
Efficient and Secure Search of Enterprise File Systems

Aameek Singh Mudhakar Srivatsa Ling Liu

College of Computing, Georgia Insitute of Technology

{aameek, mudhakar, lingliu}@cc.gatech.edu

Abstract

With fast paced growth of enterprise data, quickly locatingrelevant content has become a critical IT capability. Research

has shown that nearly 85% of enterprise data lies in flat filesystems [12] that allow multiple users and user groups with

different access privileges to underlying data. Any searchtool for such large scale systems needs to be efficient and

yet cognizant of the access control semantics imposed by theunderlying filesystem. Current multiuser enterprise search

techniques use two disjointsearchandaccess-controlcomponents by creating a single system-wide index and simply

filtering search results for access control. This approach is ineffective as the index and query statistics subtly leak private

information. The other available approach of using separate indices for each user is undesirable as it not only increases

disk consumption due to shared files, but also increases the overheads of updating the indices whenever a file changes.

We propose a distributed approach that couples search and access-control into a unified framework and provides

secure multiuser search. Our scheme (logically) divides data into independent access-privileges based chunks, called

access-control barrels (ACB). ACBs not only manage security but also improve overall efficiency as they can be indexed

and searched in parallel by distributing them to multiple enterprise machines. We describe the architecture of ACBs based

search framework and propose two optimization technique that ensure the scalability of our approach. We also discuss

other useful features of our approach – seamless integration with desktop search and an extenstion to provide secure search

in untrusted storage service provider environments. We validate our approach with a detailed evaluation using industry

benchmarks and real datasets. Our initial experiments showsecure search with 38% improved indexing efficiency and

low overheads for ACB processing.

1 Introduction

In recent years, the total amount of digital data has grown leaps and bounds, doubling almost every eighteen months [13].

As the cost of storage hardware drops, enterprises are storing more data and also keeping it for a longer period of time.

It is for both business intelligence as well as regulatory compliance purposes. With this large amount of data available,

keyword based search to quickly locate relevant data has become an essential IT capability.

According to many estimates, as much as 85% of enterprise data is stored in unstructured repositories like enterprise

and local filesystems [12]. These filesystems have multiple users with different privileges to data and access is controlled

using native access control mechanisms like Unix/Windows permissions models. This access control needs to be enforced

even while searching through the data. As a simple case in point, a user should not be able to search through data that is

not accessible to that user. Also, there are additional subtle requirements that complicate this process and if unhandled,

can result in information leaks. For example, looking at theresults of a query a user should not be able to extract any

1

information that could not have been inferred by that user byaccessing the underlying filesystem. We refer to this princi-

ple asAccess Control Aware Searchor ACAS in short. Simply put, ACAS requires that no additional information can be

extracted about the filesystem by using the search mechanism. More formally we define it as:

Definition: Access Control Aware Search (ACAS)

Let IU
F be the information that a userU can extract from the filesystemF by accessing it directly (dictated by access

rights forU) and letIU
S be the information thatU can extract by searching on the indices overF over any period of time

(based on the search mechanism). The access control aware search (ACAS) property requires thatIU
S ⊆ IU

F .

Surprisingly most enterprise search products in the market, like Google Enterprise [30], Windows Enterprise Search [9],

IBM OmniFind [17], do not satisfy the ACAS principle. These tools treat search and access-control as two disjoint com-

ponents and can result in malicious users extracting unauthorized information using the search mechanism. In their

approach, a single system wide index is created for all usersand it is queried using traditional information retrieval (IR)

techniques (thesearchcomponent). Finally the results (the list of files containing query keywords) are filtered based

on access privileges for the querying user (access control). However, the ordering and relevance score of results, typ-

ically based on Term-Frequency-Inverse-Document-Frequency (TFIDF) measures [33], reveal information that violates

the ACAS property. Intuitively, since the index was createdbased on the lexicon and documents of the complete system,

simple post-processing of results would fail to adequatelyprotect system-wide statistics against carefully craftedattacks,

for example, obtaining the number of files that contain the word “bankruptcy” even when the attacker does not have access

to all files containing that keyword. We describe this issue and demonstrate an example attack in§2.3.

A technique that satisfies ACAS can be found in common desktopsearch products like Google Desktop [6] and Yahoo

Desktop [7]. For multiple users on the desktop, these tools create distinct indices for each user on the system, with each

user index including all files accessible to that user (theaccess-controlcomponent) and then querying only that index for

the user (thesearchcomponent). While this satisfies ACAS, it is highly inefficient as it requires every shared file to be

indexed multiple times in the indices of each user that can access that file. Since in modern enterprises, a large amount

of data is shared by many users, this approach not only causesgreater disk consumption (due to increased index size),

but the overheads of updating the indices when a file changes also become significant. In addition, the desktop search

products incur high overheads to handle dynamism in access control and do not scale well with the number of users and

the number of files in the filesystem.

In this paper, we propose a distributed enterprise search technique that couples search and access-control into a unified

framework to provide secure and efficient search. We use a novel building block called access control barrel (ACB) that

ensures access control aware search. An ACB is a set of files that have the same access privileges for users and groups

in the system and by dividing1 the filesystem data into independent ACBs, we can ensure thatthe index for a user is only

derived from the data accessible to that user in the underlying filesystem, thus satisfying the ACAS requirement.

The ACB-based approach is also space and update efficient as it ensures that each file is included in only a single

index. Thisminimalityproperty makes it especially suitable for shared multiuserenterprise environments. In addition, the

ACB-based approach elegantly accommodates dynamism in access control while incurring nearly zero cost overheads.

1This is a logical division and no physical data movement or modification is required.

2

Further, by dividing data into independent barrels, data indexing can be distributed to multiple machines for parallel

processing. This can significantly reduce total indexing time. We also describe two optimization techniques that ensure

the scalability of our approach even in complex enterprise environments.

Besides security and efficiency, the ACB approach has various other benefits in its design. It uses distributed informa-

tion retrieval [20], which is well suited to searching overdata islands- enterprise data stored under different administra-

tive domains, most notably PCs and laptops. This is an especially pressing concern in modern enterprises. Finally, using

off-the-shelf cryptographic mechanisms our approach can even be extended to support secure search in storage service

provider (SSP) environments, where data and indices are stored at an external (untrusted) service provider. ACBs provide

an efficient mechanism for key management in this environment. We describe this scheme in§5.2.

In summary this paper makes the following contributions:

• Access Control Aware Enterprise Search: In this paper, we have formally characterized the access control prob-

lem in enterprise search. We also propose a new Access Control Barrel (ACB) concept that prevents any information

leaks to unauthorized users through search.

• Space and Update Efficiency: By ensuring that a file is included in a single index, our approach provides superior

space and update efficiency. Further, we propose two optimizations that provide a mechanism to ensure scalability

of our approach even in complex settings.

• Distributed Enterprise Search Architecture: In contrast to existing centralized approaches, we have developed

a distributed architecture that parallelizes indexing andsearch for better performance and is thus better suited to

modern enterprises with numerous underutilized machines.

• Design Extensions: We also describe two extensions of our ACB-based distributed design - seamless integration

with desktop search and secure search for untrusted serviceprovider index hosting.

The rest of the paper is organized as follows. In§2, describe relevant details of enterprise storage architecture and

discuss current search approaches and their limitations. We describe the design of our approach in§3. We present a

detailed evaluation of our approach in§4. We discuss various design benefits of our approach in§5.2. In§6, we describe

the related work in this area. Finally, we conclude in§7.

2 Background and Limitation of Existing Approaches

In this section, we cover necessary background of the modernenterprise architecture, that serves as the model environment

assumed in this paper. Later, we will discuss the limitations of existing enterprise search techniques in this model.

2.1 Modern Enterprise Architecture

Modern enterprises today are highly data-rich environments with storage capacities running into multiple terabytes and

even petabytes in many cases. This data is stored into different repositories like databases, data warehouses, web servers

or enterprise file servers. As pointed earlier, a majority ofthis data resides in flat filesystems [12] and we focus on indexing

and search of such filesystem repositories in this paper.

3

File

Server

File

Server

G

L

O

B

A

L

N

A

M

E

S

P

A

C

E
User

Login Personal

Machine

Users
Login

Enterprise

Machine

Users
Login Enterprise

Machine

Private local storage

Regularly backed-up local storage

Networked storage

Figure 1: Enterprise Storage Architecture

A typical enterprise storage infrastructure has multiple file servers, most commonly accessed via *nix based Network

File System (NFS) or Windows based Common Internet File System (CIFS) protocols. These file servers could be directly

attached to storage systems (Network Attached Storage, NASarchitecture as shown in Figure-1) or through a Storage Area

Network (SAN). In the context of our work, we only require a common global namespace2 which is widely supported in

both architectures.

On the client side, this namespace is accessed by many always-connected (and mostly wired) enterprise machines.

These could be user workstations, shared laboratory machines or application servers. Most of these machines have

networked storage (for example, NFS mounted). Some of thesemachines might also have some local storage that is

regularly backed up to global file servers. We call such machinesenterprise machinessince they are under administrative

control and thus can be potentially leveraged for indexing and search tasks.

Other prominent client category consists of single-user personal machines like laptops.Laptopsare notorious for

hiding data from administrative control; with intermittent connectivity and frequent suspend-resume, there are no regular

backups of their local storage. We call such clientspersonal machinesand consider them to be unavailable for adminis-

trative usage. There is still substantial interest in the ability to index and search over their local data (as evident byrecent

desktop search initiatives [6, 7, 34]). However, most current systems offer isolated products for desktop search that can

not be seamlessly integrated withmultiuserenterprise search, an issue we attempt to resolve using our distributed search

approach.

Lately, with increased costs of storage management, enterprises have increasingly looked at using outsourced stor-

age services [8, 25]. In such environments, enterprise datais stored remotely (typically encrypted) at a storage service

provider’s location. Keyword based search on this data is even more important as data access is much slower (thus cannot

do a brute-forcegrep [22] like search). Only downloading relevant content is economically motivated as well since in

the revenue models for such services, enterprises typically pay a charge on the number of bytes accessed. For example,

the Amazon S3 service [31] costs US $0.20 for each GB of data accessed. Outsourcing of search indices along with the

data seems a natural choice to provide a single point of access. However, current enterprise approaches [30, 17, 9, 3] can

not support this as they need a completely trusted search server to do access control at query runtime. In contast, by using

2A global namespace allows enterprise machines to view a common directory structure irrespective of where data is physically stored.

4

a novel access control barrel based primitive, our approachcan be extended to support secure search over enterprise data

even in untrusted service provider environments. We discuss this in§5.2.

2.2 Access Control

In an enterprise environment, not all data is accessible to all users. Access to data is controlled through the underlying

filesystem’s access control mechanisms. For example, NFS file servers follow the UNIX permissions model (described

below) and Windows-based file servers follow the Windows permissions model. In this work, because of its widespread

deployment and easier availability for experimentation, we use the UNIX based NFS architecture (also supported by other

*nix flavors like Linux, FreeBSD). However, as it will be evident later, our work can be extended for Windows based

access control models as well.

In UNIX access control model [27] each filesystem object (file, directory3) has an associated owner who controls the

access to that object. This access can be granted to three classes of users: (1)owner, (2)group, and (3)others. Theowner

is the object owner, thegroupis the user group the owner belongs to (for example, a user group for students, faculty) and

othersare all users except the owner and the group. Permissions formultiple users and multiple groups can be set using

POSIX Access Control Lists (ACLs) [14]. Further, the granted access is of three types:

• Read: For a file, this means that a user can read a file. For a directory, this allows a user to list its contents.

• Write: For a file, the write permission allows a user to write to it. For a directory, it allows a user to create, remove

or rename directory contents.

• eXecute:For a file, the execute permissions allows running the file as aprogram. For directories, it allows users to

traverse that directory and if they know the names of directory contents (due to read permissions or some out-of-

band information exchange), they can then access those subdirectories/files.

In context of indexing and search, there is a need for a notionof searchability. Clearly read permissions on a file

allow it to be searched andwrite permissions do not influence searchability (and are ignoredin the process). Theexecute

permissions for directories have a non-obvious influence onsearchability. Users withexecute-but-not-readpermissions

on a directory can access its contents only if they know the exact names of subdirectories or files. As this out-of-band

notion can not be adequately and safely captured, consistent with the *nix find/grep/slocate [22] paradigms, we

consider such directories as being not searchable. Formally, searchability is defined as:

Definition: Searchability –A file,F is searchableby userui (or groupgm) if there existreadand executepermissions

on the path leading toF andreadpermissions onF , for ui (or gm).

2.3 Limitations of Existing Approaches

In this section, we explore existing desktop and enterprisesearch solutions− the two popular options for integrating

access control and analyze their pros and cons from securityand performance perspectives.

3We ignore symbolic links in this work and the filesdirectories they point to, are handled through their absolute filesystem path.

5

Most desktop search products like Google Desktop [6], YahooDesktop [7] and MSN Toolbar [34] integrate access

control during indexing. Each user has a separate index for accessible files with duplication for files that are shared with

other users. This ensures that each user has an index createdfrom data that was accessible to that user, satisfying the

ACAS requirement. In addition, there are no additional costs at query runtime for access control based filtering. However,

this causesadditionaldisk consumption of
∑

(ni − 1) ∗ Ii whereni is the number of users accessing fileFi andIi is

size of index forFi. Additionally, each update toFi causes updates toni indices. In an enterprise, whereni could be in

hundreds or thousands, such costs can be prohibitive.

The enterprise search products like Google Enterprise Search [30], Coveo Enterprise Search [29] and IBM Om-

niFind [17] integrate access control at query runtime by creating a single system-wide index and filtering results basedon

access privileges of the querying user. This provides maximum space and update efficiency. However, querying will be

more expensive, especially when access permissions for files in the query results are obtained at runtime, which requires

disk I/O for inode lookups. Also importantly, these products do not satisfy the ACAS requirement and by carefully craft-

ing queries, a user can obtain information about the underlying filesystem which could not have been inferred otherwise.

Below, we describe an example attack that can determine the total number of files containing a particular keyword even

when the attacker does not have access to all files containingthat keyword. For example, an attacker could monitor the

enterprise filesystem to see the number of files containing the word “bankruptcy”. A sudden increase in the number of

such files could alert him/her to sell off company stock, practically amounting to insider trading. This violates the ACAS

property, as this information could not have been determined by the attacker through the underlying filesystem directly.

We assume that the relevance score of a result filefi is computed by the standard TFIDF measure

rel(fi) =
∑

tj∈Q

wij ∗ wQj (1)

wheretj are the terms in the queryQ andwij is the normalized weight of termtj in fi given by

wij =
oij ∗ log

(

|N |
ntj

)

√

∑

tk∈fi
(oik)2 ∗

(

log
(

|N |
ntk

))2
(2)

whereoij is the number of occurrences of termtj in fi, |N | is the total number of files in the system andntj
is the number

of files that containtj. wQj is defined similarly.

The attacker, Alice, wishes to know the number of documents that contain the termtq (e.g. “bankruptcy”). The attack

works in three steps. First, Alice picks twouniquetermst1, t2 (no file contains these terms) and creates two new files:f1

containing terms{t1, t2} andf2 containing terms{t2, tq}. Note that after creating the files,o11=o12=o22=o2q=1, nt1=1

andnt2=2. In the second step, she queries for termt1 and from (1) and (2) she can calculate|N |

|N | = 2

1

1−
r

1
rel(f1)2

−1

(3)

In the final step, Alice queries for termtq and calculatesntq
from (1), (2), (3). This completes the attack.

ntq
= 2

1
r

1
rel(f2)2

−1

∗ |N |

0

@1− 1
r

1
rel(f2)2

−1

1

A

6

Such attacks are possible on most TFIDF based measures including the popular measure Okapi BM25 [28]. Addi-

tionally, even when relevance scores are not returned as part of the result, good approximations tontq
can be obtained

by exploiting ordering of the results [3]. A recent effort [3] describes an ACAS compliant approach that uses a complex

query transformation at runtime for access control. Additionally, it requires to maintain access control lists for allfiles

in the filesystem in-memory which is extremely inefficient for large enterprise environments. Also, as we discuss in later

sections, our distributed search approach provides various design benefits.

3 Distributed Secure Enterprise Search

Most of the desktop search products are secure but inefficient for enterprise search, whereas enterprise search products are

insecure in terms of ACAS. Bearing these issues in mind, we describe the design and implementation of our distributed

approach to enterprise search based on the concept of accesscontrol barrels (ACBs), which provides both security and

efficiency.

3.1 Design Overview

The main design principle of our approach is to efficiently integrate access control into the indexing phase such that the

indices used to respond to a user’s query are derived only from the data accessible to that user. This will ensure that we

satisfy the ACAS requirement and do not have to do access control based filtering on query results. We accomplish this

goal with a pre-processing step that (a) constructs a user access hierarchy for the users and user groups in the system

(§3.1.2) and (b) logically divides data into access-privileges basedaccess control barrels (ACB). We first provide a brief

description of ACBs and then describe in detail how they workin conjunction with the user access hierarchy.

3.1.1 Access Control Barrels

An ACB is a set of files that share common searchability accessprivileges (as defined in§2.2). That is, all files contained

within an access control barrel can be accessed (and thus searched) by the same set of users and user groups. For example,

one barrel could contain files accessible to userboband another for a user groupstudents. Intuitively, the idea of barrels

is that if we can efficiently create collections of files basedon their access privileges, to provide secure search to a user,

we can pick the collections that this user has access to and serve the query using only those indices.

This might sound similar to the index-per-user (IPU) desktop search approaches [6, 7, 34] where all files accessible

to a user are grouped into a single collection and files accessible to multiple users are duplicated in their collections.

ACBs avoid their inefficiencies by following an additional neat property ofminimality. This property ensures that each

file can be uniquely mapped to a single barrel, avoiding duplicating them in multiple collections (we defer the discus-

sion of implementing such minimal ACBs to the next section).Now, files accessible to multiple users are grouped into

sharedcollections and secure search for a user combines the user’sprivate collections with these shared collections using

distributed information retrieval [20]. This is efficiently accomplished using the user access hierarchy which is described

next. We will also compare the ACB based approach with the index-per-user approach in detail in§4.1.

7

3.1.2 User Access Hierarchy

The user access hierarchy data structure has two main tasks:(1) provide a mechanism to map files to access control

barrels, and (2) provide techniques to efficiently determine all barrels that contain files searchable by a user. In what

follows, we first give a high level description of the data structure and later detail how the hierarchy is constructed for

*nix permissions model.

For most access control models a user is associated with two types of credentials: (i) a unique user identifier (uid), and

(ii) one or more group identifiers (gid) corresponding to the user’s group memberships. We represent the set of all such

user and group credentials as a directed acyclic graph called Access Credentials Graph orACG in short. For example,

there could be a node for credentialuidbob or gidstudents. Every nodeVi in this graph is associated with a corresponding

barrelACBi. Our example nodesuidbob, gidstudents are associated with barrels containing files with searchability

privileges to userboband groupstudentsrespectively. Now, mapping files to barrels is equivalent toassigning files to a

node inACG (the first task mentioned above).

For a node,Vu (associated with theuid credential of a useru), let V ∗
u denote the set of all nodes in thedirectedgraph

ACG that are reachable from the vertexVu. Our construction of the graphACG will ensure that a fileF is searchable

for a useru if and only if F is assigned to some vertexv ∈ V ∗
u . With this property, the results for useru’s query can be

computed by combining indices from barrels associated withnodes inV ∗
u . The setV ∗

u can be efficiently determined using

a simple depth or breadth first search on the graphACG. This accomplishes the second task of the user access hierarchy

data structure.

Next, we explain in detail the process of constructing the graphACG with aforementioned properties from *nix-like

user credentials. In a *nix-like access control model a credentialC can be expressed in Backus Naur Form (BNF) as:

C = root | all | P

P = uid | gid | P ∧ P | P ∨ P (I)

Note thatroot is a special user with super-user privileges andall indicates a credential for all users and groups. We need

the∨ operator on the principles to handle POSIX Access Control Lists [14] that allow associating multiple users and

groups with a fileF (as opposed to the usual{owner, group, others} model (see Section§2.2)). We need the∧ operator

on the principles to handle the implicit conjunction operation that occurs while traversing the directory hierarchy leading

to file F (for example, directoryX/Y whereX has access only for user groupstudents, andY has access only for user

groupgrad-students; only users that belong to both groups can access data underY). We define an implication operator

⇒ which specifies if one credential candominateanother. For example,∀u, root ⇒ u says thatroot can access data that

any other user can.

Permissions on a file can also be expressed based on a credential defined as above. For example, for a fileF that

allows access to usersx, y and groupz, we say that it has a credentialCF ={uidx ∨ uidy ∨ gidz} and is interpreted to

say that access is allowed to users who have a credential thatdominates this file’s credential (userx has access toF since

uidx ⇒ CF). Now, if we can create a barrel for each such file credential in the system, we can uniquely map a file to a

barrel, achieving ACB minimality. While theoretically thetotal number of barrels (one for each possible access control

setting, thus exponential in number of users and groups) canbe very large, practically, this is hardly the case as many

files in the system share common file credentials. Other studies have also made similar observations, for example, the

8

filegroups concept of Plutus [18] uses this to ease key management for encrypted data storage. Regardless, in§3.2, we

will describe two optimization techniques that address this potential scalability issue.

Finally, we construct the graphACG as follows. First, the set of vertices and edges are initialized by adding vertices

for all user and group credentials and adding edges for the simple⇒ relationships:root ⇒ u ∀u ∈ U ; u ⇒ g ∀g ∈ G(u);

for any groupg, g ⇒ all, whereG(u) denotes the set of all groups to which the useru belongs to. Formally,

VACG = {Vroot, Vall} ∪ {Vu | ∀u ∈ U} ∪ {Vg | ∀g ∈ G}

EACG = {Vroot → Vu | ∀u ∈ U} ∪ {Vu → Vg | ∀u ∈ U, ∀g ∈ G(u)} ∪ {Vg → Vall | ∀g ∈ G}

where→ indicates a directed edge in the graph.

Next, the∨ or∧ nodes are added when we encounter files with such credentials. This is done during the pre-processing

step while assigning files to their appropriate barrels (as described in§3.3). For each such file, we insert a new vertexVC

for the file’s credentialC. Then, we find the set of all vertices whose credentials minimally dominate the new credential

C (say,minDom(C)) and for every such vertex,V ∈ minDom(C), we add an edge from vertexV to VC . Note that this

guarantees that the vertexVC is reachable from all vertices that have a dominating credential, by the transitive nature of

the→ operator on the graphACG. Similarly, we find the set of all vertices whose credentialsare maximally submissive

to the new credentialC (say,maxSub(C)). For every such maximally submissive credentialV ∈ maxSub(C), we add

an edge from the vertexVC to V . Additionally, we remove redundant edges between verticesin V1 ∈ minDom(C) and

V2 ∈ maxSub(C) if V2 is now reachable fromV1 via the new vertexVC . Formally, it can be represented as:

Dom(C) = {VC′ | C′ ⇒ C}

minDom(C) = {V ∈ Dom(C) ∧ ¬∃V ′ ∈ Dom(C), V ∈ Dom(V ′)}

Sub(C) = {VC′ | C ⇒ C′}

maxSub(C) = {V ∈ Sub(C) ∧ ¬∃V ′ ∈ Sub(C), V ∈ Sub(V ′)}

EACG = EACG ∪ {V → VC | ∀V ∈ minDom(C)} ∪ {VC → V | ∀V ∈ maxSub(C)}

EACG = EACG − {V1 → V2 | ∀ V1, V2, V1 ∈ minDom(C) ∧ V2 ∈ maxSub(C) ∧ V1 → C ∈ EACG ∧

C → V2 ∈ EACG}

Using this access hierarchy graph, we can map all files to their appropriate barrels and also identify barrels searchable

by a particular user (equivalent to findingV ∗
u – a simple depth first search operation onACG).

3.1.3 Dynamic access Control

In this section we study the effect of dynamic access controlpolicies on the IPU and the ACB approach. In this section

we the effect of two types of access control updates: adding anew group to a user and adding a new∧-group to a file.

In the ACB approach adding a new groupg to a useru just requires a new edge to be added from the vertexVu to the

vertexVg incurring nearly zero cost. On the other hand, in the IPU approach addition of a new group makes several files

which were previously inaccessible to useru becomes accessible now. Now, the indices of all such files need to be added

to useru’s search index and thus incurs very high cost. In addition, the indexing mechanism must examine all the files

in the filesystem to determine which files are now newly accessible (or inaccessible if a group membership is removed)

9

to useru, thereby incurring heavy i-node lookup costs. Clearly, this largely limits the scalability of the IPU approach in

large filesystems.

Next, we study the effect of adding or removing a∧-group to a file’s access control expression. Adding or removing

a ∨-user to a file’s access control expression follows a very similar procedure. LetB(f) denote the access control

expression for filef . When a new∧-groupg is added the new expressionB′(f) = B(f) ∧ g. In the ACB approach, we

first check if the vertexVB′(f) exists in the user access hierarchy; if it does not exist we create the vertex and add edges

to its parents and children vertices in the user hierarchy. Then, we remove the index for filef from VB(f) and add it to

VB′(f). Additionally, if VB(f) has no files associated with it, it is deleted and the edges areappropriate modified. Note

that this operation involves only fast and efficient operations on the ACG and only one file index copy. On the other hand,

in the IPU approach when a new∧-groupg is added to a filef , a large number of users that could previously access file

f can no longer access it. Similarly, when a∧-groupg is removed from a filef , then a large number of users who were

previously unable to access filef are permitted to access it. In addition, the indexing mechanism must examine all the

users in the filesystem to determine which users are newly permitted (or denied) access to the filef .

3.1.4 ACB Minimality

In this section, we formally state the minimality property satisfied by our ACB construction in Section 3.1.1. We use this

claim 3.1 in§3.2 to present optimization techniques on our ACB approach.

Claim 3.1. It is impossible to reduce the number of ACBs without either duplicating files in barrel indices or violating

the ACAS property.

Proof. We can prove this by a simple contradiction argument. LetACB′ denote a set of access control barrels such that

the number of barrels inACB′ is smaller thanACB and it contains exactly one copy of each file in a barrel index and it

respects the ACAS property. SinceACB′ has smaller number of barrels, there exists a barrelb′ ∈ ACB′ such that it has

two filesf1, f2 ∈ b′, wheref1 andf2 belong to two distinct barrelsb1 andb2 in ACB (by pigeon hole principle). Since

f1 andf2 are in different barrels inACB, the files must have different access control expressions. Hence, there may exist

a useru such thatu can access only filef1 but not filef2.

Now, for the filef1 to be searchable by useru, there has to be some barrelbar in ACB′ such thatf1 ∈ bar and the

barrelbar is reachable from the vertexVu on the ACG. Since there is only one copy of the file indexf1 in ACB′, the

barrelb′ must be reachable fromVu on the ACG forACB′. Since the barrelb′ is reachable fromVu all the files in the

barrelb′ must be accessible to the useru. Clearly, allowing the useru to search filef2 violates the ACAS property. Thus,

in order to reduce the number of ACBs, we have to allow either duplication of files indices in barrel or compromising the

ACAS property.

3.1.5 Bounds on the Number of Barrels

In this section, we present theoretical bounds on the total number of barrels and the average number of barrels accessible

to a user. Since a user’s index is composed of all barrels thatthe user can access, it is important that the number of

barrels per user is reasonable. Let us for the sake of simplicity consider only∧-group based access control expressions

for files; the arguments for∨-user based access control expressions is very similar. LetB(f) denote the access control

10

expression on filef . Let the number of literals (∧-groups) inB(f) be chosen from the range (1,ngf) using some arbitrary

distribution.

First, we note that the maximum number of ACBs is bounded by the minimum of the number of files (|F |) and the

number ofpossibleaccess control expressions. Note that we create a new ACB only if there is at least one file that belongs

to that barrel. In the worst case, when every file belongs to a different barrel the number of ACBs is|F |. The number

of possible access control expressions for files is given by:
∑ngf

i=1
|G|Ci, whereyCx denotes the number of ways of

choosingx balls fromy non-identical balls. For example, ifG = {g1, g2} the set of possible access control expressions

are{g1, g2, g1 ∧ g2}. If ngf is O(1), then the number of ACBs is only polynomial in|G|. However, the worst case

bound for the number of ACBs ismin(|F |, 2|G|). A large number of ACBs incur only a marginally larger user hierarchy

graph maintenance cost. Using a simple depth first search (DFS) algorithm we can limit the effort required to search any

vertex/edge in this graph toO(|U | + |G|). In addition, one can build a hash table on top of the graph data structure to

reduce the search time toO(1).

The runtime overhead and the quality of distributed information retrieval algorithms is determined by the number

of barrels that need to be searched to handle a user’s search query. The number of ACBs per user is bounded by:
∑ngf

i=1
|G(u)|Ci (note thatyCx = 0 if y < x), whereG(u) denotes the group membership for useru. Typically, |G(u)| �

|G| andngf � |G| and thus, the number of ACBs per user will be very small and in the worst case bounded by2|G(u)|.

Note that bound on the number of ACBs per user (unlike the bound on the total number of ACBs) is independent of|G|

and thus scales better.

3.2 Scalability Optimizations

In most real enterprise environments the number of barrels per user is typically very small (6–8 on average in our ob-

servations for two enterprise filesystems; similar observation was made in [18]). However, theoretically this number is

exponential in the number of users and user groups. In this section we describe two optimization techniques that can

preserve the scalability of our approach even in such rare hostile setups. We first start with two important properties of

our approach that help design the two optimizations.

We base out optimizations based on our ACB minimality claim 3.1. Our first optimization trades off the number

of barrels with the number of copies of a file index and the second technique trades off the number of barrels while

allowing controlled violation of the ACAS property. Both techniques provide a control mechanism for administrators to

choose appropriate trade-offs. The optimizations transform the access control graph (ACG) with the goal of decreasing

the number of ACBs. However, such transformations must preservesearchability, that is, if a filef is accessible to useru

then the filef must be searchable. Using ACBs this implies that if a filef is accessible to useru, then in any transformed

ACG, the filef belongs to some barrelb such thatb is reachable fromVu on the ACG (b ∈ V ∗
u). We call this property

reachabilityon the ACG.

3.2.1 File Index Duplication

In this section we propose algorithms to reduce the number ofACBs and satisfy the ACAS property at the cost of main-

taining duplicate file indices. Let us consider any vertexVC in the ACG such that the credentialC 6= u, for any useru ∈

11

U . One can eliminate the vertexVC from the ACG (thereby decreasing the total number of barrelsby one) by adding all

the file indices inVC to every vertexv ∈ minDom(VC), whereminDom is defined in Equation 1. Note that ifC 6= u,

thenminDom(VC) 6= Φ, that is, there exists at least one vertexv ∈ minDom(VC). If VC is reachable from some vertex

Vu (for useru andC 6= u) then at least one vertexv ∈ minDom(VC) is reachable fromVu; thus the above construction

satisfies reachability on the ACG and thus preserves searchability. The construction preserves the ACAS property since

the credentialdomC associated with any vertexv ∈ minDom(VC) dominates the credentialC (domC ⇒ C). Hence

any useru that satisfies the credentialdomC also satisfies the credentialC. Hence, the above construction eliminates the

vertexVC at the cost of retaining|minDom(VC)| copies of file indices for each file inVC .

In our implementation we define a tuneable parameterminf – the minimum number of files per barrel. Our ACB

construction in Section 3.1.1 achievesminf = 1. If a largerminf is chosen the number of barrels decreases at the cost

of more duplication of files indices. Given the parameterminf we present a greedy algorithm to reduce the number of

barrels as follows. (i) Sort the barrels in increasing orderon their size (number of files in the barrel)b0, b1, · · · bk. (ii) Pick

the smallesti such thatbi < minf and the credential associated with barrelbi is not equal tou for any useru ∈ U . If there

is no such barrel the procedure terminates. (iii) Eliminatethe barrelbi by suitably replicating all its file indices. Note that

this may change the size of other barrels; so we resort the barrels according to their size and repeat the procedure. One

can use an induction on the number of vertices eliminated andthe arguments described above to show that this procedure

is guaranteed to reduce the number of ACBs without compromising the ACAS property. Observe that settingminf = ∞

the above procedure would terminate with the|U | barrels where each barrelbu is the per-user index as generated by the

IPU algorithm. This ensures that for any finiteminf , our algorithm would have fewer file index duplicates for anyfile f

when compared to the IPU approach.

3.2.2 Access Control Optimization

Our second technique reduces the number of ACBs while maintaining only one copy of each file index at the cost of

violating the ACAS property. Let us consider any vertexVC such thatC 6= all. One can eliminate the vertexVC from

the ACG by adding all the file indices inVC to some vertexv ∈ maxSub(VC), wheremaxSub is defined in Equation

1. Note that ifC 6= all, thenmaxSub(VC) 6= Φ, that is, there exists at least one vertexv ∈ maxSub(VC). If VC is

reachable from some vertexVu (for useru) then all verticesv ∈ maxSub(VC) is reachable fromVu; thus our construction

satisfies reachability on the ACG and thus preserves searchability. However, there may exist a useru′ such that a vertex

v ∈ maxSub(VC) is reachable fromVu′ but not the vertexVC . This is possible because the credentialC dominates a

credentialsubC associated with vertexv ∈ maxSub(VC). Hence, the above construction maintains exactly one copy of

every file index, but may violate the ACAS property. Unlike the single-index approach that violates the ACAS property

for all the files in the file system, our approach allows us to control the number of such violations.

In our implementation we define a tuneable parameterminf – the minimum number of files per barrel. Given

the parameterminf we present a greedy algorithm to reduce the number of barrelsas follows. (i) Sort the barrels in

increasing order on their size (number of files in the barrel)b0, b1, · · · bk. (ii) Pick the smallesti such thatbi < minf

and the credential associated with barrelbi is not equal toall. If there exists no such barrel the procedure terminates. (iii)

Eliminate the barrelbi. This can be achieved by copying the file indices inbi to at least one vertexv ∈ maxSub(VC),

whereC is the credential associated with barrelbi. If |maxSub(VC)| > 1, one can randomly pick a vertexv from

12

maxSub(VC). However, we heuristically pick a vertexv such that it satisfies theminf requirement while incurring only

a small number of access control violations. (iv) Eliminating a barrel may have changed the size of other barrels; so we

resort the barrels according to their size and repeat the procedure.

Our first heuristic picks the vertexv that has the smallest barrel associated with it. This heuristic clearly favors our

goal of achieving at leastminf files per barrel. Our second heuristic attempts to reduce thenumber of files violating the

ACAS property by picking a vertexv whose credential is the leastpopular. For example, let us suppose that the credential

associated withv is a∧-groupcred = gi1 ∧ gi2 ∧ · · · ∧ gik
. We measure the popularity of the credentialcred aspop(cred)

=
∏k

j=1 pop(gij
), where popularity of a groupg is determined by the number of members in the group (normalized by

the total number of user|U |). Similarly, we measure the popularity of a∨-user credentialcred = ui1 ∨ ui2 ∨ · · · ∨ uik

aspop(cred) = k
|U| . Clearly, the less popular a credentialcred is, the smaller number of users that satisfycred; hence,

fewer users can reach the vertexv from Vu. Note that every useru can that reachVC can reachv ∈ maxSub(VC); hence

the approach does not compromise on searchability. This approach attempts to minimize the number of usersu′ that can

reachv ∈ maxSub(VC), but not the vertexVC itself, thereby reducing the number of ACAS violations. Observe that

settingminf = ∞ this algorithm reduces the single index approach and thus allows any useru to search over all the files

in the enterprise file system. Similar to the single index approach, we incorporate post processing to suppress files thatare

inaccessible to a useru. However, as shown in Section 2.3 this algorithm is still vulnerable to statistical inference attacks.

Nonetheless, our heuristics hopes to minimize the number offiles that are susceptible to such inference attacks.

These two optimizations can be used to improve the scalability of the system in rare environments where the variation

in access control settings increases the number of ACBs per user. Further, we allow an administrator to make an intelligent

decision on the choice of the optimization strategy. For instance, files with high update rates may use only the second

optimization technique. This ensures that we have only one copy of the file index and thus keeps the update costs low.

Similarly, files with lot of critical information may use only the first optimization technique. This ensures that there are

no ACAS violations on the critical file data. In the followingsection, we integrate our ACB based technique with the

architecture of our indexing and search system.

3.3 Architecture and System Implementation

So far, we have introduced the concept of access control barrels (ACBs) and the user access hierarchy as a tool to (a)

efficiently map files to ACBs and (b) determine accessible ACBs for a querying user. In this section, we will explain the

overall architecture of our indexing and search system and how it fits into the enterprise infrastructure.

Figure-2 shows the architecture. One enterprise machine ischosen as a global orchestrator4 and is responsible for

managing the distributed environment. We will explain its various components in the next subsections. All other par-

ticipating enterprise machines run a thin client version ofthe system and are responsible for barrel indexing and query

processing for local users. Finally, the personal machines(outside admin control) that intend to integrate their local desk-

top search with enterprise search run a local orchestrator agent (explained later).

4It is possible to develop a decentralized orchestrator by distributing responsibilities of barrels to machines, e.g. by using distributed hash tables.

13

File

Server

File

Server

File

Server

G

L

O

B

A

L

N

A

M

E

S

P

A

C

EIn-memory
combined

index

Global Orchestrator

System
Events

Handler

Access
Hierarchy

Index
Master

Personal machine with local storage

Local
Indexer

In-memory
partial
index

Enterprise machines

IndexerUsers
Login

Index
Barrels

Live
Indices

State

Local

Orchestrator

Users
Login In-memory

partial
index

Indexer

Figure 2: Distributed Indexing and Search

3.3.1 Pre-processing: Creating ACBs

As part of the pre-processing step, we first create the basicACG from the user and user groups in the system as described

in Equation-(II) above. For *nix systems user and group information is obtained from/etc/passwdand/etc/group. Next,

we initiate a filesystem traversal for all data that needs to be indexed. This is required for mapping files to ACBs (repre-

sented by a vertex inACG). During the traversal, we associate each file with a vertex in the directedACG graph based

on its searchability privileges. This mapping is done by finding the vertex that has the same credential as the file (e.g.

Vbob for credentialuidbob). If the file has a∨/∧ credential, a new node is added to the access hierarchy and the file is

mapped to that node. At the end of this filesystem traversal, we have all barrels in the system and the list of files that are

contained in each such barrel. These lists are written to per-barrel files, that aresecurelystored in the enterprise global

namespace with access privileges only to the superuser. This stored file is the embodiment of our abstract ACB concept.

This completes the pre-processing step and is usually performed by a single enterprise machine – theglobal orchestrator,

which stores the user access hierarchy.

3.3.2 Indexing

After creating ACBs, the next step is to index documents for each barrel. These ACBs can be indexed independently

unlike the single index approach where the computation of TFIDF statistics requires centralized indexing of data. The

index masterin the global orchestrator distributes this barrel indexing task to participating enterprise machines. As the

barrels are stored in a global namespace and accessible to all enterprise machines, the orchestrator only needs to pass the

barrel IDs to these machines. The orchestrator can easily optimize available resources by doing an intelligent distribution

of barrels to machines (ensuring no single machine is overlyloaded). As we show later in§4, this indexing task distribution

provides excellent savings.

On receiving commands from the index master, theindexercomponent of enterprise machine agents retrieve the

barrels from the global namespace and start indexing documents. An index is typically comprised of: (a) vocabulary for

14

words that appear in the documents and (b) a words to filename mapping along with their TFIDF statistics used later for

ranking. Once indexed, these indices are stored back into the global namespace. Our access privileges based design of

barrels provides a natural way of storing indices securely in this namespace. The index files are stored with the same

privilege as the files contained in that barrel (all files in a barrel have the same privileges)5. This allows only the users

that had access to files of a barrel (and thus can search through that barrel) to obtain these indices and provides a natural

security mechanism for storing these indices using the underlying filesystem access control.

3.3.3 Search

In our approach, querying and search can also be handled in a distributed fashion. When a user logs into an enterprise

machine, the agent on that machine retrieves the indices that are accessible to that user, from the global namespace

and caches them in memory. Now whenever a user queries these indices, search can be handled completely in a local

environment, saving on (a) query response time and (b) resource requirements of a centralized search server. Note that

all available enterprise search products today [30, 17, 29,3] have to use a highly capable search server (or a cluster) in

order to deal with enterprise environments and querying always involves a network hop. In contrast, by integrating access

control in a distributed fashion, we can reduce such requirements. However, our approach has an overhead of combining

the multiple barrel indices using distributed informationretrieval techniques. But unlike the centralized index approaches,

we do not have to perform any access control on query results.Our experiments in§4 shows how these two factors tend

to balance out.

Please note that distributed search yields benefits when enterprise machines have enough resources to handle its local

users indices. In situations where there are only a few enterprise machines or all users log onto a single server, it would

be more efficient to use a central search server which can be located at the global orchestrator.

3.3.4 Handling Updates

In an enterprise environment, there will be regular updatesto data files and access privileges to data and the system needs

to handle them appropriately. This task is handled by the global orchestrator which subscribes to all filesystem event

notifications using available tools like inotify [23]. Oncean event is received the orchestrator might need to make various

kinds of changes. Change of file content is handled at a per-barrel basis by requiring that barrel indices to be appropriately

modified (it usually does not require indexing the entire barrel again). This event is common to all enterprise search

techniques and the ACB based approach does not incur additional overheads. In case of events when access permissions

are modified that impact searchability, a document might need to be removed from one barrel and added to another (most

indexers can handle this in an incremental manner as well), making it a low-cost event. Another filesystem event unique

to us is the case of user/group membership modification, in which case the access hierarchy needsto be adjusted. A

user/group addition is handled by adding a new node and corresponding edges (as done during initialACG construction).

Group membership modification is handling by changing the edges in the directed graph. Finally, a user/group deletion is

handled by removing the appropriate node and all edges coming into or out of that node. The changes in groups and their

membership are infrequent events and corresponding operations onACG are efficient.

5The (ui ∨ uj) barrels are handled by using POSIX ACLs for (ui, uj) on the indices and (gk ∧ gm) are handled by keeping indices under directory

hierarchyX/Y with X, Y having privileges forgk, gm respectively.

15

Notation Description Default

|F | Number of Files 10
7

|U | Number of Users 10
3

|G| Number of User Groups 32

pop Group Popularity Zipf(1, ng)

ngu Number of Groups per User Zipf(2, 10)

ngf Number of∧-groups per File Zipf(2, 4)

nuf Number of∨-users per File Zipf(2, 4)

Figure 3: Parameters

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of Users (x1000)

’Index Size IPU:ACB’
’Num ACBs Per User’

Figure 4: Num Users

Note that an update could occur in a barrel that is in-memory at one of the enterprise machines. In order to handle

such scenarios, the orchestrator keeps state information of all such in-memory live indices and notifies the appropriate

enterprise machine to flush the cached barrel index in that case and reload it after it has been suitably updated.

4 Evaluation

In this section, we present a detailed evaluation of our approach. We compare our approach analytically with the other

SAC-compliant index-per-user approach in§4.1. In§4.2 shows the effectiveness of our optimization algorithmsdescribed

in §3.2. In §4.3, we describe the datasets used in our indexing and querying experiments.§4.4 describes the indexing

experiments including barrels pre-processing and§4.5 describes the querying and search related experiments.All exper-

iments were done on a Pentium-III Linux machine with 512 MB RAM and all storage mounted via NFS. All numbers

below have been averaged over multiple runs.

4.1 Comparison with Index Per User Approach

In this section, we analytically compare the performance and scalability of the ACB approach against the index per user

(IPU) approach. For comparison purposes, we use synthetic data. The key parameters in our data are summarized in

Table 4.1. We observe that the analysis is the same for both∧-groups and∨-users and thus consider only∧-groups in

this Section. We use Zipf(a, b) to denote a Zipf distribution with parameterγ = 1 that is truncated to the range(a, b).

Hence, we choosengu the number of groups a user is a member of using a Zipf distribution on the range(2, 10); we then

choosengu groups from the setG using Zipf(1,|G|) and without replacements. Similary, we choosengf the number of

∧-groups per file using Zipf(2, 4); we then choosengf groups from the setG using Zipf(1,|G|). The access control rule

for the file is assumed to be an∧ over all the chosen groups.

4.1.1 Static Access Control

In this section, we measure the number of ACBs and the number of ACBs per user. We also compare the ratio of the size

of indices maintained by the IPU and ACB approach. Figures 4 shows the scalability of our approach with the number of

users|U |. In the IPU approach, the index size grows with the number of users in the system, typically because more users

share a file. On the other hand, the ACB approach maintains exactly one copy of each file index and the total number

16

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 4 5 6 7 8 9 10

Number of Groups per Users

’Index Size IPU:ACB’
’Num ACBs Per User’

Figure 5: Num Groups per User

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9

N
um

be
r

of
 F

ile
 In

di
ce

s

Number of Groups per User

’IPU’
’ACB’

Figure 6: Updating Group Member-

ship

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9

N
um

be
r

of
 U

se
rs

Number of Groups per File

’IPU’
’ACB’

Figure 7: Updating File Access Con-

trol Expression

of barrels (and thus the average number of barrels per user) is independentof |U |. Figure 5 shows the scalability of our

approach withngu the number of group memberships per user. Asngu increases, so does the number of users that share a

file and thus the index size in the IPU approach. In the ACB approach, asngu increases it results only a marginal increase

in the number of ACBs per user.

One should observe that our approach maintains exactly one copy of index for each file. Hence, when a file is updated

at most one index needs to be modified. The IPU approach maintains multiple copies of each file index, one for every

user who is permitted to access that file. Hence, when a file is updated the IPU approach has to update several indices

(an average of 45.2 using default settings in Table 4.1) thereby incurring heavy disk access costs. In contrast the ACB

approach incurs a small overhead of using distributed IR solutions to merge search results from a small number of barrels.

4.1.2 Dynamic Access Control

In this section we study the effect of dynamic access controlpolicies on the IPU and the ACB approach using two types

of access control updates: adding a new group to a user and adding a new∧-group to a file. As described in§3.1.3 the

ACB approach requires a new edge from vertexVu (for useru) to a vertexVg (for groupg) to reflect this access control

update. In the IPU approach, adding a new group membership toa useru may permit the user to access files that it could

previously not access. Now, the indices of all such files needto be added to useru’s search index. Figure 6 shows the

number of file indices that need to be copied when a user group is added to a user assuming the user is already a member

of ngu groups. Note that the figure can also be interpreted as the number of file indices that need to be removed from a

user’s search index when a user that is already a member ofngu + 1 groups looses membership to one of its groups.

Next, we study the effect of adding or removing a∧-groupg to a file’s access control expressionB(f). As described

in §3.1.3 the ACB approach requires only small manipulations onthe ACG to reflect this access control update and thus

incurs nearly zero cost. On the other hand, in the IPU approach when a new∧-groupg is added to a filef , a large number

of users that could previously access filef can no longer access it. The IPU approach needs to update the indices for

all such users. Figure 7 shows the number of users whose search indices need to be updated when a file’s access control

expression is updated assuming the number of∧-groups inB(f) is ngf .

17

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 10 100 1000 10000 100000 1e+06 1e+07

minf

’Index Size IPU’
’Index Size ACB’

’Num ACBs per User’

Figure 8: Optimization I

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

A
cc

es
s

C
on

tr
ol

 V
io

la
tio

ns

minf

’single-index’
’acb-random’

’acb-size’
’acb-pop’

Figure 9: Optimization II: Index Size

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 10 100 1000 10000 100000 1e+06 1e+07

N
um

 A
C

B
s

pe
r

U
se

r

minf

’nacb-random’
’nacb-size’
’nacb-pop’

Figure 10: Optimization II: Num

ACBs

4.2 Optimization Techniques

In this section, we show the effectivness of our optimization techniques in decreasing the number of barrels. Figure 8

shows the effectives of our first optimization technique that preserves the SAC property while maintaining multiple copies

of each file index. We plot the tuneable parameterminf , the mininum number of files per barrel, on the x-axis. As

described in§3.2 our index size increases withminf and slowly reaches the index size of the IPU approach asminf →

|F |. This shows the flexibility of our technique in reducing the number of barrels while incurring significantly lower costs

than the IPU approach.

Figures 9 and 10 show the effectiveness of our second optimization technique that maintains exactly one copy of every

file index while violating the SAC property for some files. We have evaluated the effectiveness of our algorithm using

three heuristics:random chooses a vertexv at random frommaxSub(VC), size picks the vertexv ∈ maxSub(VC) that

has the least number of files, andpop picks the vertexv ∈ maxSub(VC) that causes the least number of SAC violations.

Figures 9 and 10 show that popularity based approach performs best in terms of both minimizing the number of violations

and the number of ACBs. As described in§3.2 the number of violations increases withminf and finally equals that of

the single-index approach. This shows the flexibility of ourtechnique in reducing the number of barrels while violating

the SAC property for far fewer files than the single-index approach.

4.3 Indexing and Search Datasets

The first data set, called T14m, is a publicly available cleaned subcollection [16] of TREC Enterprise track (TREC

14) [35]. TREC 14 is a newly formed track specifically on enterprise search and includes data from the World Wide Web

Consortium (W3C) enterprise filesystems. The T14m dataset characteristics are shown in Table-1. It includes emails

(lists), web pages (www), wiki web pages (esw) and people pages (people). This dataset does not include any access

control information.

A significant portion of the efficacy of our approach depends on actual filesystem structure and access privileges in

the enterprise. In order to measure this, we collected statistics from a real multiuser *nix enterprise installation, whose

characteristics are shown in Table-2. We collected anonymized directory structure and access privileges informationfor

339,466 files arranged in 23,741 directories and replicatedthe structure in our test environment. The T14m data was used

as content for the files (duplicating documents to fill all 339,466 files).

18

Scope Docs Size Avg. Doc Size

lists 173,146 485 MB 2.9 KB

www 45,975 1001 MB 23.8 KB

esw 19,605 80 MB 4.2 KB

people 1,016 3 MB 3.1 KB

Total 239,742 1569 MB 6.9 KB

Table 1: T14m dataset: Cleaned TREC 14 subcollections [16]

Number of users 926

Number of user groups 1203

Number of files 339,466

Number of dirs 23,741

Max depth of dir structure 23

Size of data 2.05 GB

Number of barrels 2132

Max Avg Median

Barrels per user 25 6.31 4.26

21
∗

5.78∗

3.96∗

Table 2: Real enterprise dataset characteristics. Barrelsper user statistics were also computed at a second enterprise

(shown by *)

4.4 Indexing Experiments

Indexing is perhaps the most important component of our approach. It includes a pre-processing step that creates the user

access hierarchy and the access control barrels followed byactual content indexing of the files contained in ACBs.

4.4.1 Pre-processing

As pre-processing performance is entirely dependent on theenterprise infrastructure (users/groups and directory struc-

ture), we use the real enterprise dataset for these experiments. Table-3 shows the evaluation of our implementation.

Task Performance

Access hierarchy creation 38.7 sec

Barrel creation 263.1 sec

Filesstat’ed 202,446 (60%)

Dirsstat’ed 14,059 (59%)

Table 3: Pre-processing performance for real enterprise dataset

Creating access hierarchy for 926 users and 1203 user groupstook a total of 38.7 seconds, which is a very small

fraction of the total indexing time. It took another 263.1 sec to traverse the filesystem and create all ACBs. One∧-

credential needed to be added to the access hierarchy duringbarrel creation. Additionally only 60% of the filesystem tree

needed to be traversed to create all barrels as in many cases,a higher level directory was mapped to a restrictive credential

(e.g. onlyuidbob can access) in which case its contents are automatically added to that barrel without deeper traversal.

19

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 50 100 150 200 250
In

d
ex

in
g

 T
im

e
(s

ec
)

Number of Files (x 1000)

CSI
BDI-2
BDI-5

Figure 11: Indexing T14m dataset

Overall, these costs are only 10% of the distributed indexing approach and 6% of the centralized approach (Table-4).

4.4.2 Content Indexing

For indexing of documents, we used thearrow indexing and search component of the Bow Toolkit [24] developed at

CMU. We modified the ranking algorithm of the toolkit to the distributed IR algorithm of [20]. For our experiments,

we considered two architectures: (1)Centralized Single Index (CSI)- a centralized single index for the entire dataset

analogous to the available enterprise search products6, and (2)Barrel-based Distributed Indexing (BDI)- our barrels

based distributed indexing approach.BDI-mdenotes the case whenm machines are used to index barrels in parallel.

Figure-11 shows the time to index different number of documents of the T14m dataset ranging from 25K to 240K.

For BDI architectures, the documents were equally divided between the participating machines for indexing.

From the graph, CSI outperforms the BDI approaches when the number of documents is small. This occurs due to the

pre-processing costs that the BDI approaches incur. However, as the number of documents increases, BDI approaches

quickly outperform the CSI approach. The distribution of data into ACBs has allowed us to exploit available enterprise

machines for faster indexing time (an 85% improvement for 240K files).

The results for the T14m dataset above are a little optimistic as it considers a uniform size and distribution of barrels.

However, in reality there could be a few barrels that are significantly larger than the others and dominate the indexing

times. To evaluate this, we performed indexing for our real enterprise dataset. As shown in Table-4, the barrel for the

all node (files that can be read by all users) was significantly larger and took longer than all other barrels combined

(and thus total time does not vary with number of machines). However, it was still 38% more efficient than the CSI

approach. In general, distribution is most helpful when there are many such large barrels and we expect that to be true in

an enterprise-scale environment.

Type #Max-Docs Time (s) Savings

CSI 339,466 4640 –

BDI 189,546 2902 38%

Table 4: Indexing times for real enterprise directory structure. #Max-Docs is the number of documents in the largest

barrel

6Recall that this architecture does not guarantee privacy preserving search

20

4.5 Searching

Recall that searching in our approach requires combining multiple barrels. However, given the small number of barrels

per user, overheads should not drastically deteriorate query performance. Secondly, since our approach does not have to

perform access control at runtime, there would be some savings in query runtime performance as compared to the CSI

approach.

For the querying experiments we used 150 queries obtained from TREC 14 Email search. The queries had an average

of 5.35 terms per query. The results for CSI and n-BDI (wheren is the number of barrels combined) are reported in

Table-5.

Type Index size Loading time Avg. time / query

CSI 230 MB 2.5 s 131.12 ms

2-BDI 258 MB 3.37 s 112.89 ms

5-BDI 269 MB 5.68 s 130.68 ms

10-BDI 280 MB 6.90 s 149.90 ms

Table 5: Search performance comparison for TREC 14lists. Loading time is the time to load all indices in memory

First notice that the BDI approaches have slightly larger indices. This is due to the fact that they have to store many

words multiple times in different barrel vocabularies. Next, the time to load indices into memory also increases with the

number of barrels as there are more file I/Os to gather the index data. However, this is only a one-time cost and once

indices are cached, queries proceed normally. Finally, theaverage query time for BDI approaches is comparable to CSI

with 2-BDI and 5-BDI even outperforming it by saving on the privileges check required at runtime in the CSI approach.

We also compared the ranking of the BDI approaches to CSI ranking. For this we evaluated the percentage of top-10

results of the CSI approach that occurred in top-100

of the distributed approach and their average ranks. As shown in Table-6, for our average case of 5 barrels per user,

nearly 70% of top-10 results occurred in top-100 of the BDI approach with an average rank of 14. We believe that ranking

can be further improved using more sophisticated distributed ranking measures.

Type 10-in-100 Avg. Rank

2-BDI 75% 13

5-BDI 68% 14

10-BDI 61% 15

Table 6: Ranking comparison for TREC 14lists. 10-in-100 is the % age of CSI top-10 results in top-100 of x-BDI and

avg-rank is the average rank of CSI top-10 results in x-BDI top-100

5 Design Extensions

The distributed nature of the ACB approach makes it suitablefor search in a number of other enterprise scenarios. We

discuss two extensions of the design for (a) seamless integration with desktop search, and (b) secure search in (untrusted)

storage service provider setups.

21

5.1 Unified Desktop-Enterprise Search

A common challenge in enterprise environments is that data is typically spread into multiple islands lacking unified

control. The primary contributing reason to this issue is the data on user laptops as it is not regularly backed up to file

servers. Now, consider the problem of search in this environment from a user’s perspective. A userJanewants to quickly

understand the nitty-gritties of enterprise search and remembers seeing related documents in the past, some on her laptop

and some on her workstation in office. In the current data-islands scenario, she will have to issue two distinct queries (one

on her laptop and another to the enterprise search system) and then manually rank the documents returned from the two

systems in order to find the best ones.

In contrast, our approach can unify search over these data islands because of its intrinsic distributed nature. This is

accomplished using a local orchestrator on the user’s personal machine (see Figure-2) which has similar functionalityto

the global orchestrator though only at the scale of a single user. It interacts with the local indexer to index documents

on local storage. For handling search, it treats the local index as another barrel and combines it with user accessible

barrels (V ∗
u) from the enterprise. This provides a seamless integrationof local indices with accessible barrel indices in the

enterprise.

5.2 Secure Search with Untrusted Search Service Providers

Another advantage of the ACB-based approach is that we can securely support search service provider (SSP) environ-

ments. As mentioned in§2, such environments have an external third-party that hosts search indices for data that is also

typically outsourced to a storage service provider. The setup works as follows. Before an enterprise encrypts its data

for archival at the storage service provider, it indexes thedata using software or even a hardware appliance. The indices

can then be sent to the same or potentially a different service provider. In such environments, it is crucial that no private

information is leaked out to the SSP along with continuing tomeet the intrinsic multiuser ACAS requirements. All exist-

ing single-index enterprise search products fail to support such environments since they perform access control at query

runtime and an SSP environment lacks a trusted agent to do this. In contrast, our scheme can be extended to securely

support these untrusted SSP-hosted indices. The description follows.

Recall that for a vocabulary of keywords, an index consists of multiple rows with a row for each keywordw. The row

for w includes its TFIDF statistics from the files in barrelACBi and a list of files that containw. Our primary task is to

hide the file names and vocabulary from the SSP. We can do this using the following cryptography technique.

We associate each barrelACBi with a randomly generated barrel encryption keyKi. Only the users who have the

required credentials to search the barrelACBi have the knowledge ofKi. This can be done by writing the key to a

file stored in the enterprise global namespace using the samepermission settings as the barrel itself. Only the users

that can accessACBi can get this key. Now, given a barrel encryption keyKi, we replace each keywordw in barrel

ACBi’s vocabulary with a keyed hash valueKHKi
(w), whereKH denotes a pseudo-random function like HMAC-

MD5 or HMAC-SHA1 [19]. Next, we present two approaches that differ in the level of trust placed at the SSP and the

computation/communication overhead incurred at the client.

As a first approach (referred to as BDI-T) we leave the TFIDF statistics unencrypted and encrypteachfile name

separatelywith the barrel encryption keyKi. Now, given a search query with keywordw from a useru, the user’s

22

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250

%
 o

v
er

h
ea

d

Number of Files (x 1000)

BDI-T-index
BDI-T-search
BDI-U-index

BDI-U-search

Figure 12: Computation Costs

 0
 10
 20
 30
 40
 50
 60
 70

 0 50 100 150 200 250

%
 o

v
er

h
ea

d

Number of Files (x 1000)

BDI-T-index
BDI-T-search
BDI-U-index

BDI-U-search

Figure 13: Communication Costs

client initiates a search forKHKi
(w) for all i such thatACBi is searchable by the useru. Note that if a barrelj is

not searchable by the useru, then the useru does not know the barrel encryption keyKj and thus cannot even guess

the keywordKHKj
(w). The SSP performs a regular distributed IR search over user-accessible barrels forKHKi

(w)

and returns a ranked list of encrypted file names which the user can decrypt withKi. SSP can do this ranking as TFIDF

statistics were left unencrypted. However, this approach is vulnerable to a frequency inference attack (on the frequency

of keywords in the index). A frequency inference attack attempts to infer a keyword from its popularity, say the number

of files that contain the keyword, information which is contained within the unhidden TFIDF statistics. Such frequency

inference attacks can be thwarted using multiple SSPs. Please refer to§5.4 for one such technique.

A second approach, referred as BDI-U, is to hide the index statistics from the SSP as well. Similar to the first

approach, we replace each keywordw in barrelACBi’s vocabulary with a keyed hash valueKHKi
(w), but instead of

encrypting only the file names, we encrypt the entire row (including the TFIDF statistics) with the barrel encryption key

Ki. When the SSP receives a search query with keywordKHKi
(w) from a useru, it returns the encrypted rows in the

index corresponding to the keywordKHKi
(w). Now, the client has to perform some computation to decrypt and merge

the results obtained from different barrels and present a final ranked list of files to the user. This approach preserves the

privacy of the index statistics along with file names and vocabulary by incurring some computation and communication

overhead at the client.

5.3 SSP Search Evaluation

Our SSP experiments compare the two approaches discussed above: BDI-T trusts the SSP with index statistics and only

hides file names and words and BDI-U that hides everything.

Figure-12 and 13 show the computation and communication overhead incurred by the SSP approach over an approach

wherein the SSP is completely trusted (nothing is hidden – used only for a baseline comparison).

The indexing cost for BDI-T is higher since we encrypt each filename separately, unlike BDI-U which encrypts the

entire list of file names and index statistics for each keyword (encrypting file names separately requires each file name to

be padded such that its length is an integer multiple of 16 bytes, a requirement of the encryption algorithms). On the other

hand BDI-U incurs a higher cost for search. Computation costis higher because BDI-U requires client side computation

to decrypt and merge the results from multiple barrels. Communication cost is high because in BDI-U the SSP sends the

entire list of file names for a keyword (along with the index statistics) to the client rather than sending a short-listed set of

23

ranked files. Note that the total number of files that match a keyword can be significantly larger than the result set, hence,

the communication overhead in BDI-U is larger than BDI-T.

5.4 Thwarting Frequency Inference Attacks at SSPs

The first secure search approach for SSP environments (BDI-T) presented in§5.2 is vulnerable to frequency inference

attacks. A frequency inference attack attempts to infer a keyword from its popularity, say the number of files that contain

the keyword, information which is contained within the TFIDF statistics, left unencrypted. However, such frequency

inference attacks can be thwarted using multiple SSPs assuming that the SSPs do not collude with one another. The

primary reason a frequency inference attack works is that weexpose the frequency of keywords to a SSP. However, one

can largely obfuscate this information by partitioning theindex across multiple SSPs. Indeed if all keywords appear

equally popular to a SSP then the SSP cannot gain any additional information from a frequency inference attack. This

technique is best explained with an example. Let us suppose that we have two keywordsw1 andw2 with w1 being twice

as popular asw2. Also assume that we have two SSPs,SSP1 andSSP2. We partition the index for keywordw1 into

two halves and store one half at each of the SSP. We store the index for the keywordw2 entirely in SSP1. From the

perspective ofSSP1 both the keywordsw1 andw2 are equally popular. Unless the SSPs collude with one another, the

apparent popularity of all keywords for all SSPs is identical. In general one can extend this approach to multiple keywords

and multiple SSPs as follows. Letf1, f2, · · · , fT denote the frequency (popularity) ofT keywords. Letminf = min(f1,

f2, · · · , fT). For a keywordwi with popularityfi, we calculate

NSSPi = min

(

fi

minf
, NSSP

)

whereNSSP is the total number of SSPs available. Now, divide the index for keywordwi amongstNSSPi randomly

chosen SSPs from the set ofNSSP SSPs.

To measure the effect of using multiple SSPs, we use entropy as the measure of an effectiveness of a frequency

inference attack. Letf1, f2, · · · , fT denote the freqency ofT keywords normalized such that
∑T

i=1 fi = 1; then the

entropy is computed as

Sact = −
T

∑

i=1

fi ∗ log fi

Note that entropy denotes the degree of randomness in the system; hence, larger the entropy more the randomness and

harder it is for the SSP to perform a frequency inference attack. If the popularity of all keywords are equal, that is,fi =
1
T

for all i, then the entropy is maximumSmax = log T . Let NSSPi denote the number of SSPs in which keywordwi is

stored. Then the apparent popularity of keywordwi as measured by the SSPs isf ′
i = fi

NSSPi
, whereNSSPi is determined

as described in§5.2. One can measure the apparent entropy ofT keywords on normalized apparent frequencies
∑T

i=1 f ′
i

= 1; then the apparent entropy is computed asSapp = −
∑T

i=1 f ′
i * log f ′

i .

Figure 14 shows the apparent entropy as the number of SSPs increases. Observe that even with five SSPs the apparent

entropy can be almost close to the maximum entropySmax.

Figure 15 shows the apparent entropy as the collusion amongst SSPs increases withNSSP = 5. As more SSPs

collude the apparent frequency of a keyword stored by the colluding SSPs gets closer to its actual frequency. Indeed if all

the SSPs collude with one another, the apparent entropySapp = actual entropySact.

24

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5

E
n

tr
o

p
y

 (
b

it
s)

Number of SSPs

Smax
Sobs
Sact

Figure 14: Entropy, no collusion

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5

E
n

tr
o

p
y

 (
b

it
s)

Number of Colluding SSPs

Smax
Sobs
Sact

Figure 15: Entropy with collusion

Desktop Search Enterprise Search Wumpus [3] Our Approach

Access Control Integration Indexing Query Runtime Query Runtime Indexing

ACAS Requirement Satisfied Not satisfied Satisfied Satisfied

Service Provider Support No No No Yes

Search Consolidation No No No Yes

Architecture Centralized Centralized Centralized Distributed & parallel

Overheads High space & up-

date costs

Runtime privileges

check

Runtime query transforma-

tion & privileges check

Barrels processing &

runtime results merging

Figure 16: Comparison of search approaches

6 Related Work

We have already described existing work in enterprise search and how our approach tackles the problem differently.

Table-7 summarizes this discussion and compares all approaches on various attributes. In the rest of this section, we will

cover related work in distributed IR, private search, and keyword based search over encrypted data, similar to our SSP

environment.

The growth of geographically separated file collections have made distributed information retrieval a necessity. Kretser

et al [20] compare different approaches of distributed retrieval. They conclude that distributed IR systems can be as fast

and effective (quality-wise) as the monolithic systems using four distributed collections. Xu and Callan [36] and Powell et

al [26] suggest that the effectiveness of distributed information retrieval systems can drop by up to 30% when the number

of collections exceeds 100. However, in our approach the number of collections (number of barrels per user) was on an

average about 6 and a maximum of 25 (see Table-2). Our algorithms to construct a minimal set of ACBs (see§3.1.2)

ensure that the number of barrels per user is small and thus one can hope to obtain high quality results as predicted by

[20]. In addition, one could also deploy query expansion andcareful source selection [36, 26] to enhance the effectiveness

of our approach.

Bawa et al [1] present techniques for constructing a privacypreserving index on documents in a multi-organizational

setting. Their goal is to construct a centralized index thatcan be made public without giving out any private information.

Similar to other enterprise search techniques they apply access control at query runtime and incur higher overheads than

our proposal. Our approach focuses on integrating access control with search in a single enterprise setting and is more

efficient.

25

Private information retrieval (PIR) was first introduced asa problem by Chor et al [5] – a user wishes to retrieve

the ith bit in a database without revealing any information abouti. PIR schemes often require multiple non-colluding

servers, operate in multiple rounds, are resource-intensive and do not support keyword search. Hence, several authors

have focused on efficient solutions and their security guarantees. Another direction of work has focused on running

queries over encrypted data at an untrusted server [15, 32, 4]. These schemes require the user to know a secret key with

which the searchable content of the document is encrypted. They ensure that only the frequency profile of the queried

keywords is revealed to the search service provider (similar to our BDI-T approach). However, these approaches do not

consider a multiuser enterprise setting where in addition to keeping the data private from the SSP, one needs to enforce

access control rules on the users. Our approach cleverly partitions the search problem into two parts: an access control

problem that is handled by our barrels-based secure indices, and a privacy problem if such indices are hosted by a third-

party search service provider. Indeed, we can leverage any approach [32, 2] that provide privacy preserving search over

an untrusted service provider hosted index.

Google Search-Across-Computers [11] provides an insecureand non-privacy preserving solution to store files and

indices at a remote service provider. There are some commercial storage service providers that allow files to be encrypted

and stored securely at the data center [8, 25]. Several researchers have also focused on building cryptographic filesystems

[18, 10, 21] that store files in an encrypted manner and use keymanagement protocols to ensure that a user has a file’s

key if and only if the user is permitted to access that file. We can leverage any such approach that stores encrypted files in

combination with a privacy preserving search capability.

7 Conclusions and Future Work

In this work, we presented an efficient and secure approach toenterprise search. We demonstrated the inadequacy of ex-

isting solutions at ensuring privacy preserving search anddeveloped distributed techniques that elegantly capture access

control semantics of enterprise repositories, using novelaccess control barrel (ACB)anduser access hierarchyconcepts.

The distributed and parallel nature of our solution helps improve indexing efficiency and reduces resource requirements

for search servers. It also seamlessly integrates single-user desktop search with enterprise search and unlike all exist-

ing approaches, can provide security in external search service provider environments. Our experimental evaluation on

synthetic and real datasets shows improved indexing efficiency and minimal overheads for ACB processing.

As part of future work, we intend to integrate data-specific indexing and search mechanisms with our approach. This

becomes necessary when users want to search (and rank) on higher level metadata concepts along with full content search.

References

[1] M. Bawa, R. Bayardo, and R. Agarwal. Privacy-preservingindexing of documents on the network. InVLDB, 2003.

[2] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword search. InEurocrypt,

2004.

[3] S. Büttcher and C. Clarke. A security model for full-text file system search in multi-user environments. InUSENIX

Conf. on File and Storage Technologies (FAST), 2005.

26

[4] Y.C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted data. InApplied

Cryptography and Network Security, 2005.

[5] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. InFOCS, 1995.

[6] Google Desktop.http://desktop.google.com.

[7] Yahoo Desktop.http://desktop.yahoo.com.

[8] Arsenal Digital.http://www.arsenaldigital.com.

[9] Windows Desktop Search for Enterprise.http://www.microsoft.com/windows/desktopsearch.

[10] E. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: securing remote untrusted storage. InNDSS, 2003.

[11] Google.http://desktop.google.com/features.html#searchremote.

[12] Butler Group. Unlocking value from text-based information. Review Journal Article, March 2003.

[13] Gartner Group.http://www.gartner.com.

[14] A. Grunbacher and A. Nuremberg. POSIX Access Control Lists on Linux.http://www.suse.de/%7Eagruen/acl/linux-

acls/online.

[15] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. ExecutingSQL over encrypted data in the database service provider

model. InSIGMOD, 2002.

[16] Daqing He. Cleaned W3C Subcollections.http://www.sis.pitt.edu/%7Edaqing/w3c-cleaned.html.

[17] IBM WebSphere Information Integrator.http://www-306.ibm.com/software/data/integration/db2ii.

[18] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scalable secure file sharing on untrusted

storage. InUSENIX Conf. on File and Storage Technologies (FAST), 2003.

[19] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authentication.

http://www.faqs.org/rfcs/rfc2104.html.

[20] O. Kretser, A. Moffat, T. Shimmin, and J. Zobel. Methodologies for distributed information retrieval. InICDCS,

1998.

[21] J. Li, M. Krohn, and D. Mazieres. Secure untrusted data repository SUNDR. InOSDI, 2004.

[22] Linux Manual Pages.man command-name.

[23] R. Love and J. McCutchan. inotify linux file system monitor.

[24] A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering.

http://www.cs.cmu.edu/%7Emccallum/bow.

[25] Iron mountain.http://www.ironmountain.com.

[26] A. Powell, J.French, J.Callan, M.Connell, and C.Viles. The impact of database selection on distributed searching.

SIGIR, 2000.

[27] D. Ritchie and K. Thompson. The UNIX Time-Sharing System. Communications of the ACM, 17(7), 1974.

[28] S. Robertson, S. Walker, and M. Beaulieu. Okapi at trec-7: Automatic ad hoc, filtering, vlc and interactive. InTREC,

1998.

[29] Coveo Enterprise Search.http://www.coveo.com.

[30] Google Enterprise Search.http://www.google.com/enterprise.

[31] Amazon Simple Storage Service.http://aws.amazon.com/s3.

[32] D. Song, D. Wagner, and A. Perrig. Practical techniquesfor searches over encrypted data. InIEEE S & P Symposium,

27

2000.

[33] Wikipedia Tf idf. http://en.wikipedia.org/wiki/Tf-idf.

[34] MSN Toolbar.http://toolbar.msn.com.

[35] TREC Enterprise Track.http://www.ins.cwi.nl/projects/trec-ent.

[36] J. Xu and J. Callan. Effective retrieval with distributed collections. InSIGIR, 1998.

28

