Efficient and Secure Search of Enterprise File Systems
Aameek Singh Mudhakar Srivatsa Ling Liu

College of Computing, Georgia Insitute of Technology

{aameek, nudhakar, lingliu}@c.gatech. edu

Abstract

With fast paced growth of enterprise data, quickly locatielgvant content has become a critical IT capability. Resea
has shown that nearly 85% of enterprise data lies in flat Slesys [12] that allow multiple users and user groups with
different access privileges to underlying data. Any seaoth for such large scale systems needs to be efficient and
yet cognizant of the access control semantics imposed byrttierlying filesystem. Current multiuser enterprise dearc
techniques use two disjoisearchand access-controbomponents by creating a single system-wide index and gimpl
filtering search results for access control. This approsudheffective as the index and query statistics subtly lealate
information. The other available approach of using separatices for each user is undesirable as it not only inceease
disk consumption due to shared files, but also increases/tb@ads of updating the indices whenever a file changes.

We propose a distributed approach that couples search aedsacontrol into a unified framework and provides
secure multiuser search. Our scheme (logically) dividda @&o independent access-privileges based chunksdcalle
access-control barrels (ACB). ACBs not only manage sechtit also improve overall efficiency as they can be indexed
and searched in parallel by distributing them to multipleegorise machines. We describe the architecture of ACBadas
search framework and propose two optimization technigaeehsure the scalability of our approach. We also discuss
other useful features of our approach — seamless integnatib desktop search and an extenstion to provide securetsea
in untrusted storage service provider environments. Welatd our approach with a detailed evaluation using inglustr
benchmarks and real datasets. Our initial experiments sleowre search with 38% improved indexing efficiency and
low overheads for ACB processing.

1 Introduction

In recent years, the total amount of digital data has groapdeand bounds, doubling almost every eighteen months [13].
As the cost of storage hardware drops, enterprises areagtorore data and also keeping it for a longer period of time.
It is for both business intelligence as well as regulatomnptiance purposes. With this large amount of data available
keyword based search to quickly locate relevant data hasniean essential IT capability.

According to many estimates, as much as 85% of enterpriseiglatored in unstructured repositories like enterprise
and local filesystems [12]. These filesystems have multipéesuwith different privileges to data and access is cdetiol
using native access control mechanisms like Unix/Windosvaissions models. This access control needs to be enforced
even while searching through the data. As a simple case it,@ouser should not be able to search through data that is
not accessible to that user. Also, there are additionalesubguirements that complicate this process and if unteahd|
can result in information leaks. For example, looking at results of a query a user should not be able to extract any

information that could not have been inferred by that usesidnessing the underlying filesystem. We refer to this princi
ple asAccess Control Aware Seardn ACAS in short. Simply put, ACAS requires that no additibindormation can be
extracted about the filesystem by using the search mechahkiene formally we define it as:

Definition: Access Control Aware Search (ACAS)

LetZY be the information that a usdy can extract from the filesystefi by accessing it directly (dictated by access
rights for U) and letZY be the information thal/ can extract by searching on the indices o¥&over any period of time
(based on the search mechanism). The access control anaehg@CAS) property requires that/ C 7V.

Surprisingly most enterprise search products in the maiketGoogle Enterprise [30], Windows Enterprise Sear¢h [9
IBM OmniFind [17], do not satisfy the ACAS principle. Thesmts treat search and access-control as two disjoint com-
ponents and can result in malicious users extracting upnaatd information using the search mechanism. In their
approach, a single system wide index is created for all um®dst is queried using traditional information retrievid)
techniques (thesearchcomponent). Finally the results (the list of files containguery keywords) are filtered based
on access privileges for the querying usacdess contrg! However, the ordering and relevance score of results, typ
ically based on Term-Frequency-Inverse-Document-Fnequ€T FIDF) measures [33], reveal information that viotate
the ACAS property. Intuitively, since the index was credbaded on the lexicon and documents of the complete system,
simple post-processing of results would fail to adequatedyect system-wide statistics against carefully crafiitaicks,
for example, obtaining the number of files that contain thedt#fbankruptcy even when the attacker does not have access
to all files containing that keyword. We describe this issné demonstrate an example attacki3.

A technique that satisfies ACAS can be found in common desd@apch products like Google Desktop [6] and Yahoo
Desktop [7]. For multiple users on the desktop, these taglate distinct indices for each user on the system, with each
user index including all files accessible to that user ébeess-contratomponent) and then querying only that index for
the user (thesearchcomponent). While this satisfies ACAS, it is highly inefficteas it requires every shared file to be
indexed multiple times in the indices of each user that caesgthat file. Since in modern enterprises, a large amount
of data is shared by many users, this approach not only cgusater disk consumption (due to increased index size),
but the overheads of updating the indices when a file charigesbacome significant. In addition, the desktop search
products incur high overheads to handle dynamism in acaegsot and do not scale well with the number of users and
the number of files in the filesystem.

In this paper, we propose a distributed enterprise seactinigue that couples search and access-control into adinifie
framework to provide secure and efficient search. We use altoiding block called access control barrel (ACB) that
ensures access control aware search. An ACB is a set of fdéhdlve the same access privileges for users and groups
in the system and by dividifighe filesystem data into independent ACBs, we can ensuréithatdex for a user is only
derived from the data accessible to that user in the unaerfliesystem, thus satisfying the ACAS requirement.

The ACB-based approach is also space and update efficieheasures that each file is included in only a single
index. Thisminimalityproperty makes it especially suitable for shared multiesg¢erprise environments. In addition, the
ACB-based approach elegantly accommodates dynamism @sscontrol while incurring nearly zero cost overheads.

1This is a logical division and no physical data movement odification is required.

Further, by dividing data into independent barrels, datkexing can be distributed to multiple machines for parallel
processing. This can significantly reduce total indexingeti We also describe two optimization techniques that ensur
the scalability of our approach even in complex enterpnisgérenments.

Besides security and efficiency, the ACB approach has vaother benefits in its design. It uses distributed informa-
tion retrieval [20], which is well suited to searching odata islands enterprise data stored under different administra-
tive domains, most notably PCs and laptops. This is an eslhepressing concern in modern enterprises. Finally,gisin
off-the-shelf cryptographic mechanisms our approach een &e extended to support secure search in storage service
provider (SSP) environments, where data and indices aredsé an external (untrusted) service provider. ACBs plevi
an efficient mechanism for key management in this envirorinwa describe this scheme§s.2.

In summary this paper makes the following contributions:

e Access Control Aware Enterprise Searchln this paper, we have formally characterized the accessadqrob-
lem in enterprise search. We also propose a new Access CBatrel (ACB) concept that prevents any information
leaks to unauthorized users through search.

e Space and Update EfficiencyBy ensuring that a file is included in a single index, our @agh provides superior
space and update efficiency. Further, we propose two otinizs that provide a mechanism to ensure scalability
of our approach even in complex settings.

e Distributed Enterprise Search Architecture: In contrast to existing centralized approaches, we haveldped
a distributed architecture that parallelizes indexing sedrch for better performance and is thus better suited to
modern enterprises with numerous underutilized machines.

e Design Extensions We also describe two extensions of our ACB-based dis&itbaiesign - seamless integration
with desktop search and secure search for untrusted sgmaealer index hosting.

The rest of the paper is organized as follows.§M describe relevant details of enterprise storage amthite and
discuss current search approaches and their limitatiors.d&¥cribe the design of our approactt® We present a
detailed evaluation of our approachgih. We discuss various design benefits of our approagb.ix In§6, we describe
the related work in this area. Finally, we concludg

2 Background and Limitation of Existing Approaches

In this section, we cover necessary background of the maieenprise architecture, that serves as the model envenonhm
assumed in this paper. Later, we will discuss the limitatiohexisting enterprise search techniques in this model.

2.1 Modern Enterprise Architecture

Modern enterprises today are highly data-rich environsaiith storage capacities running into multiple terabyted a
even petabytes in many cases. This data is stored intodiffeepositories like databases, data warehouses, wedrserv
or enterprise file servers. As pointed earlier, a majorithaf data resides in flat filesystems [12] and we focus on imgex
and search of such filesystem repositories in this paper.

users —=29"__, Enterprise

Machine

Networked storage

Machine

Login "
Users —=29" | Enterprise @

Regularly backed-up local storage

Login
User g R Perso_nal
Machine

Private local storage

Figure 1: Enterprise Storage Architecture

A typical enterprise storage infrastructure has multipiedervers, most commonly accessed via *nix based Network
File System (NFS) or Windows based Common Internet FileeéBy$CIFS) protocols. These file servers could be directly
attached to storage systems (Network Attached Storage @xgtfitecture as shown in Figure-1) or through a Storage Area
Network (SAN). In the context of our work, we only require axamon global namespat@hich is widely supported in
both architectures.

On the client side, this namespace is accessed by many atwayected (and mostly wired) enterprise machines.
These could be user workstations, shared laboratory meslin application servers. Most of these machines have
networked storage (for example, NFS mounted). Some of thesghines might also have some local storage that is
regularly backed up to global file servers. We call such meatenterprise machinesince they are under administrative
control and thus can be potentially leveraged for indeximgj search tasks.

Other prominent client category consists of single-usesq®al machines like laptopd.aptopsare notorious for
hiding data from administrative control; with intermitteasonnectivity and frequent suspend-resume, there aregubare
backups of their local storage. We call such cliggessonal machineand consider them to be unavailable for adminis-
trative usage. There is still substantial interest in thiétylbo index and search over their local data (as evidentdnent
desktop search initiatives [6, 7, 34]). However, most aureystems offer isolated products for desktop search tat ¢
not be seamlessly integrated withultiuserenterprise search, an issue we attempt to resolve usingsitibdted search
approach.

Lately, with increased costs of storage management, eigesphave increasingly looked at using outsourced stor-
age services [8, 25]. In such environments, enterpriseidaimred remotely (typically encrypted) at a storage servi
provider’s location. Keyword based search on this dataémewore important as data access is much slower (thus cannot
do a brute-forcgr ep [22] like search). Only downloading relevant content isremically motivated as well since in
the revenue models for such services, enterprises typigail a charge on the number of bytes accessed. For example,
the Amazon S3 service [31] costs US $0.20 for each GB of datasaed. Outsourcing of search indices along with the
data seems a natural choice to provide a single point of actlsvever, current enterprise approaches [30, 17, 9, 3] can
not support this as they need a completely trusted searebrgerdo access control at query runtime. In contast, bygusin

2A global namespace allows enterprise machines to view a eontfinectory structure irrespective of where data is phafisicstored.

a novel access control barrel based primitive, our approantbe extended to support secure search over enterprése dat
even in untrusted service provider environments. We disthis in§5.2.

2.2 Access Control

In an enterprise environment, not all data is accessibld tesars. Access to data is controlled through the undeglyin
filesystem’s access control mechanisms. For example, N&Sdilvers follow the UNIX permissions model (described
below) and Windows-based file servers follow the Windowspssions model. In this work, because of its widespread
deployment and easier availability for experimentatioause the UNIX based NFS architecture (also supported by othe
*nix flavors like Linux, FreeBSD). However, as it will be ewdt later, our work can be extended for Windows based
access control models as well.

In UNIX access control model [27] each filesystem object (fileectory’) has an associated owner who controls the
access to that object. This access can be granted to theseslaf users: (Dwner, (2) group, and (3)others Theowner
is the object owner, thgroupis the user group the owner belongs to (for example, a useipgoy students, faculty) and
othersare all users except the owner and the group. Permissiomsuftiple users and multiple groups can be set using
POSIX Access Control Lists (ACLs) [14]. Further, the grahéecess is of three types:

e Read: For a file, this means that a user can read a file. For a direc¢tosyallows a user to list its contents.

e Write: For afile, the write permission allows a user to write to itr Balirectory, it allows a user to create, remove
or rename directory contents.

e eXecute:For afile, the execute permissions allows running the file®gram. For directories, it allows users to
traverse that directory and if they know the names of dimyotontents (due to read permissions or some out-of-
band information exchange), they can then access thos@sctodies/files.

In context of indexing and search, there is a need for a natf@earchability. Clearlyread permissions on a file
allow it to be searched anairite permissions do not influence searchability (and are ignoréite process). Thexecute
permissions for directories have a non-obvious influenceaamchability. Users witkxecute-but-not-reagermissions
on a directory can access its contents only if they know tleetemames of subdirectories or files. As this out-of-band
notion can not be adequately and safely captured, consistémthe *nix f i nd/ gr ep/ sl ocat e [22] paradigms, we
consider such directories as being not searchable. Formadrchability is defined as:

Definition: Searchability —A file, F' is searchableby useru; (or group g,,,) if there existreadand executepermissions
on the path leading té’ andreadpermissions oi¥’, for u; (or g,,).
2.3 Limitations of Existing Approaches

In this section, we explore existing desktop and enterpésech solutions- the two popular options for integrating
access control and analyze their pros and cons from seeurityerformance perspectives.

3We ignore symbolic links in this work and the filesdirectsribey point to, are handled through their absolute filesysgtath.

Most desktop search products like Google Desktop [6], Yabesktop [7] and MSN Toolbar [34] integrate access
control during indexing. Each user has a separate indexctmssible files with duplication for files that are sharedwit
other users. This ensures that each user has an index cfeatedata that was accessible to that user, satisfying the
ACAS requirement. In addition, there are no additionalg€asjuery runtime for access control based filtering. Howeve
this causeswdditionaldisk consumption o " (n, — 1) * I; wheren; is the number of users accessing fleand; is
size of index forF;. Additionally, each update té; causes updates tg indices. In an enterprise, wheng could be in
hundreds or thousands, such costs can be prohibitive.

The enterprise search products like Google EnterprisecB480], Coveo Enterprise Search [29] and IBM Om-
niFind [17] integrate access control at query runtime byting a single system-wide index and filtering results based
access privileges of the querying user. This provides maxirapace and update efficiency. However, querying will be
more expensive, especially when access permissions feirikhe query results are obtained at runtime, which require
disk I/O for inode lookups. Also importantly, these produdb not satisfy the ACAS requirement and by carefully craft-
ing queries, a user can obtain information about the unihgrfjlesystem which could not have been inferred otherwise.
Below, we describe an example attack that can determinethertumber of files containing a particular keyword even
when the attacker does not have access to all files contaimédceyword. For example, an attacker could monitor the
enterprise filesystem to see the number of files containiagvird ‘bankruptcy. A sudden increase in the number of
such files could alert him/her to sell off company stock, peatly amounting to insider trading. This violates the AGA
property, as this information could not have been deterthingethe attacker through the underlying filesystem directly

We assume that the relevance score of a resulffiie computed by the standard TFIDF measure

Tel(fl) = Z Wi * wQ; (1)
tjeQ
wheret; are the terms in the quety andw;; is the normalized weight of tery in f; given by

0;5 * log (%)

J

St (oo ()

whereo;; is the number of occurrences of tetprin f;, | V| is the total number of files in the system and is the number

of files that contairt;. wq; is defined similarly.

The attacker, Alice, wishes to know the number of documératis¢ontain the termty, (e.g. ‘bankruptcy). The attack
works in three steps. First, Alice picks twmiquetermst, t> (no file contains these terms) and creates two new fflgs:
containing termgty, t2} and f, containing termgt., t,}. Note that after creating the fileg,1=012=022=02,=1, 14, =1
andn.,=2. In the second step, she queries for tefrand from (1) and (2) she can calcul&ié|

1

— 1 _
N =2 VT (3)

In the final step, Alice queries for tertp and calculates,, from (1), (2), (3). This completes the attack.

1 11>
1 _ 1 _
ng, = 2V eI - |N|< V7l !

Such attacks are possible on most TFIDF based measuredimgline popular measure Okapi BM25 [28]. Addi-
tionally, even when relevance scores are not returned aoptre result, good approximations g, can be obtained
by exploiting ordering of the results [3]. A recent effor] [Bscribes an ACAS compliant approach that uses a complex
guery transformation at runtime for access control. Addiily, it requires to maintain access control lists forfidis
in the filesystem in-memory which is extremely inefficient farge enterprise environments. Also, as we discuss in late
sections, our distributed search approach provides vadesign benefits.

3 Distributed Secure Enterprise Search

Most of the desktop search products are secure but ineffitieanterprise search, whereas enterprise search psoalect
insecure in terms of ACAS. Bearing these issues in mind, veerilee the design and implementation of our distributed
approach to enterprise search based on the concept of axpdssl barrels (ACBs), which provides both security and
efficiency.

3.1 Design Overview

The main design principle of our approach is to efficienthggrate access control into the indexing phase such that the
indices used to respond to a user’s query are derived onty fr@ data accessible to that user. This will ensure that we
satisfy the ACAS requirement and do not have to do accessatduatsed filtering on query results. We accomplish this
goal with a pre-processing step that (a) constructs a usesadierarchy for the users and user groups in the system
(83.1.2) and (b) logically divides data into access-privégdpase@ccess control barrels (ACBYVe first provide a brief
description of ACBs and then describe in detail how they workonjunction with the user access hierarchy.

3.1.1 Access Control Barrels

An ACB is a set of files that share common searchability acpagieges (as defined i§2.2). That is, all files contained
within an access control barrel can be accessed (and thichedaby the same set of users and user groups. For example,
one barrel could contain files accessible to us#yand another for a user grosfudents Intuitively, the idea of barrels

is that if we can efficiently create collections of files basedheir access privileges, to provide secure search tora use
we can pick the collections that this user has access to anel tfe query using only those indices.

This might sound similar to the index-per-user (IPU) depldearch approaches [6, 7, 34] where all files accessible
to a user are grouped into a single collection and files aittes® multiple users are duplicated in their collections.
ACBs avoid their inefficiencies by following an additionaat property ominimality. This property ensures that each
file can be uniquely mapped to a single barrel, avoiding dagilhg them in multiple collections (we defer the discus-
sion of implementing such minimal ACBs to the next sectiddpw, files accessible to multiple users are grouped into
sharedcollections and secure search for a user combines the psmese collections with these shared collections using
distributed information retrieval [20]. This is efficiepthccomplished using the user access hierarchy which isidedc
next. We will also compare the ACB based approach with thexraker-user approach in detaila.1.

3.1.2 User Access Hierarchy

The user access hierarchy data structure has two main téekgrovide a mechanism to map files to access control
barrels, and (2) provide techniques to efficiently deteevatl barrels that contain files searchable by a user. In what
follows, we first give a high level description of the datausture and later detail how the hierarchy is constructed for
*nix permissions model.

For most access control models a user is associated witlypes bf credentials: (i) a unique user identifieid), and
(i) one or more group identifiergy{d) corresponding to the user’s group memberships. We représe set of all such
user and group credentials as a directed acyclic graphdcatteess Credentials Graph diCG in short. For example,
there could be a node for credentidll;,;, Or gidsivaents- EVEry nodéy; in this graph is associated with a corresponding
barrel ACB;. Our example nodesidy.p, gidsiuaents are associated with barrels containing files with searditabi
privileges to useboband groupstudentgespectively. Now, mapping files to barrels is equivalerdagsigning files to a
node inACG (the first task mentioned above).

For a node}, (associated with theid credential of a usex), let V. denote the set of all nodes in tb#ectedgraph
ACG that are reachable from the vert&€g. Our construction of the grapdCG will ensure that a filef' is searchable
for a usery if and only if F' is assigned to some vertexc V.. With this property, the results for useis query can be
computed by combining indices from barrels associated mattes inV,*. The sefl,* can be efficiently determined using
a simple depth or breadth first search on the grapitz. This accomplishes the second task of the user accessdhigrar
data structure.

Next, we explain in detail the process of constructing trepbrAC'G with aforementioned properties from *nix-like
user credentials. In a *nix-like access control model aentid! C' can be expressed in Backus Naur Form (BNF) as:

C

root | all | P

P = wid|gid| PAP|PVP (I)

Note thatroot is a special user with super-user privileges afidndicates a credential for all users and groups. We need
the vV operator on the principles to handle POSIX Access ContrsisLfi14] that allow associating multiple users and
groups with a fileF’ (as opposed to the usuglwner, group, others} model (see Sectio§R.2)). We need the. operator

on the principles to handle the implicit conjunction op&nathat occurs while traversing the directory hierarctadiag

to file F' (for example, directory)X/ Y whereX has access only for user grosfudentsandY has access only for user
groupgrad-studentsonly users that belong to both groups can access data ¥jdéfe define an implication operator
= which specifies if one credential cdominateanother. For exampl&u, root = u says thatroot can access data that
any other user can.

Permissions on a file can also be expressed based on a catdefitied as above. For example, for a filehat
allows access to usets y and groupz, we say that it has a credenti@dkr={uid, V uid, V gid.} and is interpreted to
say that access is allowed to users who have a credentiagdh@hates this file’s credential (usehas access tf' since
uid, = Cp). Now, if we can create a barrel for each such file credentigthé system, we can uniquely map a file to a
barrel, achieving ACB minimality. While theoretically thetal number of barrels (one for each possible access dontro
setting, thus exponential in number of users and groupshearery large, practically, this is hardly the case as many
files in the system share common file credentials. Otherestudave also made similar observations, for example, the

filegroups concept of Plutus [18] uses this to ease key managgfor encrypted data storage. Regardles§3ig, we
will describe two optimization techniques that address platential scalability issue.

Finally, we construct the graphC'G as follows. First, the set of vertices and edges are irggaliby adding vertices
for all user and group credentials and adding edges for thglsi= relationshipsroot = u Vu € U; u = g Vg € G(u);
for any groupy, g = all, whereG(u) denotes the set of all groups to which the uséelongs to. Formally,

Vace = {‘/roota Vall} U {Vu | Yu € U} U {Vg | \V/g S G}
EACG = {‘/;oot_’vu |VUEU}U {Vu—>Vq |VU€U,VQEG(U)}U {Vg_>vall |VgEG}

where— indicates a directed edge in the graph.

Next, thev or A nodes are added when we encounter files with such crederiiatsis done during the pre-processing
step while assigning files to their appropriate barrels éssdbed ir§3.3). For each such file, we insert a new verigx
for the file’s credential’. Then, we find the set of all vertices whose credentials matlindominate the new credential
C (say,minDom/(C)) and for every such verteX; € minDom(C), we add an edge from vertékto V=. Note that this
guarantees that the vert& is reachable from all vertices that have a dominating crealeby the transitive nature of
the — operator on the grapAC'G. Similarly, we find the set of all vertices whose credentiaks maximally submissive
to the new credential’ (say,maxSub(C)). For every such maximally submissive credentiak maxzSub(C), we add
an edge from the verteiX- to V. Additionally, we remove redundant edges between vertités € minDom(C) and
Vo € maxSub(C) if V, is now reachable fromy; via the new verteX. Formally, it can be represented as:

Dom(C) = {Vo |C'= C}
minDom(C) = {V € Dom(C) A—3V’ € Dom(C),V € Dom(V')}
Sub(C) = {Vo |C=C"}
mazSub(C) = {V € Sub(C) A -3V’ € Sub(C),V € Sub(V')}
FEace = FEaccU{V = Vo |VV € minDom(C)} U{Ve — V | VV € maxSub(C)}
Eace = Eace—{Vi — Vo |VW, Vo, Vi € minDom(C) A Va € maxSub(C) AVi — C € Eaca N

C — Vs € Exca}

Using this access hierarchy graph, we can map all files to dipgropriate barrels and also identify barrels searchable
by a particular user (equivalent to findifg} — a simple depth first search operation4@'G).

3.1.3 Dynamic access Control

In this section we study the effect of dynamic access copibities on the IPU and the ACB approach. In this section
we the effect of two types of access control updates: addmgwagroup to a user and adding a navgroup to a file.

In the ACB approach adding a new grogpo a useru just requires a new edge to be added from the vériegto the
vertexV incurring nearly zero cost. On the other hand, in the IPU apgin addition of a new group makes several files
which were previously inaccessible to usdnbecomes accessible now. Now, the indices of all such filed tteke added

to useru’s search index and thus incurs very high cost. In additibe,ihdexing mechanism must examine all the files
in the filesystem to determine which files are now newly adbésgor inaccessible if a group membership is removed)

to useru, thereby incurring heavy i-node lookup costs. Clearlys thrgely limits the scalability of the IPU approach in
large filesystems.

Next, we study the effect of adding or removing.agroup to a file’s access control expression. Adding or rangv
a V-user to a file's access control expression follows a venyilainprocedure. LetB(f) denote the access control
expression for filef. When a newA-groupg is added the new expressidti(f) = B(f) A g. In the ACB approach, we
first check if the verteX’s, (1) exists in the user access hierarchy; if it does not exist waterthe vertex and add edges
to its parents and children vertices in the user hierarcimgn] we remove the index for filg¢ from V(4 and add it to
Vs (). Additionally, if V(s has no files associated with it, it is deleted and the edgeamreopriate modified. Note
that this operation involves only fast and efficient openagion the ACG and only one file index copy. On the other hand,
in the IPU approach when a newwgroupg is added to a filef, a large number of users that could previously access file
f can no longer access it. Similarly, whemagroupg is removed from a filef, then a large number of users who were
previously unable to access fifeare permitted to access it. In addition, the indexing megmamust examine all the
users in the filesystem to determine which users are newiyigted (or denied) access to the fife

3.1.4 ACB Minimality

In this section, we formally state the minimality properaisfied by our ACB construction in Section 3.1.1. We use this
claim 3.1 in§3.2 to present optimization techniques on our ACB approach.

Claim 3.1. It is impossible to reduce the number of ACBs without eithglidating files in barrel indices or violating
the ACAS property.

Proof. We can prove this by a simple contradiction argument. AE1B’ denote a set of access control barrels such that
the number of barrels idC B’ is smaller thardC' B and it contains exactly one copy of each file in a barrel indekia
respects the ACAS property. Singe”' B’ has smaller number of barrels, there exists a bafrelAC B’ such that it has
two files f1, f2 € b’, wheref; and f> belong to two distinct barrels andbs in AC B (by pigeon hole principle). Since
f1 andfs are in different barrels idlC B, the files must have different access control expressioescé] there may exist
a useru such that: can access only filg; but not file f5.

Now, for the file f; to be searchable by user there has to be some barbel- in AC B’ such thatf; € bar and the
barrelbar is reachable from the vertéX, on the ACG. Since there is only one copy of the file inggxn ACB’, the
barrelb’ must be reachable frofvi, on the ACG forAC'B’. Since the barrdl is reachable fron¥,, all the files in the
barrelt’ must be accessible to the userClearly, allowing the uset to search filef, violates the ACAS property. Thus,
in order to reduce the number of ACBs, we have to allow eithigdidation of files indices in barrel or compromising the
ACAS property. O

3.1.5 Bounds on the Number of Barrels

In this section, we present theoretical bounds on the tatalber of barrels and the average number of barrels accessibl
to a user. Since a user’s index is composed of all barrelstiieatiser can access, it is important that the number of
barrels per user is reasonable. Let us for the sake of siityptionsider onlyA-group based access control expressions
for files; the arguments for-user based access control expressions is very similarBL£} denote the access control

10

expression on filg. Let the number of literals{-groups) inB(f) be chosen from the range {1y f) using some arbitrary
distribution.

First, we note that the maximum number of ACBs is bounded byntinimum of the number of fileg£'|) and the
number ofpossibleaccess control expressions. Note that we create a new AGBfdinére is at least one file that belongs
to that barrel. In the worst case, when every file belongs tiffereint barrel the number of ACBs jg’'|. The number
of possible access control expressions for files is given@?ﬁ{ IGl;, where¥C,, denotes the number of ways of
choosingz balls fromy non-identical balls. For example,@ = {¢1, g2} the set of possible access control expressions
are{g1, g2, g1 A g2}. If ngf is O(1), then the number of ACBs is only polynomial j&|. However, the worst case
bound for the number of ACBs isiin(| F|, 2/¢1). A large number of ACBs incur only a marginally larger useraichy
graph maintenance cost. Using a simple depth first searcB)BI§orithm we can limit the effort required to search any
vertex/edge in this graph t0(|U]| + |G|). In addition, one can build a hash table on top of the grapa staticture to
reduce the search time @(1).

The runtime overhead and the quality of distributed infaioraretrieval algorithms is determined by the number
of barrels that need to be searched to handle a user’s seaech. gThe number of ACBs per user is bounded by:
Z?j{ IGWIC; (note that C,, = 0 if y < x), whereG(u) denotes the group membership for usefypically, |G (u)| <
|G| andngf < |G| and thus, the number of ACBs per user will be very small antiénviorst case bounded BYf*(*)!,
Note that bound on the number of ACBs per user (unlike the Bamthe total number of ACBs) is independentGf
and thus scales better.

3.2 Scalability Optimizations

In most real enterprise environments the number of baresuper is typically very small (6—8 on average in our ob-
servations for two enterprise filesystems; similar obs@mavas made in [18]). However, theoretically this numiser i
exponential in the number of users and user groups. In tictiosewe describe two optimization techniques that can
preserve the scalability of our approach even in such rasélésetups. We first start with two important properties of
our approach that help design the two optimizations.

We base out optimizations based on our ACB minimality clairh. ur first optimization trades off the number
of barrels with the number of copies of a file index and the sddechnique trades off the number of barrels while
allowing controlled violation of the ACAS property. Bothcteniques provide a control mechanism for administrators to
choose appropriate trade-offs. The optimizations transthe access control graph (ACG) with the goal of decreasing
the number of ACBs. However, such transformations mustgpvesearchability that is, if a filef is accessible to user
then the filef must be searchable. Using ACBs this implies that if afile accessible to user, then in any transformed
ACG, the file f belongs to some barrélsuch that is reachable fronV,, on the ACG § € V;}). We call this property
reachabilityon the ACG.

3.2.1 File Index Duplication

In this section we propose algorithms to reduce the numbACHEs and satisfy the ACAS property at the cost of main-
taining duplicate file indices. Let us consider any veifitgxin the ACG such that the credenti@l+ v, for any usemn €

11

U. One can eliminate the vertd% from the ACG (thereby decreasing the total number of balrglsne) by adding all
the file indices inV to every vertexy € minDom(V¢), whereminDom is defined in Equation 1. Note thatdf # u,
thenminDom (V) # @, that is, there exists at least one vertex minDom (V). If Vi is reachable from some vertex
V.. (for useru andC # u) then at least one vertexe minDom/(V) is reachable fron¥,,; thus the above construction
satisfies reachability on the ACG and thus preserves sdalithaThe construction preserves the ACAS property since
the credentiallomC associated with any vertexe minDom(V¢) dominates the credentiél (domC = C). Hence
any usen that satisfies the credenti@édmC' also satisfies the credenti@l Hence, the above construction eliminates the
vertexV¢ at the cost of retainingninDom (V¢)| copies of file indices for each file ivic..

In our implementation we define a tuneable parametgrf — the minimum number of files per barrel. Our ACB
construction in Section 3.1.1 achievesn f = 1. If a largermin f is chosen the number of barrels decreases at the cost
of more duplication of files indices. Given the parameteérn f we present a greedy algorithm to reduce the number of
barrels as follows. (i) Sort the barrels in increasing omtetheir size (number of files in the barré}) by, - - - by. (i) Pick
the smallest such thab; < minf and the credential associated with babgas not equal ta: for any usew € U. If there
is no such barrel the procedure terminates. (iii) Elimirtagebarreb, by suitably replicating all its file indices. Note that
this may change the size of other barrels; so we resort thelbarccording to their size and repeat the procedure. One
can use an induction on the number of vertices eliminatedtamdrguments described above to show that this procedure
is guaranteed to reduce the number of ACBs without compriamtee ACAS property. Observe that settimgn f = oo
the above procedure would terminate with thié barrels where each barri] is the per-user index as generated by the
IPU algorithm. This ensures that for any finitein f, our algorithm would have fewer file index duplicates for it/ f
when compared to the IPU approach.

3.2.2 Access Control Optimization

Our second technique reduces the number of ACBs while maingaonly one copy of each file index at the cost of
violating the ACAS property. Let us consider any veriéx such thatC' # all. One can eliminate the verté% from

the ACG by adding all the file indices Vi- to some vertex € maxSub(Ve), wheremazSub is defined in Equation

1. Note that ifC # all, thenmaxzSub(Ve) # @, that is, there exists at least one vertex maxzSub(Ve). If Vi is
reachable from some vert&, (for useru) then all vertice® € maxSub(V¢) is reachable fron,,; thus our construction
satisfies reachability on the ACG and thus preserves sdaitithaHowever, there may exist a usef such that a vertex

v € maxSub(Ve) is reachable fronV,, but not the verteX¥. This is possible because the credentialominates a
credentialsubC' associated with vertex € maxSub(V¢). Hence, the above construction maintains exactly one cbpy o
every file index, but may violate the ACAS property. Unlike tsingle-index approach that violates the ACAS property
for all the files in the file system, our approach allows us tetem the number of such violations.

In our implementation we define a tuneable paramsetét f — the minimum number of files per barrel. Given
the parameteminf we present a greedy algorithm to reduce the number of baasefellows. (i) Sort the barrels in
increasing order on their size (number of files in the baigl)y, - - - by. (ii) Pick the smallest such that; < minf
and the credential associated with babrak not equal tauli. If there exists no such barrel the procedure terminatids. (i
Eliminate the barreb;. This can be achieved by copying the file indice$iro at least one vertex € maxzSub(V¢),
where(C' is the credential associated with barbgl If |mazSub(Ve)| > 1, one can randomly pick a vertexfrom

12

mazSub(Ve). However, we heuristically pick a vertexsuch that it satisfies th@in f requirement while incurring only
a small number of access control violations. (iv) Elimingta barrel may have changed the size of other barrels; so we
resort the barrels according to their size and repeat theegroe.

Ouir first heuristic picks the vertexthat has the smallest barrel associated with it. This hieeidtearly favors our
goal of achieving at leastin f files per barrel. Our second heuristic attempts to reducadher of files violating the
ACAS property by picking a vertexwhose credential is the legsbpular. For example, let us suppose that the credential
associated withr is aA-groupcred = gi, A gi, A -+ A gi,,. We measure the popularity of the credentiald aspop(cred)
= H§:1 pop(gi;), where popularity of a group is determined by the number of members in the group (norexhlizy
the total number of usdt/|). Similarly, we measure the popularity ofauser credentiadred = u;, V u;, V -+ V u;,
aspop(cred) = I_le\ Clearly, the less popular a credentiaéd is, the smaller number of users that satigfyd; hence,
fewer users can reach the verteftom V,,. Note that every user can that reaclyo can reachy € maxSub(Ve); hence
the approach does not compromise on searchability. Thiapp attempts to minimize the number of usérthat can
reachv € maxSub(Ve), but not the verteX/ itself, thereby reducing the number of ACAS violations. &te that
settingmin f = co this algorithm reduces the single index approach and thosshny user to search over all the files
in the enterprise file system. Similar to the single indexrapph, we incorporate post processing to suppress fileathat
inaccessible to a usat However, as shown in Section 2.3 this algorithm is stiliharlble to statistical inference attacks.
Nonetheless, our heuristics hopes to minimize the numbi@esfthat are susceptible to such inference attacks.

These two optimizations can be used to improve the scalabilihe system in rare environments where the variation
in access control settings increases the number of ACBssger Burther, we allow an administrator to make an inteflige
decision on the choice of the optimization strategy. Fotainse, files with high update rates may use only the second
optimization technique. This ensures that we have only @py of the file index and thus keeps the update costs low.
Similarly, files with lot of critical information may use onthe first optimization technique. This ensures that theee a
no ACAS violations on the critical file data. In the followirsgction, we integrate our ACB based technique with the
architecture of our indexing and search system.

3.3 Architecture and System Implementation

So far, we have introduced the concept of access contrablsghCBs) and the user access hierarchy as a tool to (a)
efficiently map files to ACBs and (b) determine accessible A@B a querying user. In this section, we will explain the
overall architecture of our indexing and search system amditffits into the enterprise infrastructure.

Figure-2 shows the architecture. One enterprise machiokdsen as a global orchestrdtand is responsible for
managing the distributed environment. We will explain itgigus components in the next subsections. All other par-
ticipating enterprise machines run a thin client versiothef system and are responsible for barrel indexing and query
processing for local users. Finally, the personal machioetside admin control) that intend to integrate their latzsk-
top search with enterprise search run a local orchestrgtortdexplained later).

4t is possible to develop a decentralized orchestrator 8yibuting responsibilities of barrels to machines, eygusing distributed hash tables.

13

Global Orchestrator

. 4
Live System G
Indices {\ccess Events Index \) C
Hierarchy Master L ; o
State J{_ Handler , \ o File
/ ! / Server
’ 1 B N~———
— ¥ '| A ——
. In-memory '
Login . ! L
Users ———| partial Indexer L —
index / . Y
/! File —
Enterprise machines _’ Server
-

TR
Login In-memory
Users ——— partial Indexer > :
index H
File
Local In—mimosy Local Server -
Orchestrator || “©™PM€% | | 1 dexer Index
index Barrels)

Personal machine with local storage

mO>»UVOMED>Z

Figure 2: Distributed Indexing and Search
3.3.1 Pre-processing: Creating ACBs

As part of the pre-processing step, we first create the bBSIG from the user and user groups in the system as described
in Equation-(ll) above. For *nix systems user and grouptimfation is obtained fronetc/passwénd/etc/group Next,

we initiate a filesystem traversal for all data that needsstindexed. This is required for mapping files to ACBs (repre-
sented by a vertex iIlC'G). During the traversal, we associate each file with a verigké directeddC'G graph based

on its searchability privileges. This mapping is done by ifigdhe vertex that has the same credential as the file (e.g.
Vioo fOr credentialuidyp). If the file has av/A credential, a new node is added to the access hierarchy arfiettis
mapped to that node. At the end of this filesystem traversahawe all barrels in the system and the list of files that are
contained in each such barrel. These lists are written tdoaeel files, that arsecurelystored in the enterprise global
namespace with access privileges only to the superuses.sidied file is the embodiment of our abstract ACB concept.
This completes the pre-processing step and is usually peei by a single enterprise machine — gih@bal orchestrator
which stores the user access hierarchy.

3.3.2 Indexing

After creating ACBs, the next step is to index documents farhebarrel. These ACBs can be indexed independently
unlike the single index approach where the computation dDFFstatistics requires centralized indexing of data. The
index mastein the global orchestrator distributes this barrel indgxiask to participating enterprise machines. As the
barrels are stored in a global namespace and accessibletderprise machines, the orchestrator only needs to pass t
barrel IDs to these machines. The orchestrator can eadilyiap available resources by doing an intelligent disttiitin
of barrels to machines (ensuring no single machine is olealyed). As we show later i#, this indexing task distribution
provides excellent savings.

On receiving commands from the index master, ithlexercomponent of enterprise machine agents retrieve the

barrels from the global namespace and start indexing doctsmAn index is typically comprised of: (a) vocabulary for

14

words that appear in the documents and (b) a words to filenaappimg along with their TFIDF statistics used later for
ranking. Once indexed, these indices are stored back ietgltthal namespace. Our access privileges based design of
barrels provides a natural way of storing indices secumelthis namespace. The index files are stored with the same
privilege as the files contained in that barrel (all files inaarbl have the same privilegés)This allows only the users
that had access to files of a barrel (and thus can search tintbagbarrel) to obtain these indices and provides a natural
security mechanism for storing these indices using the lyidg filesystem access control.

3.3.3 Search

In our approach, querying and search can also be handledigirdoagted fashion. When a user logs into an enterprise
machine, the agent on that machine retrieves the indicésatbaaccessible to that user, from the global hamespace
and caches them in memory. Now whenever a user queries thgises, search can be handled completely in a local
environment, saving on (a) query response time and (b) resaaquirements of a centralized search server. Note that
all available enterprise search products today [30, 173RBave to use a highly capable search server (or a cluster) in
order to deal with enterprise environments and queryingydinvolves a network hop. In contrast, by integrating asce
control in a distributed fashion, we can reduce such remergs. However, our approach has an overhead of combining
the multiple barrel indices using distributed informatretrieval techniques. But unlike the centralized indexrapphes,
we do not have to perform any access control on query resdits experiments i§4 shows how these two factors tend
to balance out.

Please note that distributed search yields benefits whengigte machines have enough resources to handle its local
users indices. In situations where there are only a few prisermachines or all users log onto a single server, it would
be more efficient to use a central search server which carchéeld at the global orchestrator.

3.3.4 Handling Updates

In an enterprise environment, there will be regular upditekata files and access privileges to data and the systems need
to handle them appropriately. This task is handled by théallorchestrator which subscribes to all filesystem event
notifications using available tools like inotify [23]. Onaa event is received the orchestrator might need to makeusri
kinds of changes. Change of file content is handled at a peellmsis by requiring that barrel indices to be approplyat
modified (it usually does not require indexing the entirerélaagain). This event is common to all enterprise search
technigues and the ACB based approach does not incur awalitwerheads. In case of events when access permissions
are modified that impact searchability, a document mightinede removed from one barrel and added to another (most
indexers can handle this in an incremental manner as wedlijig it a low-cost event. Another filesystem event unique
to us is the case of user/group membership modification, ilctwbase the access hierarchy needsto be adjusted. A
user/group addition is handled by adding a new node andsporeling edges (as done during initial'G construction).
Group membership modification is handling by changing trgeedn the directed graph. Finally, a user/group deletion is
handled by removing the appropriate node and all edges ¢pimio or out of that node. The changes in groups and their
membership are infrequent events and corresponding épesatn AC'G are efficient.

5The (; V u;) barrels are handled by using POSIX ACLs fag (u ;) on the indices andgt, A g) are handled by keeping indices under directory
hierarchyX/ Y with X, Y having privileges fog, gn, respectively.

15

; it "'Index Size IPU:ACB’ —+—
Notation Description Default 1801 N ache Por User

|F| Number of Files 107 160 |
|U| Number of Users 10° 1407
120
|G| Number of User Groups 32 100 |
pop Group Popularity Zipf(1, ng) 80 1

ngu Number of Groups per User Zipf(2, 10)

ngf Number ofA-groups per File| Zipf(2, 4)) S —
0.5 1 15 2 25 3 35 4 45 5
nuf Number ofv-users per File | Zipf(2, 4) Number of Users (x1000)

Figure 3: Parameters Figure 4: Num Users

Note that an update could occur in a barrel that is in-membona of the enterprise machines. In order to handle
such scenarios, the orchestrator keeps state informaftiath such in-memory live indices and notifies the approgriat
enterprise machine to flush the cached barrel index in tis®t &ad reload it after it has been suitably updated.

4 Evaluation

In this section, we present a detailed evaluation of our@ggr. We compare our approach analytically with the other
SAC-compliant index-per-user approactyél. In§4.2 shows the effectiveness of our optimization algoritilescribed

in §3.2. In§4.3, we describe the datasets used in our indexing and equeexperiments§4.4 describes the indexing
experiments including barrels pre-processing @8 describes the querying and search related experimélhexper-
iments were done on a Pentium-IIl Linux machine with 512 MBNRAnNd all storage mounted via NFS. All numbers
below have been averaged over multiple runs.

4.1 Comparison with Index Per User Approach

In this section, we analytically compare the performanaksualability of the ACB approach against the index per user
(IPU) approach. For comparison purposes, we use synthatéc I'he key parameters in our data are summarized in
Table 4.1. We observe that the analysis is the same for ba@loups and/-users and thus consider omygroups in

this Section. We use Zipi(b) to denote a Zipf distribution with parameter= 1 that is truncated to the range, b).
Hence, we choosegu the number of groups a user is a member of using a Zipf distobwn the rang€2, 10); we then
choosengu groups from the sef using Zipf(1,|G|) and without replacements. Similary, we choagg the number of
A-groups per file using Zipf(2, 4); we then choasgf groups from the sef using Zipf(1,|G|). The access control rule
for the file is assumed to be anover all the chosen groups.

4.1.1 Static Access Control

In this section, we measure the number of ACBs and the nunfl?&€Bs per user. We also compare the ratio of the size
of indices maintained by the IPU and ACB approach. Figurdsodvs the scalability of our approach with the number of
usergU]|. In the IPU approach, the index size grows with the numbesefsiin the system, typically because more users
share a file. On the other hand, the ACB approach maintainglgxane copy of each file index and the total number

16

100000 1000

PY —+— PY —+—
'ACB’ —=—

50 T T y T
‘Index Size IPU:ACB’ —+—

45 + 'Num ACBs Per User’ —»— 10000

1000

100

Number of File Indices
Number of Users

10

1 1
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

4 5 6 7 8 9 10 Number of Groups per User Number of Groups per File
Number of Groups per Users

i Figure 6: Updating Group Membeérigure 7: Updating File Access Con-
Figure 5: Num Groups per User)
ship trol Expression
of barrels (and thus the average number of barrels per «wsiedependentf |U|. Figure 5 shows the scalability of our
approach witmgu the number of group memberships per usernés increases, so does the number of users that share a
file and thus the index size in the IPU approach. In the ACB eaqin, asigu increases it results only a marginal increase
in the number of ACBs per user.

One should observe that our approach maintains exactlyameaf index for each file. Hence, when a file is updated
at most one index needs to be modified. The IPU approach namntaultiple copies of each file index, one for every
user who is permitted to access that file. Hence, when a filpdated the IPU approach has to update several indices
(an average of 45.2 using default settings in Table 4.1etheincurring heavy disk access costs. In contrast the ACB

approach incurs a small overhead of using distributed IRt&wis to merge search results from a small number of barrels

4.1.2 Dynamic Access Control

In this section we study the effect of dynamic access copwbties on the IPU and the ACB approach using two types
of access control updates: adding a new group to a user amugaaldiewA-group to a file. As described 8.1.3 the
ACB approach requires a new edge from vergxfor useru) to a vertexV, (for groupg) to reflect this access control
update. In the IPU approach, adding a new group membershipser. may permit the user to access files that it could
previously not access. Now, the indices of all such files rteduke added to user's search index. Figure 6 shows the
number of file indices that need to be copied when a user geagded to a user assuming the user is already a member
of ngu groups. Note that the figure can also be interpreted as thé&wuai file indices that need to be removed from a
user's search index when a user that is already a membgr.of- 1 groups looses membership to one of its groups.
Next, we study the effect of adding or removing.a@roupg to a file’s access control expressiif). As described
in §3.1.3 the ACB approach requires only small manipulationtherACG to reflect this access control update and thus
incurs nearly zero cost. On the other hand, in the IPU appraden a new\-groupg is added to a filgf, a large number
of users that could previously access filean no longer access it. The IPU approach needs to updatedives for
all such users. Figure 7 shows the number of users whosehsedices need to be updated when a file's access control
expression is updated assuming the numbey-gfoups inB(f) isngf.

17

45

‘nach-random’ —<—
'nach-size’ —8— -
'nach-pop’ —6—

50 ! single-index’ —+— 40 |
45 + + + + + + 'achb-random’ —>— 35 1
20 08 | ‘ach-size’ —5—
: ‘ach-pop’ —e— 30 L
35
25

30
251 Index Size IPU' —— 20 ¢
‘Index Size ACB' —x— 15 |
20 | 'Num ACBs per User’ —&—
10
0.2 4 5L

15
10 -

5| 1 0

o 0 1 10 100 1000 10000 100000 le+06 1e+07

1 10 100 1000 10000 100000 le+06 1e+07 1 10 100 1000 10000 100000 le+06 1le+07 minf
minf minf

06 |

Num ACBs per User

04 |

Access Control Violations

. L . L . Figure 10: Optimization 1l: Num
Figure 8: Optimization | Figure 9: Optimization Il: Index Size

ACBs
4.2 Optimization Techniques

In this section, we show the effectivness of our optimizatiechniques in decreasing the number of barrels. Figure 8
shows the effectives of our first optimization techniquée firaserves the SAC property while maintaining multipleiesp

of each file index. We plot the tuneable parameteér. f, the mininum number of files per barrel, on the x-axis. As
described ir§3.2 our index size increases within f and slowly reaches the index size of the IPU approachasf —

|F'|. This shows the flexibility of our technique in reducing thamber of barrels while incurring significantly lower costs
than the IPU approach.

Figures 9 and 10 show the effectiveness of our second ogtiiniztechnique that maintains exactly one copy of every
file index while violating the SAC property for some files. Wavk evaluated the effectiveness of our algorithm using
three heuristics: andomchooses a vertexat random frommaxzSub(Vc), si ze picks the vertex € maxSub(V¢) that
has the least number of files, apalp picks the vertex € maxSub(V¢) that causes the least number of SAC violations.
Figures 9 and 10 show that popularity based approach pesfoest in terms of both minimizing the number of violations
and the number of ACBs. As describedsiB.2 the number of violations increases within f and finally equals that of
the single-index approach. This shows the flexibility of taghnique in reducing the number of barrels while violating
the SAC property for far fewer files than the single-indexrapgh.

4.3 Indexing and Search Datasets

The first data set, called T14m, is a publicly available cshsubcollection [16] of TREC Enterprise track (TREC
14) [35]. TREC 14 is a newly formed track specifically on eptése search and includes data from the World Wide Web
Consortium (W3C) enterprise filesystems. The T14m datdsmtacteristics are shown in Table-1. It includes emails
(lists), web pageswiww), wiki web pages€sw and people pagepéoplg. This dataset does not include any access
control information.

A significant portion of the efficacy of our approach dependsctual filesystem structure and access privileges in
the enterprise. In order to measure this, we collectedssitifrom a real multiuser *nix enterprise installatiorhage
characteristics are shown in Table-2. We collected anopgdndlirectory structure and access privileges informéton
339,466 files arranged in 23,741 directories and replicdiedtructure in our test environment. The T14m data was used
as content for the files (duplicating documents to fill all 385 files).

18

Scope| Docs Size Avg. Doc Size

lists 173,146 | 485 MB 2.9KB
wWww 45,975 | 1001 MB 23.8 KB
esw 19,605 80 MB 4.2 KB
people| 1,016 3 MB 3.1KB

Total | 239,742| 1569 MB 6.9 KB

Table 1: T14m dataset: Cleaned TREC 14 subcollections [16]

Number of users 926
Number of user groups 1203
Number of files 339,466
Number of dirs 23,741
Max depth of dir structure 23
Size of data 2.05GB
Number of barrels 2132
Max | Avg | Median
Barrels per user 25 6.31 4.26
21* | 5.78" 3.96"

Table 2: Real enterprise dataset characteristics. Bapalsiser statistics were also computed at a second enterpris
(shown by *)
4.4 Indexing Experiments

Indexing is perhaps the most important component of ourcgagr. It includes a pre-processing step that creates the use
access hierarchy and the access control barrels followadtoyal content indexing of the files contained in ACBs.
4.4.1 Pre-processing

As pre-processing performance is entirely dependent oeherprise infrastructure (users/groups and directancst
ture), we use the real enterprise dataset for these expasnikble-3 shows the evaluation of our implementation.

Task Performance

Access hierarchy creation 38.7 sec

Barrel creation 263.1 sec
Filesst at 'ed 202,446 (60%)
Dirsst at 'ed 14,059 (59%)

Table 3: Pre-processing performance for real enterpritesda

Creating access hierarchy for 926 users and 1203 user gtooks total of 38.7 seconds, which is a very small
fraction of the total indexing time. It took another 263.T de traverse the filesystem and create all ACBs. @ne
credential needed to be added to the access hierarchy dhanirg creation. Additionally only 60% of the filesystemere
needed to be traversed to create all barrels as in many edsigher level directory was mapped to a restrictive cradkent
(e.g. onlyuidy,, can access) in which case its contents are automaticallydambdthat barrel without deeper traversal.

19

4000 F
3500
3000
2500
2000
1500
1000
500
0 H L L L

0 50 100 150 200 250

Number of Files (x 1000)

Indexing Time (sec)

Figure 11: Indexing T14m dataset
Overall, these costs are only 10% of the distributed indpripproach and 6% of the centralized approach (Table-4).

4.4.2 Content Indexing

For indexing of documents, we used theow indexing and search component of the Bow Toolkit [24] depetbat
CMU. We modified the ranking algorithm of the toolkit to thesulibuted IR algorithm of [20]. For our experiments,
we considered two architectures: @gntralized Single Index (CSi)a centralized single index for the entire dataset
analogous to the available enterprise search profjuatsl (2)Barrel-based Distributed Indexing (BD¥our barrels
based distributed indexing approa@&@DI-m denotes the case whenmachines are used to index barrels in parallel.

Figure-11 shows the time to index different number of docutmef the T14m dataset ranging from 25K to 240K.
For BDI architectures, the documents were equally dividettvben the participating machines for indexing.

From the graph, CSI outperforms the BDI approaches whenuhgber of documents is small. This occurs due to the
pre-processing costs that the BDI approaches incur. Hawagehe number of documents increases, BDI approaches
quickly outperform the CSI approach. The distribution ofedimto ACBs has allowed us to exploit available enterprise
machines for faster indexing time (an 85% improvement fa@iR#les).

The results for the T14m dataset above are a little optimésiit considers a uniform size and distribution of barrels.
However, in reality there could be a few barrels that arei@amntly larger than the others and dominate the indexing
times. To evaluate this, we performed indexing for our redérorise dataset. As shown in Table-4, the barrel for the
al I node (files that can be read by all users) was significanthetaand took longer than all other barrels combined
(and thus total time does not vary with humber of machineywéver, it was still 38% more efficient than the CSI
approach. In general, distribution is most helpful whendtrere many such large barrels and we expect that to be true in
an enterprise-scale environment.

Type | #Max-Docs | Time (s) | Savings
Csl 339,466 4640 -
BDI 189,546 2902 38%

Table 4: Indexing times for real enterprise directory dinoe. #Max-Docs is the number of documents in the largest
barrel

5Recall that this architecture does not guarantee privaeygoving search

20

4.5 Searching

Recall that searching in our approach requires combininigipfeibarrels. However, given the small number of barrels
per user, overheads should not drastically deteriorateyqerformance. Secondly, since our approach does not bave t
perform access control at runtime, there would be some gavinquery runtime performance as compared to the CSI
approach.

For the querying experiments we used 150 queries obtained TREC 14 Email search. The queries had an average
of 5.35 terms per query. The results for CSI and n-BDI (wheiie the number of barrels combined) are reported in
Table-5.

Type Index size | Loading time | Avg. time/query

Csl 230 MB 25s 131.12 ms
2-BDI 258 MB 3.37s 112.89 ms
5-BDI 269 MB 5.68s 130.68 ms
10-BDI | 280 MB 6.90 s 149.90 ms

Table 5: Search performance comparison for TRE@std Loading time is the time to load all indices in memory

First notice that the BDI approaches have slightly largdides. This is due to the fact that they have to store many
words multiple times in different barrel vocabularies. NeRe time to load indices into memory also increases wigh th
number of barrels as there are more file 1/0s to gather thexidd&a. However, this is only a one-time cost and once
indices are cached, queries proceed normally. Finallyatleeage query time for BDI approaches is comparable to CSI
with 2-BDI and 5-BDI even outperforming it by saving on thévleges check required at runtime in the CSI approach.

We also compared the ranking of the BDI approaches to CSimgnlkor this we evaluated the percentage of top-10
results of the CSI approach that occurred in top-100

of the distributed approach and their average ranks. As shiowWable-6, for our average case of 5 barrels per user,
nearly 70% of top-10 results occurred in top-100 of the BOdraach with an average rank of 14. We believe that ranking
can be further improved using more sophisticated disteitbuainking measures.

Type | 10-in-100 | Avg. Rank
2-BDI 75% 13
5-BDI 68% 14

10-BDI 61% 15

Table 6: Ranking comparison for TREC lidts. 10-in-100 is the % age of CSI top-10 results in top-100 ofx-B&nd
avg-rank is the average rank of CSl top-10 results in x-Bpt160

5 Design Extensions

The distributed nature of the ACB approach makes it suitBdilsearch in a number of other enterprise scenarios. We
discuss two extensions of the design for (a) seamless atiegmwith desktop search, and (b) secure search in (uattust
storage service provider setups.

21

5.1 Unified Desktop-Enterprise Search

A common challenge in enterprise environments is that datggically spread into multiple islands lacking unified
control. The primary contributing reason to this issue & diata on user laptops as it is not regularly backed up to file
servers. Now, consider the problem of search in this enwilemt from a user’s perspective. A usanewants to quickly
understand the nitty-gritties of enterprise search and&mbers seeing related documents in the past, some on hap lapt
and some on her workstation in office. In the current datids scenario, she will have to issue two distinct queries (o
on her laptop and another to the enterprise search systehthan manually rank the documents returned from the two
systems in order to find the best ones.

In contrast, our approach can unify search over these datadsbecause of its intrinsic distributed nature. This is
accomplished using a local orchestrator on the user’s patsoachine (see Figure-2) which has similar functionabty
the global orchestrator though only at the scale of a singé. ult interacts with the local indexer to index documents
on local storage. For handling search, it treats the loaxras another barrel and combines it with user accessible
barrels {,;) from the enterprise. This provides a seamless integrafitotal indices with accessible barrel indices in the

enterprise.

5.2 Secure Search with Untrusted Search Service Providers

Another advantage of the ACB-based approach is that we camedg support search service provider (SSP) environ-
ments. As mentioned i§2, such environments have an external third-party thatsteesirch indices for data that is also
typically outsourced to a storage service provider. Thapetorks as follows. Before an enterprise encrypts its data
for archival at the storage service provider, it indexesdéa using software or even a hardware appliance. The mdice
can then be sent to the same or potentially a different sepsiovider. In such environments, it is crucial that no peva
information is leaked out to the SSP along with continuingiget the intrinsic multiuser ACAS requirements. All exist-
ing single-index enterprise search products fail to supgach environments since they perform access control ayque
runtime and an SSP environment lacks a trusted agent to slo lthicontrast, our scheme can be extended to securely
support these untrusted SSP-hosted indices. The desarfptiows.

Recall that for a vocabulary of keywords, an index consibtawtiple rows with a row for each keyword. The row
for w includes its TFIDF statistics from the files in bareé’ B; and a list of files that contaiw. Our primary task is to
hide the file names and vocabulary from the SSP. We can dogtng the following cryptography technique.

We associate each baréC B; with a randomly generated barrel encryption K€y. Only the users who have the
required credentials to search the baui€l' B; have the knowledge oK. This can be done by writing the key to a
file stored in the enterprise global nhamespace using the g@mmission settings as the barrel itself. Only the users
that can accesdC B; can get this key. Now, given a barrel encryption K&y, we replace each keyword in barrel
ACB;’s vocabulary with a keyed hash valdéH g, (w), where K H denotes a pseudo-random function like HMAC-
MD5 or HMAC-SHA1 [19]. Next, we present two approaches thifedin the level of trust placed at the SSP and the
computation/communication overhead incurred at the tlien

As a first approach (referred to as BDI-T) we leave the TFID#Eigics unencrypted and encrygdchfile name
separatelywith the barrel encryption key<;. Now, given a search query with keywotd from a useru, the user’s

22

25

' o ' 70 ' BDI-T-index —8—
- 20t BDIT-index —s— < 60} BDI-T-scarch —=—
2 BDI-T-search —=— s 50 BDI-U-index ——
= 15 ¢ BDI-U-index —— = BDI-U-search
o BDI-U-search —+— 5 407
3 10 Z 30}
IS X 20t
10
0 : . . oL —f
0 50 100 150 200 250 0 50 100 150 200 250
Number of Files (x 1000) Number of Files (x 1000)
Figure 12: Computation Costs Figure 13: Communication Costs

client initiates a search fok Hg, (w) for all i such thatAC B; is searchable by the user Note that if a barre} is
not searchable by the user then the user: does not know the barrel encryption ké&§; and thus cannot even guess
the keywordK Hy, (w). The SSP performs a regular distributed IR search overamsaessible barrels fak H, (w)
and returns a ranked list of encrypted file names which theasedecrypt withK';. SSP can do this ranking as TFIDF
statistics were left unencrypted. However, this approachulnerable to a frequency inference attack (on the frecpen
of keywords in the index). A frequency inference attackrafits to infer a keyword from its popularity, say the number
of files that contain the keyword, information which is can&al within the unhidden TFIDF statistics. Such frequency
inference attacks can be thwarted using multiple SSPss@leder t%5.4 for one such technique.

A second approach, referred as BDI-U, is to hide the indetistits from the SSP as well. Similar to the first
approach, we replace each keywardn barrel AC B;’s vocabulary with a keyed hash valdé€H , (w), but instead of
encrypting only the file names, we encrypt the entire rowl(iding the TFIDF statistics) with the barrel encryption key
K;. When the SSP receives a search query with keywoffx, (w) from a user, it returns the encrypted rows in the
index corresponding to the keywoFdH g, (w). Now, the client has to perform some computation to decrygtraerge
the results obtained from different barrels and presentad fanked list of files to the user. This approach preserves th

privacy of the index statistics along with file names and wodary by incurring some computation and communication
overhead at the client.

5.3 SSP Search Evaluation

Our SSP experiments compare the two approaches discussest &DI-T trusts the SSP with index statistics and only
hides file names and words and BDI-U that hides everything.

Figure-12 and 13 show the computation and communicatiorheael incurred by the SSP approach over an approach
wherein the SSP is completely trusted (nothing is hiddered asly for a baseline comparison).

The indexing cost for BDI-T is higher since we encrypt eaatnfime separately, unlike BDI-U which encrypts the
entire list of file names and index statistics for each keylfencrypting file names separately requires each file name to
be padded such that its length is an integer multiple of 164y requirement of the encryption algorithms). On therothe
hand BDI-U incurs a higher cost for search. Computation isdsigher because BDI-U requires client side computation
to decrypt and merge the results from multiple barrels. Camination cost is high because in BDI-U the SSP sends the
entire list of file names for a keyword (along with the indeatisttics) to the client rather than sending a short-liset$

23

ranked files. Note that the total number of files that matchyavked can be significantly larger than the result set, hence,
the communication overhead in BDI-U is larger than BDI-T.

5.4 Thwarting Frequency Inference Attacks at SSPs

The first secure search approach for SSP environments (BPteBented ir§5.2 is vulnerable to frequency inference
attacks. A frequency inference attack attempts to inferyavked from its popularity, say the number of files that contai
the keyword, information which is contained within the THDBtatistics, left unencrypted. However, such frequency
inference attacks can be thwarted using multiple SSPs asguimat the SSPs do not collude with one another. The
primary reason a frequency inference attack works is thagxp®se the frequency of keywords to a SSP. However, one
can largely obfuscate this information by partitioning thdex across multiple SSPs. Indeed if all keywords appear
equally popular to a SSP then the SSP cannot gain any adalifidfiormation from a frequency inference attack. This
technique is best explained with an example. Let us suppeasevie have two keywords; andws with w, being twice

as popular asv;. Also assume that we have two SSBS P, andSSP.. We partition the index for keyword); into

two halves and store one half at each of the SSP. We store de& for the keywordws, entirely in SSP;. From the
perspective of5.S P; both the keywordsv; andw, are equally popular. Unless the SSPs collude with one andtte
apparent popularity of all keywords for all SSPs is identitageneral one can extend this approach to multiple kegsor
and multiple SSPs as follows. Lét, fo, - - -, fr denote the frequency (popularity) @fkeywords. Letnin f = min(f1,

fo2, -+, fr). For a keywordw; with popularity f;, we calculate

minf
where N SSP is the total number of SSPs available. Now, divide the inadekéywordw; amongstV.S.S P; randomly
chosen SSPs from the setNfSS P SSPs.
To measure the effect of using multiple SSPs, we use entregheameasure of an effectiveness of a frequency

NSSP;, = min (L,NSSP>

inference attack. Lefi, f», ---, fr denote the freqency df keywords normalized such th§tf:1 fi =1; then the
entropy is computed as .
Sact = — Y _ fi #log f;
=1

Note that entropy denotes the degree of randomness in thensyksence, larger the entropy more the randomness and
harder it is for the SSP to perform a frequency inferencekittt the popularity of all keywords are equal, that f5,=
+ for all i, then the entropy is maximui$,,. = log T'. Let N.SSP; denote the number of SSPs in which keywargds
stored. Then the apparent popularity of keyworchs measured by the SSP¢js stw whereN SS P, is determined
as described i§5.2. One can measure the apparent entrofy kéywords on normalized apparent l‘requentﬁggz1 1!
= 1, then the apparent entropy is computedag, = — Zle fi* log f!.

Figure 14 shows the apparent entropy as the number of SSeages. Observe that even with five SSPs the apparent
entropy can be almost close to the maximum entrSpy., .

Figure 15 shows the apparent entropy as the collusion arh@®j3s increases witN SSP = 5. As more SSPs
collude the apparent frequency of a keyword stored by tHadiolg SSPs gets closer to its actual frequency. Indeedl if al
the SSPs collude with one another, the apparent entsppy= actual entropys,..

24

10 " " 10 . .
Smax —&— Smax —&—
2 91 Sobs —=— 2 9 Sobs —=—
é 8 + Sact —e— ;5, 8 I Sact —e—
E 7+ [c! & & g E 7 & & & & £
o 6| e 6 -
S =
53] 5t 53] 5L
4 . . . 4
0 1 2 3 4 5 0 1 2 3 4 5
Number of SSPs Number of Colluding SSPs

Figure 14: Entropy, no collusion

Figure 15: Entropy with collusion

Desktop Search | Enterprise Search | Wumpus [3] Our Approach

Access Control Integration Indexing Query Runtime Query Runtime Indexing

ACAS Requirement Satisfied Not satisfied Satisfied Satisfied

Service Provider Support | No No No Yes

Search Consolidation No No No Yes

Architecture Centralized Centralized Centralized Distributed & parallel

Overheads High space & up-| Runtime privileges| Runtime query transformar Barrels processing &
date costs check tion & privileges check runtime results merging

Figure 16: Comparison of search approaches

6 Related Work

We have already described existing work in enterprise seantl how our approach tackles the problem differently.
Table-7 summarizes this discussion and compares all agipesan various attributes. In the rest of this section, wie wi
cover related work in distributed IR, private search, angierd based search over encrypted data, similar to our SSP
environment.

The growth of geographically separated file collectionstraade distributed information retrieval a necessity. saet
et al [20] compare different approaches of distributedeesl. They conclude that distributed IR systems can bests fa
and effective (quality-wise) as the monolithic systemaggour distributed collections. Xu and Callan [36] and Pbee
al [26] suggest that the effectiveness of distributed imfation retrieval systems can drop by up to 30% when the number
of collections exceeds 100. However, in our approach thebmumf collections (number of barrels per user) was on an
average about 6 and a maximum of 25 (see Table-2). Our digwito construct a minimal set of ACBs (s&&1.2)
ensure that the number of barrels per user is small and theisam hope to obtain high quality results as predicted by
[20]. In addition, one could also deploy query expansionearéful source selection [36, 26] to enhance the effectigen
of our approach.

Bawa et al [1] present techniques for constructing a priyaegerving index on documents in a multi-organizational
setting. Their goal is to construct a centralized index taat be made public without giving out any private informatio
Similar to other enterprise search technigues they apglgssccontrol at query runtime and incur higher overheads tha
our proposal. Our approach focuses on integrating accegsotavith search in a single enterprise setting and is more
efficient.

25

Private information retrieval (PIR) was first introducedaaproblem by Chor et al [5] — a user wishes to retrieve
theit" bit in a database without revealing any information abouPIR schemes often require multiple non-colluding
servers, operate in multiple rounds, are resource-interasid do not support keyword search. Hence, several authors
have focused on efficient solutions and their security guaess. Another direction of work has focused on running
gueries over encrypted data at an untrusted server [15]3Zhése schemes require the user to know a secret key with
which the searchable content of the document is encryptedy €nsure that only the frequency profile of the queried
keywords is revealed to the search service provider (sirtolaur BDI-T approach). However, these approaches do not
consider a multiuser enterprise setting where in additiokeeping the data private from the SSP, one needs to enforce
access control rules on the users. Our approach clevettiyigas the search problem into two parts: an access control
problem that is handled by our barrels-based secure indiogksa privacy problem if such indices are hosted by a third-
party search service provider. Indeed, we can leverage gpyach [32, 2] that provide privacy preserving search over
an untrusted service provider hosted index.

Google Search-Across-Computers [11] provides an inse&nidenon-privacy preserving solution to store files and
indices at a remote service provider. There are some conmthst@rage service providers that allow files to be encrypte
and stored securely at the data center [8, 25]. Severalrdrra have also focused on building cryptographic filesyst
[18, 10, 21] that store files in an encrypted manner and userk@agement protocols to ensure that a user has a file's
key if and only if the user is permitted to access that file. \Afe leverage any such approach that stores encrypted files in
combination with a privacy preserving search capability.

7 Conclusions and Future Work

In this work, we presented an efficient and secure approaehtyprise search. We demonstrated the inadequacy of ex-
isting solutions at ensuring privacy preserving searchdmetloped distributed techniques that elegantly capttress
control semantics of enterprise repositories, using nagetss control barrel (ACB)nduser access hierarctgoncepts.
The distributed and parallel nature of our solution helppriowe indexing efficiency and reduces resource requiresnent
for search servers. It also seamlessly integrates sirggedesktop search with enterprise search and unlike at-exi
ing approaches, can provide security in external searalicegprovider environments. Our experimental evaluation o
synthetic and real datasets shows improved indexing effigiand minimal overheads for ACB processing.

As part of future work, we intend to integrate data-specifieixing and search mechanisms with our approach. This
becomes necessary when users want to search (and rankhen leigel metadata concepts along with full content search.

References

[1] M. Bawa, R. Bayardo, and R. Agarwal. Privacy-preseniimigxing of documents on the network. Vi.DB, 2003.

[2] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persianblidkey encryption with keyword search. Eurocrypt
2004.

[3] S. Bittcher and C. Clarke. A security model for full-tdite system search in multi-user environmentsUBENIX
Conf. on File and Storage Technologies (FAS005.

26

[4] Y.C. Chang and M. Mitzenmacher. Privacy preserving kesdvsearches on remote encrypted data Applied
Cryptography and Network Securi®005.
[5] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Rt&information retrieval. IFOCS 1995.
[6] Google Desktophttp://desktop.google.cam
[7] Yahoo Desktophttp://desktop.yahoo.cam
[8] Arsenal Digital. http://www.arsenaldigital.com
[9] Windows Desktop Search for Enterpridgtp://www.microsoft.com/windows/desktopsearch
[10] E. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiU&urs#eg remote untrusted storage.NiDSS 2003.
[11] Google.http://desktop.google.com/features.html#searchremot
[12] Butler Group. Unlocking value from text-based inforina. Review Journal ArticleMarch 2003.
[13] Gartner Grouphttp://www.gartner.com
[14] A. Grunbacherand A. Nuremberg. POSIX Access Contrsidon Linux http://www.suse.de/%7Eagruen/acl/linux-
acls/online
[15] H. Hacigumus, B. lyer, C. Li, and S. Mehrotra. Execut®@QL over encrypted data in the database service provider
model. InNSIGMOD, 2002.
[16] Daging He. Cleaned W3C Subcollectiomstp://www.sis.pitt.edu/%7Edaqing/w3c-cleaned.html
[17] IBM WebSphere Information Integratdnttp://www-306.ibm.com/software/data/integratioriZdb
[18] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and=. Plutus: Scalable secure file sharing on untrusted
storage. INUSENIX Conf. on File and Storage Technologies (FA30D3.
[19] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyeddidng for message authentication.
http://www.fags.org/rfcs/rfc2104.html
[20] O. Kretser, A. Moffat, T. Shimmin, and J. Zobel. Methdalgies for distributed information retrieval. I€DCS
1998.
[21] J. Li, M. Krohn, and D. Mazieres. Secure untrusted daepository SUNDR. IrOSDI, 2004.
[22] Linux Manual Pagesman command-name
[23] R. Love and J. McCutchan. inotify linux file system mamit
[24] A. McCallum. Bow: A toolkit for statistical language rdeling, text retrieval, classification and clustering.
http://www.cs.cmu.edu/%7Emccallum/bow
[25] Iron mountain.http://www.ironmountain.com
[26] A. Powell, J.French, J.Callan, M.Connell, and C.Vil8he impact of database selection on distributed searching
SIGIR 2000.
[27] D. Ritchie and K. Thompson. The UNIX Time-Sharing Syste€Communications of the ACM7(7), 1974.
[28] S. Robertson, S. Walker, and M. Beaulieu. Okapi at #eAutomatic ad hoc, filtering, vic and interactive. TREG
1998.
[29] Coveo Enterprise Searchttp://www.coveo.com
[30] Google Enterprise Searchttp://www.google.com/enterprise
[31] Amazon Simple Storage Servidettp://aws.amazon.com/s3
[32] D.Song, D. Wagner, and A. Perrig. Practical technidaesearches over encrypted datalEEE S & P Symposium

27

2000.
[33] Wikipedia Tf idf. http://en.wikipedia.org/wiki/Tf-idf
[34] MSN Toolbar.http://toolbar.msn.com
[35] TREC Enterprise Trackattp://www.ins.cwi.nl/projects/trec-ent
[36] J. Xu and J. Callan. Effective retrieval with distrildtcollections. I'§IGIR 1998.

28

