
IQ-Paths: Self-regulating Data Streams across
Network Overlays

Zhongtang Cai, Vibhore Kumar, Karsten Schwan
{ztcai, vibhore, schwan}@cc.gatech.edu

College of Computing
Georgia Institute of Technology

Abstract— Overlay networks have been shown useful for im-
proving the delivery of network and processing resources to
applications, in part due to their ability to use alternate or
parallel network paths and computational resources. This paper
presents IQ-Paths, a set of techniques and their middleware
realization that implement self-regulating data streams for data-
intensive distributed applications. Self-regulation is based on (1)
the dynamic and continuous assessment of the quality of each
overlay path, (2) the use of online network monitoring and
statistical analyses that provide probabilistic guarantees about
available path bandwidth, loss rate, and RTT, and (3) a packet
routing and scheduling algorithm that dynamically schedules
data packets to different overlay paths in accordance with their
available bandwidths. Additional aspects of IQ-Paths are its
predictive statistical bandwidth guarantees and the fact that
packet scheduling across different overlay paths is governed by
application-level specifications of stream utility. An example is to
send control data across links that offer strong guarantees for
future bandwidth vs. mapping other data across less guaranteed
paths. Experimental results presented in this paper use IQ-Paths
to better handle the different kinds of data produced by (1)
distributed multimedia applications with desired QoS guarantees
and (2) data-driven or interactive high performance codes with
user-defined utility requirements.

I. I NTRODUCTION

Data-driven distributed applications are important to many
constituencies, including corporations in applications like real-
time data mining or data integration [4,28], common end users
in telepresence [27], and scientists or engineers in applications
like remote data visualization [45] or instrument access [32].
A common characteristic of such applications is their need
to meet quality of service (QoS) guarantees and/or offer
utility-based services to end users (i.e., meet certain service-
level objectives (SLOs)). However, excepting datacenter-based
solutions [4] and the few dedicated, high end links existing
between select centers of excellence (e.g., via DOE’s Ultra-
Science Net [10] or the National Lambda Rail [24] (NLR)),
such guarantees must be provided across shared network
infrastructures, where dynamic network behavior and multiple
available network paths make it imperative for middleware to
assist end user applications in best utilizing available network
resources. More specifically, when transporting and manip-
ulating their data, applications should receive utility-based
guarantees from the overlay networks used by middleware,
accommodating dynamic variations in network behavior: (1)
media or other real-time applications require consistent levels
of end-to-end performance, such as limited delays or small

jitter [11], (2) enterprise applications couple data transport
and manipulation with application-level expressions of utility
or cost [18, 23], and (3) both application classes can utilize
guarantees that differentiate across different traffic types, such
as offering stronger guarantees for control vs. data traffic [35].

Previous work on middleware for data-intensive distributed
applications has addressed limitations and runtime variations
in network bandwidth with adaptive approaches to matching
desired to available network resources. Examples include
dynamically adjusting data transfer rates [44, 47], varying
compression levels in response to monitored changes in
network bandwidth [20, 48], or changing the nature of the
data being sent [7, 19, 49]. Other research has sought to use
alternative network connections or new network infrastructures
to compensate for problematic connection behaviors [5,34,36].

This paper presents the IQ-Paths approach to self-regulating
data streaming with defined quality requirements across wide
area networks. IQ-Paths offers novel functionality that en-
hances and complements existing adaptive data streaming
techniques. First, IQ-Paths dynamically measures [17, 29]
and then, also predicts the available bandwidth profiles on
network links. Second, it extends such online monitoring and
prediction to the multi-link paths in the overlay networks
used by modern applications and middleware. Third, it offers
automated methods for moving data traffic across overlay
paths. These include splitting a single data stream across
multiple paths to improve performance through concurrency
and to improve desired end-to-end behavior by dynamically
differentiating the amounts and kinds of data traffic imposed
onto different paths. Such self-regulating data movement and
differentiation utilizes a dynamic packet scheduling algorithm
that automatically maps packets to paths to match application-
level utility specifications. Finally, an important attribute of
IQ-Paths is that unlike other methods for bandwidth predic-
tion based on measurements of average bandwidth, it uses
statistical techniques to capture the dynamic or noisy nature
of available network bandwidth across overlay paths. This
enables it to better map data with different desired utility
– service guarantees – to the underlying best effort network
infrastructure.

Our research uses IQ-Paths for both scientific and multi-
media applications. In the scientific domain, real-time remote
data visualization for a molecular dynamics (MD) code ben-
efits from IQ-Paths’ ability to better meet its dynamic end

IQ-Paths Clients

IQ-Paths Servers

IQ-Paths Routers

Figure 1: IQ-Paths overlay network: servers, routers, and
clients continually assess the qualities of their logical links,
admit and map data streams with different desired utility using
a self-regulating packet routing and scheduling algorithm.

user requirements. A specific example is to differentiate the
transport of various elements of the application’s data streams,
in this case being the atoms vs. bond forces visually depicted
for each timestep of the MD application. Another example
is to use network paths with more stable bandwidths for the
critical ‘control’ traffic in the remote visualization software
and also for the most time-sensitive data sets in large volume
parallel data transfers. Stability is dynamically diagnosed and
predicted via the aforementioned statistical techniques. In the
multimedia domain, IQ-Paths is shown to deliver improved
performance for different encoding levels of MPEG-4 video
streams.

Results in Section VI also demonstrate the advantages
derived from IQ-Paths’ statistical guarantees. Specifically, we
demonstrate distinct improvements over earlier work on adap-
tive methods that provide QoS over wide-area networks by pre-
dicting future average network behavior from past history [26].
With such methods, quantities like RTT can be predicted
well, but average available bandwidth or packet loss rate
are not easily captured (e.g., using predictors like MA, AR,
or more elaborate methods like ARMA and ARIMA) [50]).
This is because noise is a large portion of the signal in the
time series of available bandwidth or packet loss rate. As
a result, the values for predicted average bandwidths will
have large prediction errors. For example, the results reported
in [50], based on measurements at over49 well-connected
academic and research institutions, have prediction errors
larger than 20% for more than 40% of the predicted values
(i.e., |predictedvalue/actualvalue| > 1.2), and for 10% of
the values, prediction error is larger than 50%. In comparison,
IQ-Paths can provide an application with strong guarantees,
stating that it will receive its required bandwidth 99% of the
time or experience a deadline miss rate (i.e., jitter) of less than
0.1%, for example. Finally, other methods apply low frequency
filters [8] to measured values, to reduce prediction error, but
unfortunately, this means that they essentially eliminate the
noisy nature of (i.e., dynamic variations experienced over)
certain network paths. The outcome is that applications cannot
adjust to or deal with such variations, by mapping less
important or less delay-sensitive data to noisier connections,

for example.
Figure 1 illustrates an example of an IQ-Paths overlay,

which utilizes automatic network resource profiling, admis-
sion control, and self-regulating data routing and scheduling
to guarantee different streams’ desired utility requirements.
The overlay implemented by IQ-Paths has multiple layers of
abstraction. First, itsmiddleware underlay– a middleware
extension of the network underlay proposed in [31]) – imple-
ments the execution layer for overlay services. The underlay
is comprised of processes running on the machines available
to IQ-paths, connected by logical links and/or via intermediate
processes acting as router nodes. Second, underlay nodes
continually assess the qualities of their logical links as well as
the available resources of the machines on which they reside.
The service guarantees provided to applications are based on
such dynamic resource measurements, on runtime admission
control, resource mapping, and on a self-regulating packet
routing and scheduling algorithm. This algorithm, termed
PGOS (Predictive Guarantee Overlay Scheduling), provides
probabilistic guarantees for the available bandwidth, packet
loss rate, and RTT attainable across the best-effort network
links in the underlay.

Key technical advantages of IQ-Paths and its PGOS algo-
rithm include the following:

• Probabilistic and ‘violation bound’ guarantees: since the
PGOS algorithm uses bandwidth distribution analysis and
prediction to capture network dynamics, it can make
service guarantees and provide prediction accuracies su-
perior to those provided by prediction methods based
on average network behavior: (1) it can ensure that
applications receive the bandwidths they require with
high levels of assurance (e.g., it can guarantee that an
application receives its required bandwidth 99% of the
time or that its deadline miss rate is less than 0.1%));
(2) in addition, PGOS can also provide deadline violation
guarantees that bound the average number of packets that
miss their guaranteed QoS (e.g., their deadlines).

• Reduced jitter: by reducing jitter in applications like
remote data acquisition or display, buffering needs are
reduced. This is particularly important for high volume
data transfers in time- or delay-sensitive applications.

• Differentiated streaming services: different streams can
receive different levels of guarantees. As a result, when
applications use close to the total available bandwidths
of all overlay paths, PGOS can ensure that high utility
streams receive stronger service guarantees that others.

• Full bandwidth utilization: providing guarantees does not
imply sacrificing the bandwidths available to applications
(e.g., by purposely under-utilizing some link). Instead,
PGOS has sufficiently low runtime overheads to satisfy
the needs of even high bandwidth wide area network
links.

The remainder of this paper is organized as follows. The
next section describes related work, to provide a better per-
spective on the technical contributions of the IQ-Paths ap-

2

proach. We then outline the software architecture of IQ-Paths,
followed by descriptions of its bandwidth prediction methods
and of the PGOS algorithm using these methods. Experimental
evaluations on an emulated network testbed appear before the
paper’s conclusions.

II. RELATED WORK

While the PGOS packet scheduling algorithm is inspired
by the DWCS packet scheduling algorithm described in [47],
its use for efficient multimedia data streaming across the
Internet leverages substantial prior work on improving the
quality of network video streaming [19, 37, 38]. Here, early
work established the utility of adding and dropping different
encoding layers of video streams for longer term coarse-grain
stream adaptation [44]. Improvements like those in [37] also
use a TCP-friendly control mechanism to react to congestion
on shorter timescales, with mismatches between the two
timescales absorbed by buffering at the receiver. The specific
control mechanisms we use for multimedia data streaming
are based on the work described in [19], which proposes an
adaptive layered video streaming algorithm for MPEG-4 with
limited buffer size. Priorities are used in the VOP (video object
plane) to select or discard each VOP element based on average
bandwidth prediction, to control the fashion in which fine-
grain scalable coding allocates bandwidth to different encoding
layers. In contrast, IQ-Paths uses statistical bandwidth mea-
surement and prediction to capture network link qualities, and
its PGOS self-regulating data routing and scheduling algorithm
can utilize both multiple or alternate overlay paths to satisfy
different video layers’ utility requirements. The outcome is
improved smoothness of video playback, despite the variable-
bit-rate nature of layered video. The additional techniques
described in [11] can be used to further smooth such variable-
bit-rates, thereby attaining a constant transfer rate for each
time interval in the transmission process.

A useful extension of our research for video streaming in
peer-to-peer networks might use the techniques described in
[33], which suggests the use of ‘Hill-building’ algorithms to
deal with source disconnection and with substantial changes in
client download rates. While earlier video portions are being
played back, these on-line algorithms continuously pre-fetch
video in small variable quality ‘chunks’ to best use currently
available bandwidth, minimizing the sum of the squares of the
number of layers not used in video playback.

OverQoS [42] describes the general idea of using overlays
and admission control to deliver video across the Internet.
OverQoS uses a Controlled-Loss Virtual Link (CLVL) abstrac-
tion to bound the loss rate observed by a traffic aggregate.
Performance gains are achieved by FEC (Forward Error Cor-
rection) and conditional packet retransmission in the form of
ARQs (Automatic Repeat reQuests). In each CLVL, bandwidth
less than the total available bandwidth can be achieved for
a subset of the OverQoS flows, with high probability, but
potentially at the expense of other flows. In contrast, the
PGOS algorithm controls path usage with a more general link
abstraction that is able to provide statistical guarantees for both

single and multiple streams across both single and multiple
paths across the overlay.

Both IQ-Paths and OverQos assume that overlay routing
nodes can be placed such that the paths between different pairs
of routing nodes do not share common bottlenecks. In practice,
such placements require knowledge of the network, by using
methods of detecting shared congestion across flows [39],
or by using more direct ways of detecting network topolo-
gies [40]. A general way to implement information exchanges
between middleware and networks is described in [31], with
a design of a network underlay that extracts and aggregates
topology information from the underlying Internet. Overlay
networks query the underlay when making application-specific
routing decisions. The current implementation of IQ-Paths
could take advantage of underlays, with network monitoring
functions embedded in the communication layers of the mid-
dleware providing inputs to overlay construction and to its
dynamic management. In addition, we could utilize the results
of recent work on a ‘map of the Internet’ described in [41],
which annotates it with properties that include connectivity,
geography, routing policy, patterns of loss, congestion, failure
and growth, etc.

Our general approach of using overlay networks to adapt to
network dynamics is shown feasible in [8], which compares
the performance of an End System Multicast architecture
to that of IP Multicast. The paper also notes that noisy
link measurements coupled with aggressive adaptation can
cause overlay instability, while conservative adaptations may
experience low performance. The proposed solution is to use
exponential smoothing to capture the long term performance
of a link, thereby distinguishing persistent from temporary
changes. Our approach differs in that it exploits knowledge
about noise rather than suppressing it, for example, by map-
ping critical data flows to less noisy links.

The ability of overlay networks to provide differentiated
data delivery services requires certain levels of independence
in underlying network links’ packet losses, changes in band-
width, etc. For the Internet, [2] shows that there is a reasonable
degree of loss and failure independence across different links.
Measurements on Planetlab [9] and our own analyses of Plan-
etlab active probing trace and NLANR passive measurement
traces show that there are reasonable degrees of bandwidth
independence for different Internet links.

A basic contribution of the PGOS algorithm is its ability to
predict future network behavior. [50] points out the difficulty
of predicting bandwidth in wide area networks, studying the
likelihood of observed bandwidth remaining in a region for
which the ratio between the maximum and minimum observed
values is less than a factor ofρ. We adopt a similar approach,
assuming that it is difficult to predict the exact value of
throughput in the next time interval (e.g., in the next second)
and instead, providing statistical guarantees for predicting the
distribution of throughput in the near future. Interestingly, as
shown in [34], it is easier to make guarantees about RTT.
Finally, we also leverage the substantial research on measuring
available bandwidth described in [17,29]. Of specific relevance

3

to this paper is recent work presenting more accurate metrics
and algorithms to measure the variation of end-to-end available
bandwidth [30].

III. SOFTWARE ARCHITECTURE OF THEIQ-PATHS

M IDDLEWARE

Applications

TCP/IP Socket
Module

IQ-RUDP
Socket Module

Other Modules
(ATM, Myrinet)

...

ECho PBIO Data
Meta-Rep. Lib

Cross-Layers
Adaptation

IQ
-S

er
vi

ce
s(

M
on

ito
rin

g
an

d
A

da
pt

at
io

n)

P
er

fo
rm

an
ce

At
tri

bu
te

s

Routing/
Scheduling

Module

Monitoring
Module

Figure 2: Middleware Architecture.

Routing and
Scheduling

Module

Monitoring

FeedBack

.

.

.

FeedBack

Path
Characteristics

Path
Characteristics

Monitoring

Output

Output

Data Streams From
Applications

Overlay Node

Overlay
Node

Overlay
Node

Figure 3: Structure of IQ-Paths Overlay Node.

The software architecture of the IQ-Paths middleware is
depicted in Figure 2. It is derived from our substantial
experiences with the IQ-ECho [6, 7, 15] high performance
publish/subscribe infrastructure implementing channel-based
information subscriptions. IQ-Paths leverages IQ-ECho’s sup-
port for multiple transport protocols (e.g., TCP, RUDP, SCTP)
and its monitoring modules for measuring desired network
metrics from middleware and in cooperation with certain
transport modules (e.g., RUDP). PGOS routing/scheduling
module aggregates such runtime measurements in order to
schedule application packets across multiple overlay paths.
Unlike ECho, however, IQ-Paths is realized at a layer ‘below’
the publish/subscribe model of communication. Namely, IQ-
Paths manipulates arbitrary application-level messages flowing
from data sources to data sinks. Whether such messages are
described as pub/sub events or in other forms is immaterial
to the research described here. Similarly, IQ-Paths is not
concerned with how source-to-sink links are established. It
supports both direct source-to-sink links and more complex
linkages that utilize overlay networks to route messages and
process them ‘in-flight’ on their paths from sources to sinks.
One way for end users to establish such linkages is via IQ-
ECho’s ‘derived channel’ abstraction [15]. Another way is to

use the deployment features implemented as part of the ‘in-
transit’ information flow infrastructure described in [21]. A
third way is to directly use IQ-Paths as the transport layer for
applications, as with the IQPG-GridFTP implementation used
in the evaluation section of this paper.

The goal of IQ-Paths is to provide a general framework
for routing, scheduling, and processing streams of application-
level messages. Generality is established by layering IQ-Paths
‘beneath’ the different messaging models used by end users,
including the IQ-ECho and in-transit models developed in
our own research. A specific example is the IQPG-GridFTP
described in this paper, which (1) replaces its transport level
with IQ-Paths and (2) interposes the IQ-Paths message routing
and scheduling algorithm between GridFTP’s parallel link
layer and lower level message transports. As a result, IQ-
GridFTP (1) retains its ability to exploit parallelism in data
transport by simultaneously using multiple network links,
while more importantly, (2) gaining the ability to adjust the
volumes of data being transferred to the current behavior of
each single network link between source and sink, and (3)
using overlay paths and path bandwidth-sensitive message
routing and scheduling to better control how data is streamed
across multiple links from source to sink.

Important components of the IQ-Paths middleware de-
scribed in this paper are its Statistical Monitoring techniques
and its Routing/Scheduling algorithms. Figure 3 illustrates
the structure of each IQ-Paths overlay node and the dynamic
interactions of these software components. Specifically, the
Statistical Monitoring component monitors the bandwidth
characteristics (i.e., bandwidth distribution) of each overlay
path and shares this information with the Routing/Scheduling
component. The latter routes applications’ data streams and
sub-streams to the appropriate overlay paths and in addition,
for each path, it schedules the data packets mapped to it.
The goal, of course, is to route and schedule application-level
messages to continuously match the network loads imposed by
the middleware to the available network bandwidths present
in overlay paths, such that application-level metrics of stream
utility are met (e.g., probabilistic guarantees on the timeliness
of data delivery).

The remainder of this paper ignores other components of the
IQ-Paths middleware, referring the reader to a more complete
description of the system in [7]. We next describe the manner
in which bandwidth guarantees are attained.

IV. STATISTICAL BANDWIDTH PREDICTION AND

GUARANTEES

The PGOS algorithm presented in Section V provides
to an end users predictive guarantees that with some large
probability, application-level messages will experience certain
levels of bandwidth across certain overlay paths. Toward this
end, for each overlay path, IQ-Paths network monitoring (1)
tracks the past distribution of path bandwidth, and (2) uses the
percentile points in that distribution as the bandwidth predictor.
The PGOS algorithm then uses these predictions to judiciously
map application-level messages across overlay paths. This

4

section explains (1) and (2) in more detail. The validity of
our approach is demonstrated in Section VI-A, which shows
that the efficacy of the PGOS statistical bandwidth predictor
is much higher than that of predictors for average bandwidth.

Comparison of average with statistical bandwidth predic-
tion: For each specific overlay path, frequent bandwidth vari-
ation makes it difficult to predict the exact values of average
available bandwidth in the near future, both for very short
timescales like milliseconds and for the second timescales at
which IQ-Paths operates. The idea of statistical prediction is
to leverage rather than suppress such variations, in order to
provide to applications probabilistic bandwidth guarantees like
the following: for some large value ofP0, we can find the
value of bw0, such that the probabilityP (bw ≥ bw0) ≥ P0.
While predicting the exact value of future bandwidth is hard,
statistical prediction relaxes the prediction requirement by
asking if we can obtain certain amount of bandwidth with high
probability. Because of the IID nature of available bandwidth,
statistial prediction has much smaller prediction error than av-
erage bandwidth prediction. Furthermore, statistical prediction
also captures the service-level objectives of many applications,
including multimedia and scientific codes, answering questions
like: ‘can some stream obtain specific amounts of bandwidth
most of the time?’

Another useful attribute of statistical prediction is its ability
to retain certain information of potential value to end user
applications. Specifically, when predicting average bandwidth,
using a larger timescale for average time may reduce pre-
diction error in some cases, since this effectively applies a
smoothing filter to the available bandwidth time series. Sta-
tistical bandwidth prediction, in contrast, retains information
about bandwidth variation, so that end users can be told, for
instance, that some non-congested path can provide stable
available bandwidth, whereas another path provides the same
level of bandwidth with much less stability (i.e., with higher
potential losses). IQ-Paths recognizes this beneficial property
of statistical vs. average bandwidth prediction, exploiting it
to better map different application-level data streams across
overlay paths with stable vs. less stable bandwidth properties.
A concrete example is to use a stable path for critical data
in remote program steering [43] and a less stable path for
additional information about the state of the remote application
being steered.

V. THE PGOS OVERLAY PATH GUARANTEE AND

SCHEDULING/ROUTING ALGORITHM

This section describes the Predictive Guarantee Overlay
Scheduling (PGOS) algorithm, first discussing the general
algorithm framework, then clarifying the concept of predictive
guarantees and describing the algorithm itself.

A. General Framework

An overlay network like the one in Figure 1 may be
represented as a graphG = (V,E) with n overlay nodes
and m edges. An overlay node may be a server (i.e., data
source) running on some host, a client (i.e., data sink), or a

daemon for data routing. There may exist multiple distinct
pathsP j , j = 1, 2, ...L, between each server and client, where
P j = (V j , Ej), V j = {v0, v1, ...vk, vp 6= vq if p 6= q}
and Ej = {v0v1, ..., vk−1vk, wherevpvp+1 ∈ E, for all 0 ≤
p ≤ k − 1}. As in [42], we make no assumptions about
the placement of overlay nodes in the network. Rather, we
assume that the middleware has determined some suitable
placement [22].

For each overlay link, since network bandwidth varies over
time, the service time of each application-level message is not
known a priori and varies over time. The specific problem
addressed by the PGOS algorithm is further illustrated in
Figure 4, where multiple streamsSj , j = 1, 2, ...N must be
transmitted from Servers to Client c with ‘best’ predictive
performance guarantees. Figure 5 illustrates a server that
deliver multiple streams (in Queue 1, 2, ...) to a client via
overlay paths 1, 2, etc. In this model, there is one scheduler
andL path services (each service corresponds to one overlay
path used to deliver packets, with service raterj(t)).

Server Client

Router Node

Router Node

path P1, Rate r1(t)
...

path Pj, Rate rj(t)

Figure 4: Overlay Routing and Scheduling Algorithm Frame-
work.

Scheduler:
Routing and
Scheduling

...

Stream 1

Stream 2

Stream N
p1

p2

p1

p1

.

s1
s1
s2
s1
.

s2
s2
s2
s1
.

Overlay Path 1

Overlay Path 2

Overlay Path L

...

Path Service 1

Path Service 2

Path Service L

Figure 5: Routing and Scheduling on the Server.
Applications specify stream utility in terms of the minimum

bandwidths they require, or using Window-Constraints [46]
requirement. A Window-Constraint is specified by the values
xi, and yi, where yi is the number of consecutive packet
arrivals from streamSi for every fixed window, andxi is
the minimum number of packets in the same stream that
must be serviced in the window. The idea, of course, is
to guarantee to an application that at least some minimum
number of packets in each time window will be serviced.
Utility formulations like these have been shown useful widely
useful, ranging from scientific applications (to limit buffering
needs), to multimedia applications (to reduce jitter), to real-
time applications (to limit numbers of missed deadlines). In

5

the high performance domain, such guarantees are useful for
control traffic (to limit the number of late control messages),
for data traffic (to reduce buffering needs for high end data
streams), and to distinguish the criticality of data transmission
across multiple data streams.

The dynamics of the underlying network make it difficult
to satisfy the minimum bandwidth guarantees required by
the utility specifications described above, including for the
guarantees associated with each scheduling windowtw. We
address this issue by asking applications to specify additional
requirements of the following nature: ensure that a window
constraint is met with some large probabilityP (e.g. 95%,
99%). This also means that 95% of the time, the user’s
minimum bandwidth requirement will be satisfied. Given these
specifications, assuming a packet size ofs, and denoting the
available bandwidth over a given path bybj(t), or simply b,
(1) the available bandwidth distribution is described as the cu-
mulative distribution functionF j(b) = P{avail bw ∈ (0, b)},
and (2) the service rate of the path service j is described as
rj = rj(t), whererj varies over time.

B. Predictive Guarantee Overlay Scheduling/Routing Algo-
rithm

The Predictive Guarantee Overlay Scheduling/Routing Al-
gorithm (PGOS) supports two types of guarantees for stream
utility specifications: probabilistic and ‘violation bounded’.
The former states that with some large probabilityP , stream
Si will receive the required bandwidth on the selected path.
It also means that the streamSi will receive the required
bandwidth for at least100P% of the time. The latter states that
the average number of packets that miss their constraint during
each scheduling window can be bounded. In this section, we
first define a single path selection algorithm for predictive
guarantees and we then extend it to a scheduling algorithm
that operates across multiple overlay paths.

1) Single path guarantee:The idea of single path selection
is to choose the best path among all candidate paths for
streamSi, with some desired guarantee. Single path selection
is important because there exist streams that are not easily
mapped across multiple paths, an example being a stream
with tight deadline/bandwidth requirements which would have
to cope with synchronization issues and out of order arrivals
when mapped across multiple paths.

a) Probabilistic guarantee: The following is the prob-
abilistic guarantee provided by the PGOS algorithm. For
brevity, all proofs appear in the appendix:

Lemma 1:Suppose during time(t, t + tw), where tw is
the length of the scheduling window, the available bandwidth
distribution of serverj is F j(bj). Then, with probability
P = 1 − F j(xis/tw), it is guaranteed thatxi packets will
be served during the scheduling windowtw.
Note that this guarantee essentially bounds the probability of
insufficient throughput byF j(xis/tw)

b) ‘Violation bound’ guarantees: Another useful
application-level utility specification is to bound some vi-
olation, such as the deadline miss rate. The following is

Table I: Precedence among packets in different streams.

Packet Ordering
1. pkts scheduled on current path.
2. pkts scheduled on other path:
2.1 Earliest deadline first.
2.2 Equal deadlines, highest window constraint first.
3. pkts not scheduled:
3.1 Earliest deadline first.
3.2 Equal deadlines, highest window constraint first.

the deadline ‘violation bound’ guarantee provided by PGOS,
whereZ is the number of packets that miss their deadlines
during one scheduling window, given the rate distribution
Gj(rj) in this scheduling window:

Lemma 2:Given available bandwidth distributionF j(b),
E[Z] is bounded byxi ·F j(b0)− tw

s ·M [b0], whereb0 is the
required bandwidth of StreamSi, b0 = xis/tw, andM [b0] is
the mean ofb for all b ≤ b0. Both F j(b0) andM [b0] can be
easily computed from the available bandwidth distribution.

2) Guarantees for multiple overlay paths:By combining
the properties of multiple paths, PGOS can provide better
guarantees to applications than those achievable on single
paths. This is particularly relevant to large data transfers,
where the parallelism achievable across multiple paths can be
used to speed up data transfers as well as desired ‘in flight’
processing.

In Section V-B.1, two types of guarantees are developed for
each a single path. As a result, we can quantitatively evaluate
each of the overlay paths connecting the same server/client pair
and choose the best overlay path to deliver a particular stream
Si. Based on these guarantees, we now describe an overlay
routing and scheduling algorithm that maps multiple streams
across multiple paths, as depicted in Figure 4. The algorithm
schedules all packets of streamsSi, i = 1, 2, ..., N such that
the best guarantee is provided for the timely delivery of high
utility streams, while other streams are delivered with less
stringent guarantees. The PGOS algorithm, therefore, consists
of two parts: (1) utility-based resource mapping and (2) path
routing and packet scheduling.

a) Utility-based Resource Mapping: The resource map-
ping part of the PGOS scheduling algorithm (see Figure 6)
finds the best proportion of streamSi to be delivered via
path P j(resource mapping). The result is the generation
of a scheduling vector, which is then used for routing and
scheduling stream packets across multiple paths. The resource
mapping step is executed when a new stream joins (or an
existing stream terminates) or when the CDF of some path
changes dramatically. A single resource mapping typically
persists across many scheduling windows.

During each scheduling window, PGOS schedules packets
based on the current scheduling vector and the stream prece-
dence listed in Table I. This table maintains the statistically
optimal stream division scheme, while also utilizing additional
available bandwidth whenever possible. For example, given
two overlay paths’ available bandwidth distributionGj(j =
1, 2), and two streamsSi(i = 1, 2), the table is set up to

6

1. updateCDF(); /*update CDF using bandwidth/lossrate measurement in last scheduling window*/
2. if(previous scheduling vectors doesn’t satisfy currentCDF){

/*this happens when new stream joins or CDF changes dramatically*/
3. Find best scheduling shareTpj

i ;
/*Tpj

i is the number of packets belonging to streami and scheduled to be sent on pathj*/
/*now rebuild scheduling vectors:*/

4. for(i = 1; i ≤ N ; i + +){
5. for(j = 1; j ≤ L; j + +){
6. Tpj+ = Tpj

i ; /*for path lookup vector*/
/*rebuild path lookup vector:*/
/*Insert deadlines corresponding to Tpi(j) intoV Dj*/

7. UpdatePathDeadlineVector(V Dj , Tpj
i).

8. }
9 }

/*build path lookup vector*/
10. V P=PathSchedVector(Tpj);

/*convert deadlines to stream scheduling vector*/
11. V S []=StreamSchedVector(V D []);

}/*end of scheduling vectors update(when necessary)*/

12. while(in current scheduling window){
13. path=GetNextFreePath(Vˆp); /*get next path according to Vˆp and path’s backoff status*/

/* get next packet to send based on Vs[p]*/
14. if(getNextScheduledpkt(Vs[p]))
15. sendpkt(path, pkt);
16. else if(pkt=getNextUnscheduledPkt(Vs)){

/*other unscheduled pkt. Precedence rule 2 and 3.*/
17. sendpkt(path, pkt);
18. }
19 }

Figure 6: Scheduling Algorithm.

divide each streamSi into two sub-streamsS1
i + S2

i , where
S1

i will be sent via path 1 andS2
i will be sent via path 2, such

that their required performance guarantees are met. Note that
Sj

i could be a null sub-stream, if necessary. We will sendS1
1

andS1
2 via path 1, and sendS2

1 andS2
2 through path 2.

Stream precedence is determined by the probabilities with
which different streams’ bandwidth requirements must be met.
If streams Si desire to receive their required bandwidths
100Pi% of the time, then PGOS first finds the path that can
satisfy the requirement of the most important stream (with
highestPi), then finds the path for the second most important
stream, and so on. If there does not exist a single path that
can satisfy streamSi’s requirement, then the streamSi is
divided into multiple partsSj

i if this can satisfy streamSi’s
requirement. If this still fails due to limited bandwidth, an
upcall is made to inform the application that it is not possible
to schedule this particular stream. The application can reduce
its bandwidth requirement (e.g., from95% to 90%) or try to
adjust its behavior to the limited available bandwidth [7].

When a deadline violation bound guarantee is desired,
PGOS works in a fashion similar to the probabilistic guar-
antees described above. When one or multiple streams join,
PGOS begins with new stream with the highest deadline
guarantee (i.e., withMinimum

i
[E[Zi]]), and attempts to find

a path to meet its guarantee. If such a path does not exist,
PGOS divides streamSi(with xi packets) into multiple parts

Sj
i (with xj

i packets) such that
∑P

j=1 E[Zj
i]xj

i

xj ≤ E[Zi], where

xi =
∑P

j=1 xj
i and xj =

∑N
i=1 xj

i . An alternative approach
is to find a feasible division scheme without considering the
ordering ofE[Zi] and solve a mixed integer linear program-
ming problem(MILP). However, this is not desirable since it
may divide some important stream (e.g., a control stream)
into multiple sub-streams, thereby causing synchronization
and delays due to potential packet re-ordering across multiple
overlay paths. It is also an N-P hard problem. A detailed
analysis of alternative approaches and their comparison are
beyond the scope of this paper.

b) Path Routing and Packet Scheduling: While it may
be computationally complex to find the best possible resource
mapping, this fact that does affect fast path PGOS perfor-
mance. Here, during each scheduling window, PGOS needs to
schedule packets according to the resource mappings encoded
in scheduling vectors and according to the precedence table
(see Table I). The efficient data structures used by PGOS
are depicted in Figure 6: the scheduler has a path routing
vectorV P , and each path service has one stream scheduling
vectorV S. The scheduling vectorV encodes the currently best
resource mapping scheme derived by the resource mapping
step. The lookup vectorV P is the vector the scheduler uses
to switch between the different overlay paths. As derived in the
resource mapping step, pathj is assignedxj packets, so path
j is assignedxj virtual deadlinesDp[k] = tw/xj · (k − 1).
Virtual deadlines are used to maintain the desired resource
mapping proportion. That is,V P contains the ordering to be

7

used for visiting each path, based on virtual deadlines.
To illustrate, consider a concrete example with two streams

and two overlay paths. StreamS1 has 5 packets in one schedul-
ing window that are mapped to path 1. StreamS2 has 10
packets in one schedule window, where 4 of them are mapped
to path 1, while another 6 packets are mapped to path 2. In
this example, path 1 has 9 packets to deliver, and path 2 has
6 packets to deliver. Thus, VP=[1,2,1,2,1,1,2,1,2,1,1,2,1,2,1].
When the scheduler switches between the overlay paths, the
path lookup vector ensures that three fifths of the time, it will
visit path 1, and two fifths of the time, it will visit path 2.
Stated more generally, when the scheduler visits pathj, it
uses the stream scheduling lookup vectorsV Sj to select the
streams to which to send packets.(V S is essentially a lookup
table where each row corresponds to one path). The lookup
vectorsV Sj are based on the deadlines of all of the packets
(from multiple streams) to be sent on pathj. In the example,
path 1 has nine packets, and the deadlines of these 9 packets
are for S1, S2, S1, S2, S1, S2, S1, S2, andS1 respectively.
Thus,V S1 = [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1].

While usingV S for path mapping, PGOS schedules packets
based on bothV P andV S. That is, once it has selected path
j, PGOS sends packets over it according toV S. Specifically, it
selects a packet to send based on the stream scheduling lookup
vectorV Sj and the precedence table (Table I). First, it sends
the packet scheduled on the current pathjsome other path that
has the earliest deadline. Equal deadlines are broken by the
window constraintx/y (highest window constraint first) and
further ties are broken arbitrarily. When all scheduled packets
have been sent out and there are still free paths to utilize,
PGOS sends out other unscheduled packets according to their
deadlines and window constraints. Whenever a path is blocked,
the scheduler switches to the next path immediately, in order
to best utilize other available resources. Because of the high
cost of blocking, timeouts and exponential backoff are used to
avoid sending multiple packets to a blocked path.

The following theorem states more precisely the guarantees
provided by PGOS:

Theorem 1:If there is a feasible schedule for PGOS to
deliver streamsSi, i = 1, 2, ..., N over pathsP j , j = 1, 2, ...L
during scheduling window(t, t+tw), then streamSi’s window
constraint will be met with probabilityPi.

C. PGOS Buffer Size Analysis

By providing stable bandwidth to applications, PGOS also
reduces the server buffer size, which is particularly desirable
for heavily loaded streaming servers. Further, it reduces the
client buffer size required for smooth playback, which is
important not only for client delays experienced in real-time
streaming, but also to reduce waiting time before playback
for stored video streaming. Intuitively, all these are made
possible by consistently delivering data from server to client
at some required bandwidth, resulting in only a small number
of packets delayed in the server buffer or in the network.
Formally, considering a single stream’s buffers at server and
client, let these buffer sizes beBs(t) andBr(t) respectively,

the sending rate at the server side and the playing rate at
the client side bers and rp, and the network transfer rate
be r(t). Note thatr(t) is the maximum rate the stream can
achieve given background traffic and other competing streams.
In addition, the actual rate at the stream is sent out(r

′
(t)) is

subject to the actual number of packets available during a small
time slot(t, t+tw). Thus the actual number of packets sent out
during time(t, t + tw) is MIN{Bs(t−)/s + twrs(t), twr(t)}
and the actual rate the receiver receives is

r
′
(t, t + tw) = MIN{Bs(t−)

sδ
+ rs(t), r(t)} (1)

If the sender buffer is limited to a maximum buffer size
Bs MAX , then the value ofBs(t) at any timet + tw is given
by:

Bs(t + tw) = MIN{(rs − r
′
(t))tw + Bs(t−), Bs MAX} (2)

If Bs(t) is unlimited, then the value ofBs(t) at t is given
by

Bs(t−) =
∫ t−

0

(rs − r
′
(t))dt (3)

By formalizing this process as a M/G/1 queuing system and
using the Pollaczek-Khintchine formula for the average time
each packet spends in the queue, the average sender buffer
size can be obtained as:

E[Bs(t)] =
r−2
s · E[S2]

2(1− E[S]/rs)
, (4)

whereS = 1
r′ , andE[S2] = V ar(S) + (E[S])2.

From formula 4, it is clear that given two possible paths
or scheduling schemes with the same average available band-
width, the routing/scheduling scheme that minimize the vari-
ation of S,V ar(S), will ensure the minimum average sender
buffer sizeE[Bs(t)]. Intuitively, packets are accumulated in
the sender buffer when the transfer rater(t) is lower than
the sending raters, and PGOS reduces this buffer size by
finding the best routing/scheduling scheme that can provide
the required sending rate most of the time. When the used
sender buffer size is low, it also means that the packets
are not delayed in the buffer, and the receiving raterp is
close to the sending raters without bursty transfer, so a
minimum number of packets are required to be buffered before
playback. In addition, undesirable delays in playback are
less possible. In comparison, if we only considered average
bandwidth measurement and prediction, without considering
the statistical structure of available bandwidth, we cannot
distinguish different scheduling schemes leading to different
levels of bursty transfer and different server/client buffer size
requirements.

VI. EXPERIMENTAL EVALUATION

This section evaluates IQ-Paths with three types of applica-
tions: (1) the SmartPointer system [49] for distributed collab-
oration and interactive program steering, (2) the GridFTP [14]

8

implementation for reliable parallel data transmission in wide
area networks, and (3) a prototype implementation of MPEG-
4 Fine-Grained Scalable video streaming. Our testbed emu-
lates a realistic wide area setting, using the EmuLab facil-
ity [25]. NLANR traces are used to inject representative cross-
traffic [12].

The first experiment shown below evaluates our methods for
statistical prediction of network bandwidth. Next, the PGOS
algorithm is used to map application-level data streams across
multiple overlay links, and its performance is compared to that
of the widely used fair queuing scheduling algorithms (WFQ
and MSFQ). We also compare the performance of parallel
file transfer using GridFTP vs. IQPG-GridFTP, which is our
implementation of GridFTP based on the original GridFTP
and PGOS.

0.00

0.05

0.10

0.15

0.20

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BW Measurement Window

M
ea

n
Pr

ed
ic

t E
rr

or
 a

nd
 P

er
ce

nt
ile

Pr

ed
ic

t E
rr

or

Mean Prediction Error
Percentile Prediction Error

Figure 7: Bandwidth Prediction.

A. Bandwidth Prediction Analysis

Figure 7 illustrates the results of predicting average band-
widths vs. the statistical predictions used in our approach.
Here, we analyze more than 8GB of IP header trace files
from the National Laboratory for Applied Network Research
(NLANR). The traces were collected at a number of lo-
cations of the Abilene (Internet2) and the Auckland net-
works. The mean prediction error is the average relative
error (|(predicted value− actual value)/actual value|) of
several widely used average bandwidth predictors (i.e., MA,
EWMA and SMA). From Figure 7, the common average band-
width predictors have a roughly 20% of prediction error. Simi-
lar error ranges are also reported in [50]. On the contrary, our
statistical prediction method (percentile prediction) achieves
less than a 4% prediction failure rate. The percentile prediction
failure rate is the number of prediction failures divided by the
total number of predictions. For these experiments, we first
calculate the distribution of N (e.g., 500 and 1000) samples,
where each sample is the bandwidth measured in 0.1 to 1
second. Then, since we are particularly interested in whether
a path can guarantee certain throughput for 90% of the time
(or for 80%, 70%, etc), we find distribution D’s 10th percentile
as X(Mbps), and test whether the next n (n=5 to 10) samples
are larger than X. If they are, a successful prediction occurs,
and if not, a prediction failure occurs.

From these experiments and for representative distributed
applications, we determine two facts. First, in practice, an
application is typically less interested in the average bandwidth
it receives over a long period than in the fact that it can receive
its required bandwidth consistently most of the time. This is
precisely the question that is answered by our probabilistic
bandwidth prediction methods. Second, such statistical guar-
antees are easier to make than guarantees on available average
bandwidth, because the majority of available bandwidth or
maximum throughput on Internet paths is IID [50]. As a result,
the exact value of average bandwidth in the near future is
hard to predict, but the statistical structure of bandwidth can
be predicted well. Simply speaking, if in the last 5 mins., the
10th percentile of bandwidth is 10Mbps, then with a large
probability, the bandwidth in the next 1 second will be higher
than 10Mbps. The measured low prediction failure rate directly
justifies our usage of percentile prediction.

N-1

N-3 N-5

N-6

N-4N-2

N-7 N-8

N-10N-9

N-13 N-14

N-12N-11

Server Client

Overlay
Router

Overlay
Router

Cross
Traffic

Cross
Traffic

Figure 8: Testbed. The link connecting each pair of nodes
is fast ethernet. Cross traffic is injected by Node N-9 to N-
14. Overlay routers are placed at Node N-4 and N-5, so that
overlay paths and cross traffic paths share the same bottleneck
(N-3 to N-5 and N-2 to N-4).

Table II: Importance of choosing the right path to meet service-
level objectives. ‘95%’ means the 95th percentile point.

Throughput Jitter(ms) Interval(ms)
95% 99% mean std mean std

Atom-pathb 2.4748 1.927 1.7 6.1 3.97 9.9
Atom-patha 3.2336 3.2322 0.82 1.3 3.99 0.9
Bond1-pathb 17.2284 13.0244 1.7 6.1 3.97 9.9
Bond1-patha 22.0442 22.0303 0.83 1.3 3.99 0.9

B. SmartPointer Experiments

The PGOS algorithm embedded in the IQ-Paths middleware
is used with three applications: the SmartPointer system for
distributed collaboration and steering of computational appli-
cations, GridFTP, a high-performance and reliable data transfer
protocol widely used in the Grid community, and MPEG-
4 Fine-Grained Scalable video streaming. We configure an
Emulab [25] testbed in which the overlay server N-1 has two
overlay paths to reach the client N-6(Figure 8). Background
traffic is generated from NLANR traces. The background
traffic and data traffic share the common link between N-3 and

9

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Time(Seconds)

T
hr

ou
gh

pu
t(

M
bp

s)

Atom−PathA
Bond1−PathA
Atom−PathB
Bond1−PathB

Figure 9: Throughput on each path. Although path A has less
mean available bandwidth than path B, it is preferable for
streams ‘atom’ and ‘bond1’

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput(Mbps)

C
D

F

Atom−PathA
Bond1−PathA
Atom−PathB
Bond1−PathB

Figure 10: Throughput CDF on each path. Bandwidth on path
B is more dynamic than bandwidth on path A.

N-5, and the link between N-2 and N-4. All link capacities are
100Mbps, which is the current up-limit of Emulab.

1) Importance of choosing the right path:We first evaluate
the importance of choosing the ‘right’ path for an application’s
data streams. In this evaluation, cross traffic based on trace
files obtained from NLANR is injected into two overlay paths.
The average available bandwidth on Path B is higher than that
on Path A, but it has larger variation compared to Path A. Two
streams of the SmartPointer (streams ‘Atom’ and ‘Bond1’) are
transferred from Node1 to Node6 over either of these two
overlay paths. Results are depicted in Figure 9. In this figure,
the time series of Atom-PathA and Bond1-PathA are the
throughputs of streams Atom and Bond achieved if we utilize
Path A, and the time series of Atom-PathB and Bond1-PathB
are throughputs achieved by the two streams if we use Path
B. Although Path B has higher average bandwidth, its higher
variation causes unstable bandwidth with wide fluctuation. The
cumulative distributions of the throughput of the two streams
over two paths are given in Figure 10. Obviously, Path A can
provide much more stable bandwidth than Path B.

The importance of choosing the right path based on the dis-
tribution of bandwidths instead of simply average bandwidth
is summarized in Table II. If Path A is chosen to transfer
the two streams simultaneously, for 91% of the time, the
stream Atom can obtain at least its required bandwidth, and

for 99% of the time, it can obtain at least 99.7% of its required
bandwidth. At the same time, stream Bond1 is able to obtain at
least its required bandwidth for 90% of the time and at least
99.69% of its required bandwidth for 99% of the time. For
comparison, if we choose path B, which has higher average
available bandwidth than Path A, stream Atom can obtain its
required bandwidth for only 44% of the time, and for 99% of
the time, it can only obtain 59.46% of its required bandwidth.
Stream Bond1 can obtain its required bandwidth for only 59%
of the time, and for 99% of the time, it can only obtain 58.94%
of its required bandwidth. This means that the two streams
can’t obtain their required bandwidths most of the time. This
results in bursty transmission behavior, large queue lengths on
the server side, and higher jitter, none of which are desirable
for this remote collaboration application. Note that low jitter
is particularly important for real-time applications like remote
scientific visualization, as it provides smoother data streaming
and also reduces total buffering. As shown in Table II, the
two streams can achieve much lower average jitter and lower
standard deviation in jitter if PathA is chosen instead of PathB
(0.82 vs. 1.7 for average jitter and 1.3 vs. 6.1 for standard
deviation.)

This experiment demonstrates the importance of assessing
the distribution of available bandwidth to meet application-
level service requirement vs. assessing average bandwidth
values. When we transfer large data volumes, average band-
width is one important factor, but it is not a sufficient one.
Specifically, by using the distribution of available bandwidth,
PGOS can find the path to transfer application data that
has the best predictive guarantee. We next discuss further
improvements in attainable end-to-end bandwidth, by using
PGOS to schedule traffic across concurrent network paths.

2) PGOS evaluation:The second experiment evaluates
PGOS with multi-path message routing and scheduling. The
purpose is to see how the algorithm can guarantee some
critical stream’s required throughput while also providing high
throughput to non-critical streams. Consider the SmartPointer
server issuing three streams (Atom, Bond1, and Bond2) to
remote clients. Streams Atom and Bond1 are data about all
atoms and those bonds that are in the observer’s immediate
graphical view volume, whereas stream Bond2 contains the
bonds outside the observer’s current view. Therefore, Streams
Atom and Bond1 are important and must be delivered in real-
time (25 frame/sec) for effective collaboration, but stream
Bond2 is less critical (e.g., it may be important when the
observer rapidly changes his/her viewing angle.)

Three on-line message transfer algorithms are evaluated and
compared to meet this application’s needs: (1) transfer all
messages over one single path based on normal Fair Queuing
(WFQ), (2) transfer messages over two paths with fair queuing,
and (3) transfer messages over two paths using the proposed
PGOS routing and scheduling algorithm. For (2), we use
the multi-server Fair Queuing (MSFQ) algorithm [3]. The
input (utility requirements) to PGOS are 3.249Mbps with 95%
predictive guarantee for stream Atom and 22.148Mbps with
95% predictive guarantee for stream Bond1.

10

0 50 100 150 200 250 300
0

10

20

30

40

50

60

Time(Seconds)

T
hr

ou
gh

pu
t(

M
bp

s)
Atom
Bond1
Bond2

(a) Non-Overlay Fair Queuing

0 50 100 150
0

10

20

30

40

50

60

70

80

90

Time(Seconds)

T
hr

ou
gh

pu
t(

M
bp

s)

Atom Channel
Bond1 Channel
Bond2 Channel

(b) Multi-Server Fair Queuing

0 50 100 150
0

10

20

30

40

50

60

70

80

90

Time(Seconds)

T
hr

ou
gh

pu
t(

M
bp

s)

Atom−PathA
Bond1−PathA
Bond2−PathA
Bond2−PathB

(c) PGOS Algorithm

0 50 100 150
0

10

20

30

40

50

60

70

80

90

Time(Seconds)

T
hr

ou
gh

pu
t(

M
bp

s)

Atom−PathA
Bond1−PathA
Bond2−PathA
Bond2−PathB

(d) OptSched Algorithm

Figure 11: Throughput Time Series Comparison of Three Algorithms.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput(Mbps)

C
D

F

Atom
Bond1
Bond2

(a) Non-Overlay Fair Queuing

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput(Mbps)

C
D

F

Atom Channel
Bond1 Channel
Bond2 Channel

(b) Multi-Servers Fair Queuing

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput(Mbps)

C
D

F

Atom−PathA
Bond1−PathA
Bond2−PathA
Bond2−PathB

(c) PGOS Algorithm

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput(Mbps)

C
D

F

Atom−PathA
Bond1−PathA
Bond2−PathA
Bond2−PathB

(d) OptSched Algorithm

Figure 12: Throughput CDF Comparison of Three Algorithms.

0

0.5

1

1.5

2

2.5

3

3.5

4

Non-Overlay Fair
Queuing

MS Fair Queuing PGOS

Th
ro

ug
hp

ut
(M

bp
s)

99% Time
95% Time
Mean
Target

(a) Stream 1(Atom): Targeted Throughput: 3.249Mbps

0

5

10

15

20

25

30

Non-Overlay Fair
Queuing

MS Fair Queuing PGOS

Th
ro

ug
hp

ut
(M

bp
s)

99% Time
95% Time
Mean
Target

(b) Stream 2(Bond): Targeted Throughput: 22.148Mbps

Figure 13: Throughput Achieved by Three Algorithms: Target, Mean, 95% of the time,
99% of the time, and Standard Deviation(represented by the vertical bars).

We also compare these results with a near-optimal off-line
algorithm, termed OptSched, which assumes that we know
available bandwidth a priori. Although this off-line algorithm
cannot be used in practice, it can be used to gauge the absolute
performance of PGOS. OptSched operates as follows. First, it
maintains a vector of each path’s available bandwidth. Second,
since it knows future bandwidth a priori, it schedules packets
at the beginning of each scheduling window such that the
application’s requirement of bandwidth can be ensured (e.g.,
3.249Mbps for at least 95 percent of the time). Note that
even if available bandwidth is known a priori and data is sent
at the appropriate rate (e.g., at a speed of 3.249Mbps), the
receiving rate could still be slightly less or higher than the
sending rate because of competition among multiple flows.
OptSched deals with this via a simple feedback control loop:

if the the actual receiving rate is not equal to the required
receiving rate in the past, it will send this stream at3.249+ δ
Mbps, whereδ is a dynamic variable based on past history.
When the previous scheduling window’s receiving rate was
less than 3.249Mbps,δ equals two times of the absolute value
of the difference between the receiving rate and 3.249Mbps.
If the receiving rate was higher than3.249 + βMbps, where
β is a very small threshold to stabilize this control loop,
delta is set to half of the difference between the receiving
rate and 3.249Mbps, multiplied by -1. Because this off-line
optimal algorithm requires precise clock synchronization of
the streaming server, the client, and the server introducing
cross traffic, it is evaluated via ns2 simulation.

The results of using these four algorithms are depicted in
Figure 11. Figure 11a depicts the throughput of 3 streams

11

attained by the WFQ algorithm on Path A, which has higher
available bandwidth than Path B with larger variance. Multi-
Server Fair Queuing (MSFQ) can maintain the proportion
of throughput shared by the three streams quite well (see
Figure 11b), but because of its inaccurate average bandwidth
prediction, it fails to provide the required throughput to the
two critical streams Atom and Bond1. Both streams exhibit
substantial throughput fluctuation. In comparison, the PGOS
algorithm successfully provides very stable throughput to these
two critical streams. Furthermore, note that in Figure 11c, the
throughput of stream Bond2 is not compromised. This stream
is divided by PGOS into two substreams (Bond2-PathA and
Bond2-PathB), and the average throughput of stream Bond2
is almost the same as that achieved by MSFQ.

The cumulative distributions of throughput of the three
streams under the three algorithms are given in Figure 12, and
a summarized comparison of these three algorithm appears in
Table III. Note that PGOS provides the two critical streams at
least 99.5% of their required bandwidth (denoted by ‘Target’ in
Table III) for 95% of the time. MSFQ can only provide about
87% of their required bandwidth for 95% of the time. For
example, stream Bond1 requires 22.148Mbps, and the actual
95th percentile of the achieved bandwidth is 22.068Mbps
under PGOS, but it is only 19.248Mbps under MSFQ. The
standard deviations of bandwidth experienced by the two crit-
ical streams appear in Table III and Figure 13. Although stream
Bond2 has slightly larger standard deviation with PGOS, the
two critical streams Atom and Bond1 experience much lower
standard deviations.

Both Fair Queuing and Multi-Server Fair Queuing try to
allocate bandwidth in a proportional based manner according
to predicted bandwidth, but they require exact values of end-
to-end bandwidth, which are hard to attain. Further, although
both of these two algorithms can successfully maintain the
proportion of the bandwidth allocated to multiple streams,
they cannot provide specific bandwidth to a particular stream.
In comparison, PGOS relaxes the prediction assumption, only
asking if we can obtain certain bandwidth with some high
probability. This is not only easier to predict, but also directly
provides the functionality needed by applications.

All three algorithms experience certain overheads when
routing single streams over multiple paths, because of packet
reordering and possible delays of head-of-line packets. PGOS
reduces this overhead by using a single path for one stream
whenever possible, especially for streams with higher pri-
orities. Simply speaking, unlike MSFQ which provides the
two critical streams less than required bandwidths when the
network is congested and more than required bandwidths when
the network is free of congestion, PGOS routes and schedules
packets such that the two important streams obtain stable
required bandwidths no matter whether or not one path is
congested. As a result, the application frame jitter is also
reduced from 2.0ms (with MSFQ) to 1.4ms (with PGOS).

In summary, these experiments show that with PGOS rout-
ing/scheduling, critical streams’ required throughput can be
guaranteed most of the time. This is done without compro-

Table III: Routing/Scheduling Algorithms Comparison.

Throughput(Mbps) Jitter
95 Perct. 99 Perct. Mean Std. Target (ms)

Atom 0.846 0.672 1.5524 0.3863 3.249 5.0
AtomF 2.789 2.744 3.2111 0.3273 3.249 2.0
AtomP 3.236 3.216 3.2487 0.0150 3.249 1.4
AtomO 3.240 3.239 3.2489 0.0058 3.249 1.2
Bond1 5.768 4.569 10.5843 2.6348 22.148 5.0
Bond1F 19.248 18.946 22.1300 2.2321 22.148 2.0
Bond1P 22.068 21.959 22.1476 0.0790 22.148 1.4
Bond1O 22.138 22.139 22.1477 0.0273 22.148 1.3
Bond2 18.297 14.486 33.7021 8.3949 70.340 5.0
Bond2F 52.446 51.76 59.0786 8.0397 70.340 2.0
Bond2P 45.782 45.038 59.0588 9.5765 70.340 1.5
Bond2O 45.757 45.019 59.0583 9.5587 70.340 1.5

mising the average throughput experienced by non-critical
streams. A case in point in our experiments is non-critical
stream Bond2, which still receives almost the same average
throughput under PGOS as under MSFQ.

0 50 100 150
0

20

40

60

80

Time(Seconds)

T
hr

ou
gh

pu
t(

M
bp

s)

DT1
DT2
DT3−All

(a) GridFTP Throughput.

0 50 100 150
0

20

40

60

80

Time(Seconds)

T
hr

ou
gh

pu
t(

M
bp

s)

DT1
DT2
DT3−P1
DT3−P2
DT3−All

(b) IQPG-GridFTP Throughput. Line DT3-All is the
throughput achieved by stream DT3(sum of throughput
on two paths: DT3-P1 and DT3-P2).

Figure 14: Throughput Achieved by GridFTP and IQPG-
GridFTP

C. GridFTP Experiments

GridFTP [14] is widely accepted as one of the common data
transfer services available for high performance applications.
One important extension to the FTP protocol implemented
in GridFTP is its support for parallel data-transfer. The
GridFTP standard represents this functionality by supporting
SPAS (Striped Passive)/SPOR(Striped Data Port) instructions
to establish multiple data connections. Parallel file transfer
then occurs using the parallelism options (like parallel-opts,
layout-opts) to the RETR (Retrieve) command. These options
essentially determine the number of parallel connections to
be established and the layout with which the data is to be
distributed across these connections.

In this subsection, we present our experiences with IQPG-
GridFTP, which strengthens our previous work [7] by in-
cluding support for PGOS-enabled parallel file transfers. The

12

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Throughput(Mbps)

C
D

F

DT1
DT2
DT3−All

(a) GridFTP Throughput CDF.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Throughput(Mbps)

C
D

F

DT1
DT2
DT3−P1
DT3−P2
DT3−All

(b) IQPG-GridFTP Throughput CDF.

Figure 15: GridFTP and IQPG-GridFTP Throughput CDF
Comparison

Table IV: GridFTP.

Stream Throughput(Mbps)
Name Target 95 Perct. Mean Std.

DT1O 34.56 31.431 33.9411 1.4297
DT1P 34.56 33.869 34.5505 0.4040
DT2O 25.60 23.282 25.1415 1.0590
DT2P 25.60 25.094 25.5990 0.2993
DT3O 76.80 69.393 75.4246 3.1770
DT3P 76.80 65.287 74.3577 4.7668

IQPG-GridFTP implementation generalizes the publicly avail-
able wu-ftpd [16] server to support the GridFTP protocol
extensions for parallel transfers and implements the Partitioned
and Blocked data layout options to distribute file contents
across the connections in addition to the PGOS layout. A
partitioned data layout is one where contiguous chunks of file
are distributed evenly across all the connections for transfer,
while a blocked data layout is one where data blocks (each of
size block-size) are distributed in a round-robin fashion.

We use a climate database in our experiment as simula-
tion of the Earth System Grid II [13]. Each record in this
database has three data components: (1) the numeric data
(approximately 172.8KB and denoted by ‘DT1’), and (2) and
(3) are low resolution images (128KB, and denoted by ‘DT2’)
and high resolution images (384KB, and denoted by ‘DT3’),
respectively. GridFTP and IQPG-GridFTP are configured to
concurrently transfer file records across two TCP connections
over two overlay paths. For such transfers, we want to ensure
that the numeric data and low resolution images receive their
required bandwidths of at least 25 records/second for real-
time data streaming. In addition, we also want to fully utilize
bandwidth to transfer high-resolution data.

Experimental results are depicted in Figures 14 and 15.
From these measurements, it is apparent that IQPG-GridFTP
can ensure that the streams DT1 and DT2 receive their required
bandwidths consistently, while stream DT3 is transferred as
fast as possible. In comparison, standard GridFTP splits the
dataset into blocks allocated to the multiple connections for

transfer, but when the available bandwidth of any path is
low, all types of data have to compete with each other. This
causes the important data streams to not receive their required
bandwidths during these periods. Specifically, consider the
two curves for DT1 and DT2 in Figure 14a, which have
much wider fluctuations compared to curves DT1 and DT2 in
Figure 14b. Quantitatively, stream DT1 achieves 33.94Mbps
average throughput using GridFTP with a large standard
deviation (1.4297), while using IQPG-GridFTP, it achieves
34.55Mbps average throughput with a small standard deviation
(0.4040). Similar results are observed for stream DT2. Note
that here the network can provide almost the total throughput
required by the application. If the network cannot provide such
throughput, then the two streams DT1 and DT2 obtain even
less bandwidth using GridFTP, as they have to compete with
stream DT3 for the same limited bandwidth. In summary, with
PGOS, IQPG-GridFTP can protect more important streams
from competing with other less important streams, while also
scheduling less important streams to be delivered when there
exists sufficient bandwidth. Applications have full control
over deciding how much bandwidth will be allocated for
a particular stream and what kind of guarantee is for each
stream.

D. Multimedia Streaming Experiments

Video and audio streaming over the Internet are known to be
important applications. Because the dynamic behavior of the
Internet makes it difficult to provide consistently good quality
of streaming video/audio, layered coding and multiple descrip-
tion (MD) provide layers of encoded video. Both layered and
MD coding can leverage the QoS enhancements offered by
PGOS, and in this section, we evaluate the performance of
PGOS used with MPEG-4 Fine-Grained Scalable (MPEG-4
FGS) layered video coding [1].

The MPEG-4 FGS framework consists of a base layer and
one or two enhancement layer. The base layer is generated by
motion estimation/motion compensation and entropy coding
with fixed quantization step size. The SNR FGS enhancement
layer adds DCT coefficients with reduced quantization step
size and leads to more accurate DCT coefficients and higher
video quality. The Temporal FGS enhancement layer improves
temporal resolution by providing a higher frame rate and
smooth motion. The base layer is the most important set of
data, and its bandwidth requirement should be consistently
provided for smooth playback. Receivers can subscribe to
as many enhancement layers as possible to maximum video
quality, but these layers are less important and may be dropped
at when there in insufficient available bandwidth.

The base layer and the enhancement layer require
1.4820Mbps and 11.2901Mbps average bandwidths, respec-
tively. Since encoded video exhibits variable throughput, the
input parameter for PGOS is a 95% prediction guarantee of
1.22Mbps for the base layer, which corresponds roughly the
95 percentile of the actual bitrate of the base layer. There is no
requirement for the enhancement layer, i.e., we would like to

13

transmit the enhancement layer using the remaining available
bandwidth.

0 50 100 150
0

5

10

15

20

Time(Seconds)

T
hr

ou
gh

pu
t(

M
bp

s)

Base−Layer
Base−Layer−Video
Enh−Layer

(a) Multi-Servers Fair Queuing(MSFQ)

0 50 100 150
0

5

10

15

20

Time(Seconds)

T
hr

ou
gh

pu
t(

M
bp

s)

Base−Layer−path1
Base−Layer−Video
Enh−Layer−path1
Enh−Layer−path2

(b) PGOS

Figure 16: Throughput Time Series of MSFQ and PGOS
Algorithms.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Throughput(Mbps)

C
D

F

Base−Layer
Enh−Layer

(a) Multi-Servers Fair Queuing(MSFQ)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Throughput(Mbps)

C
D

F

Base−Layer−path1
Enh−Layer−path1
Enh−Layer−path2

(b) PGOS

Figure 17: Throughput CDF Comparison of Three Algorithms.

Experimental results appear in Figures 16 and Figures 17.
In Figure 16, the thick red line is the bandwidth of the encoded
base layer, and the solid black line is the delivered bandwidth
of the base layer. Comparing these two graphs, PGOS can
deliver about the bandwidth required by the base layer. In
comparison, since mean bandwidth cannot be predicted well,
with MSFQ, for some time, the achieved bandwidth of the
base layer is significantly less than the required video bitrate.
More precisely, PGOS provides 1.20Mbps for 95 percent of
the time while MSFQ provides only 0.81Mbps for 95 percent
of the time (see Table V). Further, PGOS provides at least
1.22Mbps for 93 percent of time which is very close to our
bandwidth guarantee requirement (i.e., at least 1.22Mbps for
95 percent of the time). In comparison, MSFQ provides at
least the required bandwidth for only 78 percent of the time.

Table V: MPEG-4 FGS.

Throughput(Mbps)
95 Perct. Mean Avg. Req.

Base LayerF 0.81722 1.3693 1.4820
Base LayerP 1.2026 1.4761 1.4820
Enh. LayerF 6.5250 10.7690 11.2901
Enh. LayerP 6.2931 10.3910 11.2901

VII. C ONCLUSIONS ANDFUTURE WORK

This paper presents IQ-Paths, a data streaming middle-
ware that uses overlay networks to better serve the needs of
distributed applications running on wide area networks. IQ-
Paths employs statistical methods to provide to applications
predictive guarantees for the bandwidths available to them
from the underlying network, for all paths in the overlay con-
necting data sources to sinks. In addition, its PGOS scheduling
algorithm both suitably routes packets across overlay paths and
schedules them across single and multiple (concurrent) paths,
coupling parallelism in data transfer with statistical bandwidth
guarantees.

The statistical prediction technique used in IQ-Paths not
only measures average available bandwidth, but also captures
the dynamic or noisy nature of the bandwidth available on
overlay paths. As a result, IQ-Paths can provide to applications
both probabilistic and ‘bounded violation’ delivery guarantees.
The former state that with some large probabilityP , stream
Si will receive the required bandwidth on the selected path.
The latter state that the average number of messages that
violate some constraint (e.g., miss their deadlines) during each
scheduling window is bounded.

This paper uses IQ-Paths to meet the needs of three rep-
resentative distributed applications: (1) the SmartPointer real-
time collaboration system, (2) multimedia data streaming, and
(3) GridFTP. The integration of IQ-Paths into these appli-
cations is facilitated by its design as a ‘model-neutral’ data
streaming layer underlying the application-specific communi-
cation models offered by higher middleware layers, including
the publish/subscribe model used by SmartPointer, the simple
data transfer model used by GridFTP, and the data streaming
model used by the multimedia application.

Several extensions of the proposed IQ-Paths framework are
of future interest. The path characteristics collected by IQ-
Paths can benefit not only the applications shown in this
paper, but may also be used by other multimedia or high
performance data transfer methods. In addition, it would be
interesting to extend this work to content delivery systems that
use overlay multicast techniques. For enterprise applications,
our current research is developing runtime methods for fault
tolerance. Here, an intersting use of IQ-Paths is to differen-
tiate data traffic required for replication from other traffic,
perhaps dynamically varying reliability/performance tradeoffs
with selective replication techniques. Another interesting topic
is to use IQ-Paths to isolate the effects of fault tolerance or
recovery traffic from regular data traffic, perhaps to avoid
the additional disturbances arising during recovery. Finally,

14

we will generalize to additional service objectives, such as
message loss rate service guarantees.

VIII. A CKNOWLEDGEMENTS

We gratefully acknowledge input from Constantinos Dovro-
lis on the methods for network bandwidth measurement and
packet scheduling used and developed for this paper.

REFERENCES

[1] I. 14496-2/FPDAM4. Coding of audio-visual objects, part-2 visual,
amedment 4: Streaming video profile, July 2000.

[2] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan. Best-Path vs.
Multi-Path Overlay Routin. Inproc. of IMC, 2003.

[3] J. M. Blanquer and B. Ozden. Fair queuing for aggregated multiple
links. In Proc. of ACM SIGCOMM, 2001.

[4] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web
search engine.Computer Networks and ISDN Systems, 30(1–7):107–
117, 1998.

[5] J. W. Byers, J. Considine, and M. Mitzenmacher. Informed Content
Delivery Across Adaptive Overlay Networks .IEEE/ACM Transactions
in Networking, 2004.

[6] Z. Cai, G. Eisenhauer, Q. He, V. Kumar, K. Schwan, and M. Wolf.
IQ-Services: Network-Aware Middleware for Interactive Large-Data
Applications. InProc. of MGC, 2004.

[7] Z. Cai, G. Eisenhauer, Q. He, V. Kumar, K. Schwan, and M. Wolf.
Iq-services: Network-aware middleware for interactive large-data appli-
cations.Concurrency & Computation. Practice and Exprience Journal,
2005.

[8] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling conferencing
applications on the internet using an overlay muilticast architecture.
Proc. of SIGCOMM, 2001.

[9] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowmant. Planetlab: An overlay testbed for broad-coverage
services.ACM Computer Communication Review, 33(3), July 2003.

[10] DOE. UltraScience Net. http://www.csm.ornl.gov/
ultranet/ .

[11] W.-C. Feng and J. Rexford. Performance evaluation of smoothing
algorithms for transmitting prerecorded variable-bit-rate video.IEEE
Trans. on Multimedia, Sept 1999.

[12] N. L. for Applied Network Research”. Internet measurement and Internet
analysis.http://moat.nlanr.net/ .

[13] I. Foster, E. Alpert, A. Chervenak, B. Drach, C. Kesselman, V. Nefedova,
Middleton, S. D., A. A., Sim, and D. Williams. The Earth System Grid
II: Turning Climate Datasets Into Community Resources. InAnnual
Meeting of the American Meteorological Society, 2002.

[14] Globus. GridFTP. http://www-fp.globus.org/datagrid/
gridftp.html .

[15] F. B. Greg Eisenhauer and K. Schwan. Event Services for High
Performance Computing. InProc. of High Performance Distributed
Computing, 2000.

[16] W. D. Group. WU-FTP.http://www.wu-ftpd.org .
[17] N. Hu and P. Steenkiste. Evaluation and characterization of available

bandwidth probing techniques.IEEE Journal on Selected Areas in
Communications, Aug. 2003.

[18] M. Karlsson and C. Karamanolis. Choosing Replica Placement Heuris-
tics for Wide-Area Systems. Inproc. of ICDCS, 2004.

[19] T. Kim and M. Ammar. Optimal Quality Adaptation for MPEG-4 Fine-
Grained Scalable Video. InProc. of IEEE INFOCOM, Apr. 2003.

[20] C. Krasic, K. Li, and J. Walpole. The Case for Streaming Multimedia
with TCP. Lecture Notes in Computer Science, 2158, 2001.

[21] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and K. Schwan.
Resource-Aware Distributed Stream Management using Dynamic Over-
lays. In Proc. of ICDCS, 2005.

[22] V. Kumar, B. F. Cooper, Z. Cai, G. E. B. Seshasayee, P. Widener,
and K. Schwan. A Self-Adaptive Infrastructure for Composing and
Managing Distributed Information Flows. Insubmitted to Eurosys-2006,
2005.

[23] V. Kumar, B. F. Cooper, and K. Schwan. Distributed Stream Manage-
ment using Utility-Driven Seld-Adaptive Middleware. Inproc. of IEEE
International Conference on Autonomic Computing, 2005.

[24] N. LambdaRail.http://www.nlr.net/ .

[25] J. Lepreau and et. al. The Utah Network Testbed.http://www.
emulab.net/ . University of Utah.

[26] B. Li and K. Nahrstedt. A control-based middleware framework for
quality of service adaptations.IEEE Journal on Selected Areas in
Communications, Special Issue on Service Enabling Platforms, Sept.
1999.

[27] G. M. Mair. Telepresence - The Technology and Its Economic and Social
Implications. InProc. of IEEE International Symposium on Technology
and Society, 1997.

[28] P. Mehra. Information, The Final Frontier. Inproc. of High Performance
Interconnects for Distributed Computing Workshop(in conjunction with
the 14th International Symposium on High Performance Distributed
Computing), 2005.

[29] M.Jain and C. Dovrolis. End-to-End Available Bandwidth: Measurement
methodology, Dynamics, and Relation with TCP Throughput. InProc.
of ACM SIGCOMM, Aug. 2002.

[30] M.Jain and C. Dovrolis. End-to-end Estimation of the Available
Bandwidth Variation Range. InProc. of ACM SIGMETRICS, June 2005.

[31] A. Nakao, L. Peterson, and A. Bavierr. A Routing Underlay for Overlay
Networks. InProc. of ACM SIGCOMM, 2003.

[32] NASA. Using XML and Java for Telescope and Instrumentation Control.
In Proc. of SPIE Advanced Telescope and Instrumentation Control
Software, 2000.

[33] R. K. Rajendran and D. Rubenstein. Optimizing the Quality of Scalable
Video Streams on P2P Networks. Inproc. of IEEE Globecom 2004,
2004.

[34] N. S. V. Rao. Overlay Networks of In-Situ Instruments for Probabilistic
Guarantees on Message Delays in Wide-Area Networks.IEEE Journal
on Selected Areas of Communications, 22(1), 2004.

[35] N. S. V. Rao, S. Radhakrishnan, and B. Y. Cheol. NetLets: Measurement-
based Routing for End-to-End Performance over the Internet. InProc.
of International Conference on Networking, 2001.

[36] P. Ratanchandani and R. Kravets. A Hybrid Approach for Internet
Connectivity for Mobile Ad Hoc Networks. InProc. of IEEE WCNC,
2003.

[37] R. Rejaie, M. Handley, and D. Estrin. Quality Adaptation for Con-
gestion Controlled Playback Video over the Internet. InProc. of ACM
SIGCOMM, 1999.

[38] R. Rejaie, M. Handley, H. Yu, and D. Estrin. Proxy Caching Mech-
anism for Multimedia Playback Streams in the Internet. Inproc. 4th
International Web Caching Workshop, 1999.

[39] D. Rubenstein, J. Kurose, and D. Towsley. Detecting shared congestion
of flows via end-to-end measurement.IEEE/ACM Transactions on
Networking, 10(3), June 2002.

[40] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies
with Rocketfuel. InProc. of ACM SIGCOMM, 2002.

[41] N. Spring, D. Wetherall, and T. Anderson. Reverse-Engineering the
Internet. Inproc. of HotNets-II, 2003.

[42] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz. OverQoS: An
Overlay Based Architecture for Enhancing Internet QoS. InProc. of 1st
Symposium on Networked Systems Design and Implementation(NSDI),
Mar. 2004.

[43] J. Vetter and K. Schwan. Techniques for High-Performance Computa-
tional Steering.IEEE Concurrency, 7(4), 1999.

[44] J. Walpole, R. Koster, S. Cen, C. Cowan, D. Maier, D. McNamee,
C. Pu, D. Steere, and L. Yu. A Player for Adaptive MPEG Video
Streaming Over The Internet. InProc. of SPIE Applied Imagery Pattern
Recognition Workshop, Washington, DC, Oct. 1997.

[45] R. F. Walters, B. B. Douglas, T. C. Leamy, and W. Yaksick. RC (Remote
Collaboration): A Tool for Multimedia, Multilingual Collaboration,
2000.

[46] R. West and C. Poellabauer. Analysis of a Window-Constrained
Scheduler for Real-Time and Best-Effort Packet Streams. InProc. of
IEEE Real-Time Systems Symposium, 2000.

[47] R. West and K. Schwan. Quality Events: A Flexible Mechanism for
Quality of Service Management. InProc. of RTAS, 2001.

[48] Y. Wiseman and K. Schwan. Efficient End to End Data Exchange Using
Configurable Compression. InProc. of ICDCS, Mar. 2004.

[49] M. Wolf, Z. Cai, W. Huang, and K. Schwan. Smart Pointers: Person-
alized Scientific Data Portals in Your Hand. InProc. of IEEE/ACM
Supercomputing Conference, Nov. 2002.

[50] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the Constancy
of Internet Path Properties. InProc. of the ACM SIGCOMM Internet
Measurement Workshop, Nov. 2001.

15

APPENDIX

A. Proof of Lemma 1

Proof: Let the service rate over pathj at timet berj(t).
Then the service rate cumulative distributionGj(rj) is:

Gj(rj) = P{r ≤ rj)} = P{rs ≤ rjs}
= P{b ≤ rjs} = F j(rjs). (5)

The probability thatxi packets will be served during the
scheduling windowtw is

P = P{xi ≤ rtw} = P{xi/tw ≤ r}
= 1− P{r ≤ xi/tw}
= 1−Gj(xi/tw) = 1− F j(xis/tw).

Note that this is essentially bounding the probability of
throughput violations.

B. Proof of Lemma 2

Proof:

Z =
{

xi − rjtw if xi > rjtw
0 if xi ≤ rjtw

(6)

Let fB be the pdf of available bandwidthb, then we have

E[Z] =
∫ +∞

−∞
Z · fB(b)d(b)

=
∫ xis/tw

0

(xi − btw/s) · fB(b)d(b)

= xi ·
∫ b0

−∞
fB(b)d(b)− tw

s
·
∫ b0

−∞
bfB(b)d(b)

= xi · F j(b0)−
tw
s
·M [b0] (7)

C. Proof of Theorem 1

Proof: Let the service rate streamSi receives on pathj
berj

i , and streamSi will obtain service raterj
i with probability

P j
i ,

L∑
j=1

P j
i = Pi. Xi is the actual number of packets delivered

for streamSi during the scheduling windowtw, and among
these packets,Xj

i packets are delivered through pathj.
The probability thatxi packets will be served during the

scheduling window for streamSi is:

P = P{xi ≤ Xi} = P{x1
i ≤ X1

i , ..., xL
i ≤ XL

i }

=
L∑

j=1

P{xj
i/tw ≤ Xj

i /tw}

=
L∑

j=1

P{xj
i/tw ≤ rj

i } =
L∑

j=1

P j
i = Pi· (8)

16

