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Abstract
Distributed systems are becoming increasingly complex,

caused by the prevalent use of web services, multi-tier ar-
chitectures, and grid computing, where dynamic sets of
components interact with each other across distributed and
heterogeneous computing infrastructures. For these appli-
cations to be able to predictably and efficiently deliver ser-
vices to end users, it is therefore, critical to understand and
control their runtime behavior. In a datacenter environ-
ment, for instance, understanding the end-to-end dynamic
behavior of certain IT subsystems, from the time requests
are made to when responses are generated and finally, re-
ceived, is a key prerequisite for improving application re-
sponse, to provide required levels of performance, or to
meet service level agreements (SLAs).

The E2EProf toolkit enables the efficient and non-
intrusive capture and analysis of end-to-end program be-
havior for complex enterprise applications. E2EProf per-
mits an enterprise to recognize and analyze performance
problems when they occur – online, to take corrective ac-
tions as soon as possible and whereever necessary along
the paths currently taken by user requests – end-to-end, and
to do so without the need to instrument applications – non-
intrusively. Online analysis exploits a novel signal analysis
algorithm, termedpathmap, which dynamically detects the
causal paths taken by client requests through application
and backend servers and annotates these paths with end-
to-end latencies and with the contributions to these laten-
cies from different path components. Thus, with pathmap,
it is possible to dynamically identify the bottlenecks present
in selected servers or services and to detect the abnormal
or unusual performance behaviors indicative of potential
problems or overloads. Pathmap and the E2EProf toolkit
successfully detect causal request paths and associated per-
formance bottlenecks in the RUBiS ebay-like multi-tier web
application and in one of the datacenter of our industry
partner, Delta Air Lines.

Keywords: End-to-End performance diagnosis, online time
series analysis

1 Introduction
Modern distributed systems are becoming increasingly

complex, in part because of the prevalent use of web ser-
vices, multi-tier architectures, and grid computing, where
dynamic sets of machines interact via dynamically selected
application components. A key problem in this domain is to
understand the runtime behavior of these highly distributed,
networked applications and systems, in order to better man-
age system assets or application response and/or to reduce
undesired effects. In fact, sometimes, the processing of a
single request can generate intricate interactions between
different components across many machines, making it hard
even for experts to understand system behaviors. A con-
crete example are the ‘poison messages’ experienced in the
IT infrastructure run by one of our industry partners [19].
Rapid problem detection, diagnosis [10], and resolution in
cases like these are critical, since the potential business im-
pact of problematic behaviors (e.g., inordinate request de-
lays, request losses, or service outages), can be substantial.
A recent study found, for example, that for a typical enter-
prise, the average cost of downtime either due to outright
outage or due to service degradation is about US$125,000
per hour1.

Online behavior understanding is also important under
normal operating conditions. A case in point is runtime
management to meet application-specific Service Level
Agreements (SLAs), by classifying requests and then en-
suring different service levels for different request classes,
or by managing systems to meet certain utility goals [18,
26]. Additional examples are management tasks like job
scheduling [15] or resource allocation [23]. For instance, a
front-end web request scheduler making online scheduling
and dispatching decisions in a multi-tier web service [5] re-

1IDC #31513, July 2004
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Figure 1: Example ServicePath in a multi-tier web service

quires continuous updates about the execution of the client’s
requests at the backend servers.

This paper presents theE2EProf toolkit for online per-
formance understanding. E2EProf can be used to diagnose
the performance problems that arise from complex inter-
actions across multiple subsystems and machines. First,
its methods forend-to-endperformance understanding can
capture the entire life-cycles of requests as they are being
processed by an enterprise application’s many hardware and
software components. Second, E2EProf analysis enables
online problem diagnosis, because of its optimzations and
compact trace representations. Third, since E2EProf uses
non-intrusivekernel-level network tracing for application
monitoring, it can operate across the large diversity of ap-
plications routinely used in the enterprise domain, without
the need to assume the existence of common, clean, and
perhaps most importantly, without requiring uptodate mon-
itoring instrumentation. Fourth, E2EProf operates without
requiring access to source code, since it is not likely read-
ily available for all of the applications being evaluated and
managed by an organization. In fact, even if sources were
accessible, the lack of proper documentation often makes it
a daunting task to analyze these extensive codes.

TheE2Eproftoolkit uses an incremental approach to per-
forming end-to-endanalyses of request behaviors. Specif-
ically, it encapsulates different request interactions across
distributed program components with different ‘service
paths’, where each such path describes a set of dynamic de-
pendencies across distributed components formed because
of the services they provide and the requests they service.
Figure 1 shows the multiple service paths used by three dif-
ferent types of clients in a multi-tier web service, for exam-
ple, where paths are differentiated by the kinds of requests
being submitted.

Online service path encapsulation is done by correlating
the timestamps of the messages exchanged between inter-
acting components. E2EProf’s cross-correlation analyses
can capture application-relevant performance metrics, such
as the end-to-end latencies experienced by requests, and
they can determine the contributions of specific application-
level services and network communications to such laten-
cies. The choice of requests, components, and service paths

to be analyzed can be changed at any time, without the need
to recompile, re-link, or re-edit programs.

While the idea of path-based analysis been used by other
researchers to discover faults and performance problems in
distributed systems [1, 8, 4, 25, 24], E2EProf makes the fol-
lowing unique contributions:

• Its service pathabstraction can be used to encapsulate
the causal paths of different requests (or services), cap-
ture end-to-end request delays, and the components of
those delays due to each individual software component.

• Its time-series analysis algorithm, termedpathmap, dis-
covers the causal request paths from network packet
traces non-intrusively, which means pathmap neither re-
quires access to application source code, nor modifica-
tions to deployed application services.

• Its ability to understand the performance of complex
distributed applications is demonstrated by carrying out
detailed online performance analyses for the RUBiS
multi-tier auctioning web application.

• The low latency, efficient analyses performed by
E2EProf permit it to be used for online management,
using a black-box scheduling algorithm to manage Ser-
vice Level Agreements (SLA) in RUBiS.

• E2EProf has gone beyond in-lab concept demonstra-
tions, by using its pathmap algorithm to evaluate the
performance of an enterprise application deployed in
one of our industry partner’s datacenters, the ‘Revenue
Pipeline’ used in Delta Air Line’s Atlanta datacenter.

E2EProf is the outcome of a multi-year effort to develop
efficient mechanisms and methods for runtime performance
understanding. E2EProf’s online analysis permits it to cap-
ture and deal with the dynamic behaviors of complex en-
terprise applications. A specific target class of applications
addressed by E2EProf are theOperational Information Sys-
tems(OIS) [13] used by large organizations for controlling
day-to-day operations, an example being the OIS run by
one of our industrial partners, Delta Air Lines. In order to
function properly, these systems must operate and adapt to
changes within well-defined constraints derived from their
SLAs and dependent on the business values or utilities as-
sociated with their various services. If a SLA is violated,
system administrators usually analyze large complex logs
in order to isolate faulty components. E2EProf can be used
to automate performance diagnosis, thereby reducing such
maintenance costs.

In the remainder of this paper, we describe the ser-
vice path abstraction and various components of E2EProf
toolkit. The next section surveys the related work. Sec-
tion 3 describes the pathmap algorithm and analyzes it in
detail. Experimental evaluation is presented in Section 4
together with some realistic test cases of performance diag-
nosis and management. Conclusions appear in Section 5
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2 Related Work
The large number of tools available for distributed sys-

tem performance diagnosis may be categorized based on
three broad features: online/offline, level of intrusiveness,
and quality of analysis.

Single web server system performance has been stud-
ied extensively. EtE [12] and Certes [22] measure client-
perceived response time at the server side. The former does
offline analysis of the packets sent and received at the server
side, while the latter does online analysis by observing the
states of TCP connections.

Tracing tools for single systems like the Linux Trace
Toolkit [27] and Dtrace [6] provide mechanisms for log-
ging events by inserting instrumentation code. Compiler-
level instrumentation is commonly used to understand pro-
gram behaviors (e.g. gprof.) However, source code may
not always be available, and the sizes and complexities of
sources are disincentives for software engineers engaged in
post-development instrumentation or evaluation. Even bi-
nary instrumentation requires some level of understanding
of application details.

Path-level analysis of distributed systems tracks the
causal relationship between different components and has
recently been an area of active research. ETE [14] uses
application-specific instrumentation to measure the laten-
cies between component interactions and relates them to
end-to-end response times to detect performance problems.
Pinpoint [9] detects system components where requests fail,
by tagging (and propagating) a globally unique request ID
with each request. Magpie [4], on the other hand, requires
no global ID, and it can capture not only the causal paths,
but also monitor the resource consumption of each request.
Industry standards like ARM [3] (Application Response
Measurement) used by HP’s Openview, IBM’s Tivoli, and
BEA’s Weblogic require middleware-level instrumentation
to measure end-to-end application performance. In contrast,
E2Eprof does not require any modification to applications
and therefore, can also be used with legacy components.
However, unlike Magpie, it does not measure general re-
source usage.

The work by Aguileraet al. [1] is most closely related
to E2Eprof. They propose two algorithms to determine
causally dependent paths and the associated delays from
the message-level traces in a distributed system. While
their nestingalgorithm assumes ‘RPC-style’ (call-returns)
communication, theirconvolutionalgorithm is more gen-
eral and does not assume a particular messaging protocol.
Our pathmap algorithm is similar to theconvolutionalgo-
rithm, in that both uses time series analysis and can han-
dle non-RPC-style messages. While the convolution algo-
rithm is primarily intended for offline analysis, pathmap
uses compact trace representations and a series of optimiza-
tions, which jointly, make it suitable for online performance

diagnosis.

3 Service Paths

3.1 Basic Abstractions, Methods, and Assumptions

In modern enterprise systems, different client requests
may belong to one or moreservice class(es), which are
defined on the basis of simple request types, clients IDs,
or more generally, SLAs. These requests may take differ-
ent paths through the enterprise software, invoking differ-
ent and multiple software components before responses are
generated. We term the ensemble of paths taken by client
requests in different service classes as ‘Service Paths’.

Service paths form the basis of E2EProf’s online end-
to-end performance analyses, because they characterize the
end-to-end properties sought by the enterprise and capture
the complex dependencies that exist across the different
software components involved in service provision. For
each path, E2EProf’s analyses can describe not only the
path’s end-to-end latency but also the latencies incurred
across different path edges. Therefore, service path anal-
ysis can pinpoint the bottleneck components in a request
path, and it can be used for provisioning, capacity planning,
enforcing SLAs, performance prediction, etc.

Thepathmapalgorithm uses time-series analysis to dis-
cover the service paths of different service classes, making
the following assumptions:

• Each client’s requests belong to a uniqueservice class,
which is known to the front end (i.e., the first nodes
in the distributed system that receives the request).
Pathmap assumes that requests belonging to the same
service class have similar resource requirements, and
that they tend to take the same paths through the dis-
tributed system.

• A request path can either be unidirectional (as in
streaming media applications) or bidirectional as in the
request-response conduits used in multi-tier web ser-
vices. In the latter case, responses traverse the same set
of nodes as the corresponding requests, but in reverse
order.

• Pathmap assumes that the distributed application and
system are operating in steady state during the analy-
sis ‘time window’, where deviations are due to internal
anomalies or external drastic changes in system usage.
Such anomalies occur when a node malfunctions, when
a network link goes down, or when a buggy application
overloads the system, for example. A sample abnormal
external change may be a malicious attack or a sudden
increase in user interaction (e.g., theSlashdot effect.)

• At small time scales, there may be large variability in
the processing of individual requests, but in steady state,
the system is assumed to be adequately provisioned so
that the queuing and processing delays at each of its
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Figure 2: Example Service Graph:Vc1 and Vc2 are the client
nodes andVsn are service nodes.

nodes don’t significantly change the distribution of the
intermediate responses (generated as a result of par-
tial processing of the requests at the intermediate nodes
in the path), as compared to the arrival distribution at
the front-end. Pathmap can, however, accommodate
changes in rate across nodes (e.g., an EJB server issuing
multiple data base queries for a single client requests).

3.2 System Representation

Formally, a distributed application or system may be de-
scribed as a directed graph G(V,E), where the vertices in
the graph represent application components and the edges
represent their logical communication links. Theservice
graphsconsidered in this paper are comprised of nodes that
may be processes, threads, or machines, communicating via
edges that map to network links2.

Each service graph has two type of nodes: client
nodes(VC) and service nodes (VS). Requests originate in
client nodes, where we assume that the requests issued by
each particular client node belong to the same service class.
A physical client issues multiple classes of requests will be
modelled as multiple client nodes, one per request class.
Service nodes house software components that operate on
requests. They are labelled by their IP addresses or by a
combination of their IP addresses and process IDs, depend-
ing on whether there is one or more service node per phys-
ical machine node (e.g., an application server and database
server being located on the same physical machine).

Edges denote logical communication link between ser-
vice nodes. These logical connections are characterized by
source and destination address pairs. They may be tran-
sient, which will usually be the case in front-end servers, or
persistent, which is typical for middle and back-end servers.
Furthermore, a single connection may consist of aggregated
traffic from separate clients, and it may therefore, exhibit
multiple traffic patterns. Figure 2 depicts a sample service
graph. For this graph, the goal of thepathmapalgorithm
is to compute the paths of requests from each client node

2Although we consider only network communication links, the
E2EProf approach can also be extended to IPC mechanisms likepipesand
message queues.

through the service graph, along with the delays incurred in
traversing the edges and nodes in those paths.

3.3 Pathmap Algorithm

The pathmap algorithm relies on the E2EProf tracing sub-
system, which uses standard operating system facilities to
collect message traces from each service node. Traces are
not collected from client nodes, since those are usually be-
yond the reach of enterprises. The key idea of the pathmap
algorithm is to convert these message traces to per-edge
time series signals and then compute the cross-correlations
of these signals. Specifically, if a signalf contains a copy
of the signalg, then their cross-correlation signal (f ?g) has
a distinguishable spike at positiond, whered is equal to the
time that the copy ofg in f has shifted fromg. This kind
of correlation analysis is commonly used in digital signal
processing to compute the level of similarity between two
signals.

First introduced by Aguileraet al. [1] in a similar con-
text, pathmap uses cross-correlation analysis to discover the
most probable request paths in a distributed system. Con-
sider the request path (VC1 → VS1 → VS2 → VS4) shown
in Figure 2. LetT x

x→y be the time series signal of the
messages fromx to y collected at the nodex, andT y

x→y

be the time series signal for the same set of messages col-
lected at nodey. The cross-correlation plot ofT s1

c1→s1 and
T s1

s1→s2 (denoted bycorr(T s1
c1→s1, T

s1
s1→s2)) has a spike at

position d, whered is the time thatVs1 takes to process
Vc1’s request. This implies that there is a causal relation-
ship between messages on edgeVc1 → Vs1 and messages
on edgeVs1 → Vs2. Similarly, the cross correlation plot
corr(T s1

c1→s1, T
s2
s2→s4) also has a spike, and its position is

the sum of the communication latencies at the two edges
(VC1 → VS1 andVS1 → VS2) and of the computation la-
tencies at the two vertices (Vs1 andVs2). The presence of
the spike also indicates a causal relationship between mes-
sages on edgeVc1 → Vs1 and messages on edgeVs2 → Vs4.
The cross-correlation plotcorr(T s1

c1→s1, T
s1
s1→s3), however,

has no distinguishable spike as no requests fromVc1 pass
throughVs3.

The above example illustrates how correlation can be
used to establish causality between different edges. Given
this background, Algorithm 1, outlines the actual pathmap
algorithm. It takes as input the time-series data streams
computed from the message timestamps collected at differ-
ent service nodes. The most recentsliding windowof size
W is maintained for each of these streams. After every time
interval∆W , the ‘ServiceRoot’ function is invoked to up-
date the service graphs for allclientsbelonging to different
service classes. For the analysis to be statistically signif-
icant, the size ofW is chosen such that it contains large
number of requests. The algorithm starts tracking the path
at the front-end service nodes, which become the roots of
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Algorithm 1 Pathmap
Let W = Length of sliding window
Let ∆W = Service Graph refresh interval
Input: Online time series data streams from service
nodes
function ServiceRoot()
for all Service nodeSi that are at the front-enddo

for all Client nodesVc connected toSi do
Service GraphGc = {}
Add Si in GraphGc

Add an edgeEc(Vc → Si)
ComputePath(Gc, TSi

Vc→Si
, Si)

end for
end for

function ComputePath(Gc, Tc, Si)
Mark Si as visited
Let Sd = List of destination nodesSi is connected to
for all ds in Sd do

corr = ComputeCrossCorrelation(Tc, T ds

Si→ds
)

P = List of spike’s position incorr
if P is not emptythen

if vertexds not inGc then
Add vertexds in Gc

end if
Add an edgeEs(Si → ds) and label it withP
if ds not visitedthen

ComputePath(Gc, Tc, ds)
end if

end if
end for

service graphs. In addition, it adds an edge between the
client node and the root vertex and then callsComputePath
to calculate rest of the graph.

ComputePath’sparameters are a partial service graph
Gc, a time-series signal (Tc) of the incoming requests of
the service class (sayC) at the front-end for which the ser-
vice graphGc is being determined, and the service node
(Si) to be processed next. Its job is to find the next set
of service nodes used by the request class represented by
the time-seriesTc. This is done by the process of correla-
tion described above. Basically,Tc is cross-correlated with
the time-series signal from the nodes(ds) adjacent toSi. If
the correlation is high (as indicated by the presence of the
spikes), then there exists a path fromSi to ds taken by the
requests belonging to service classC. This is recorded by
adding vertexds into the graphGc (if such a vertex does
not yet exist) and by adding an edge fromSi to ds. The
edge is labelled with thedelay(s) as denoted by the spikes’
position in the cross-correlation test. This delay is the sum
of the time taken by the request to arrive at nodeSi, the
processing delay at nodeSi, and the communication delay

in the path fromSi to ds. The computing delay at nodeSi

is the difference of the delays corresponding to its incoming
and outgoing edges. The existence of more than one spike
indicates that the request may have taken different paths to
Si (e.g.,S1 → S2 → Si → S4 andS1 → S3 → Si → S4).
Once the path tods is established, the algorithm proceeds
further by performing a recursive depth-first search and ex-
ploring other edges in the service graph.

Spikes in the cross-correlation series are detected by
finding pointsthat are local maximas and exceed a thresh-
old (mean + 3 × Std.Dev.). In traces with some noise,
there may exist spikes that are very close to each other. To
address this issue, we define a resolution threshold window
that chooses only the tallest spike in a particular window.

3.4 Computing Cross-Correlation

The most expensive step in the pathmap algorithm is
computing the cross-correlation. The basic formulation of
the discrete cross-correlation shown in Eq. 1 can be com-
puted inO(n2) time.

Corrd(x, y) =
∑n−1

i=0 (xi − x)(y(i+d) − y)√∑n−1
i=0 (xi − x)2

√∑n−1
i=0 (y(i+d) − y)2

(1)

where, d = 0,1,...,(n-2),(n-1)

The cross-correlation theorem(Eq. 2) provides an effi-
cient alternative to compute cross-correlation. TheFourier
transformcan be computed usingFFT (Fast Fourier Trans-
form), which reduces the time to calulate cross-correlation
from O(n2) to O(n log n).

x ? y = Corr(x, y) = F−1 [F [x]F [y]∗] (2)

where, F denotes Fourier transform, and

z∗ denotes the complex conjugate of z.

Although FFT-based computation is more efficient and is
thede factostandard in computing the cross-correlation of
two arbitary signals, it has certain limitations. First, it is
not incremental. However, when processing online streams
of timestamped data, it is desirable for analysis to be done
incrementally, rather than recomputing the correlation from
scratch. In the Algorithm 1, we would ideally like theCom-
puteCrossCorrelationfunction to update correlation infor-
mation based on the new time series data (of length∆W )
that has been appended most recently, rather than recalcu-
lating it for the completesliding window. Second, Eqn. 2
computes cross-correlation for the full range of delay cor-
responding to the input time series. That is, if the length of
the sliding windowis 10 minutes, the length of the cross-
correlation series is also 10 minutes. However, there are
scenarios when correlation needs to be evaluated for short
delays only.

For our analysis, we choose the direct cross-correlation
method (Eqn. 1), because it can be adapted easily for in-
cremental computation of correlation metrics, in addition to
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other optimizations. The first optimization is based on the
fact that most transactions in a distributed system are just a
small fraction of thesliding window. Since our goal is to
find the service transaction delays and not the full range of
cross-correlation series, by assuming an upper bound (say
Tu) on the transaction delay, the time complexity of com-
puting cross-correlation directly (i.e., without FFT) is dras-
tically reduced fromO

(
[W

τ ]2
)

to O
(

Tu

τ · W
τ

)
. τ is the time

quanta or the smallest delay of interest. In comparison, the
time complexity of FFT-based cross-correlation (Eqn. 2) is
O

(
W
τ log W

τ

)
, which is less than theO

(
Tu

τ · W
τ

)
even for

small values ofTu. Fortunately, direct cross-correlation is
incremental (as discussed earlier), and therefore, it can be
computed over only the newly appended trace of size∆W .
This reduces the time complexity of direct cross-correlation
further, toO

(
Tu

τ · ∆W
τ

)
.

A third important optimization is based on the fact that
the network packet traffic in the Internet and in most en-
terprise systems is inherently bursty. This burstiness can be
due to system or user behavior [11, 2], or it can be due to the
lower level network protocol (e.g., TCP) behavior and net-
work queueing [17]. In addition, a single transaction may
be composed of multiple packets sent back-to-back. Bursty
behavior results in dense network packet traffic intermixed
with ‘long’ quiet zones. Our optimization takes advantage
of this fact by simply omitting to compute correlation in the
‘quiet’ region, without compromising the accuracy of the
result. This is done by computing thetime seriesin such
a way that the entries with value 0 (i.e., zero packets seen
at the time corresponding to that entry) are discarded. As
a result, the length of thetime seriestrace is reduced by a
large margin (more than 10 times for some of our enterprise
traces). This not only decreases the computation time of
the direct cross-correlation, but also increases the efficiency
(both in time and space) of collecting the trace at each ser-
vice node, as we shall see in the next section. In summary,
assuming that the average factor oftime seriesreduction is
‘k’, the time complexity of direct cross-correlation drops to

O
(

Tu

τ · (∆W )/k
τ

)
.

3.5 Computing Time Series

The message traces collected at service nodes are con-
verted to time-series data using adensity functiond(i),
which represents the ‘density’ of the packets at time instant
i · τ (or ith time quanta). The density function estimation
is based on two parameters: time quanta (τ ) and the size of
rectangular sampling window(ω), an integral multiple ofτ .
dx

x→y(i) = square root of number of messages at ser-
vice nodex transmitted toy in time inter-
val

[
i · τ − ω

2 , i · τ + ω
2

]
Figure 3 shows a pictorial representation of time series

computation. The message arrivals are shown as small rect-
angular boxes. BothW (size of sampling window) and∆W

(refresh interval) are also integer multiples ofτ . Note the
entry di = (ti, ni) in the time-series computation in Fig-
ure 3. No packet was received during theith sampling win-
dow, and therefore, as discussed in the previous section,di

is not recorded in the time-series. The size of time quantaτ
determines the resolution of the analysis. For a given slid-
ing window size (W ), a smallτ results in longer time-series
(W

τ ) and a proportional increase in the cost of servicepath
analysis. Its value, therefore, should not be arbitrary small,
but equal to the shortest service delay of interest. The pur-
pose of the rectangular sampling window is to reduce the
effect of variance in delay and suppress infrequent paths
that occur due to the noise in the trace. A very smallω
may produce many spikes during cross-correlation analysis
resulting in false delays/paths. On the other hand, a large
value ofω may over-generalize the result (collapsing two
spike into one, for example). For the systems we have ana-
lyzed,ω = 50 · τ gave the best set of results.

The process of time-series computation is further opti-
mized using run-length encoding (RLE). Upon close ex-
amination of the time-series of actual enterprise traces, we
found that there are many repeatable sequences, which pro-
vide substantial room for compression. RLE is particularly
appropriate for this purpose, because it can be computed on-
line, with negligible compression and decompression over-
heads. This not only reduces the network transmission over-
head (when the time-series data is streamed to the remote
node for analysis), but it also decreases the cost of cross-
correlation analysis because the correlation of overlapping
sequences in the series (Eqn 1) can be computed in a sin-
gle step. The resultant time-series becomes a 3-tuple series
(t, c, n) (one tuple for eachrun), wheret is the timestamp
of the first density function entry in therun, c is the length
of therun andn is the value of density function.

3.6 Trace Collection

One of the requirements of service path analysis is that
no application components should be modified or restarted.
Also, the system should experience as little perturbation
as possible. Our analysis requires timestamps and (source,
destination) identification of the inter-component messages.
These messages may be collected at various levels: at the
application level (e.g., apache web server’s access logs), at
the middleware level (e.g., J2EE-level tracing [8]) or at the
system and network level. The problem with tracing trans-
actions at the application- or middleware-level is that there
is not a single and widely deployed standard.Application
Response Measurement(ARM) [3] is one such standard for
monitoring transactions end-to-end in enterprise systems.
The ARM standard was proposed in 1996 by a consortium
of companies, but it still has limited acceptance.

Passive network tracing provides a convenient way of lis-
tening to the interactions between differentservice nodes,
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2 2 2d   = (t  , n  ) i i id   = (t  , n  )

τ (time quanta)

ω (Size of rectangular sampling window)
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Figure 3: Time series computation

without the need to modify any system components. Net-
work packet traces may be collected from ethernet switch
with port mirroring support or directly from service nodes
by runningtcpdump. The traces obtained can be streamed
to some central location for analysis. Although, this looks
like a simple and attractive approach, it limits the scalabil-
ity of our overall servicepath analysis. This is because the
analysis node has to first compute the time series and then
the service paths. Offloading the time-series computation
to the service nodes decreases the work on central node.
Also, the time-series can be calculated directly from the net-
work activity at the service nodes instead of first logging the
raw packet traces (using tcpdump) and then converting it to
time-series signals. Towards this end, we implemented a
linux kernel module calledtracer, which uses the ‘netfil-
ter’ hooks to listen to the packets in the network stack and
streamsREL-encoded time series data.

3.7 Complexity Analysis

The overall time complexity of our pathmap algorithm
is O

(
E · [W

τ ]2
)
, whereE is the total number of edges in

the service graph,W is the sliding window size andτ is the
time quanta. After applying all optimizations discussed in
previous sub-sections, the time complexity is reduced to:

O

(
E · Tu

τ
· (∆W )/(k · r)

τ

)
,

whereTu is the maximum possible transaction delay and
∆W is the service graph update interval.k is the opti-
mization factor achieved by skipping quiet intervals in the
packet traces andr is RLE compression factor. Assuming
W = m ·∆W , the above can be rewritten as:

c1 ·
[

1
k · r ·m

· Tu

τ
· E · W

τ

]
,

wherec1 is a constant. On the other hand, the complexity of
FFT-based cross-correlation (Eqn. 2) isc2 ·

[
E · W

τ log W
τ

]
,

wherec2 is a constant and is much larger thanc1. Compar-
ing the two equations, it is easy to see that our optimized di-
rect cross-correlation approach is much more time efficient
than FFT-based computation.

The pathmap algorithm receives a total2 · E number
of time-series signal streams from the service nodes, two
from the two nodes connected by an edge. It stores the
cross-correlation vectors (of sizeTu

τ ) and a history of time-
series (of the size of sliding windowWτ ) for each of these
edges. The total space complexity, therefore, turns out to be

O
(
2 · E · (c′ · Tu

τ + c′′ · W/(k·r)
τ )

)
.

The pathmap algorithm can easily be made more scal-
able by parallely computing the service graph of each client
nodes (i.e., parrallelizing the inner loop ofServiceRoot).
The results reported in this paper use a single central anal-
yser.

3.8 Other Considerations

We have implicitly assumed that the clocks of all service
nodes are time-synchronized. Pathmap can tolerate small
clock skews (i.e., equal to few times of the time quanta
τ ) when determining service paths, but will exhibit some
inaccuracy (equal to the amount of skew) whem comput-
ing service delays. Fortunately, most of today’s machines
are synchronized using NTP, which has an RMS errors of
less than 0.1 ms on LANs and of less than 5 ms on Internet
(except during rare disruptions) [20]. If the skew is large,
cross-correlation results will not be accurate. We can, how-
ever, estimate time skew between two service nodes (sayx
andy) by cross-correlating the time seriesT x

x→y andT y
x→y

streamed fromx andy respectively. The resultant cross-
correlation series will have a spike at position ‘d’, whered
is equal to the sum of the time by whichx lags behindy
and the network delay. The latter can be computed easily
by one of the various passive network measurement tech-
niques [16].
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Figure 4: Multi-tier RUBiS application setup

4 Evaluation
The E2Eprof toolkit has been implemented in C and

tested extensively on Linux-based platform for both artifi-
cial traces and actual enterprise applications. For lack of
space, we will present results from just two enterprise-scale
multi-tier applications. The first is an open source multi-tier
online auction benchmark, calledRUBiS, from Rice Univer-
sity [7], and the second is theRevenue Pipelineapplication
used by Delta Air Lines. We evaluate the overhead and ac-
curacy of E2Eprof and demonstrate how it can be used for
online performance debugging in these applications.

4.1 Multi-tier Application: RUBiS

RUBiS implements the core functionalities of an auction
site like selling, browsing, and bidding. RUBiS is avail-
able in three different flavors: PHP, Java HTTP Servlets
and Enterprise Java Beans (EJB). We use the EJB’s state-
less session beans implementation with the configuration
shown in Figure 4. TheTracer kernel module runs on all
six server nodes and streams time series data to a remote
analyzer (not shown in the figure). The two client nodes run
httperf [21] to generate requests belonging to two service
classes (i.e.,bidding andcomment). The httperf workload
generator in the client nodes emulates 30 clients by initiat-
ing 30 client sessions each. Web service requests generated
by these client sessions have aPoissonarrival distribution.
We experiment with two different path configurations:

• Affinity-based: the web server forwards all bidding re-
quests to Tomcat server 1 (TS1) and all comment re-
quests to Tomcat server 2 (TS2). The path of the bid
request becomesC1 → WS → TS1 → EJB1 → DS.
Similarly, the path of the comment request isC2 →
WS → TS2 → EJB2 → DS.

• Round-Robin: the web server dispatches requests to the
two tomcat servers in a round-robin fashion. Here, the
bid requests take two different paths:C1 → WS →
TS1 → EJB1 → DS andC1 → WS → TS2 →
EJB2 → DS. Similarly, comment requests has two
paths:C2 → WS → TS2 → EJB2 → DS andC2 →
WS → TS1 → EJB1 → DS.

For RUBiS experiments, the pathmap algorithm parameters
are configured as follows: Sliding Window (W ) = 3 min-
utes, refresh interval (∆W ) = 1 minute, time quanta (τ )
= 1ms and sampling window size (ω) = 50ms. The upper

C1 WS TS1 EJB DS 1EJB1 TS1 WS C1

WS TS EJB DS EJB TS WSC2 2 2 2 2 C2

Bidding Servicepath

Comment Servicepath
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5 7
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Figure 5: Service Graph for affinity-based server selection. (All
delays in milliseconds)
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Figure 6: Service Graph for round-robin server selection (All de-
lays in milliseconds)

bound on transaction delay (Tu) is set to 1 minute. These
values are chosen based on the guidelines discussed in sec-
tion 3.4.

4.1.1 Service Path Detection

Figure 5 shows the service graph for affinity-based server
selection. Here, E2Eprof correctly discover the paths of the
two type of client requests. The vertices indicate the dif-
ferent servers, which are hosted on different physical ma-
chines. The label on the edge indicates the sum of the com-
putation delay at the source node and of the communication
delay from source to destination node. The paths of two
types of requests are structurally similar, except for the dif-
ference in the service nodes they traverse and the delays
incurred. The major sources of delay are automatically de-
tected by E2Eprof and marked in grey (i.e., the EJB servers
in the figure). Note the duplicate vertex label in the service
path. This is due to the return path taken by the response.
For clarity, we avoid using cycles in the figure.

Figure 6 shows the service graph for round-robin server
selection approach. The two paths taken by each type of re-
quests are shown, and the major source of delay are marked
in grey.

In order to verify the correctness of our results, we add
code to RUBiS’ servlets and EJB components to keep track
of transaction latency at different servers, by piggybagging
performance delay information in requests and responses.
The resulting performance data coupled with the access logs
from the web server and the response time observed at the
clients are compared against the service path results gener-
ated by E2Eprof. The difference of the processing delays
computed at each server is within 10%. The latency ob-
served at the client is about 16% more than that obtained
from E2Eprof.
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4.1.2 Change Detection

One of the goals of online service path analysis is to detect
changes in path performance. We are interested not only
in cumulative end-to-end delays, but also in fluctuations in
per-edgeperformance. This is useful for isolating bottle-
necks, re-routing request traffic, debug anomalies, etc. In
order to demonstrate this capability of E2Eprof, we vary
the performance of one of the EJB servers (EJB2) in the
round-robin server selection setup, by artificially introduc-
ing some amount of delay in the bid request processing and
increasing it after every 3 minutes. The length of the sliding
window (W ) is set to 1 minute. The other parameters of the
pathmap algorithm are the same as in the previous experi-
ments. Figure 7 shows the actual delay introduced and the
bid request processing delay atEJB2 captured by E2Eprof.
The algorithm correctly tracks the change in performance.
The difference between the observed and added delay is due
to the fact that the former includes the actual time spent by
EJB2 in processing the requests in addition to the artifi-
cial delay introduced in the experiment. The delay patterns
of other edges remain unchanged. The figure also shows
the average processing delay observed at the front-end web
server. Since more than half of the requests take the low la-
tency path (viaEJB1), the average delay does not change
by the same amount. In cases like these, E2Eprof can help
diagnose bottlenecks faster, because it can separately track
the performance of each service node.

4.2 Automated Path Selection

The front-end web server, among other things, has to
perform request scheduling and dispatching, the purpose of
which is to ensure load balancing and provide quality of
service. Often, different workloads are associated with cer-
tain performance goals (e.g., minimum throughput or best
response time) and may have certain SLAs associated with
them. For example, abidding request in an online auction
site like RUBiS has real-time deadlines, while acomment

posted by a user has a less stringent deadline. Under nor-
mal circumstances, the round-robin server selection scheme
works ‘fairly’ well. However, when the application servers
experience performance problems, the simple round-robin
scheme may not be able to meet SLA requirements.

Table 1: Average latency with different path selection method
Bidding Comment

Round-Robin (No perturbation) 72 ms 64 ms
Round-Robin (with perturbation) 121 ms 109 ms
E2EProf (with perturbation) 97 ms 139 ms

In order to improve upon round robin scheduling, we
design a setup similar to the previous experiments, with
two different classes of workload (bidding and comment),
but introducing artificial delay experienced by the two EJB
servers, which changes once per minute. These delays are
randomly chosen, ranging from 0 to 100 milliseconds. The
aim is to reduce the latency of the bidding requests. Fur-
thermore, the server selection algorithm in the web server
is modified to route bidding requests to the lower latency
path and comment requests to the other based on path la-
tency information obtained from E2EProf. Table 1 shows
the average latency of bidding and comment requests mea-
sured during a 10 minutes period. After the perturbation is
introduced, the average latencies of both types of requests
increase with round-robin path selection. In comparison,
the E2EProf-based scheduling method decreases the pro-
cessing delay of bidding requests by directing them to the
lower latency paths and penalizing comment requests.

The above is a straightforward example of automated
performance management with E2EProf’s path-based anal-
ysis. Clearly, the E2EProf-based path selection method
performs better because it uses more information than the
round-robin method, the latter being a black-box approach.
We show these results simply to demonstrate E2EProf’s
utility for online and automated system management, in ad-
dition to its already proven use by system administrators to
diagnose performance problems in complex enterprise ap-
plications. A concrete example of the latter is described in
the next section.

4.3 Delta’s Revenue Pipeline Application

The “Revenue Pipeline System” is a subsystem of Delta’s
OIS (Operational Information System) that keeps track of
operational revenue from worldwide flight operations. It
is composed of multiple black-box components (including
legacy components) purchased from many different soft-
ware vendors. About 40K events per hour arrive in one
of 25 queues in the front-end control system and are then
forwarded to the back-end servers, as shown in Figure 8.
Each event/request has strict SLAs. If an SLA is violated,
system administrators have to analyze complex logs in or-
der to isolate the faulty components. This process is quite
time-consuming, in part because of complex dependencies
across multiple black-box components.
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E2EProf is used to analyse a week long trace collected
from this subsystem. This trace consists ofaccess logsfrom
different servers and contains timestamps, server IDs, and
request IDs for every application-level transactional event
processed by the system (as opposed to the network-level
packet events analysed in earlier experiments).

Several limitations of the existing pathmap algorithm are
exposed by this use case. First, this subsystem’s queuing
delays can be large (much larger than the actual processing
time). This changes the arrival pattern of the requests at dif-
ferent stages of request processing. Second, there can be
wide variations in request traffic. For example, a batch pro-
cess consisting of all of Delta Air Lines’ paper tickets pro-
cessed all over the world in the last 24 hours is submitted at
4 AM EST, due to which the queue length goes as high as
4000. These facts break the ‘steady state’ assumption made
by the algorithm. Thus, although the pathmap algorithm is
able to compute the service path correctly, the computed de-
lays are far from accurate. In response, we have to carefully
set the sliding window length (1 hour), the time quanta (1
second) and the sample window (50 seconds), thereby elim-
inating the error due to traffic variation. The analysis error
due to the large queue length could not be eliminated.

Despite inaccurate delay computation, the service paths
computed above are still useful in detecting causal depen-
dencies across different components. For instance, E2EProf
was able to successfully diagnose a slow database server
connection that resulted in large response time for a moder-
ate workload.

4.4 Micro-Benchmarks

Micro-benchmarks are used to examine the costs of
E2Eprof analysis for RUBiS traces. The results of over-
head analysis for the Delta Air Lines traces are similar to
those shown here, and we omit them for lack of space.
We evaluate the cost of E2Eprof analysis with the differ-
ent optimizations discussed in earlier sections and compare
it with the FFT-based analysis. Figure 9 shows the time
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required to compute the service graphs shown in Figure 6
for different sliding window sizes (W). Other parameters
of the pathmap algorithm are the same as in earlier exper-
iments with RUBiS:τ = 1ms,ω = 50ms,Tu= 1 minute.
The plot labelled ‘no compression’ just assumes an upper
bound on transactional delay with no other optimizations.
The ‘burst compression’ plot only considers non-zero time
series entries. ‘RLE compression’ uses run-length encoded
time series data. ‘FFT-based’ plot usesFFTW package
(www.fftw.org) to compute the cross -correlations. FFTW
is one of the fastest implementation of FFT.

From the results, it is clear that the RLE-based pathmap
algorithm outperforms other methods by orders of magni-
tude. The cost of pathmap analysis increases linearly with
W. For a sliding window of length 32 minutes, the RLE-
based algorithm takes just 50 seconds. In reality, a 32
minute window may be too large for enterprise applica-
tions, as they need to react to changes within a few seconds
to a few minutes. FFT-based analysis does not have linear
cost and thus, takes an order of magnitude more time than
pathmap to compute the same service graphs. Note that
the cost of ‘incremental’ pathmap analysis is almost con-
stant for refresh interval (∆W ) set to 1 minute. This makes
pathmap suitable for online analysis. Theburst compres-
sion technique does not show much improvement over nor-
mal pathmap for RUBiS traces, but it decreases the length
of time series (and therefore space overhead) significantly,
as shown next.

Trace size: Figure 10 shows the compression achieved
by different pathmap’s optimizations for the time-series
data of the connection between one of the tomcat servers
and the web server. The plot labelled ‘total packets’ shows
the number of packets captured from which these time-
series was computed. The time series length increases
linearly with window sizeW , and the plot labelled ‘no
compression’ is the upper bound (Wτ ) on the time series
length for a givenW andτ . Once again, RLE compression
achieves the best results and decreases the length of time
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Figure 10: Time series compression

series by an order of magnitude as compared to other opti-
mizations. It is also much smaller than the raw timestamped
data (indicated by the total number of packets). Although
there are better techniques to compress packet traces, the
advantage of using RLE compression is that it also reduces
the time complexity of the pathmap algorithm.

5 Conclusions and Future Work
The complexity of distributed systems have been in-

creasing rapidly. To address this complexity, our research
has developed a toolkit for online, end-to-end performance
diagnosis of distributed systems, called E2EProf. The
toolkit uses a modified form of time-series analysis (com-
monly used in Digital Signal Processing or DSP), to detect
the paths taken by requests and delays incurred due to dif-
ferent path components. Since the toolkit does not require
applications to be modified, it can also handle legacy com-
ponents. Experimental evaluations show that E2EProf can
detect performance bottlenecks in realistic enterprise appli-
cations, while at the same time, reducing the analysis time
by an order of magnitude compared to similar techniques
presented in the literature.

Our near term future work will explore other areas and
applications to which the techniques presented in this pa-
per can be applied. These include network overlays and
publish-subscribe systems. Further, we have recently been
able to start a collaboration with another group at Delta Air
Lines that manages the Delta.com infrastructure, which is
much more complex than the revenue pipeline system. An-
alyzing these new traces will provide us with new insights
into the challenges posed by complex enterprise applica-
tions. We are also building visualization interfaces that
would highlight interesting performance behaviors of ser-
vice paths.

In the long term, we plan to deploy E2EProf as a basic
service, ‘pluggable’ into any distributed system. When ap-
plications or services subscribe to its interfaces, they hence-
forth, will receive real-time information about their service

paths and systems ‘health’ in general.
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