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Abstract. Content-based publish-subscribe (pub-sub) systems are an emerging paradigm for building a large number of dis-
tributed systems. Access control in a pub-sub system refers to secure distribution of events to clients subscribing to those events
without revealing its secret attributes to the unauthorized subscribers. To provide confidentiality guarantees the secret attributes
in an event is encrypted so that only authorized subscribers can read them. However, in a content-based pub-sub system, ev-
ery event can potentially have a different set of authorized subscribers. In the worst case, for NS subscribers, there are 2NS

subgroups, and each event can potentially go to a different subgroup. Hence, efficient key management is a big challenge for
implementing access control in pub-sub systems. In this paper, we describe efficient and scalable key management algorithms
for securely implementing access control rules in pub-sub systems. We ensure that the key management cost is linear in the
number of subscriptions and completely independent of the number of subscribers NS. We present a concrete implementation
of our proposal on an operational pub-sub system. An experimental evaluation of our prototype shows that our proposal meets
the security requirements while maintaining the scalability and performance of the pub-sub system.
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1 Introduction
A growing number of Internet applications require information dissemination across different organizational bound-
aries, heterogeneous platforms, and a large, dynamic population of publishers and subscribers. A publish-subscribe
(pub-sub for short) system enables information dissemination across geographically scattered and potentially un-
bounded number of publishers and subscribers. In such an environment, publishers publish information in the form
of events and subscribers have the ability to express their interests in an event or a pattern of events in the form of
subscription filters.

Access Control. Access control in a pub-sub system mandates that an event is intelligible to a subscriber if and only
if the event matches the subscriber’s registered interest. To provide confidentiality guarantees the secret attributes in
an event is encrypted so that only authorized subscribers can read them. However, access control in pub-sub systems
differ from access control in a traditional group key management protocols in several ways. A pub-sub system de-
fines access control on publications using complex subscriptions. For example, publications on confidential medical
records about a patient whose age is 25 should only be intelligible to a subscriber with the following subscription:
‘notify me updates on medical records about all patients whose age is greater than 20’; but not by a subscriber with
the following subscription: ‘notify me updates on medical records about all patients whose age is greater than 30’.

Given a flexible subscription model, every event can potentially go to a different subset of subscribers thereby
making efficient implementation of confidentiality very difficult. In the worst case, for NS subscribers, there are 2NS

subgroups, and each event can potentially go to a different subgroup. With thousands of subscribers it is infeasible to
setup static security groups for every possible subgroup. Opyrchal and Prakash [18] provides a more comprehensive
discussion on the infeasibility of using group key management protocols like broadcast encryption [9], secure mul-
ticast GKMP [12, 11] and logical key hierarchies [21] in the context of content-based pub-sub networks. Opyrchal
and Prakash [18] propose a group key clustering and caching based mechanisms to alleviate the problem of managing
possibly exponential number of group keys (2NS).

Approach. Bearing these issues in mind, we propose secure, efficient and scalable key management algorithms for
content-based pub-sub networks. Unlike other solutions proposed in the past, our proposal does not associate keys
with a subscribers or groups of subscribers, thereby ensuring that the number of keys to be managed is independent

1



of the number of subscribers in the pub-sub system. We associate an authorization key K(f) with a subscription filter
f and an encryption key K(e) with an event e. We use the encryption key K(e) to encrypt the secret attributes in
an event e. A subscriber can decrypt these secret attributes using any key K(f) if and only if the event e matches
the subscription filter f . This is achieved by mapping the authorization key K(f) and the encryption key K(e) to a
common key space. We use key derivation algorithms to ensure that K(e) can be efficiently derived from K(f) if the
event e matches the filter f ; otherwise, guessing K(e) from K(f) is computationally infeasible.

Our approach has two important performance and scalability benefits over the traditional subscriber group [18]
based approach. (i) Our approach ensures the number of authorization keys are independent of the number of sub-
scribers by using efficient key derivation algorithms. Using our approach the key server maintains only one key and
the subscriber maintains a small and constant number of keys per subscription (as against the worst case exponential
number of keys using a group key management approach). (ii) Our approach allows the key server to be stateless and
ensures that the cost of a subscription is a small constant (independent of NS). The subscriber group based approach
may require changes to the groups and group keys when a new subscriber joins the system, thereby incurring higher
computation, communication and storage costs.

Contributions. In this paper we demonstrate our approach by constructing key spaces for four types of publication-
subscription matching: topic or keyword based matching, numeric attribute based matching, category based matching
and string based prefix/suffix matching. We formally define these matching semantics in Section 2. We provide secure
and efficient key derivation algorithms to guarantee the confidentiality of secret attributes in an event. We enhance
the performance of our key derivation algorithms by constructing a semantic key cache. We present a modular and
stackable implementation of our proposal on the Siena [6] pub-sub system. Our experiments show that our proposal
meets the security goals while maintaining the system’s simplicity, scalability and performance metrics.

Paper Outline. The rest of this paper is organized as follows. Section 2 presents a reference pub-sub model and for-
mally defines various content-based matching semantics. Section 3 presents the concrete algorithms for implementing
access control followed by a semantic key caching technique to enhance the performance of our algorithms. Section 4
presents a sketch of our implementation on the Siena pub-sub system followed by a detailed performance evaluation.
We discuss related work in Section 5 and finally conclude in Section 6.

2 Preliminaries
2.1 Reference Pub-Sub Model

We use a reference pub-sub model that is very similar to a content-based pub-sub system like Siena [6]. Publications
are specified in terms of events and subscriptions are expressed in terms of filters. Formally, an event e is denoted as
e = 〈name, value〉∗, where name refers to some attribute name, value corresponds to its published value, and the
notation ∗ indicates that an event may comprise of one or more name and value tuples. A filter f is denoted as f =
〈name, operator, value〉∗, where name refers to some attribute name, value specifies an attribute value, operator
refers to a binary operator, and the notation ∗ indicates that a filter may comprise of one or more constraints in a
conjunctive form. Operators typically include common equality and ordering relations (=, <, >, etc) for numeric
attributes; and substring, prefix, suffix operators for strings. An event e is said to match a filter f if e satisfies all the
constraints in the filter f . In a pub-sub system disseminating confidential medical records, an example event could be:
e = 〈〈topic, cancerTrail〉, 〈age, 25〉, 〈patientRecord, record〉〉. An example subscription could consist
of the following constraints: f = 〈〈topic, EQ, cancerTrail〉, 〈age, >, 20〉〉, where EQ denotes the keyword
based matching operator and > denotes the greater-than numeric operator.

Pub-Sub system uses a third party authorization service to restrict the set of events that can be read by a subscriber.
Access control in a pub-sub system is specified at the granularity of a subscription filter. A subscriber receives one
authorization permit for every subscription that it is allowed to read. An authorization for a subscription filter is
associated with a lifetime. We use an epoch based approach wherein all authorization permits are valid for one time
epoch. At the end of an epoch, the subscriber will have to obtain a new authorization permit to read events that match
the subscription filter in the next epoch. Using an epoch based subscription model allows the publishers to charge its
subscribers on a periodic basis.
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Pub-Sub systems may use a wide-variety of communication infrastructures to disseminate events from a group
of publishers to a group of subscribers ranging from: direct one-to-one channels, multicast networks and overlay
networks. Our proposal is independent of the communication infrastructure. However, our implementation is based
on Siena, which uses an overlay network based communication infrastructure for scalable event dissemination.

2.2 Threat Model

We assume an honest-but curious model for both the publishers and the subscribers (discretionary access control
model). A curious publisher may be interested in reading the events published by other publishers. For subscribers,
we define authorization on a per subscription basis and a subscription epoch. A subscriber S is authorized to read
an event e if the event e matches one of its active subscriptions. We assume that a subscriber S who is authorized to
read an event e does not reveal its contents to other unauthorized subscribers (otherwise, this would be equivalent to
solving the digital copyrights problem). However, unauthorized subscribers may be curious to read those events that
do not match their subscriptions. We assume that the communication infrastructure used for event dissemination may
not be secure. Hence, malicious subscribers may eavesdrop on the pub-sub messages sent through the communication
infrastructure.

3 Key Management for Publish-Subscribe Systems
3.1 Overview

We use authorization keys and encryption keys to support access control on pub-sub systems. These keys serve
complementary purposes. An encryption key is used to maintain the confidentiality of an event from subscribers who
have not subscribed to that event. An authorization key is designed to encode content-based matching semantics into a
key derivation algorithm such that an authorized subscriber can efficiently derive the encryption keys for those events
that match their subscriptions. In this paper, we demonstrate our approach using four different types of publication-
subscription matching: topic or keyword based matching, numeric attribute based matching, category based matching,
and string based suffix/prefix matching.

For topic or keyword based matching, an authorization key K(f) associated with a filter f = 〈topic, EQ,
cancerTrail〉 must be capable of decrypting the message msg in event e = 〈〈topic, cancerTrail〉, 〈message,
msg〉〉. On the other hand, a key K(f ′) associated with filter f ′ = 〈topic, EQ, humanGenome〉 should not be able
to decrypt msg in event e. For numeric attribute based matching, a key K(f1) used for the filter f1 = 〈〈topic,
EQ, cancerTrail〉, 〈age, >, 20〉〉 and a key K(f ′

1) used for the filter f ′
1 = 〈〈topic, EQ, cancerTrail〉,

〈age, >, 30〉〉 must be capable of decrypting the message msg in event e1 = 〈〈topic, cancerTrail〉, 〈age, 35〉,
〈message, msg〉〉. On the other hand, key K(f1) should be capable of decrypting the message msg in event e′1
= 〈〈topic, cancerTrail〉, 〈age, 25〉, 〈message, msg〉〉, but not the key K(f ′

1). For category based match-
ing, a key K(f2) used for filter f2 = 〈〈topic, EQ, cancerTrail〉, 〈news, 3, unclassifiedNews〉〉, a key
K(f ′

2) used for f ′
2 = 〈〈topic, EQ, cancerTrail〉, 〈news, 3, classifiedNews〉〉, and a key K(f ′′

2 ) used for
f ′′
2 = 〈〈topic, EQ, cancerTrail〉, 〈news, 3, secretNews〉〉 must be capable of decrypting the event e2 =
〈〈topic, cancerTrail〉, 〈news, unclassifiedNews〉, 〈message, msg〉〉. On the other hand, only K(f ′′

2 )
should be capable of decrypting the message msg in e′2 = 〈〈topic, cancerTrail〉, 〈news, secretNews〉,
〈message, msg〉〉, but not the keys K(f2) and K(f ′

2). For string based prefix/suffix matching, a key K(f3) used
for filter f3 = 〈〈topic, EQ, cancerTrial〉, 〈name, PF, a〉〉 and a key K(f ′

3) used for the filter f ′
3 = 〈〈topic,

EQ, cancerTrial〉, 〈name, PF, an〉〉 should be capable of decrypting the message msg in event e3 = 〈〈topic,
cancerTrial〉, 〈name, andy〉, 〈message, msg〉〉. On the other hand, only K(f3) must be capable of decrypting
the message msg in e′3 = 〈〈topic, cancerTrial〉, 〈name, alex〉, 〈message, msg〉〉, but not the key K(f ′

3).
In the following sections, we demonstrate our approach using these four popular types of publication-subscription

matching: topic or keyword based matching, numeric attribute based matching, category based matching, and string
based prefix/suffix matching. In particular we describe algorithms to derive K(f) for a subscription filter f and
K(e) for encrypting an event e such that the derivation satisfies the matching semantics. We first describe our tech-
niques to handle simple subscriptions that consists of a topic and at most one constraint, say, f = 〈〈topic, EQ,
cancerTrail〉, 〈age, >, 15〉〉. A complex subscription could consist of constraints combined using the ∧ and ∨
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Boolean operators. We present algorithms to handle simple subscriptions in Sections 3.2, 3.3, 3.4 and 3.5 followed
by techniques to handle complex subscriptions in Section 3.6.

3.2 Topic or Keyword Based Matching

We first describe how we implement access control on topic/keyword based matching. Our techniques for topic or
keyword based matching are very simplistic. However, numeric attribute based matching, category based matching
and string based matching significantly differ in the techniques employed to generate the authorization keys and the
encryption keys.

Subscription. Given a simple topic based subscription f the subscription key is generated by an authorization service
MS as:

f = 〈topic, EQ, w〉

K(f) = K(w) = KHrk(MS)(w), KS(w) = KH2
rk(MS)(w)

Note that rk(MS) denotes the 128-bit MS’s secret key and KHSK(w) denotes a keyed hash of string w using a
keyed-pseudo random function (PRF) KH (approximated by HMAC-MD5 or HMAC-SHA1 [13]) and a secret key
SK. Also, KHj denotes j successive applications of the PRF KH .

A subscription key for a topic w with one keyword based matching constraint is constructed as follows. Subscrip-
tions on a topic w with a numeric attribute based constraint, category and string prefix/suffix based constraint are
discussed in Section 3.3, 3.4, and 3.5.

f = 〈〈topic, EQ, w〉, 〈name, EQ, value〉〉

K(f) = Kname
value = KHK(w)(name ‖ value)〉, KS(w) = KHrk(MS)(w)

Note that ‖ denotes string concatenation. For example, given a subscription filter f = 〈〈topic, EQ, cancerTrail〉,
〈gender, EQ, F 〉〉 the authorization key is computed as K

gender

F = KHK(cancerTrail)(gender ‖ F), where
K(cancerTrail) = KHrk(MS)(cancerTrail).

Advertisement. Similar to the subscription process, a publisher P who wishes to publish events under a topic w
obtains an authorization permit from the authorization service MS. Given a simple topic based subscription f the
subscription key is generated by an authorization service MS as:

f = 〈topic, EQ, w〉

K(f) = 〈K(w) = KHrk(MS)(w), KP (P, w) = KHKS(w)(P )〉

The authorization key K(w) is constructed by the MS using the same technique as that of subscription. The key
KP (P, w) is derived as KP (P, w) = KHKS(w)(P ), where KS(w) = KH2

rk(MS)(w). The key KP (P, w) is used to
disallow one publisher from being able to read events published by other publishers on the same topic. Note that using
KP (P, w) a publisher P cannot guess KP (P ′, w) corresponding to another publisher P ′. However, the key KS(w)
allows a subscriber to derive KP (P, w) for all publishers and thus read all events published under topic w irrespective
of its publisher. Note using the subscriber group approach achieving the same goal would have increased the number
of keys per subscriber and the load on key server by a factor |P |, where |P | denotes the number of publishers. Our
approach reduces the key management overhead and pays a very small cost for deriving KP (P, w) from KS(w).
Constructing an authorization permit for a publisher to publish events on a topic with one keyword based matching
constraint is very similar to that used for constructing subscriptions (discussed above).

Publication. A publisher P constructs the encryption keys for events as follows:

e = 〈〈publisher, P 〉, 〈topic, w〉, 〈message, msg〉〉

K(e) = K(w) ⊕ KP (P, w)

One can use any standard symmetric key encryption algorithm (say, DES [10] or AES [17]) for E. Observe that
any subscriber who has subscribed for topic w possesses the authorization keys K(w) and KS(w). The authorized
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subscriber first derives KP (P, w) from KS(w) and P . Then, it uses the authorization key K(w) and the derived key
KP (P, w) to derive the encryption key K(e).

A publication on a topic w with one keyword based matching constraint is constructed as follows.

e = 〈〈publisher, P 〉, 〈topic, w〉, 〈name, value〉, 〈message, msg〉〉

K(e) = Kname
value ⊕ KP (P, w)

For example, given an event e = 〈〈publisher, P 〉, 〈topic, cancerTrail〉, 〈gender, F〉, 〈message, msg〉〉
its encryption key K(e) = K

gender

F ⊕KP (P, w), where K
gender

F = KHK(cancerTrail)(gender ‖ F) and K(cancerTrail)
= KHrk(MS)(cancerTrail. Observe that a subscriber who has subscribed for a filter f = 〈〈topic, EQ, cancerTrail〉,
〈gender, EQ, F〉〉 has the authorization key KHK(cancerTrail)(gender ‖ F). The subscriber can use this autho-
rization key to derive the encryption key for the event e.

Unsubscription and Unadvertisement by Rekeying. Using an epoch based subscription model permits us to re-
voke subscriptions using periodic rekeying. We periodically change all authorization keys by changing MS’s secret
key rk(MS). Observe that since all the authorization keys are derived from the MS’s secret key, changing the key
rk(MS) changes the values for all the authorization keys. Concretely, we perform a periodic rekeying operation as
follows. We divide time into epochs of epoch time units (say, one month). All subscriptions and advertisements need
to be renewed at the beginning of every time epoch. We number epochs with consecutive integers starting from epoch
number 0. The secret key used by the MS in the T th epoch is derived from the secret key rk(MS) as rk(MS, T ) =
KHrk(MS)(T ). The MS uses rk(MS, T ) to replace rk(MS) during the T th epoch for generating the authorization
keys. Hence, if a subscriber S unsubscribes from topic w in epoch T , it would still be able to read the contents of
publications under topic w till the end of epoch T (but not after epoch T ) by eavesdropping on the pub-sub com-
munication infrastructure. Unsubscription and unadvertisements by rekeying additionally facilitates the authorization
service MS to collect periodic subscription and advertisement fee.

3.3 Numeric Attribute Based Matching

In this section, we present our key derivation algorithm for numeric attribute based constraints supports range queries
on numeric attributes. Given a numeric attribute, say age, we can construct a subscription filter f = 〈age, ∈, (l, u)〉.
The filter f matches any event e = 〈age, v〉 if and only if l ≤ v ≤ u, that is, the value v belongs to the range (l, u).
We associate an authorization key K(f) with every subscription filter f and an encryption key K(e) with every event
e. The authorization keys and the encryption keys satisfy the following properties:

• Given K(f) it should be computationally easy to derive a key K(e), if v ∈ (l, u), that is, l ≤ v ≤ u.

• Given K(f) it should be computationally hard to derive a key K(e), if v /∈ (l, u), that is, (v < l) ∨ (v > u).

We construct keys that satisfy the above mentioned properties as follows. We map the authorization keys and en-
cryption keys to the common key space using a numeric attribute key tree (NAKT for short). Given a subscription
filter 〈age, ∈, (l, u)〉, we use the NAKT to derive a small set of authorization keys that corresponds to the range
(l, u), denoted by Knum

(l,u) , where num denotes the name of the numeric attribute. The NAKT enables one to easily
(computationally) derive a key Knum

(l′,u′) from Knum
(l,u) if and only if l ≤ l′ ≤ u′ ≤ u. For any event e = 〈age, v〉, we

encrypt the message with K(e) = Knum
(v,v) . By the construction of the numeric attribute key tree it follows that K(e) is

easily derivable from K(f) if and only if l ≤ v ≤ u.

Preliminaries. In the rest of this section, we present our techniques for numeric attribute based matching. We propose
a mechanism that is capable of balancing performance and expressiveness of the numeric attribute based matching
algorithm. We quantify the trade-off between performance and expressiveness by introducing the concept of a least
count lc(num) for a numeric attribute num. Let R(num) be the range of a numeric attribute num. Let us suppose
that the numeric attribute age takes value from the domain of integers with minimum value zero and maximum value
31. Then we have R(age) = (0, 31). If lc(age) = 4, then only ranges (l, u) where l mod 4 ≡ 0 and u mod 4 ≡ 3
are permitted. Hence, a subscriber may subscribe for the range (16, 27) but not for the range (17, 29). If subscriber
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Figure 1: Key Tree: Range Queries on Numeric Attributes

Figure 2: Key Tree: Category Hierarchy

S indeed wants to receive all events covered by the range (17, 29), then S would have to subscribe for a bigger
range (16, 31). The higher the value of lc(num), the better is the performance of our key derivation algorithm, but
the lower is its expressiveness. Without loss of generality, we assume that the actual range of the numeric attribute
num is (0, |R(num)| − 1), where |R(num)| denotes the size of range R(num). Note that if the actual range of
the attribute num is (min(num), max(num)), then we can always normalize it to (0, max(num) − min(num)).
Now, we describe a technique to construct a NAKT, and then present the algorithm for constructing subscription and
publication using the NAKT. The construction of an advertisement and unsubscription is similar to that of a topic or
keyword based matching (section 3.2) and will be omitted here.

Numeric Attribute Key Tree (NAKT). We first present a technique to construct the NAKT. Given a numeric value
v ∈ (0, |R(num)| − 1), we map it to a key tree identifier ktid, where ktid = b0b1· · · bm−1 is the binary representation
of the number b v

lc(num)c and m = log2(
|R(num)|
lc(num) ). The key tree identifiers are arranged in the form of a binary tree

with depth m. Figure 1 shows a numeric attribute key tree for R(num) = (0, 31) and lc(num) = 4. Each internal
element in the tree is assigned a key Knum

ktid that corresponds to the key tree identifier ktid for the numeric attribute
num. The key tree is designed such that given a parent key all its children keys can be easily derived; but the converse
is computationally infeasible.

Let the symbol Ø (null) be used to label the root element of a NAKT. We derive the authorization key for the root
element corresponding to the key tree as Knum

Ø = KHK(w)(num), where KH is a keyed pseudo-random function,
K(w) = KHrk(MS)(w) is the authorization key for the topic w, and rk(MS) denotes the MS’s secret key. An example
topic would be w = cancerTrail and numeric attribute num = age. We derive the key for an internal element
with ktid = ξ ‖ b recursively as Knum

ξ‖b = H(Knum
ξ ‖ b), for some ξ ∈ (0 + 1)∗, b = 0 or 1 and H is a one-way hash

function (approximated by MD5 [22] or SHA1 [8]). Note that ‖ denotes string concatenation. For example, Knum
0 is

derived as Knum
0 = H(Knum

Ø ‖ 0) and Knum
1 is derived as Knum

1 = H(Knum
Ø ‖ 1).

Publication. A publisher P constructs the encryption key for a numeric attribute event e as follows:

e = 〈〈publisher, P 〉, 〈topic, w〉, 〈num, v〉, 〈message, msg〉〉

K(e) = Knum
ktid(v) ⊕ KP (P, w)

Note that ktid(v) maps a numeric value v to a key tree identifier as ktid(v) = int2bin(b v
lc(num)c). For example,

a publication e = 〈〈publisher, P 〉, 〈topic, cancerTrail〉, 〈age, 22〉, 〈message, msg〉〉 is encrypted as
follows. P identifies that the leaf node in the NAKT, which contains v = 22 has an identifier ktid(22) = int2bin( 22

4 )
= int2bin(5) = 101 (lc(age) = 4, see Figure 1). Hence, P generates the a secure event e constructs the encryption key
K(e) = K

age

101⊕KP (P, cancerTrail).

Subscription. A subscriber can subscribe for any range over the numeric attributes (limited by the least count
lc(num)). The subscription range may span one or more elements in the NAKT. Given a range (l, u) we identify
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the smallest set of elements in the NAKT that spans the range (l, u). For example, the smallest set of elements in
the NAKT that spans the range (8, 19) are (8, 15) and (16, 19). In general, given a range (l, u) one can identify the
smallest set of elements in the NAKT that spans the range (l, u) by performing a depth first search starting at the root
of the NAKT. We first discuss those subscriptions whose subscription range spans exactly one element in the NAKT.
We then extend the solution to handle subscriptions whose range spans multiple elements in the NAKT.

Suppose a subscriber S has subscribed for a range (l, u) that maps to exactly one element in the key tree (say
(16, 31) in Figure 1). The subscription (f ) and its the authorization key K(f) are as shown below. Note that PF
denotes the prefix operator such that PF (valueα, valueφ) is true if and only if valueφ is a prefix of valueα. We
construct the modified subscription using an authorization key Knum

ktid(l,u) as follows.

f = 〈〈topic, EQ, w〉, 〈num,≥, l〉, 〈num,≤, u〉〉

K(f) = Knum
ktid(l,u), KS(w)

Given a publication with key tree identifier equal to ktidα a subscriber who has subscribed for key tree identifier
equal to ktidφ does the following. The subscriber checks if ktidφ is a prefix of ktidα. If so, the subscriber derives the
encryption key Knum

ktidα
from the authorization key Knum

ktidφ
. Note that the generation of children keys from its parent’s

key is computationally efficient because it uses a fast one-way hash function. However, it is computationally infeasible
for a subscriber to derive the keys corresponding to its ancestors or its siblings. For example, given a publication with
ktidα = 101, a subscriber who has subscribed for ktidφ = 1 decrypts the message msg in a publication as follows.
Given ktidα = 101 and ktidφ = 1, the subscriber first extracts the suffix 01. Then, S derives Knum

10 = H(Knum
1 ‖ 0)

and Knum
101 = H(Knum

10 ‖ 1). Now, S can use Knum
101 to decrypt the message in the publication.

Now suppose that a subscriber S wishes to subscribe for some range that does not correspond to exactly one
element in the key tree, say a range (8, 19). We split such a subscription into two subscriptions, one for the range
(8, 15) and the other for the range (16, 19). Observe that given a range (l, u) one can identify the smallest set of
elements in the NAKT that spans the range (l, u) by performing a depth first search starting at the root of the NAKT.
In general, if one uses a a-ary numeric attribute key tree (a ≥ 2), any range can always be subdivided into no more
than (a − 1) loga(

|R(num)|
lc(num) ) sub-ranges. One can show that this is a monotonically increasing function in a (for

a ≥ 2) and thus has a minimum value when a = 2. Hence, a binary key tree is optimal and it requires no more
than log2(

|R(num)|
lc(num) ) sub-ranges for any given subscription range. This translates to a worst case logarithmic blowup

in the size of a subscription. Therefore, a subscriber may have to maintain O(log2(|R(num)|) authorization keys
for a subscription on a numeric attribute. Note that maintaining one authorization key for every possible subscription
on the numeric attribute requires O(|R(num)|) keys. Hence, our key derivation algorithm significantly reduces the
number of keys to be managed and yet preserves the confidentiality guarantees provided by the system.

Key Management Cost and Key Derivation Cost Trade-Off. In addition, one can also show that using a a-ary
numeric attribute key tree, the average number of ranges into which any randomly chosen range need to be subdivided
is 1

2*(a − 1)loga(
|R(num)|
lc(num) ). One can show that this is a monotonically increasing function in a, that is, the number

of keys (and thus the cost of key management) increases monotonically with a. On the other hand, as a increases the
height of the key tree (loga( |R(num)|

lc(num) )) decreases, that is, the cost of key derivation decreases monotonically with a.
Our experiments show that the cost of key derivation is very small. Therefore, we chose to use a binary key tree (a =
2) that minimizes the key management cost.

3.4 Category Based Matching

In this section, we present techniques for access control on named categories that are typically arranged as an ontology
tree [27]. In an ontology or a category tree the children of a node represent more detailed information about the same
topic than its parent and thus may be considered more confidential. An example category hierarchy that is applicable
in a military scenario is shown in Figure 2. A subscriber who subscribes for secretNews1 is implicitly entitled
to receive all publications published under categories classifiedNews1 and unclassifiedNews; but the
converse is not true. Additionally, a subscriber who subscribes for secretNews1 is not permitted to read events
categorized under classifiedNews2. In general, publications marked unclassified contain general (less
detailed and less confidential) information than those marked classified and secret.
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Our key derivation algorithm supports category based subscriptions. Given a category, say news, we can construct
a subscription filter f = 〈news, 3, cat〉. The filter f matches any event e = 〈news, v〉 if and only if v is an ancestor
of cat on the category tree. We associate an authorization key K(f) with every subscription filter f and an encryption
key K(e) with every event e. The authorization keys and the encryption keys satisfy the following properties:

• Given K(f) it should be computationally easy to derive a key K(e), if v ∈ ancestor(cat).

• Given K(f) it should be computationally infeasible to derive a key K(e), if v /∈ ancestor(cat).

We construct keys that satisfy the above mentioned properties as follows. We map the authorization keys and encryp-
tions into a common key space constructed using a category attribute key tree (CAKT for short). Given a subscription
filter 〈news, 3, cat〉, we use the CAKT to derive an authorization key K(f) that corresponds to the category cat,
denoted by Kont

cat , where ont denotes the name of the ontology (in this example, ont = news). The CAKT enables
one to easily (computationally) derive a key Kont

cat′ from Kont
cat if and only if cat′ ∈ ancestor(cat) in the category tree

corresponding to the ontology ont. For any event e = 〈news, v〉, we encrypt the message with the encryption key
K(e) = Kont

v . By the construction of the category key tree it follows that K(e) is easily derivable from K(f) if and
only if v ∈ ancestor(cat).

Preliminaries. Given a category ontology, we map each category to a key tree identifier ktid. The root of the tree
is assigned ktid = Ø. We label the ith child of a specialization with ktid = ξ as ξ ‖ i. For the sake of simplicity
we assume that CAKT is a binary category key tree such that each specialization has exactly two or zero children.
However, the techniques discussed in this paper can be extended in a straightforward fashion to handle a case where
different specializations in the category tree have different number of children. In our experimental section, we use an
ontology tree wherein the number of children per tree node was randomly chosen between 2 to 4. Now we describe a
technique to construct a CAKT, and then present algorithms for constructing subscriptions and publications using the
CAKT.

Category Key Tree (CAKT). We derive a parent element ξ’s key from its children elements (ξ ‖ 0) and (ξ ‖ 1) as
follows: Kont

ξ = mix(blind(Kont
ξ‖0), Kont

ξ‖1)) = mix(blind(Kont
ξ‖1), Kont

ξ‖0)). There are several options for functions mix

and blind. The function blind is chosen such that given blind(x) it is very hard to guess x. The function mix is
chosen such that mix(blind(x), y) = mix(blind(y), x).

The functions blind and mix are defined based on Diffie-Hellman logical key hierarchy (DH-LKH) [21] as follows:
blind(x) = gH(x) mod p and mix(gH(x) mod p, y) = gH(x)H(y) mod p. The parameter p is a large prime such that
discrete log problem in the field Zp is computationally intractable. The parameter g is a generator in field Zp. Prime
p and generator g are assumed to be system wide known parameters. Observe that mix(gH(y) mod p, x) = gH(y)H(x)

mod p = mix(gH(x) mod p, y). Hence, Kont
ξ is derived as Kont

ξ = g
H(Kont

ξ‖0
)H(Kont

ξ‖1
)
mod p for some ξ ∈ (0+1)∗. We

use the least significant 128 bits of the result as the actual key. For example, Knews
0 = gH(Knews

00
)H(Knews

01
) mod p.

Analogous to the category key tree, the pub-sub system also generates a blinded key tree. The MS is responsible
for generating a blinded key tree BKont

ξ = blind(Kont
ξ ), for all key tree identifiers ξ in the CAKT. The blinded keys

are required for a subscriber to generate the authorization keys for all the specializations that it is authorized for.
However, if we use the OWH-LKH construction, the blinded key tree has to be kept a secret by the MS. Observe that
given blind(Kont

ξ‖0) and blind(Kont
ξ‖1) any subscriber can generate Kont

ξ = blind(Kont
ξ‖0) ⊕ blind(Kont

ξ‖1) = H(Kont
ξ‖0) ⊕

H(Kont
ξ‖1). Hence, if the blinded key tree were public, then any subscriber can derive the authorization keys for all

non-leaf elements in the key tree. More concretely, by the hardness of the discrete log problem in the field Zp it is
computationally infeasible to derive a key Kont

ξ using only its blinded key BKont
ξ or from its children blind keys

BKont
ξ‖0 and BKont

ξ‖1 .

For every leaf element with key tree identifier equal to ktid, the MS generates key K ont
ktid = KHK(w) (ont ‖

ktid), where K(w) = KHrk(MS)(w) is the authorization key for the topic w, and rk(MS) denotes the meta-service
secret key. For example, the key for leaf element secretNews1 (with ktid = 00) under ontology ont = news
and topic w = cancerTrail is derived as Knews

00 = KHK(cancerTrail)(news ‖ 00), where K(cancerTrail) =
KHrk(MS)(cancerTrail). For any non-leaf element on the key tree, the MS derives its key using the publicly
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available blinded key tree for the topic w and ontology ont. Note that the MS does not have to store any extra
confidential information to handle subscriptions; the key that corresponds to a given ktid under a topic w can be
efficiently computed on the fly. The MS spends only a one-time effort to generate a blinded key tree for every topic w
and ontology ont.

Publication. The encryption keys for an event are constructed as follows:

e = 〈〈topic, w〉, 〈ont, cat〉, 〈message, msg〉〉

K(e) = Kont
ktid(cat) ⊕ KP (P, w)

For example, a publication e = 〈〈topic, cancerTrail〉, 〈news, classifiedNews1〉, 〈message, msg〉〉 is
encrypted as follows. P identifies the element unclassifiedNews1 in the key tree has an identifier 0 (see Figure
2). P generates the encryption key K(e) = Knews

0 ⊕KP (P, w).

Subscription. The authorization keys for a subscription filter are constructed as follows:

f = 〈〈topic, EQ, w〉, 〈ont,3, cat〉〉

K(f) = Kont
ktid(cat), KS(w)

Given a publication with msg with ktid = ktidα a subscriber who has subscribed for ktid = ktidf does the
following. The subscriber checks if ktidα is a prefix of ktidf . The subscriber uses this information to extract the
suffix b0b1· · · bm−1 and derives the key Kont

ktidα
from the key Kont

ktidφ
. Observe that any subscriber who possesses the

key that corresponds to some element of the key tree can efficiently derive the keys for all its ancestors recursively as

Kont
ξ = (BKont

ξ‖b )
H(Kont

ξ‖b
)
mod p for some ξ ∈ (0 + 1)∗, b = 0 or 1 and b denotes the bit complement of b. However, it

is computationally infeasible for a subscriber to derive the keys corresponding to its children or siblings.
For example, given a publication with message msg encrypted with the key Knews

0 a subscriber S who possesses
the key Knews

00 does the following. The subscriber extracts the publication’s key tree identifier ktidφ = 0 and its
subscription’s key tree identifier ktidα = 00. Then, S identifies that element 0 is an ancestor of element 00. Then,
S derives Knews

0 = (BKnews
01 )H(Knews

00
) mod p = gH(Knews

00
)H(Knews

01
) mod p (since, BKnews

01 = gH(Knews
0

) mod p). Recall
that the blinded key tree BKnews

ktid is made publicly available by the pub-sub system. Now, S can use Knews
0 to decrypt

the message msg in the publication.

3.5 String Based Suffix and Prefix Matching

In this section, we present our key derivation algorithm for string based suffix/prefix matching. Given a string attribute,
say name, we can construct a subscription filter f = 〈name, PF , u〉. The filter f matches any event e = 〈name, v〉
if and only if string u is a prefix of string v. We associate an authorization key K(f) with every subscription filter f
and an encryption key K(e) with every event e. The authorization keys and the encryption keys satisfy the following
properties:

• Given K(f) it should be computationally easy to derive a key K(e), if u PF v, that is, u is a prefix of v.

• Given K(f) it should be computationally hard to derive a key K(e), if u is not a prefix of v.

We construct keys that satisfy the above mentioned properties as follows. We map the authorization keys and en-
cryption keys to the common key space using a string attribute key tree (SAKT for short). Given a subscription filter
〈str, PF , u〉, we use the SAKT to derive an authorization key that corresponds to the string u, denoted by K str

u ,
where str denotes the name of the string attribute. The SAKT enables one to easily (computationally) derive a key
Kstr

v from Kstr
u if and only if u PF v. For any event e = 〈str, v〉, we encrypt the message with K(e) = K str

v . By
the construction of the string attribute key tree it follows that K(e) is easily derivable from K(f) if and only if u
PF v. Our construction for string suffix matching is very similar to string prefix matching and will not be discussed
separately.

String Attribute Key Tree (SAKT). We first present a technique to construct the SAKT. Given a string value u =
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u0u1· · ·uk−1, where ui denote characters in the string u, we construct a key Kstr
u recursively as follows: Kstr

u0u1···ui
=

H(Kstr
u0u1···ui−1

‖ ui), where H denotes a one-way hash function. Let the symbol Ø denote the null string. We derive
the authorization key for the null string corresponding to the key tree as K str

Ø = KHK(w)(str), where KH is a keyed
pseudo-random function, K(w) = KHrk(MS)(w) is the authorization key for the topic w, and rk(MS) denotes the
MS’s secret key. An example topic would be w = cancerTrail and numeric attribute str = name. Note that ‖
denotes string concatenation. For example, Kstr

a is derived as Kstr
a = H(Kstr

Ø ‖ a) and Kstr
an is derived as Kstr

an =
H(Kstr

a ‖ b).

Publication. A publisher P constructs the encryption key for a numeric attribute event e as follows:

e = 〈〈publisher, P 〉, 〈topic, w〉, 〈str, v〉, 〈message, msg〉〉

K(e) = Kstr
v ⊕ KP (P, w)

For example, given a publication e = 〈〈publisher, P 〉, 〈topic, cancerTrail〉, 〈name, andy〉, 〈message,
msg〉〉 we construct K(e) = Kname

andy⊕KP (P, cancerTrail).

Subscription. We construct an authorization key for a subscription as follows.

f = 〈〈topic, EQ, w〉, 〈str, PF, u〉〉

K(f) = Kstr
u , KS(w)

Given a publication with string v a subscriber who has subscribed for a string u does the following. The subscriber
checks if u is a prefix of v. If so, the subscriber derives the encryption key K str

v from the authorization key Kstr
u .

Note that the generation of children keys from its parent’s key is computationally efficient because it uses a fast one-
way hash function. However, it is computationally infeasible for a subscriber to derive the keys corresponding to its
ancestors or its siblings. For example, given a publication with v = andy, a subscriber who has subscribed for u =
a decrypts the message msg in a publication as follows. Given v = andy and u = a, the subscriber first extracts the
suffix ndy. Then, S derives Kstr

an = H(Kstr
a ‖ n), Kstr

and = H(Kstr
an ‖ d), and Kstr

andy = H(Kstr
and ‖ y).

3.6 Complex Subscriptions

We have so far presented EventGuard techniques to handle numeric attribute and category based subscriptions. How-
ever, we have so far dealt with subscriptions that consists of a topic and at most one constraint, say, f = 〈〈topic,
EQ, cancerTrail〉, 〈age, ∈, (0, 15)〉〉. A complex subscription could consist of constraints combined using the ∧
and ∨ Boolean operators. In general a complex filter is represented as a complex subscription f = 〈〈topic, EQ, w〉,
B(sf1, sf2, · · · , sfl)〉 where each sfi is a simple filter (only one constraint) and B is a monotone Boolean expression.
An example of a complex filter could be f=〈〈topic, EQ, cancerTrail〉, (〈age, ∈, (0, 15)〉 ∧ 〈gender, EQ,
F〉 ∧ (〈news, 3, secretNews1〉 ∨ 〈news, 3, secretNews5〉)〉. A matching event for the example subscription
shown above could be e = 〈〈topic, cancerTrail〉, 〈age, 9〉, 〈gender, F〉, 〈news, classifiedNews1〉,
〈message, msg〉〉. In this section we compose techniques presented in Sections 3.2, 3.3 and 3.4 to handle complex
subscriptions.

Preliminaries. Given a complex subscription f = 〈〈topic, EQ, w〉, B(sf1, sf2, · · · , sfl)〉, we express B in dis-
junctive normal form (DNF) [14] as B =

∨nd
j=1 Dj , where D =

∧nsf
j=1 sfj . We then divide f into nd complex filters

{f1, f2, · · · , fnd}, where fi = 〈〈topic, EQ, w〉, Di(sf1, sf2, · · · , sfl)〉. The subscriber now subscribes indepen-
dently for each of these nd subscription filters. Note that this is equivalent to the original subscription on the filter
f since, B =

∨nd
j=1 Dj . For example, we divide a complex filter f = 〈〈topic, EQ, cancerTrail〉, (〈age, ∈,

(0, 15)〉 ∧ 〈gender, EQ, F〉 ∧ (〈news, 3, secretNews1〉 ∨ 〈news, 3, secretNews5〉)〉 into two filters f1 =
〈〈topic, EQ, cancerTrail〉, (〈age, ∈, (0, 15)〉 ∧ 〈gender, EQ, F〉 ∧ 〈news, 3, secretNews1〉)〉 and f2

= 〈〈topic, EQ, cancerTrail〉, (〈age, ∈, (0, 15)〉 ∧ 〈gender, EQ, F〉 ∧ 〈news, 3, secretNews5〉)〉. Note
that the subscriber can subscribe for the filters f1 and f2 independently and receive all events e that match the filter f
= f1 ∨ f2. In the following portions of this section we describe techniques to derive keys for complex filters whose
constraints include only the ∧ operator. The concrete technique for constructing subscriptions and publications using
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these derived keys is very similar to that discussed in numeric attribute based matching and category based matching
and will be omitted in this section.

Publication. The encryption key for a complex event ei = 〈〈topic, w〉, 〈name1, value1〉, · · · , 〈namel, valuel〉〉
is constructed as follows: K(ei) = H(

⊕l
j=1 K(sej)), where sej = 〈〈topic, w〉, 〈namej , valuej〉〉. For ex-

ample, given an event e = 〈〈topic, cancerTrail〉, 〈age, 9〉, 〈gender, F〉, 〈news, classifiedNews1〉,
〈message, msg〉〉, the key K(e) is computed as follows. We break up ei into three simple events se1 = 〈〈topic,
cancerTrail〉, 〈age, 9〉〉, se2 = 〈〈topic, cancerTrail〉, 〈gender, F〉〉 and se3 = 〈〈topic, cancerTrail〉,
〈news, classifiedNews1〉〉. Then, we compute the encryption keys for the simple events using the techniques
described in Sections 3.2, 3.3 and 3.4: K(se1) = K

age

010 (since ktid(9) = 010), K(se2) = K
gender

F and K(se3) = Knews
0

(since ktid(classifiedNews1) = 0). Finally, we derive K(e) = H(Kage

010 ⊕ K
gender

F ⊕ Knews
0 ).

Subscription. Now we describe how an authorization key is constructed for a filter fi = 〈〈topic, EQ, w〉, Di(sf1,
sf2, · · · , sfl)〉. We divide the subscription filter fi into l simple subscriptions of the form: fij = 〈〈topic, EQ,
w〉, sfj〉. The set of authorization keys associated with fi is {K(sf1), K(sf2), · · · , K(sfl)}, where K(sfj) is the
authorization key for a subscription filter fij using the techniques described in Sections 3.2, 3.3 and 3.4. For exam-
ple, given a subscription filter f1 = 〈〈topic, EQ, cancerTrail〉, (〈age, ∈, (0, 15)〉 ∧ 〈gender, EQ, F〉 ∧
〈news, 3, secretNews1〉)〉, we split into three simple filters: f11 = 〈〈topic, EQ, cancerTrail〉, 〈age, ∈,
(0, 15)〉〉, f12 = 〈〈topic, EQ, cancerTrail〉, 〈gender, EQ, F〉〉 and f13 = 〈〈topic, EQ, cancerTrail〉,
〈news, 3, secretNews1〉〉. We then associate the following authorization keys with filter f : K(f11) = K

age

0 (since
ktid(0, 15) = 0), K(f12) = K

gender

F , and K(f13) = Knews
00 (since ktid(secretNews1) = 00). Given an event e =

〈〈topic, cancerTrail〉, 〈age, 9〉, 〈gender, F〉, 〈news, classifiedNews1〉, 〈message, EK(e)(msg)〉〉,
a subscriber derives key K(e) as follows. The subscriber computes K

age

010 (since ktid(9) = 010) from K
age

0 (since
ktid(0, 15) = 0) using the numeric attribute key tree for age, Knews

0 (since ktid(classifiedNews1) = 0) from
Knews

00 (since ktid(secretNews1) = 00) using the category attribute key tree for news. The subscriber uses the au-
thorization key K

gender

F with the derived keys K
age

010 and Knews
0 to compute K(e) = H(Kage

010 ⊕ K
gender

F ⊕ Knews
0 ).

One can show that a subscriber can derive K(e) from K(f) if and only if the complex event e matches the complex
filter f by our composing arguments presented in Sections 3.2, 3.3 and 3.4.

3.7 Performance Enhancements

In this section we present two key caching mechanisms to enhance the performance of our key derivation algorithms:
temporal key cache and semantic key cache. In a temporal cache, a key is cached with a hope that it is reused in the
near future. A semantic key cache extends the temporal key cache by exploiting the functioning of our key derivation
algorithms to enhance the system’s performance.

Temporal Key Cache. A temporal key cache exploits the temporal locality in the events received by a subscriber.
Caching the encryption key K(e) saves the cost of computing K(e) from K(f). We use a simple least recently used
(LRU) based cache replacement policy to maintain the temporal key cache.

Semantic Key Cache. The key idea behind the semantic key cache is to extend a temporal key cache using specific
properties of our key derivation algorithm. Given an event e, the semantic key cache selects a cached authorization
key K(fopt) such that it is most efficient to derive K(e) from K(fopt). The optimal authorization key K(fopt) for
deriving the encryption key K(e) is determined as follows. Given a filter f and an event e we define a distance
between them as dist(f, e). If the event e does not match the filter f , then dist(f, e) = ∞. If the event e matches
the filter f , then we define dist(f, e) as the computational cost incurred in deriving K(e) from K(f). We compute
the optimal filter fopt as fopt = argminf∈C dist(f, e), where C denotes the temporal key cache and f ∈ C denotes a
subscription filter f whose key K(f) is cached in the temporal key cache C.

For example, for some numeric attribute num, let us suppose that the cache C consists of three keys Knum
Ø , Knum

0

and Knum
1 . Now we choose K(fopt) to derive K(e) = Knum

000 as follows. First we observe that Knum
000 can be derived

only from keys Knum
Ø and Knum

0 . Computing Knum
000 from Knum

Ø requires three hash computations, while that from
Knum

0 requires two hash computations. Hence, we choose K(fopt) = Kw
0 .
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Figure 3: Num Keys per Subscriber
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Figure 5: Meta-Service Load

4 Evaluation
4.1 Implementation Sketch

We have implemented our key management algorithms (EventGuard) on top of an unmodified Siena pub-sub core
[6]. Siena is a content-based pub-sub system whose working is very similar to our reference model in Section 2.
Hence, all EventGuard primitives can be directly mapped on to underlying Siena messages. A unique feature of our
design is that the nodes in the pub-sub network can route messages as if they were original Siena messages. We have
implemented MS as a stand-alone entity. The MS computes the authorization keys on the fly since the key derivation
cost is very low. For a MS with limited computing power, one could use the semantic key caching mechanism to trade-
off computing power with main memory utilization. For category trees, the MS pre-computes and stores the blinded
key tree for every category in a publicly available MySQL Database [16]. Our implementation uses the following
cryptographic algorithms. We use SHA1 for the hash function H , HMAC-SHA1 for the keyed hash function KH ,
and AES-128-CBC for the encryption algorithm E. For modular exponentiations in field Zp, we use the standard
exponentiation by squaring algorithm that computes the result in O(log2 p) time.

4.2 Experimental Results

In this section, we present three sets of experiments on our prototype implementation. First we study the load on the
meta-service. Second, we present measurements on the loss in throughput and the increase in latency in publications.
Third, we show the effect of semantic key caching on the throughput and latency of the pub-sub system.

Experimental Setup. We used GT-ITM [30] topology generator to generate an Internet topology consisting of 63
nodes. The latencies for links were obtained from the underlying Internet topology generated by GT-ITM. The round
trip times on these links varied from 24ms to 184ms with mean 74ms and standard deviation 50ms. The tree’s root
node acts as the publisher and its leaf nodes act as subscribers for this pub-sub network (32 subscribers and one
publisher). We constructed complete binary tree topology using different number of nodes (0, 2, 6, 14, 30) and linked
these nodes using open TCP connections to form the pub-sub network. The subscribers were uniformly distributed
among all the leaf nodes. We ran our implementation on eight 8-processor servers (64 CPUs) (550 MHz Intel Pentium
III Xeon processors running RedHat Linux 9.0) connected via a high speed LAN. We simulated the wide-area network
delays obtained from the GT-ITM topology generator.

All experimental results presented in this section were averaged over 5 independent runs. Due to the lack of real
workloads in this area, we had to use a synthetic workload. We simulated 128 topics, with the popularity of each topic
varying according to a Zipf-like distribution [20]. Each subscriber subscribed for 32 topics chosen from the set of 128
topics using the Zipf distribution. Amongst 128 topics, 32 were numeric attributes, 32 were category trees, 32 were
string attributes, and the rest 32 were simple topics. Numeric attributes had a range of size 256 units and a least count
of 4 units. Hence, the number of elements in the numeric attribute tree was 127 and the height of the numeric attribute
tree was 6. Category trees were for height 4 and number of children for each non-leaf element was chosen uniformly
and randomly between 2 to 4. The average number of elements in a category tree was 82. The length of the string
attributes were Zipf distributed between 1 and 8. Each publication message was assumed to be 256 Bytes long.

Number of Keys. Figure 3 shows the average number of keys maintained per subscriber as NS the number of
subscribers varies. Recall that the SubscriberGroup approach uses group key management techniques on sub-
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Figure 8: Key Caching

scriber groups [18]. EventGuard requires a small and constant number of keys per subscriber that is independent of
NS. Even for 32 subscribers, the number of keys per subscriber using the SubscriberGroup approach is about
40 times larger than the EventGuard approach. EventGuard achieves significant reduction in the number of keys at
the cost of running the key derivation algorithm on the subscriber. In later experiments we show that the cost of key
derivation is very small compared to wide-area network latencies thereby making it easily affordable. Figure 4 shows
the average number of keys maintained per publisher as NS the number of subscribers varies. The trends shown in
Figure 4 are very similar to that in 3.

Meta-Service Load. Figure 5 shows the computing and network cost on the meta-service using SubscriberGroup
based approach and EventGuard. Computing cost (measured in milliseconds) shows the average cost of group
key management in SubscriberGroup and the cost of key derivation algorithm in EventGuard when a new
subscriber joins the system. The cost incurred by the SubscriberGroup increases dramatically with NS (the
number of subscribers that were already in the pub-sub network), while that incurred by the EventGuard approach
is a small constant that is independent of NS. Networking cost (measured in Kbytes) shows the average cost of
communicating the updated group key in SubscriberGroup and the cost of delivering the authorization keys in
EventGuard. Similar to computing cost, EventGuard incurs a small and constant networking cost, while that of
SubscriberGroup explodes with NS.

Throughput. We measured the throughput in terms of the maximum number of publications per second that can
be handled by the pub-sub system. We measured the maximum throughput as follows. We engineered the publisher
to generate publications at the rate of q publications per unit time. In each run of this experiment, the rate q was
fixed. We monitored the number of outstanding publications required to be processed at every node. If at any node the
number of outstanding publications monotonically increased for five consecutive observations, then we conclude that
the node is saturated and the experiment aborted. We iteratively vary q across different experimental runs to identify
the minimum value of qmin = throughput such that some node in the pub-sub network is saturated. Figure 6 shows
the maximum throughput versus the number of nodes in the pub-sub network. Observe that the throughput of the sys-
tem increases with the number of nodes. This demonstrates the scalability of the pub-sub system and EventGuard’s
key management algorithms. Siena does not show much throughput difference between topic-based subscriptions,
numeric attributes and categories. The throughput drop for numeric attributes is only marginally smaller than simple
subscriptions since it only involves additional computations of hashes (< 1 µs); while that for category hierarchies is
significantly larger because it involves a more expensive modular exponentiation (1.95 ms).

Latency. We measured latency in terms of the amount of time it takes from the time instant a publication is published
till the time it is available to the subscriber (in plain-text). Figure 7 shows latency versus number of nodes. The latency
is measured keeping the throughput of the system at its maximum. Observe that latency first decreases and then be-
gins to increase with the number of nodes. Initially, latency decreases because the per-node processing cost decreases.
However, as the number of nodes continues to increase, so does the diameter of the pub-sub network. Hence, distance
between the publisher and subscriber (in terms of the number of pub-sub network hops) increases with the number of
nodes. As in the case for throughput, Siena does not show any change in latency between topic-based subscriptions,
numeric attributes and categories. Observe from Figure 7 that the increase in latency is very small. This is because the
wide-area network latencies are of the order of 70ms; while the overhead for encryption/decryption and key derivation
is relatively much smaller. Categories incur higher latency than numeric attributes because they require an expensive
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modular exponentiation operation. Nonetheless the maximum increase in latency was lesser than 6%.

Semantic Key Cache. From our experiments on throughput and latency, we measured the overhead due to encryp-
tion/decryption and key derivation. We observed that the overhead due to encryption/decryption and key derivation
for topics and numeric attributes was very low. However, the overhead of key generation is high for categories because
it involves a modular exponentiation operation. In section 3.7, we have proposed a semantic key cache to improve the
throughput and latency of the pub-sub system. Figure 8 shows the throughput and latency for category based matching
in a pub-sub network with one publisher, 30 nodes and 32 subscribers for different values of cache size. Observe that
when all authorization keys are cached, the encryption/decryption cost becomes the primary overhead for EventGuard.
Using the semantic key caching mechanism the throughput of EventGuard was about 2.2% (as against 10.8% without
caching) lower than Siena and the latency of EventGuard was about 1.5% (as against 5.7% without caching) higher
than Siena (using a 64 KB cache). We also performed experiments wherein we cached keys for numeric attributes;
however, the resulting throughput and latency improvement were very small (<0.5%).

5 Discussion
5.1 Issues

Matching Algorithms. In this paper we have demonstrated the functioning of EventGuard using three types of
publication-subscription matching. One can use the techniques presented for numeric attribute matching to arbitrary
prefix trees. One can use the techniques presented for category based matching for arbitrary directed acyclic graphs.
However, the later class of matching algorithms incurs the overhead of having to maintain auxiliary data. Nonetheless,
as we have shown in this paper, this auxiliary data may be made publicly available without compromising the security
guarantees provided by the system. However, for classes of matching algorithms that have arbitrarily large key space
and require auxiliary data, the size of auxiliary data may become a huge concern. As a part of our future work, we
are characterizing key spaces and developing techniques to minimize the size of auxiliary data. One should note that
in an extreme case, the matching algorithm could be any arbitrary function. It may be possible to handle arbitrary
functions and provide complete confidentiality guarantees on routable attributes in an event using secure multi-party
computation. However, the absence of efficient constructions for secure multi-party computations makes it infeasible
to use them in practical systems.

Meta-Service Scalability. EventGuard uses a centralized meta-service for distributing the authorization keys. Our
experiments show that the computing and network load incurred on our MS is significantly smaller than that incurred
using a subscriber group approach. Our MS maintains only one 16 Byte key rk(MS) and exports a very simple
interface: subscribe and advertise. Unsubscribe is handled implicitly since a subscription has a valid life time (epoch);
same holds for unadvertise. The MS is not involved in the publish operation; note that publish happens to the most
common operation on the pub-sub network.

By our design, the MS can be easily replicated. The only secret that needs to be shared between the replicas is the 16
Byte master key rk(MS). All the other pieces of shared data are public and read-only. This data includes least count
for numeric attributes and category attribute trees and the auxiliary data required for key derivation. The fact that the
replicas share only read-only data obviates the need for concurrency control amongst them. Additionally, we can vary
the number of meta-service servers on demand, thereby permitting us to efficiently handle variable load (bursty load).
Our experiments showed that the MS could handle up to 39 subscriptions per second. Using a semantic key cache
with a modest 64 KBytes size, the MS can increase its throughput to 192 subscriptions per second. With three servers
operating as the MS we obtained a throughput of 562 subscriptions per second using semantic key caching (3 * 192 =
576). Since the MS replicas require no synchronization and concurrency control, the meta-service shows a near linear
scalability.

5.2 Related Work

Several pub-sub systems [6, 3, 7, 2] have been developed to provide highly scalable and flexible messaging support
for distributed systems. Siena [6] and Gryphon [3] are large pub-sub system capable of content-aware routing. Scribe
[7] is an anonymous P2P pub-sub system. Most work on pub-sub systems have focused on performance, scalability
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and availability. Unfortunately, very little effort has been expended on studying the security aspects of these systems.
Wang et al. [26] analyze the security issues and requirements in a content-based pub-sub system. This paper

identifies that the general security needs of a pub-sub application includes confidentiality, integrity and availability.
More specifically they identify authentication of publications, integrity of publications, subscription integrity and
service integrity as the key issues. The paper presents a detailed description of these problems in the context of a
content-based pub-sub system, but fails to offer any concrete solutions.

Significant amount of work has been done in the field of secure group communication [1, 24, 25, 28, 15, 4, 5, 19]
on multicast networks (survey [21]). Such systems leverage secure group-based multicast techniques and group key
management techniques to provide forward and backward security, scalability and performance. A significant re-
striction with secure group communication is that the group membership is not as flexible as the subscription model
used in pub-sub systems. In contrast, EventGuard permits flexible membership at the granularity of subscriptions.
Also, EventGuard uses an overlay network and does not rely on IP multicast technology primarily because the IP
multicast protocol has not yet been deployed at an Internet scale. EventGuard also differs from secure group commu-
nication protocols by associating authorization keys with subscription filters and encryption keys with events instead
of associating keys with users or groups of users.

Opyrchal and Prakash [18] analyze secure distribution of events in a content-based pub-sub network from a group
key management standpoint. They show that previous techniques for dynamic group key management fail in a pub-
sub scenario since every event can potentially have a different set of interested subscribers. They use a key caching
based technique that relies on subscription popularity to reduce the number of encryptions and to increase message
throughput. However, their approach requires that the pub-sub network nodes (brokers) are completely trustworthy.
We maintain complete confidentiality of secret attributes in an event from pub-sub nodes. For scalability we guarantee
partial confidentiality on content routable attributes in the event.

Several techniques to safeguard a pub-sub network against message spoofing, spamming, and flooding attacks,
addressing the issue of maintaining authentication and availability of publications and subscriptions are described in
[23]. The paper also proposes techniques to construct a robust pub-sub network that is resilient to event dropping
attacks by malicious pub-sub network nodes. Nonetheless, they focus entirely on guarding a pub-sub network from
denial of service (DoS) attacks rather than attacks on event confidentiality and integrity.

Several authors have proposed reputation based feedback mechanism to guard a pub-sub network against dishonest
publishers that publish malicious (invalid) events. A reputation based feedback mechanism [29] allows subscribers to
assign scores to a publisher based on the quality of its publications. Eventually, subscribers would subscribe only to
high quality publishers, and malicious publishers would run out of business.

6 Conclusion
We have presented EventGuard − secure, scalable and efficient key management algorithms for pub-sub systems.
EventGuard protects the secret attributes in an event from the subscribers who have not subscribed for that event
by encrypting publications such that only authorized subscribers of that event can read them. A unique feature of
EventGuard is that it associates authorization keys with subscriptions and encryption keys with publications instead
of associating keys with users or groups of users. EventGuard uses efficient and secure key derivation algorithms
maintain the confidentiality guarantees while retaining performance & scalability and minimizing the overhead of key
management. In this paper we have demonstrated the EventGuard approach using three common types of publication-
subscription matching: topic or keyword based matching, numeric attribute based matching, and category based
matching. We have also proposed semantic key cache based mechanisms to enhance the performance of our key
derivation algorithms using a space-time trade off. We have presented a concrete implementation and a detailed
evaluation of EventGuard on a pub-sub overlay network. Our experiments show that EventGuard meets the security
goals while maintaining a low throughput (11%) and latency (6%) overhead on the pub-sub network.
Acknowledgement. This research is partially supported by NSF CNS, NSF ITR, an IBM SUR grant, and an HP
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