
Persistent Residual Increase in Server
Processing Time

Mohamed Mansour1 and Karsten Schwan1

The College of Computing at Georgia Tech, Atlanta GA 30332, USA
{mansour,schwan}@cc.gatech.edu

Abstract. In this case study we present our observations of a query
processing engine running at a server farm operated by one of our in-
dustrial partners. We examine the query engine response time (termed
MSBFS) under a variety of conditions. Observations show that there is
a persistent residual increase in the server processing time that is only
reset with rebooting the hardware.

1 Introduction

The configuration of each server is shown in Figure 1. We label each process
as either persistent or non-persistent. A persistent process remains alive across
several messages, while a non-persistent process is started to process a message,
then terminated with a new process launched for the next message.

�����������	�
����
������
� �
� �
� �
����������� � ! �#"

������� � 
����$ ��� ��%�&

'(! & !
)*� � ��� +-,(.	/10	2(3547684�9:2;.<9=0
35,7>?274�4

@ 2(35476�4�9:2;.<9=0
35,A>�274�4

Fig. 1. Overview of Distributed System

The non-persistent setting is set by the system administrators and is the
current setting used in the server farm. This choice reflects the complexity of
the application code, since starting a new process for each request eliminates the



need to clean all related state in the process, a non-trivial programming task.
Terminating and restarting a new process for each query has no impact on its
actual processing time measured in the system. This is because (1) there are no
server-resident request queues and (2) a server machine is considered unavail-
able and thus, no queries are sent to it during process termination, launch, and
initialization. Query time is measured only once the process is fully initialized
and ready to accept a new message, and a query is considered complete after a
reply has been sent.

The inefficiencies implied by non-persistence are overcome by adding extra
machines to the server farm and thereby maintaining the low overall farm uti-
lization needed to provide predictable levels of service. The economies of this
decision are deemed preferable to investing the additional programming and
debugging time needed for correct operation with process persistence.

The complexities inherent in modern enterprise applications give rise to the
fact that there typically remain unresolved programming issues with such ap-
plications. An example is the inability to operate in persistent mode for the
server processes mentioned above. Facts like these create interesting technical
problems to be addressed for large-scale enterprise applications, which are (1) to
better understand the behavior of these applications under different operating
conditions and (2) to find methods to control these behaviors to ensure pre-
dictable operation. In previous work [4], for instance, we presented a technique
for understanding message sequences that trigger undesirable behaviors in cer-
tain servers, and we then created ways to prevent such server from affecting other
enterprise services – performance isolation. The work shown here demonstrates
two key facts. First, such undesirable behaviors exist even when applications
are well-debugged, because of undesirable interactions between application and
operation system, for example. We note here that the data needed to process
queries are stored in map files. The server accesses the data in 64KB chunks us-
ing Microsofts Memory-Mapped files mechanism [1]. Second, since the root cause
of these behaviors lies outside application boundaries, this limits the scope and
applicability of existing reliability technique [2] and therefore, new techniques
that focus on monitoring and control at the component boundaries [3] are needed
to provide some degree of protection against such behaviors.

2 Experimental Evaluation

The following hardware is used in the experiments shown below. The machine
used is an IBM eServer xSeries 225 running MS Windows Server 2003 Server
Edition with SP1. The machine has dual Intel Xeon processors running at 3GHz
each, with 3GB RAM and 136 GB SCSI disc with a NTFS filesystem. The server
machine is isolated from the rest of the farm to prevent data updates during the
experiment. Map files were obtained on 6/13/2006 and were used with server
version R16 (revision 1.55.1.79.1.240). Map files were about 10GB in size. The
server is coded in C/C++ and compiled with the Microsoft Visual Studio 6.0
compiler.



The experiment is conducted using a set of 14 messages. Each run consists of
running the set 500 iterations. Each iteration uses a different randomized order.

2.1 Base Run

 NGPQuery2784-0176.xml

y = 0.0001x + 7.2339
R2 = 0.0602

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45

7.5

7.55

1 151 301 451

Execution #

M
SB

FS
 (s

)

Fig. 2. MSBFS time for a sample query from Experiment 3 - base run

The set is executed about 500 times with the same randomization technique
used in experiment I. 12 out of the 14 queries show a slight increase in MSBFS
time and only 2 show a slight decrease in MSBFS time. We notice here that even
though the MSBFS time is almost 7 times greater than the queries in experiment
I, we still have a very slow gradual increase in the trend line. Figure 2 shows the
plot of MSBFS over time for one sample query. The effect of this gradual increase
on queries that return solutions after they time out needs to be investigated.

2.2 Recycle Auxiliary Services

The next step is to re-start all NGP services and repeat the experiment to
ascertain whether or not MSBFS time resets. Results show that restarting the
services does not affect the residual increase in MSBFS, thereby demonstrating
the inability of techniques like micro-reboot to solve problems like these. Figure 3
plots the MSBFS time for the same sample query used above. Notice that the
residual increase in MSBFS is not eliminated by restarting the services.



 NGPQuery2784-0176.xml

y = 1E-04x + 7.2859
R2 = 0.1464

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45

7.5

7.55

1 151 301 451

Execution #

M
SB

FS
 (s

)

Fig. 3. MSBFS time for a sample query from Experiment 3 - recycle services

2.3 Use New Map Files

A potential factor causing residual increases is the update of Map Files. To
investigate this, we rename the current map files directory, create a new one
with the same name, and copy all files to the new directory. The effect of this
copy operation is to trick the OS into thinking that this is a new set of map files.

Experimental results show that refreshing map files is not a factor in resetting
the persistent residual increase in MSBFS time. Figure 4 plots the MSBFS time
over 500 executions for a sample query, notice how the MSBFS time starts at
the point where it left off in experiment 3 above.

2.4 Recycle SQLServer

To conclude experiments, we repeat the above experiment after recycling the
SQL Server engine running on the test box. The service is stopped and then
restarted using the SQL Server Service Manager. Figure 5 shows the MSBFS
time for the NGPQuery2784-0176.xml. Note that the response time still carries
the residual increase from the last experiment.

3 Conclusions and Future Work

We are still unable to find the exact cause for this persistent increase in pro-
cessing time. The only action that seems to reset this residue is to reboot the



 NGPQuery2784-0176.xml

y = 0.0001x + 7.3227
R2 = 0.1499

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45

7.5

7.55

1 151 301 451

Execution #

M
SB

FS
 (s

)

Fig. 4. MSBFS time for a sample query from Experiment 4 - refresh map files

 NGPQuery2784-0176.xml

y = 0.0001x + 7.3906
R2 = 0.1424

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45

7.5

7.55

1 151 301 451

Execution #

M
SB

FS
 (s

)

Fig. 5. MSBFS time for a sample query from Experiment 4 - recycle SQLServer



machine. We know for sure that it is not an application issue as the application
is completely terminated and restarted for each query execution. We have exper-
imented with auxiliary services (SQL Server and other daemons), and resetting
them does not affect the residual increase. We also rule out that this is caused
by our test driver, as the driver is always restarted between experiments. At this
point we are led to believe that this is an Operating System issue and/or an
issue caused by application/OS interactions.

The general insight derived from these experiments is that it is often difficult,
if not impossible, to determine and then remove the root causes of undesirable
behaviors in complex enterprise applications. It is an easier task, however, to
determine the localities of such behaviors and then, to isolate them from other
application components. This motivates our work on performance and behavior
isolation in distributed enterprise applications.

References

[1] “Microsoft: Managing memory-mapped files in Win32.” http://msdn2.microsoft.

com/en-us/library/ms810613.aspx. [online; viewed:10/12/2006].
[2] Candea, G., Cutler, J., and Fox, A., “Improving availability with recursive

microreboots: a soft-state system case study,” Perform. Eval., vol. 56, no. 1-4,
pp. 213–248, 2004.

[3] Mansour, M. S. and Schwan, K., “I-RMI: Performance isolation in information
flow applications,” in Proceedings ACM/IFIP/USENIX 6th International Middle-
ware Conference (Middleware 2005) (Alonso, G., ed.), vol. 3790 of Lecture Notes
in Computer Science, (Grenoble, France), Springer, 2005.

[4] Mansour, M. S., Scwhan, K., and Abdelaziz, S., “I-Queue: Smart queues for
service management,” in Proceedings of the 4th International Conference on Service
Oriented Computing (ICSOC 06), Lecture Notes in Computer Science, (Chicago,
USA), Springer, 2006.


