cution vulnerabilities in browsers to install malicious exten-
sions [12]). Since BLAC separates the handling of different 
categories of information flow, these attacks will no longer 
succeed in compromising the flow of sensitive information. 

Secondly, BLAC treats the browser and its execution envi-
ronment (L4Linux and X server) as untrusted components. 
By preventing the flow of sensitive information to these 
components, BLAC ensures that vulnerabilities in these 
components cannot affect the confidentiality and integrity of 
sensitive information. However, the current BLAC architec-
ture and implementation does not address availability issues. 
This leaves open the possibility of Denial of Service attacks, 
e.g., by crashing the network stack, the attacker can prevent 
the https proxy from communicating with the service pro-
vider. We are exploring the use of replication to improve 
availability properties of BLAC.  

Thirdly, BLAC uses a small and simple application and 
software stack to handle high-sensitivity information. A 
small and simple application is expected to have fewer bugs 
and should be more amenable to exhaustive testing or formal 
verification. We use two well known software metrics: 
source lines of code (LOC) and McCabe’s complexity met-
ric to illustrate the large reductions in complexity in BLAC. 

Table 1: Complexity Comparison of BLAC and a Linux-based software stack. The Linux kernel includes networking, file 
system, IO, memory management support. L4Env includes servers for bootstrapping the system and resource managers for mem-
ory and devices, IO manager, window manager and ABI support. The networking stack, which is executed as a separate service, 
does not have to be trusted in BLAC, resulting in savings of about 170 KLOC. 

BLAC Linux 
Component 

Composition LOC MCC Composition LOC MCC 

OS L4 14,000 2,300 Linux Kernel 383,000 65,000 

Middleware L4Env 86,300 11,300 X Server 1,015,000 140,300 

https Proxy https Proxy 13,600 1,900 - - - 

Application Trusted Viewer 5,000         290 Mozilla Firefox 2,208,000 328,300 

Total   118,900     15,790  3,606,000 533,300 
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Many software engineering studies have shown that the LOC 
metric is roughly correlated with the number of defects [43]. 
MCC is based on McCabe’s definition [32] of a control flow 
complexity metric.  It is measured per function and it gives 
the number of distinct execution paths in a given function. 
The MCC metric represents the minimum number of tests 
that need to be carried out on that function to verify control 
flow properties. Studies have also shown that the MCC met-
ric correlates with the number of defects [34]. 

We compare the size and complexity of BLAC with a com-
parable Linux-based software stack. The Linux-based soft-
ware stack is configured to provide the same functionality as 
provided by BLAC. Table 1 compares the software com-
plexity metrics of the two approaches. At the application 
layer, we can see that the size and complexity of BLAC is 
two orders of magnitude smaller than that of the browser. 
Comparing the complexity of the full system, we see that 
BLAC is an order of magnitude smaller than a comparable 
Linux-based system. 

This comparison might seem unfair, especially given that the 
Mozilla Firefox browser possesses much more functionality 
than the TrustedViewer. However, one should note that 
BLAC employs the TrustedViewer to operate on high-
sensitivity data. The browser, with its varied functionality, is 
still available to the user to operate on low-sensitivity or 
non-sensitive data. 

5.2 Performance 
The performance of VMMs in general and the L4 microker-
nel and the paravirtualized L4Linux operating system in spe-
cific is well documented [13][24]. Therefore, we focus on 
the overheads introduced by BLAC. Since the https proxy 
introduces a layer of indirection between the user and the 
service provider, we expect performance degradation. This 
section attempts to quantify the overheads introduced by the 
https proxy.  

We used two identical machines, each with a 2.26 GHz, 
Pentium-4 processor and 512 MB of RAM. The machines 
were connected using a 100 Mbps switch. The standard de-
viation was less than 5% in most experiments and less than 
10% in all our experiments. We used https traces from four 
online sites in our experiments: Bank-A, Bank-B, Bank-C 
and Amazon.com (Bank names changed for anonymity). 

Table 2 presents a profile of the four data sets. Pages repre-
sent the number of complete pages that were in the trace. 
Each page is the result of a user-initiated HTTPS request. 
Since a page consists of many fragments, each of which has 
to be requested separately by the client application, we also 
list the number of fragments in the trace and the maximum 
number of fragments per page. In all traces, the login request 
resulted in the maximum number of fragments requested. 

In our experiments, the server side consists of a simple pro-
gram that reads the traces, accepts HTTP requests over an 
SSL channel and transmits the appropriate HTTP response 
over the same SSL channel. We used three client-side con-
figurations. One is a Linux client that connects to the server 
using SSL and generates HTTP requests. The client reads 
the complete response and discards it. The second configu-
ration represents a legacy software stack configuration in 
BLAC. We use the same client as before; however, it runs 
on L4Linux and connects to the https proxy. For this con-
figuration, we also measured the performance of the proxy, 
when it contacts the service provider. This allows us to iden-
tify the overheads introduced by the proxy. The third client 
configuration consists of a TrustedViewer using IPC to con-
tact the https proxy and request files from the service pro-
vider. 

First, we measure the retrieval times for individual files. 
Figure 5 compares the performance of the various client 
configurations. Accessing a page in the L4Linux client 
through the https proxy is about 2 to 2.5 times slower than 
the original Linux implementation. Regression analysis of 
data showed that overhead is represented by the equation  

ovhd = 0.535 * file_size + 17.9; and r2 = 0.998. 

where ovhd is the overhead in milliseconds and file_size is 
the size of the retrieved file in kilobytes. In absolute terms, 
the overhead per file is of the order of few tens of millisec-
onds. 

 

Figure 5. Comparison of File Access Times. Access time in-
creases linearly in all cases.   

Table 2. Dataset for Measuring Page Access Times. Traces were 
generated using the WebScarab proxy [3] and the Internet Explorer 
web browser. Caching was enabled in the browser and the cache was 
cleaned before generating the trace. 

Dataset Pages Fragments Size (KB) Max. Frags/Page 

Amazon 6 52 569 40 

Bank-A 14 67 441 20 

Bank-B 18 107 931 17 

Bank-C 11 119 1433 59 
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Since an HTML page is typically composed of multiple 
fragments, we also measure “page” access times for the 
dataset mentioned in Table 1. Figure 6 plots the CDF of 
page access times for the Linux and the L4Linux client. 
While the L4Linux client is slower than the Linux client, we 
see that the page retrieval time is less than 0.5 seconds in 
90% of the cases. The pathological cases occur when a page 
has a large number of fragments, as illustrated in the figure. 
Even in the worst case, the page retrieval time is around 
2.25 seconds. A survey by Jupiter Research and Akamai 
showed that about 75% of shoppers are willing to wait up to 
four seconds for a page to load [2]. So, even in the worst 
case, we are within the threshold for a majority of users. 

We would like to note that the performance of our proxy can 
be improved in many ways. One source of improvement is to 
implement the HTTP/1.1 protocol in the https proxy that 
allows multiple requests to be sent over a single SSL con-
nection. This amortizes the overhead of the CONNECT 
message and SSL connection establishment phase (14.5 ms 
in our current implementation). Techniques such as VMM-
bypass-IO [31] can also be employed to reduce the overhead 
performing IO in virtual machine based systems.   

5.3 Case Studies 
Once again, we studied the four web sites mentioned in Ta-
ble 2. High-sensitivity interactions accounted for two pages 
in all bank sites: login and confirm page. In Amazon.com, 
three pages were deemed highly sensitive: login page, con-
firm page and payment page as the user could enter a new 
payment method in the payment page. The payment page is 
a good example of a page where the user might want to 
transfer a page from the TrustedViewer to the legacy 
browser, in the case that she is not entering any high-
sensitivity information. Compared to the total number of 
pages in the session, we can see that the TrustedViewer is 
sparingly used. We successfully tested our complete proto-
type using Bank-A’s demonstration account. 

In out analysis of these sites, we came across some cases 
which cannot be handled by our current implementation. 
First, if the browser chooses to enable compression, then we 
are not able to handle HTTP requests and responses. This 
problem can be solved by adding a compression library to 
the https proxy or by rejecting compressed requests from the 
browser. 

The second problem is more critical as there are some web 
service provides who present the login page over an http 
URL. The login request is still transferred using the https 
URL. Since our proxy is an https proxy, we cannot currently 
capture such pages. Once again there are two solutions: one 
is to use the https URL instead of the http URL while re-
trieving the login page. This is not a problem as most sites 
allow http URL content to be served over https URLs. Al-
ternatively, we could add an http proxy to the https proxy. 
While this will lead to increased overheads, we will be able 
to capture all requests for high-sensitivity data.  

Another problem faced by the current version of BLAC is 
that SSL and HTTP do not provide support for remote at-
testation. This opens up the possibility of a malicious, un-
trusted browser generating an HTTP request that mimics a 
request generated by the TrustedViewer. For example, in 
electronic commerce sites such as Amazon.com, the user’s 
choice on Confim/Cancel is high-sensitivity data and this 
data is encoded in the HTTP request. As there is no secret 
information involved in generating the request such as a 
TAN, the browser too can generate similar HTTP requests 
and modify the state of the user’s account. We expect this 
problem to be alleviated with the use of remote attestation. 

5.4 Revisiting Requirements 
In Section 2.3, we mentioned five requirements of an effec-
tive solution. Of the five requirements, we evaluated com-
plexity reductions and performance overheads in the previ-
ous sections. This section evaluates the design and imple-
mentation of BLAC with respect to the other three require-
ments.  

R2. Reuse Legacy Software and Protocols. BLAC reuses 
unmodified (excluding proxy settings), legacy software to 
handle non-sensitive and low-sensitivity information flows. 
The https proxy in BLAC does not require any modifications 
to either SSL or the HTTP protocol. Hence, BLAC works 
with legacy service providers. However, if service providers 
need information on client-side software stack, then they 
must be modified to use remote attestation features.  

R3. Flexibility in Tradeoffs. In our implementation, BLAC 
uses a very small Trusted Viewer, which is functionally lim-
ited, to operate on high-sensitivity data. However, BLAC 
provides the user with flexibility in determining the stack to 
use for processing various categories of information. If the 
user is confident about the trustworthiness of a legacy soft-
ware stack, she can modify the https proxy settings to direct 
high-sensitivity information to the legacy software stack 

 

Figure 6. CDF of HTML Page Access Time based on HTML 

pages from our traces.  



 

 12 

handling non-sensitive and low-sensitivity information. Al-
ternatively, the user can also create a new instance of a 
modified legacy software stack, as discussed in Section 4.5, 
to handle high-sensitivity data. In this case, the user retains 
most of the functionality but the gains in software complex-
ity no longer apply.  

R4. Protection against Spoofing Attacks. As mentioned in 
Section 3.1, we rely on Trusted Computing hardware sup-
port to determine the software stack in use. The execution 
environment of BLAC provides support for non-forgeable 
trust indicators, e.g., portion of screen or external LEDs, that 
communicates the trustworthiness of the software stack to a 
human user. We assume that the end-user is reasonably 
aware of trust indicators and will make use of the indicators 
to protect sensitive information. We do not address the hu-
man aspects of deception and spoofing here.  

6. DISCUSSION 

6.1 Applicability to other VMM-based 

approaches 
We implemented BLAC on a microkernel platform. The 
FlowGuard approach can be applied on other platforms, 
including commodity operating systems. In any platform, the 
first requirement is that the FlowSplitter and each of the 
client-side software stacks need to be executed in different 
protection domains to isolate the flow of sensitive informa-
tion. Second, each of the software stacks has to be able to 
communicate with the FlowSplitter. 

Environments such as Xen [13], Asbestos [20], Linux and 
Microsoft Windows satisfy both above requirements. A 
Xen-based implementation, for example, would have the 
FlowSplitter and each of the client-side software stacks exe-
cuting in a separate VM. They can communicate with each 
other using network stacks. In a Linux-based implementa-
tion, the FlowSplitter and each of the client-side software 
stacks (browsers or User Mode Linux instances) are exe-
cuted as different users and they communicate using the 
network stack or more efficient IPC such as shared memory. 

6.2 Applicability to other client-server 

applications  
FlowGuard can be applied to other client-server applications 
beyond https. The design and implementation of FlowGuard 
contains two important aspects: (a) inferring sensitiveness of 
information and (b) transferring client-side state between the 
various software stacks. As described in previous section, 
for https-based applications we used a set of text patterns to 
identify high-sensitivity information and relied on externally 
visible cookie information to transfer state between software 
stacks. In this section, we briefly discuss potential designs 
that address the above aspects when using other protocols, 
including a POP3-based mail application and a remote ter-
minal.   

The FlowSplitter for a POP3-based application [33] would 
implement a POP3 proxy and handle incoming connections 
from multiple software stacks. Since authorization informa-
tion (e.g., login and password) is sensitive, the end-user has 
to employ a trustworthy software stack for the authorization 
step. After this, the POP3 proxy will have to handle the 
RETR and the DELE commands from the mail clients. 
These commands are used to retrieve and delete mail respec-
tively. Sensitive information for responses to the RETR 
commands can be easily identified by scanning mail headers 
or mail senders or even mail content. Sensitive mail is then 
redirected to trustworthy software stacks. However, the 
POP3 protocol uniquely numbers messages in the mailbox 
for every session and all commands are issued with the 
unique number as a reference. Hence, the FlowSplitter will 
have to forward dummy mail to stacks that are not trustwor-
thy enough to receive the sensitive mail. Handling the DELE 
command is tricky, as malicious software stacks can issue 
arbitrary DELE commands and compromise the integrity of 
mail. To solve this problem, the FlowSplitter can maintain a 
per-session list of valid mail handled by each software stack 
and disregard all DELE commands on dummy mail.  

If there are no other ways to distinguish security-sensitive 
information, the FlowSplitter may have to refactor the appli-
cation level software to explicitly identify security-sensitive 
information. As an example, consider a FlowGuard for a 
command line shell (e.g., bash over SSH). Due to the ge-
neric nature of a shell, sensitive information comes in for-
mats as varied as applications handled by the shell, e.g., 
input to passwd command, contents of a file, directory list-
ings, etc. Consequently, the FlowSplitter for the shell would 
need to add the code to distinguish sensitive information for 
each application to be protected. One potential solution is to 
use shell commands to identify the sensitiveness of data 
processed by each shell command and redirect the response 
to the security-sensitive software stack.  Since shells do not 
have client-side state, switching between software stacks can 
be easily accomplished. 

6.3 Server-Side Support 
One of the key requirements for FlowGuard (and BLAC) 
was support for legacy service providers. This complicates 
our design and implementation of FlowGuard, e.g., we have 
to indirectly infer the sensitiveness of information in the 
responses. With server-side support, we can simplify the 
Trusted Components in FlowGuard. 

First, the service provider could label information in its re-
sponses with sensitivity levels. In HTTP responses, this 
means adding an additional field to the response header: 
Sensitivity= [Non | Low | High]. This step would reduce the 
need for parsing of responses in the FlowSplitter. However, 
to support user driven configurability, we would still have to 
rely on indirect methods for inferring sensitiveness of re-
sponses.  
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On a related note, if the service provider tags some re-
sponses as High-sensitivity, it could rely on a simple repre-
sentation format (e.g., tabular format for high-sensitivity 
pages in BLAC) or provide template files for extracting 
relevant data from the responses. This would simplify the 
application-level Trusted Components.  

Finally, the service provider can provide a mechanism to 
save and restore client-side state, ala VNC implementations. 
This would enable easy, albeit expensive, transfer of state 
between client-side software stacks.  

7. RELATED WORK 
As mentioned in Section 2.1, Proxos [46], Terra [22] and 
AppCores [44] are closely related to FlowGuard, in that they 
advocate the use of small and simple TCBs or application 
software. Efforts have also been directed towards building 
small operating system kernels [13], VMMs [30], TCBs 
[26][27][35] and system services [14][28][36][42]. 
FlowGuard reuses existing work on constructing small and 
simple TCBs and application-level software and middleware. 
FlowGuard combines this approach with a proxy-based sys-
tem to reuse legacy software whenever possible.  

Mandatory access control systems such as Asbestos [20], 
capability-based system such as EROS [41] and Authority 
Based Access Control systems such as Polaris [45] aim to 
control the flow of information or minimize the damage due 
to compromise of software handling sensitive information. 
Our work on FlowGuard is orthogonal to these approaches. 
In fact, by splitting the flow of information in a single ses-
sion amongst multiple software stacks, FlowGuard allows 
for more rigorous enforcement of access control. For exam-
ple, browsers have to be allowed to connect to the network, 
opening up avenues for information leaks. On the other 
hand, the TrustedViewer in BLAC is not expected to com-
municate over the network; it only needs to access the https 
proxy and a limited number of system services such as the 
display manager. Hence, the access rights of a Trusted-
Viewer can be constrained to a greater extent than those of a 
full-fledged browser. 

There is also considerable work on using static analysis to 
find vulnerabilities in software, e.g., [19][48]. Castro et al. 
[16] use static analysis to instrument loads and stores in pro-
grams to maintain the integrity of data flow. While these 
techniques detect vulnerabilities or protect against a major 
class of vulnerabilities (data corruption attacks), their scal-
ability, especially to software as large and complex as a 
browser, is still an open question. FlowGuard attempts to 
reduce the size and complexity of software that needs to be 
trusted, enhancing the effectiveness of static analysis tech-
niques. Language based information flow analysis tools [40] 
together with OS level mandatory access controls have been 
employed to provide fine-grained control over flow of in-
formation [25]. However, these techniques are not applica-
ble to a large number of programs written in weakly-typed 

languages such as the C programming language. XFI [21] 
takes a novel approach by using an untrusted rewriter to 
instrument an extension to a software program with control 
flow guards and memory access guards. The guards are then 
verified with a small trusted verifier and the extension is 
now deemed safe for execution. Such techniques can be ap-
plied to protect software such as the browser from malicious 
extensions. However, the original software program can still 
be exploited if it contains vulnerabilities.  

Lastly, given the large number of vulnerabilities in the 
browsers, there is a lot of work addressing vulnerabilities in 
the browser. Research efforts range from interface personal-
ization to thwart spoofing attacks [47], password hashing 
using browser extensions to limit the damage done by leak-
ing of passwords [39], rewriting scripts in HTML pages to 
prevent them from exploiting known vulnerabilities [38], 
and trust indicator extensions for browsers to prevent inter-
face spoofing and phishing attacks [50]. All these systems 
assume that the browser can be trusted with high-sensitivity 
information. Given the large number of vulnerabilities (av-
erage of 2 per month [4][5]) and the types of vulnerabilities 
(arbitrary code execution, security-system bypass) in current 
browsers, attackers can exploit them to bypass the protection 
afforded by many of these systems. 

The Tahoma architecture [18], on the other hand, assumes 
that the browser cannot be trusted. Tahoma proposes execut-
ing browser instances in separate VMs, similar to 
VMWare’s Browser Appliance [10]. Additionally, Tahoma 
requires service providers to define a manifest, which is 
used to control behavior of the browser. Tahoma does not 
address the issue of a multitude of browser extensions (e.g., 
weather forecast extensions) that periodically talk to a site 
outside the service provider’s manifest. FlowGuard also 
treats the browser as untrusted but it prevents the flow of 
sensitive information to the browser, instead of controlling 
the behavior of a browser instance that has access to sensi-
tive information. Therefore, it does not have to curtail the 
browser’s functionality. 

8. CONCLUSION 
Current client-server applications use the same client-side 
software stack to handle information with differing security 
and functionality requirements. This has resulted in large 
and complex software, with multiple security vulnerabilities. 
However, current software and interfaces are too widely 
used to be abandoned altogether. We presented a proxy-
based approach called FlowGuard to address the problem of 
large and complex client-side software stacks. The main 
component of FlowGuard is a proxy that uses mappings 
from sensitiveness of information to trustworthiness of soft-
ware stack to demultiplex responses from the service pro-
vider amongst multiple client-side software stacks. By em-
ploying a legacy software stack as the untrusted software 
stack and a small and simple trusted software stack allowed 
FlowGuard to reduce the complexity of Trusted Components 
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while at the same time allowing the reuse of the legacy soft-
ware stack as much as possible. FlowGuard also provided 
mechanisms to allow users and service providers to deter-
mine the software stack the mappings, thereby providing 
flexibility in determining the appropriate functionality-
security tradeoffs. 

We demonstrated the feasibility of our approach by imple-
menting a FlowGuard for https-based applications that was 
successful in interacting with a real-world bank’s web site. 
Our evaluation showed that we were able to reduce com-
plexity by over an order of magnitude, while limiting over-
heads to few tens of milliseconds per HTTP response. 

We also showed that FlowGuards can be ported to other 
client-server applications and implementation platforms. We 
also discussed how FlowGuard can be further simplified 
with service provider support.  
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