
 - 1 -

File-based Race Condition Attacks on Multiprocessors Are Practical Threat
Jinpeng Wei, Calton Pu

{weijp, calton}@cc.gatech.edu
College of Computing

Georgia Institute of Technology

Abstract
TOCTTOU (Time-of-Check-to-Time-of-Use) attacks exploit race conditions in file systems. Although
TOCTTOU attacks have been known for 30 years, they have been considered “low risk” due to their typi-
cally low probability of success, which depends on fortuitous interleaving between the attacker and victim
processes. For example, recent discovery of TOCTTOU vulnerability in vi showed a success rate in low
single digit percentages for files smaller than 1MB size. In this paper, we show that in a multiprocessor
the uncertainties due to scheduling are reduced, and the success probability of vi attack increases to al-
most 100% for files of 1 byte size. Similarly, another recently discovered vulnerability in gedit, which
had almost zero probability of success, changes to 83% success rate on a multiprocessor. The main rea-
son for the increased success rate to almost certainty is the speed up of attacker process when running on
a dedicated processor. These case studies show the sharply increased risks represented by file-based race
condition attacks such as TOCTTOU on the next generation multiprocessors, e.g., those with multi-core
processors.

Categories and Subject Descriptors
D.4.3: File Systems Management – Access methods; D.4.5: Reliability –verification; D.4.6: Security and
Protection – Access controls.

General Terms
Reliability, Experimentation, Security.

Keywords
Race condition.

1 Introduction
Emerging multiprocessors such as SMP (Symmetric Multiprocessing) with multi-core processors ex-

pected to dominate the next generation PC and server markets. These multiprocessors offer significant
performance and power consumption advantages, making them potentially more secure. For example,
additional processors can be dedicated to computationally intensive deep packet inspection in IDS, IPS
(Intrusion Detection and Prevention), and anti-virus scanners [16]. However, the use of the additional
processing power by attackers to exploit known or new vulnerabilities has received less attention. This
paper demonstrates that a concrete class of exploits (file-based race conditions called TOCTTOU) will
see the success rate of attacks increase sharply from negligible to almost certainty.

TOCTTOU (Time-of-Check-to-Time-of-Use) is a security problem known for more than 30 years
[1][2][3]. An illustrative example is sendmail, which used to check for a specific attribute of a mailbox
file (e.g., it is not a symbolic link) before appending new messages. However, the checking and append-
ing file system operations are not executed in an atomic transaction. Consequently, if an attacker (the
mailbox owner) is able to replace his/her mailbox file with a symbolic link to /etc/passwd between the
checking and appending steps by sendmail, then sendmail may be tricked into appending emails to
/etc/passwd (assuming that sendmail runs as setuid root). If successful, an attack message containing a
syntactically correct /etc/passwd entry would give the attacker root access. TOCTTOU vulnerabilities are
widespread and cause serious consequences [24].

 - 2 -

The check and use file system calls in the victim process of a TOCTTOU vulnerability are called
TOCTTOU pairs [24][25]. The time between the two file system calls of a TOCTTOU pair is the window
of vulnerability of the TOCTTOU vulnerability. To succeed, an attacker process must complete the at-
tack steps within the window of vulnerability of the victim process. The success rate of a TOCTTOU at-
tack thus depends on the scheduling events surrounding and during the window of vulnerability, making
it a race condition between the victim and attacker processes. Some attempts have been made to slow
down the victim and increase the probability of success, examples include: (1) using slow storage devices
(e.g. floppy disks); (2) using extremely long pathnames (e.g. file system mazes [14]); (3) using large files.
This paper studies one method to make the attacker faster and reduce scheduling uncertainty by exploiting
additional CPU resources available in multiprocessors.

This paper offers two technical contributions. The first is a probability model for estimating
TOCTTOU attack success rate, both for uniprocessors and multiprocessors. By comparing their different
capabilities, the model shows that multiprocessors give an attacker more opportunities in winning the
race. The second contribution is an experimental study and detailed event analysis of multiprocessor at-
tacks on two recently found TOCTTOU vulnerabilities against popular applications: vi and gedit. Both
attacks have very low success rate on uniprocessors and almost certain success on a multiprocessor
(nearly 100% for vi and up to 83% for gedit). The gedit experiments demonstrate that when the vulner-
ability window is extremely small, the race condition moves to a lower level and the implementation of
the attacker program becomes crucial. These analyses give a better understanding of the TOCTTOU at-
tacks on multiprocessors. The main conclusion of the paper is the confirmation of sharply increased risks
represented by TOCTTOU attacks.

The rest of this paper is organized as follows. Section 2 briefly introduces the TOCTTOU errors with
vi and gedit which are the target of the attacks discussed in this paper. Section 3 introduces a probability
model for TOCTTOU attack success rate. Section 4 summarizes our previous TOCTTOU attack experi-
ments on uniprocessors as a baseline for comparison. Section 5 describes TOCTTOU attacks against vi
on a SMP. Section 6 discusses TOCTTOU attacks against gedit on both a SMP and a multi-core. Section
7 describes an implementation technique that leverages parallelism opportunities provided by multi-cores
to significantly speedup the attack program. Section 8 summaries the related work and Section 9 con-
cludes the paper.

2 Background: TOCTTOU Vulnerabilities in Unix-Style File Systems

2.1 Concrete Examples of TOCTTOU Vulnerabilities
Recently, several new TOCTTOU vulnerabilities have been found in often-used utility programs such as
vi, rpm, emacs and gedit [24]. A summary of these vulnerabilities are shown in Table 1. For each vulner-
ability, Table 1 shows its TOCTTOU pair, where the first (check) call is used to establish some invariant
about a file object (e.g. the file exists), and the second (use) call is an operation on that same file assum-
ing that the invariant is still valid.

Table 1: Potential TOCTTOU Vulnerabilities [24]

Application TOCTTOU errors Possible exploit
vi <open, chown> Changing the owner of /etc/passwd to an ordinary

user
rpm <open, open> Running arbitrary command

emacs <open,chmod> Making /etc/shadow readable by an ordinary user
gedit <rename, chown> Changing the owner of /etc/passwd to an ordinary

user

 - 3 -

2.2 The vi Vulnerability and Attack Scheme
The Unix “visual editor” vi is a widely used text editor in many UNIX-style environments. For example,
Red Hat Linux distribution includes vi 6.1. We found that if vi is run by root to edit a file owned by a
normal user, then the normal user may become the owner of sensitive files such as /etc/passwd. The prob-
lem can be summarized as follows. When vi saves the file (wfname) being edited, it first renames the
original file to a backup (f’), then creates a new file under the original name (wfname). The new file is
closed after all the content in the edit buffer has been written to it. Because this new file is created by root
(vi runs as root), its initial user is set to root, so vi needs to change its owner back to the original user (the
normal user). This forms a <open, chown> window of vulnerability every time vi saves the file (Figure
1). During this window, if the normal user (also the attacker) could replace wfname with a symbolic link
to /etc/passwd, vi can be tricked into changing the owner of /etc/passwd to the normal user. A typical at-
tack of this vulnerability is to constantly check the ownership of file wfname, and replace wfname when
its owner becomes root (Figure 2).

Figure 1: vi 6.1 TOCTTOU Vulnerability (fileio.c) Figure 2: A Program to Attack vi

2.3 The gedit Vulnerability and Attack Scheme
gedit [15] is a text editor for the GNOME desktop environment. We find that gedit 2.8.3 (the current dis-
tribution in Debian and Redhat Linux) has a <rename, chown> TOCTTOU vulnerability (See Figure 3).
This happens when gedit is run by root to edit a file (real_filename) owned by a normal user (also the at-
tacker), and gedit saves the file. What happens is gedit first saves the current buffer content to a tempo-
rary scratch file (temp_filename), then renames the scratch file to the original file real_filename (after
backing up the original file properly). Because the scratch file is created by root, the owner of the just
saved file (real_filename) is root, so gedit needs to change its owner back to the original user. This forms
a <rename, chown> vulnerability window whenever gedit saves the file being edited. A typical attack
against this vulnerability constantly checks the ownership of real_filename and when it becomes root, the
attacker replaces real_filename with a symbolic link to /etc/passwd (Figure 4). This attack is essentially
the same as the attack against vi in Section 2.2.

Figure 3: gedit 2.8.3 TOCTTOU Vulnerability (gedit-
document.c)

Figure 4: gedit Attack Program Version 1

1 while (!finish){
2 if (stat(real_filename, &stbuf) == 0){
3 if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0))
4 {
5 unlink(real_filename);
6 symlink(“/etc/passwd”, real_filename);
7 finish = 1;
8 }
9 }
10 }

if (rename (temp_filename, real_filename) != 0){ …
}
chmod (real_filename, st.st_mode);
chown (real_filename, st.st_uid, st.st_gid);

1 while (!finish){
2 if (stat(wfname, &stbuf) == 0){
3 if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0))
4 {
5 unlink(wfname);
6 symlink(“/etc/passwd”, wfname);
7 finish = 1;
8 }
9 }
10 }

while ((fd = mch_open((char *)wfname, …)
……
chown((char *)wfname, st_old.st_uid, st_old.st_gid);

 - 4 -

3 A Probabilistic Model for Estimating TOCTTOU Attack Success Rate

3.1 The Basic General Model
Unless explicitly stated otherwise, the TOCTTOU vulnerabilities studied in this paper are of a specific

type called TOCTTOU binding flaws [2]. Concretely, a TOCTTOU attack succeeds when the attacker is
able to modify the mapping from file name to disk block within the vulnerability window. One of the
critical issues (in a uniprocessor) is whether the victim is suspended within the vulnerability window,
since the suspension increases substantially the attack success rate.

The model also divides the attacker program into two parts: (1) a detection part that finds the begin-
ning of the vulnerability window, and (2) an attack part that modifies the file mapping. Based on the law
of total probability, the attack success rate:

)suspendednot victim|finished attack()suspendednot victim|scheduled attack(
)suspendednot victim|finished attackscheduled attack()suspendednot victim|succeeds attack

and,
)suspended victim|finished attack()suspended victim|scheduled attack(

)suspended victim|finished attackscheduled attack()suspended victim|succeeds attack

wheresuspendednot victimsucceedsattack suspendednot victim
suspended victimsucceedsattack suspended victimsucceedsattack

(

(

),|()(
)|()()(

PP
P

PP
P

P

P

PP
PPP

∗=
•=

∗=
•=

∗
∗ +=

We can put these together and get the probability in Equation 1.
Equation 1: The Probability of a Successful TOCTTOU Attack

)|(*)|(*)(
)|(*)|(*)(

)(

suspendednot victimfinishedattack suspendednot victimscheduledattack suspendednot victim
suspended victimfinishedattack suspended victimscheduledattack suspended victim

succeedsattack

PPP
PPP

P
+

=

In Equation 1, all the events are under the context of the victim vulnerability window. e.g. ‘attack fin-
ished’ means ‘attack finished within the vulnerability window’.
3.2 Attack Success Rate on a Uniprocessor
On a uniprocessor, P(attack scheduled | victim not suspended) = 0 since it is impossible to schedule the
attacker when the victim is running. Therefore on a uniprocessor the second part of Equation 1 contrib-
utes nothing to the success rate. Therefore,
P(attack succeeds) = P(victim suspended) * P(attack scheduled | victim suspended) * P(attack finished |
victim suspended)

Several observations can be made about P(attack succeeds) on a uniprocessor:
• P(attack succeeds) ≤ P(victim suspended). The probability that the victim is suspended within its

vulnerability window gives an upper bound for the attack success rate. If the victim is always sus-
pended (e.g. rpm in [24]), the attacker can achieve a success rate as high as 100%. In contrast, if the
victim is rarely suspended (e.g. gedit in Section 2.3), the attack success rate can be near zero.

• P(attack scheduled | victim suspended) is the probability that the attacker process gets scheduled
when the victim relinquishes CPU. This value depends on several factors such as the readiness of the
attacker, the system load (if round-robin scheduling is used), or the priority of the attacker (if priority-
based scheduling is used). Typically in a lightly loaded environment this value can be nearly 100% if
the attacker program uses an infinite loop actively looking for the exploit opportunity.

• P(attack finished | victim suspended) is the probability that the attacker successfully modifies the file
mapping while the victim is suspended. Since there is only one CPU, as long as the attack part is not
interrupted, this probability can be 100%. Typically this is the case because modifying the file map-
ping requires very short processing time and needs not block on I/O.

 - 5 -

Based on the above analysis, the attack success rate is mainly determined by P(victim suspended) on a
uniprocessor system, and the implementation of the attack part is relatively less critical.
3.3 Attack Success Rate on Multiprocessors

On multiprocessors, the attacker can run on a different processor than the victim when the victim is
running within its vulnerability window. This makes the second part of Equation 1 non-zero, i.e.,
P(attack scheduled | victim not suspended) > 0. This fact increases the success rate of TOCTTOU attacks
on multiprocessors as compared to uniprocessors. If P(victim suspended) is relatively large, then the suc-
cess rate on multiprocessors may not increase significantly. However, if P(victim suspended) is very
small (approaching 0), then P(victim not suspended) approaches 1, and the gain due to the second part of
P(attack succeeds) may become very significant.

Therefore for an attacker, the benefit of having multiprocessors is maximized when the victim is rarely
suspended in the vulnerability window. An analysis similar to the second part of Equation 1 shows that:
• P(attack scheduled | victim not suspended) is similar to P(attack scheduled | victim suspended) dis-

cussed in Section 3.2. The conclusion is that it can be as high as 100%.
• P(attack finished | victim not suspended) is the probability that the attack is finished within the vul-

nerability window. Since the victim is running concurrently with the attacker, the result of the attack
depends on the relative speed of the attacker and the victim, a more detailed analysis is needed (next
Section).

3.4 Probabilistic Analysis of P(attack finished | victim not suspended)
In order to estimate the P(attack finished | victim not suspended) in more detail, we analyze the race con-
dition at different levels: the first level is CPU, which is the main contention in uniprocessor attacks; the
next level is file object, because the file system already has a synchronization mechanism to regulate
shared accesses. In Unix-style file systems, the modifications to an inode are synchronized by a sema-
phore. Since the operations of the victim and the attacker on the shared file modify the same inode, they
both need to acquire the same semaphore. In this case, the race is reduced to the competition for the
semaphore and we can model the success rate of the attack in the following way.

In this model, we assume that the attacker runs in a tight loop (the detection part), waiting for the vul-
nerability window of the victim to appear. Let D be the time consumed by each iteration of detection part,
and let 1t be the earliest start time for a successful detection and 2t be the latest start time for a successful
detection followed by a successful attack (e.g. the attacker acquires the semaphore first). 1t and 2t are de-
termined by the victim process. Some observations can be made as follow (Figure 5):

Figure 5: Different Attack Scheduling on a multiprocessor

A successful attack starts with a successful detection as its precondition. This successful detection may
start as early as 1t (Figure 5, case (a)), and as late as Dt +1 (Figure 5, case (f)). Then the interval

),[11 Dtt + is our sample space. Out of this interval),[11 Dtt + , if the detection is started before 2t , the at-
tack succeeds (Figure 5, cases (a) through (c)); otherwise the attack fails (Figure 5, cases (d) through (f),

Failed detection Successful detection
Failed attack Successful attack

(f)

(a)
(b)
(c)
(d)
(e)

Dt +12tDt −1 1t

 - 6 -

because the attack is launched too late). Let’s assume a uniform distribution for the start time of the detec-
tion part, the success rate is thus

D
tt 12 − .

In Figure 5 we assume that),[112 Dttt +∈ . Two other cases are:

• If 12 tt < , then the success rate is 0;

• If Dtt +≥ 12 , then the success rate is 1.

In summary,

The success rate =

+≥

+<≤
−

<

)(,1

)(,

)(,0

12

121
12

12

Dttif

Dtttif
D

tt
ttif

Let 12 ttL −= , then L measures the laxity of the successful attacks. We can rewrite the above equation
as:

The success rate =

≥
<≤

<

)(,1
)0(,/

)0(,0

DLif
DLifDL

Lif
 (1)

In formula (1), L is a characterization of the victim: the larger L, the more vulnerable the victim. D is a
characterization of the detection part of the attacker: the smaller D, the faster the attacker, and the higher
success rate. So L/D gives a very useful measurement of the relative speed of the victim and the attacker.

It should be noted that L and D in formula (1) are not strictly constant, because the executions of the
victim as well as the attacker are interleaved with other events (e.g. kernel timers) in the system. That is,
the running environment imposes variance on these parameters. So formula (1) only offers a statistical
guidance about the attack success rate.

4 Baseline Measurements of TOCTTOU Attacks on Uniprocessors
For comparison purposes, in this section we summarize the measured success rates of vi and gedit
TOCTTOU attacks on uniprocessors from [24].
4.1 vi Attack Experiments on Uniprocessors
Since the vi vulnerability window includes the writing of a whole file, the size of the window naturally
depends on the file size. The measured success rates for file sizes ranging from 20KB to 10MB are the
following:
• When the file size is small (from 100KB to 1MB), there is a rough correlation between attack success

rate and file size, as shown in Figure 6. However, the correlation disappears for file sizes between
2MB to 3MB (Figure 7), showing that file size alone does not determine the success rate completely.

• Besides file size, we studied other factors (e.g., I/O operation, CPU slicing, and preemption by higher
priority kernel threads) that corroborate the non-deterministic nature of TOCTTOU attacks on a uni-
processor [24].

 - 7 -

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

100 200 300 400 500 600 700 800 900 1000

File size in KB

500 rounds attack success rate

Figure 6: Success Rate of Attacking vi (small files)
on a Uniprocessor

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

File size in MB

100 rounds attack success rate, 5 neighbors average
100 rounds attack success rate

Figure 7: Success Rates of Attacking vi (large files)
on a Uniprocessor

From Figure 6 we can see that for normal file sizes (Using vi to edit a 2MB text file is considered rare

in real life), the success rate can be as low as 1.5% and as high as 18%. Furthermore, when the file size
approaches 0, the success rate also approaches 0.

4.2 gedit Attack Experiment on Uniprocessors
The experiments in which a TOCTTOU attack was carried out against the gedit vulnerability saw no suc-
cesses. This is because the gedit vulnerability window (Figure 3) does not include the writing of the new
file as in vi, so it is much shorter and bears no relationship to the file size. These factors reduced the suc-
cess rate for gedit attacks to essentially zero on a uniprocessor.

5 vi Attack Experiments on SMP
We repeated the vi attack experiments described in Section 4.1 on a SMP machine (2 Intel Xeon 1.7GHz
CPUs, 512MB main memory, and 18.2GB SCSI disk with ext3 file system).

First we tried different file sizes ranging from 20KB to 1MB with a stepping size of 20KB, and ob-
served the success rate of 100% for all file sizes. This confirms the probabilistic estimations and shows
that a multiprocessor greatly increases the attacker’s chance of success compared to a uniprocessor
(Figure 6 in Section 4.1). We did a detailed event analysis to confirm the attacker and victim processes
ran on separate CPUs during the vulnerability window. We also eliminated the possibility that the attack
success is due to the victim being blocked on I/O operations (which would have made the attack easier).
Consequently, we conclude that the attack success is due to the length of vi vulnerability window being
much larger than the time it takes the attacker to finish the attack steps (file name redirection).

Figure 8 shows the L and D values (Section 3.4) for the vi attack experiments that we conducted on the
SMP. We can see that L >> D when the file is large (e.g.1MB); and the difference (L – D) decreases as
the file size decreases. But (L – D) is always positive, even when the file size becomes very small. There-
fore we can say with almost certainty that for vi attack experiments, L > D. By formula (1) we know that
the success rate of vi attacks is almost 100% all the time.

One thing to notice from Figure 8 is that as the file size approaches 0, the difference (L – D) also ap-
proaches 0. Is it possible that L becomes smaller than D? Then according to formula (1) the attack success
rate will be smaller than 100%.

 - 8 -

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 300 400 500 600 700 800 900 1000 1100
File size in KB

Ti
m

e
in

 m
ic

ro
se

co
nd

s

L D
Figure 8: The L and D Values for vi SMP Attack
Experiments

Table 2: The Average L and D Values (in microsec-
onds) for vi SMP Attack Experiments (File Size = 1
byte)

 Average Stdev
L 61.6 3.78
D 41.1 2.73

To see this we run the experiment again with the smallest files (only 1 byte each). And the success rate

we get is around 96% to 100%. Again we did a detailed event analysis of this experiment. We measure
the average L and D values and put them in Table 2. We can see that although L > D in these attacks, they
have become very close. If we consider the fact that the values for L and D are not strictly constant due to
the environmental influence, we realize that whether L > D all the time becomes questionable when they
are close enough (When L >> D the inaccuracy introduced by the environment does not change the rela-
tionship). This helps to explain why the success rate can not be 100% when the file contains only 1 byte.

Another point is that so far we actually treat P(attack finished | victim not suspended) as the sole basis
for predicting the success rate, which is not always accurate (Equation 1). The justification is that when
the vi vulnerability window is large enough, the effect of other factors in Equation 1 is negligible. For ex-
ample, P(attack scheduled | victim not suspended) < 100% in general which means that the attacker may
not be scheduled during sometime in the vulnerability window. However, if the vulnerability window is
very large, the attacker is still within it when he/she is scheduled eventually. That is, the temporary sus-
pension does not affect the result of the attack. However, when the vulnerability window becomes small
enough (e.g. L and D become close enough), the suspension may cause the attacker to miss the vulner-
ability window. In such a case the attack fails, thus the suspension changes the attack result.

In several of the failed 1-byte vi experiments, we find that some other processes prevents the attacker
from being scheduled on another CPU during the vi vulnerability window.

This analysis tells us that although using a multiprocessor can greatly increase the attack’s chance of
success, the success is still not guaranteed: the attack is still influenced by other environmental factors
such as kernel activities and system load. However, 96% is more than enough for an attacker.

6 gedit Attack Experiments on Multiprocessors

6.1 gedit SMP Attack Event Analysis
As mentioned in Section 4.2, our attack experiments against gedit on uniprocessors saw no successes.
However, when we try this attack on a SMP (the same machine as in Section 5), we get roughly 83%, a
surprisingly high success rate. A detailed event analysis is thus conducted to understand this result.

For the gedit attack, we have observed that if the attacker’s unlink is invoked before gedit’s chmod
(Figure 3 and Figure 4), then attack succeeds. This is because these two system calls compete for the
same semaphore, so if unlink wins, chmod as well as the following chown will be delayed. As a result
the attacker’s unlink and symlink can have enough time to finish before gedit’s chown. On the other
hand, if unlink loses, unlink and the following symlink of the attacker will be delayed, so the attack will
fail. So there is an interesting cascading effect in gedit attack experiment. Therefore, for gedit attacks, 1t

 - 9 -

is somewhere near the end of rename, D is the interval between the start of stat and the start of unlink.
Let 3t be the start of chmod, then Dtt −= 32 , and 1312 tDtttL −−=−= . We experimentally get the L and
D values as in Table 3.

Table 3: L and D Values for gedit Attacks on a SMP (in microseconds)

 Average Stdev
L 11.6 3.89
D 32.7 2.83

The calculation of L here is not accurate because the estimation of 1t is not accurate. Currently 1t is
established as the earliest observed start time of stat which indicates a vulnerability window. So it may
not be optimal. An earlier (thus smaller) 1t will result in a larger L. So the success rate indicated by Table
3 (35%) may be overly conservative compared to the observed success rate.

An important contributing factor to L is the computation time between the end of rename and the start
of chmod. The average length of this computation is 43 microseconds. As we will see in Section 6.2, this
factor is very important for the high success rate of gedit attack on the SMP.

There is another contributing factor. Usually when gedit’s chmod is blocked, the Linux kernel will try
to schedule something else to run (e.g. internal kernel events such as soft IRQs, kernel timers and task-
lets), which further lengthens gedit vulnerability window (but this contributes just a little to the delay
compared with that due to the semaphore).
6.2 gedit Multicore Attack Experiment
6.2.1 Attack One
We repeat the gedit attack (Figure 4) on a multi-core (Dell Precision 380 with 2 Intel Pentium D 3.2 GHz
dual-core and Hyper-Threading CPUs, 4GB main memory, and 80GB SCSI disk with ext3 file system).
We get very different result: now we see almost no success in the same attack experiment. The main
change in the situation is that the victim spends much less time between rename and chmod (3 microsec-
onds vs. 43 microseconds), so chmod happens before unlink of the attacker, but on the SMP experiment
(Section 6.1) situation is the opposite.

Figure 9: Failed gedit Attack (Program 1) on a
Multi-core

Figure 10: Successful gedit Attack (Program 2) on a
Multi-core

Figure 9 shows the important system events during one failed attack on the multi-core. The upper bar

corresponds to the execution of gedit (rename, chmod, chown) and the lower bar corresponds to that of
the attacker (stat, unlink, symlink). Notice that the gap (the computation) between rename and chmod
of gedit is only 3 microseconds, but the gap between stat and unlink of the attacker is 17 microseconds.

0 20 40 60 80 100 120 140 160

Time in microseconds

rename gedit comp chmod chown stat

Wake up
the victim

gedit

attacker

0 50 100 150 200

gedit

attacker

Wake up
the attacker

Time in microseconds

rename gedit comp chmod chown

Blocked on the
semaphore

Blocked on the
semaphore

stat attacker comp unlink symlinktrap attacker comp unlink symlink

 - 10 -

It is because of this relatively larger gap that the attacker’s unlink is called later than the victim’s chmod.
Actually we can see that unlink is called later than chown and as a result unlink has to wait on the sema-
phore during its execution. The 17 microsecond gap of the attacker includes 11 microseconds of computa-
tion and 6 microseconds of system trap processing (page fault). Speaking in terms of D, these 17
microseconds are counted so D is around 22. On the other hand L is around 193 −=− D , so according to
formula (1) the attack success rate is probably 0. Putting this in another way, the victim is now much
faster than the attacker, so it is very difficult for the attacker to win the race.
6.2.2 Attack Two
We think that the 17 microsecond gap in Figure 9 is mainly responsible for the low success rate. If we
could reduce the length of this gap then the situation may change. A source code analysis tells us that be-
fore the vulnerability window the true branch of statement 3 in Figure 4 (statements 5 to 7) is never taken.
Once the vulnerability window starts, the true branch of statement 3 is taken, and then statement 5
(unlink) is about to be executed. Right at this point the attacker program encounters a trap (page fault).
We figure out that this effect is due to the memory management for shared libraries in Linux. Specifi-
cally, in Linux all system calls are through libc, which is a dynamic library shared among user-level
applications. To save physical memory, Linux kernel keeps only one copy of libc in physical memory,
and its virtual memory mechanism maps the pages of this copy to the address space of an application on
demand. For example, the physical page containing the wrapper for unlink is mapped into an applica-
tion’s address space when this application first invokes unlink. This mapping is preceded by a trap (page
fault) and the corresponding handler routine carries out the mapping. This is exactly what happens in
Figure 4, where unlink is first invoked when the true branch of statement 3 is taken. As a consequence, if
we intentionally invoke unlink (and symlink although it seems to be on the same page as unlink) before
the true branch of statement 3 is taken, we may remove the trap (page fault).

So we re-implement the attacker program as shown in Figure 11. Now unlink and symlink are called
no matter the vulnerability window appears or not. The only trick is to switch in the correct file name
when it does appear.

Then we perform the gedit attack experiment again using the program in Figure 11. And we begin to
see many successes!

Figure 11: gedit Attack Program Version 2 Figure 12: The Effect of Parallelizing the Attack
Program

We plot the important system events during one successful gedit attack in Figure 10, similar to Figure

9. We can see that now the gap between stat and unlink of the attacker has decreased to 2 microseconds:
the trap has disappeared. On the other hand, the gap between rename and chmod of gedit is 2 microsec-
onds. So the attacker has a very narrow chance of winning the race. In this particular case, the attacker
wins because his/her stat starts well before the end of rename, so he/she identifies the vulnerability win-

0 100 200 300 400 500 600 700 800

blocked

1 while (!finish){ /* argv[1] holds real_filename */
2 if (stat(argv[1], &stbuf) == 0){
3 if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0))
4 {
5 fname = argv[1];
6 finish = 1;
7 }
8 else
9 fname = dummy;
10
11 unlink(fname);
12 symlink(“/etc/passwd”, fname);
13 }//if stat(argv[1] ..
14 }//while

Time in microseconds

stat symlink

File
size
(KB)

20

100

500

parallel
sequential

parallel

sequential

sequential

unlink

 - 11 -

dow at the first moment, and invokes unlink ahead of chmod. Has the attacker been 2 microseconds
later, the attack would fail.

Notice that during this attack the running time of stat has been lengthened to 26 microseconds (typi-
cally it needs 4 microseconds), probably due to some other more complicated race condition (For example
the contention for directory entries along the path name). We are not quite clear about the reason but this
does not change the applicability of formula (1) because now we have a much earlier 1t (27 microseconds
into rename), which makes a L value of at least 1 microseconds.

This experience tells us that on multiprocessors the implementation of the attacker program can be
very critical in determining the attack success rate, especially when the vulnerability window is very nar-
row.

7 Pipelining Attacker Program
The multi-core gedit experiment highlights the importance of the implementation of the attacker program.
Concretely, we found that among the three steps of the attack (stat, unlink, symlink), unlink is the most
time-consuming. A closer look shows that actually symlink needs not wait on the completion of unlink.
Instead symlink can begin once the inode has been detached from the directory by unlink, which happens
relatively early. (The main part of unlink is spent physically truncating the file.) This observation shows
that on a multiprocessor, the attacker can distribute its attack steps to multiple CPUs to speed up the at-
tack part and increase its success rate.

To confirm this hypothesis, we implemented a multithreaded gedit attack program with two threads:
the first thread carries out the stat, unlink steps and the second thread carries out the symlink step asyn-
chronously. Figure 12 shows the effect of parallelizing the attack program for three different file sizes.
For each file size (e.g. 500KB), there are three bars: the first two bars correspond to the execution of the
two threads in a parallelized attack program, and the third bar corresponds to the execution of the normal
sequential attack program. In the parallelized attack, symlink can finish (and so does the attack) well be-
fore the end of unlink. This is in contrast to the sequential attack, where symlink has to wait until unlink
finishes. The comparison between the end times of symlink shows that leveraging on the parallelism
provided by a multiprocessor can greatly reduce the amount of time needed for a successful attack. This
is especially important when the vulnerability window is very narrow so the attacker needs to be very fast.
This experiment shows one feasible way of doing it.

8 Related Work
TOCTTOU is one example of race condition problem. In general, every shared resource has the potential
for such problems [17]. Percival [18] shows that shared access to memory caches in Hyper-Threading
technology allows a malicious thread to steal RSA keys. Similar attacks have also been reported on AES
[19]. While carrying out such attacks do not rely on multiprocessors, it would be interesting to see if they
become easier on multiprocessors.

Timing attacks have long been used to infer secret keys in cryptosystems [20][21][22]. This kind of at-
tacks share a common attribute with TOCTTOU attacks - both try to infer something about the victim.
The difference between them is that the former only read (steal) information from the victim to violate its
confidentiality but the latter modify the information used by the victim to violate its integrity.

This paper studies the impact of new architectures on existing vulnerabilities and security mechanisms.
Similarly, Gershon Kedem [23] has shown that the traditional UNIX password scheme is not secure
enough against brute force attacks using SIMD (Single Instruction Multiple Data) machines. With the ca-
pability provided by SIMD machines, they were able to break a large fraction of passwords used in prac-
tice in 2-3 days of computation.

TOCTTOU vulnerabilities can be detected in two ways: static analysis or dynamic analysis. The first
approach analyzes the application source code to find TOCTTOU pairs. One such tool is MOPS [4]
which uses model checking and is able to find 41 TOCTTOU bugs in an entire Linux distribution [5].

 - 12 -

Other potentially useful techniques include compiler extensions [8][9]. The main difficulty with these
static tools is high false positive rate. The second approach to detect TOCTTOU vulnerabilities is dy-
namic monitoring and analysis. These tools can be further classified into dynamic online detection tools
such as [11] and [12] and post mortem analysis tools such as [10] and [24]. Compared to static analysis,
dynamic analysis has lower false positive rate, but it suffers from false negatives because the search space
is incomplete.

The high success rate of exploiting TOCTTOU vulnerabilities calls for effective defense against such
attacks. There have been specialized mechanisms such as RaceGuard [6] and a probabilistic approach [7]
which protect particular TOCTTOU pairs. Pseudo-transaction [13] is a more generic mechanism to pro-
tect some classes of TOCTTOU vulnerabilities. We have proposed a complete defense against
TOCTTOU attacks in [25].

9 Conclusion
TOCTTOU (Time-of-Check-to-Time-of-Use) is a file-based race condition that can cause serious conse-
quences. However, traditionally TOCTTOU vulnerabilities have been considered “low risk” because the
success rate of exploits appears to be low and results non-deterministic. This paper shows that in multi-
processor environments, some TOCTTOU attacks can have very high success rates. Thus TOCTTOU at-
tacks on multiprocessors are practical security threats.

The first contribution of this paper is a probability model for TOCTTOU attack success rate. It esti-
mates the probability of success of a TOCTTOU attack. It provides a basic guideline for modeling
TOCTTOU attacks and performing experiments, showing higher success rates on a multiprocessor com-
pared to a uniprocessor. This model can be applied to many race condition attacks, not just TOCTTOU.

The second contribution of this paper is a set of attack experiments against two concrete and well
known applications: vi and gedit. The vi experiments show that even for the smallest files involved in the
vulnerability window, the attacker can achieve nearly 100% success rate on a multiprocessor, compared
to low single digit percentages on uniprocessors. The gedit experiments demonstrate that when the vul-
nerability window is extremely small, the race moves to a lower level and the implementation of the at-
tacker program becomes very important. The gedit experiments show a success rate of up to 83%
compared to essentially zero on uniprocessors.

Our main conclusion is that an attacker can exploit the parallelism provided by multiprocessors to
achieve more effective and more efficient attacks. Concretely, the increased risk of TOCTTOU vulner-
abilities demands more researcher attention to the problem. More generally, these experiments show that
multiprocessors can potentially increase overall system vulnerability, so we should re-evaluate the risks of
known vulnerabilities and effectiveness of security mechanisms in multiprocessor environments.

10 References
[1] R. P. Abbott, J.S. Chin, J.E. Donnelley, W.L. Konigsford, S. Tokubo, and D.A. Webb. Security Analysis and Enhancements

of Computer Operating Systems. NBSIR 76-1041, Institute of Computer Sciences and Technology, National Bureau of
Standards, April 1976.

[2] Matt Bishop and Michael Dilger. Checking for Race Conditions in File Accesses. Computing Systems, 9(2):131–152,
Spring 1996.

[3] Matt Bishop. Race Conditions, Files, and Security Flaws; or the Tortoise and the Hare Redux. Technical Report 95-8, De-
partment of Computer Science, University of California at Davis, September 1995.

[4] Hao Chen, David Wagner. MOPS: an Infrastructure for Examining Security Properties of Software. In Proceedings of the
9th ACM Conference on Computer and Communications Security (CCS), pages 235--244, Washington, DC, November
2002.

[5] Benjamin Schwarz, Hao Chen, David Wagner, Geoff Morrison, Jacob West, Jeremy Lin, and Wei Tu. Model Checking An
Entire Linux Distribution for Security Violations. Annual Computer Security Applications Conference, December 6, 2005.

[6] Crispin Cowan, Steve Beattie, Chris Wright, and Greg Kroah-Hartman. RaceGuard: Kernel Protection From Temporary File
Race Vulnerabilities. In Proceedings of the 10th USENIX Security Symposium, Washington DC, August 2001.

 - 13 -

[7] Drew Dean and Alan J. Hu. Fixing Races for Fun and Profit: How to use access(2). In Proceedings of the 13th USENIX
Security Symposium, San Diego, CA, August 2004.

[8] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking System Rules Using System-Specific, Program-
mer-Written Compiler Extensions. In Proceedings of Operating Systems Design and Implementation (OSDI), September
2000.

[9] Dawson Engler, Ken Ashcraft. RacerX: Effective, Static Detection of Race Conditions and Deadlocks. Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles (SOSP'2003).

[10] Calvin Ko, George Fink, Karl Levitt. Automated Detection of Vulnerabilities in Privileged Programs by Execution Monitor-
ing. Proceedings of the 10th Annual Computer Security Applications Conference, page 134-144.

[11] K. Lhee and S. J. Chapin, Detection of File-Based Race Conditions, International Journal of Information Security, 2005.
[12] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. Eraser: A Dynamic Data Race

Detector for Multithreaded Programs. ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997, Pages
391–411.

[13] Eugene Tsyrklevich and Bennet Yee. Dynamic detection and prevention of race conditions in file accesses. In Proceedings
of the 12th USENIX Security Symposium, pages 243–256, Washington, DC, August 2003.

[14] N. Borisov, R. Johnson, N. Sastry, and D. Wagner. Fixing Races for Fun and Profit: How to Abuse atime. Proceedings of
the 2005 USENIX Security Symposium.

[15] http://www.gnome.org/projects/gedit/
[16] Amer Haider. Multi-Core Microprocessor Architecture for Network Services and Applications.

http://www.commsdesign.com/design_corner/showArticle.jhtml?articleID=57703590
[17] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in Computer Systems. Proceedings of the IEEE,

63(9): 1278-1308, September 1975.
[18] Colin Percival. Cache Missing for Fun and Profit. BSDCan 2005.
[19] Dag Arne Osvik, Adi Shamir, Eran Tromer. Cache Attacks and Countermeasures: the Case of AES. Proceedings of RSA

Conference 2006, Cryptographer’s Track (CT-RSA).
[20] P. Kocher. Cryptanalysis of Diffie-Hellman, RSA, DSS, and other cryptosystems using timing attacks. In Advances in cryp-

tology, CRYPTO’95, pages 171–183. Springer-Verlag, 1995.
[21] David Brumley and Dan Boneh. Remote Timing Attacks Are Practical. Proceedings of the 12th USENIX Security Sympo-

sium, Washington, D.C., August 4-8, 2003.
[22] Dawn Song, David Wagner, Xuqing Tian. Timing Analysis of Keystrokes and Timing Attacks on SSH. Proceedings of the

10th USENIX Security Symposium, Washington, D.C., August 13-17, 2001.
[23] Gershon Kedem, Yuriko Ishihara. Brute Force Attack on UNIX Passwords with SIMD Computer. Proceedings of the 8th

USENIX Security Symposium, Washington, D.C., August 23-26, 1999.
[24] Jinpeng Wei, Calton Pu. TOCTTOU Vulnerabilities in UNIX-Style File Systems: An Anatomical Study, 4th USENIX Con-

ference on File and Storage Technologies (FAST '05), San Francisco, CA, December 2005.
[25] Calton Pu, Jinpeng Wei. A Methodical Defense against TOCTTOU Attacks: The EDGI Approach, the International Sympo-

sium on Secure Software Engineering (ISSSE'06), Arlington, VA, March 2006.

