
Energy-Efficient Device Scheduling through Contextual Timeouts ∗

Balasubramanian Seshasayee and Karsten Schwan

Center for Experimental Research in Computer Systems

Georgia Institute of Technology,

Atlanta, GA 30332, USA

{bala, schwan}@cc.gatech.edu

Abstract

Handheld and embedded hardware platforms are operating with an increasing number of internal
and external devices, potentially increasing energy consumption and more importantly, motivating the
need for energy management techniques for peripheral devices. This paper presents a platform-wide,
system-level approach to dynamic energy management, termed contextual timeouts. The approach ex-
ploits the fact that most current peripheral devices support the ability to switch to a low power mode
when not in use and automatically resuming operation upon use. The approach utilizes the energy
savings derived from such device suspensions, considering that the device suspend/resume actions them-
selves consume power and have associated latencies. Contextual timeouts do not require programmer
involvement. Instead, dynamic instrumentation is used to automatically capture and monitor the con-

texts (i.e., the execution points) at which programs make the service requests that cause device usage.
From such dynamic monitoring data, system-level algorithms predict future request times and manage
devices to best meet program needs under predicted behaviors. Adaptive methods for dynamic workload
characterization coupled with runtime techniques for request prediction result in experimentally obtained
energy savings of up to 50% over an aggressive timeout-based regime on a Linux-based iPAQ PDA.

1 Power Management for Peripheral Devices

Peripheral devices account for a sizable and increasing portion of the overall power consumption of embedded
platforms. For example, as discussed in [24], in a Toshiba 410 CDT, roughly 72% of the power budget is
accounted for by the peripherals (display, hard disk and wireless card). An inherent property of embedded
systems, therefore, is the ability to perform dynamic power management. Management techniques include
timeout-based methods for peripherals operating at the driver level [2] or higher level methods that assume
program-specified knowledge, obtained either through profiling [14] or explicitly disclosed by the program-
mer [11, 1]. Other techniques have relied on modifying scheduling policies [15] to aggregate tasks so as to
increase the idle periods of devices. Yet others compute the I/O schedule from a predetermined task schedule
in hard real-time systems[23]

This paper presents a platform-wide, system-level approach to dynamic energy management, termed
Contextual Timeouts (CT). CT uses program instrumentation to automatically capture and monitor the
dynamic contexts (i.e., the execution points) at which programs make the service requests that cause device
usage. Such runtime information is used to predict future request times, and those predictions are then
used to better manage peripheral devices. Energy management decisions in CT are based on the break-even
time of a device [8]. That is, CT decisions determine whether energy-wise, it is more beneficial to leave
the device in the current mode or to suspend it. Note that break-even time is device-dependent, since it
depends on factors like the energy needed to suspend/resume the device and the power savings attained in
its suspend mode. For example, an iPAQ with the microdrive used in our experiments takes roughly 2.1J
for a suspend/resume cycle, and the difference in power between idle (1.66W) and suspend modes (1.61W)

∗This work was funded in part by NSF-ITR award and Intel corporation

1

is about 0.05W . The total time duration for a suspend/resume cycle is about 1s. This translates to a
break-even time of 2.1J−1.66W ·1s

0.05W
, or roughly 9 seconds.

The CT approach to reducing the power consumption of peripheral devices (1) utilizes the energy savings
derived from driver-level device suspensions, assuming that devices expose their different power modes to
higher system levels, it (2) takes into account that device suspend/resume actions themselves consume power
and have associated latencies, and it (3) operates without program involvement or higher level specifications
about anticipated program behavior. In this paper, we demonstrate the efficacy of CT on a Linux-based
iPAQ PDA, showing energy savings of up to 50% over an aggressive timeout-based regime. In future work,
CT will be used in conjunction with power management methods for the processor cores of embedded
platforms [12, 26], but we have not yet investigated the joint effects of processor and CT-based peripheral
management. CT can also be used to improve the efficacy of purely system-level techniques for reducing the
power consumption of peripheral devices, like the device windows developed in our own earlier research [15].

The remainder of this paper first describes the notion of contextual timeouts, followed by an explanation
of their implementation for a Linux-based iPAQ handheld platform. A comparison to related work (Sec.
6) demonstrates the novel nature of the approach. Representative applications and an adaptive method for
classifying their workload behavior are discussed in Sec. 4. Microbenchmarks and evaluations with these
workloads are described in Sec. 5. Conclusions and a description of future work appear in Sec. 7.

2 Contextual Timeouts

2.1 Basic Concept

Timeouts are the common way of managing the power consumption of peripherals. Commonly realized in
the device driver, this technique operates under the assumption that when none of the processes require
the use of a device for some period of time, it is likely that none of them will need to use it in the near
future (i.e., temporal persistence). Unfortunately, timeouts operate without contextual information about
current process behaviors. This causes violations of the temporal persistence assumption, with the result that
timeouts may be ineffective, and in some cases, even deletirious to platform energy consumption (particularly
when using aggressive management techniques).

The core idea behind contextual timeouts (CT) is to timeout and suspend devices based on the current
contexts of the executing user-level processes. For the purposes of this paper, a context is simply defined as
a specific point in a program that may generate a system call. The following code snippet illustrates the
idea (the contexts are marked with comments) for the read and fread calls in an application program. The
read system call clearly constitutes a program context. fread is labelled as a second context since it ‘may’
translate to a read call.

...

do {

i = read(fd, buf, count); /* Context 1 */

count += 10;

fread(buf, count, 1, fp); /* Context 2 */

} while(...);

...

This simple example establishes two important properties of the contexts used in CT: (1) a program con-
text simply establishes that a system call is possible at some execution point in the program, and (2) except
for synchronous system calls and device accesses, context execution does not deterministically imply device
access. Nonetheless, as shown later, even for (2), it is possible to invoke device power mode management
with contexts, involving a timeout decision at each context after computing the expected next use of the
device.

Contextual timeouts have an inherent advantage over conventional timeouts in that, if device idle periods
are known to be very long, the device will be suspended immediately rather than having to wait for its
assigned timeout duration. Moreover, when the device’s idle period is only slightly larger than its timeout
value, the use of conventional timeouts could cause negative energy savings. This happens when the time
spent in low power mode is less than the device’s break-even time. This is explained by the following analysis.

Device usage

Timeout

Contextual timeout

Contextual timeout
with proactive wakeup

TTTT0 2 31

On

On

On

Off

Off

Off

Time

Figure 1: A Comparison of Various Approaches

Figure 1 shows an example of a process that ceases to use a device at time T0, and resumes its use at time
T2. With a conventional timeout policy, the device will stay on till the timeout expires (say at T1), at which
point it will be put in the low power mode. Once the process issues a service request to the device, though,
it takes some time for the device to be “woken” up, and this introduces a latency (T3−T2). This latency also
exists with CTs, but the idle time is much larger since CT doesn’t wait before switching the device to a low
power mode (if the estimated idle time is expected to exceed the break-even time, the device is suspended
immediately). The device energy savings from CTs is thus more than that of timeouts by P ·(T1−T0), where
P is the device power drawn under normal mode in excess of that under the low power mode. Additionally,
when the break-even time is larger than T3 − T1, negative energy savings will be observed from timeouts. If
the break-even time happens to be even more than T2 − T0, CTs will not even suspend the device with a
correct prediction. The extra latency incurred with CTs can be avoided by resuming the device to normal
mode ahead of its use, taking the resume latency into account. This scenario is illustrated last in the figure,
where the device idle time is reduced, but the latency is avoided.

The remainder of this section explains the three basic elements of the CT implementation, which are (1)
obtaining and representing the contexts of the executing processes, (2) monitoring device usage under the
obtained execution contexts, to enable predictions of future usage, and (3) using the predictions to decide
whether devices need to be suspended. Explanations initially assume synchronous (blocking) system calls
and device accesses and are then refined to take into account asynchronicities. These elements are depicted
in Fig. 2, where contexts are shown as small shaded boxes in executing processes, context representations
and monitoring information are stored in a system-level context cache, and decision methods are realized for
each device for which context information is maintained.

2.2 Obtaining the Context

The current context of a process is determined by the current point in the program being executed. Since we
are interested only in the devices used by a process and since device accesses are mediated by the operating
system through system calls, we determine processes’ contexts by monitoring their system calls. We have
implemented two different approaches, both of which are described below.

In the first approach, annotations inserted into programs are used to identify contexts, and the source
code of the program is run through an annotator before it is compiled. Annotations surround both system
calls and standard library functions that invoke system calls like fread() 1. Each annotation carries two
identifiers - a unique integer that identifies the annotation and one that identifies the device associated with
its target system call. For example, as shown in the code snippet below, a send() call is associated with the
network device and the annotations are inserted surrounding it.

1In the remainder of the paper, we use the term system call to refer to all such cases

Switch ?

Device Next useCntxt
Dev 1

Dev 2

Executing Context cache Devices

Obtain context

processes

Caching and prediction Decision

Switch ?

Figure 2: Contextual Timeouts - Basic Architecture

...

annotation(23, NET_DEVICE);

send(sockfd, buf, buflen, 0);

annotation(24, NET_DEVICE);

...

This implementation realizes annotations via additional ‘annotation’ system calls, used to convey the
unique context identifier and the associated device, to the operating system kernel. Since the annotations are
inserted automatically at compile time, programmer intervention is unnecessary, but the approach requires
both source code availability and the recompilation of application programs.

The second approach eliminates the need for program sources, program recompilation, and additional
system calls, by identifying contexts from ‘within’ system calls. This involves ‘wrapping’ system calls in
the kernel with annotation functionality that performs the following actions: (1) it finds the calling process’
call stack from the current stack pointer, (2) it computes the unique context identifier for each context by
summing all current call stack return addresses. As with the first implementation, this approach does not
involve programmer or user intervention. In addition, the context obtained is more accurate. Specifically,
with annotation-based approach, two different points in the program may be identified as the same context
depending on how the annotated function is called. For example, consider the case when all read() calls in
a program are made through a wrapper function, as shown below:

int myread(int fd, char *buf, int size)

{

...

annotation(15, DISK_DEVICE);

retval = read(fd, buf, count);

annotation(16, DISK_DEVICE);

...

}

void func1 (void) void func2 (void)

{ {

... ...

x = myread(fd, buf, cnt); y = myread(fd, buffer, count);

... ...

} }

The annotations are now inserted inside the wrapper function. The actual context of the call is now
lost, since two distinct locations that call this wrapper function (at func1 and func2) appear as the same
context in the kernel, with the annotation-based approach. With stack-based approach, the two contexts

get distinct context identifiers due to differences in the call stack. But the call stack approach requires that
all device-related system calls be wrapped, resulting in additional changes to the kernel.

This paper uses the annotation-based approach for most of the experimental results shown in Sec. 5.
Feasibility of the call stack-based approach and the performance differences inherent in the two approaches
are evaluated with a realization of the call stack-based approach for the connect system call.

2.3 Prediction

Prediction is based on dividing each process context into an ‘entering’ and a ‘leaving’ context, corresponding
to the beginning and the end of the associated system call. With the annotation-based approach, this simply
implies inserting annotations before and after the system call. With the stack-based approach, the same
effect is achieved by setting an extra flag when the system call is entered and resetting it just before the
system call returns. The entering and leaving contexts demarcate the period during which the device would
be needed. Note that this is violated by non-blocking calls and when system calls are buffered, as discussed
in further detail in Sec. 2.5.

The goal of the prediction module is to determine, at each context, when the associated device will be
used next, based on the information maintained for that context. Given some leaving context, the time
duration for the next entering context for the system call associated with the same device is the device’s
expected time of next use. For simplicity, entering and leaving contexts are treated in the same fashion,
where for an entering context, the time to next device usage degenerates to zero (i.e, the entering context
itself signifies device use).

The core data structure used by the prediction module is the context cache. The context cache is a per-
process, per-device cache used to cache the contexts encountered in the executing process. It is implemented
as a direct-mapped cache, indexed by a hash-value of the context identifier. Each cache entry contains, apart
from the context identifier, the running estimate of the expected duration till the next access of the device
(Tnext use), and the recent measurement of this quantity (Tmeasured).

The algorithm used for prediction is illustrated by the flowchart in Fig. 3. It proceeds in three steps.
First, the cache entry corresponding to the current context identifier is created, if it doesn’t already exist.
Next, the value of Tmeasured is calculated as follows:

A leaving context sets Tmeasured = jiffies

An entering context sets it to Tmeasured = jiffies−Tmeasured

thus storing the time elapsed between a leaving context and the next entering context. Finally, during a
leaving context, Tnext use is updated based on the recent estimate (Tmeasured), using exponentially weighted
moving average (EWMA)–i.e., Tnext use = α · Tnext use + (1 − α) · Tmeasured. Of course, for an entering
context, Tnext use = 0. EWMA is chosen over other time series estimators like ARIMA for the flexibility
and the low overhead it provides. Note that the same approach is used in [8] to estimate idle periods. In
our implementation, we use an α value of 0.5, but this can be changed to lower or higher values for faster or
slower responses to changes. The value of Tnext use is now used as the idle period estimate in the decision
module.

2.4 Decision

The decision module runs when the execution of an entering/leaving context has updated the context cache.
The decision module determines whether any of the devices should be suspended. The algorithm used is
straightforward. In each leaving context, for each device not already in low power mode, if T ′

next use >

Tbreak−even, the device is immediately suspended, otherwise no action is taken. The only quantity needed
for the decision, therefore, is T ′

next use. This is computed from the Tnext use values of all the processes,
adjusted for the time elapsed from their respective contexts, to find the time period left for the earliest
access of the device by any process. Also, in each entering context, if the device is in low power mode, it is
switched back to normal mode. The effects of these actions are simply that (1) in leaving contexts, a device
is turned off when such a decision is deemed beneficial, and (2) in entering contexts, a device is turned on as
soon as possible, even before the system actually accesses the device. A predictive method[8] can be used to

N

context ?
Entering

Update the estimated
idle time in the cache

location, based on
current jiffies value

Is
context_id
== cached

context_id ?

Insert contents of
current context at
the cache location

Record current jiffies
value in the cache

location

To decision module

context_id, device_id
Obtain

Compute cache index
by hashing context_id

Y

N

Y

Figure 3: Flowchart Describing the Prediction Procedure

resume a device from suspended state after a time period Tnext use, making the ”wakeup” decision similar
to the timeout one, but since this value is largely dependent on the accuracy of the EWMA model, this was
found to be effective only for periodic workloads (discussed in Sec. 4).

2.5 Asynchronous and Buffered Device Accesses

So far we have discussed our technique assuming the ideal case where each device-related system call results
in an access to the device and the period of access is limited to within the period of the call. This holds for
calls like blocking recv, for example. However, it is not true in many other cases, including for non-blocking
calls like send where the call may immediately return before the device finishes servicing the request, or due
to buffering, commonly encountered in file system calls.

Non-blocking calls are handled using timers. For each non-blocking call, a timer is created as the system
call returns. The handler for this timer checks to see if the device is done servicing the request, through
polling. If the next system call that makes use of the same device is called by the process, the timer is
reset and the estimated Tnext use value is set to zero (since the device doesn’t get a chance to become idle).
Otherwise, we mark an extra field in the cache entry to indicate that the start time is the moment when
the device completes the request rather than when the system call returns. Similarly, the decision module is
invoked not in the leaving context when the system call returns, but in the timer handler, when the device
is known to be done servicing the request. The polling interval is currently chosen to be one second, which
is sufficiently large to allow non-blocking operations to finish up their requests in most cases, and cause low
performance overheads, yet small enough to not ignore any device idle times. This has been implemented in
Linux using the kernel timers. Non-blocking calls are marked so by the annotator by setting an extra field
(not shown in previous annotation examples).

Buffering is common in file system calls like read, where each system call need not cause a device access.
We account for these cases by maintaining additional fields in the cached entities, termed current misses

and expected misses. The first quantity tracks the number of misses since the last hit (by hit, we mean a
system call that leads to a device access), and is used as a measure of the frequency of the device accesses.
The second quantity, expected misses, is used as the running estimate for this quantity. It is replaced
by the previous quantity during every device access. Long-running processes that make repeated accesses
with some regularity have a constant expected misses value. For instance, a sequential read of a file will
cause the buffer cache to fetch the file contents in chunks, and if a constant amount of data is read in

during every read() call (which is typically the case), it leads to a constant current misses. Based on this
quantity, a fairly reliable value of Tnext use can be obtained using the equation Tnext use = (expected misses

- current misses) · Tnext use/expected misses (i.e., the fraction of Tnext use that is remaining, before
encountering a hit). Note that this mechanism cannot be used for write related calls, since write-related
device accesses occur outside such system calls, due to bdflush and kupdated daemons, depending on the
number of dirty buffers in the buffer cache. Device writes are not synchronized with system calls and hence,
are treated as events “outside” our control. We minimize the impact of such events by adjusting the bdflush

parameters and the kupdated interval to minimize write frequency. These parameters are modified to reflect
the aggressiveness of the power management scheme (which in turn is decided by the time-out values).
Alternatively, all write calls to a device can be batched together, as proposed in [19].

3 Implementation

Contextual timeouts have been implemented in the Linux kernel 2.4.19, patched with rmk6 and pxa13.
The changes to the kernel involve addition of the annotation() system call, which implements the context
cache, prediction and decision modules, and support for non-blocking and buffered calls. In addition, the
implementation of the buffer cache and the network stack are modified to update the context cache when
device accesses complete. Currently, only PCMCIA devices are supported, and pcmcia suspend() and
pcmcia resume() are used to switch between the device power modes.

The annotator is a Perl script that operates on C source code to detect the device-related system calls and
add the annotations. It also tracks file descriptors to identify the device used. It uses a database (currently
23 entries) containing system call–device relationships, and the attributes of the system call (blocking/non-
blocking), to add the appropriate annotations. The call stack approach is implemented on a single system
call (connect), determining the context before and after the system call, to demonstrate its feasibility. A
full blown stack based implementation will have all device-related system calls modified this way.

4 Workloads and Applications

The CT approach targets applications running on battery-powered devices like handheld PDAs or cellphones.
Consequently, the application benchmarks chosen to evaluate the approach emulate the typical usage of such
devices:

• Web browser - we use a simple wget-based WWW browser. The browser makes HTTP requests for
HTML and GIF files (less than 20KB), and caches the response pages on the device’s hard disk. User
traces from [6] are used to drive the requests. As one would expect, the behavior of this application is
bursty in nature. Inter-access times vary between 1 second to over two minutes.

• MP3 player - a streaming MP3 player using the mpglib library is used to play an MP3 file (128kbps,
44kHz stereo) over HTTP. This application uses only the network device, and it exhibits strongly
periodic behavior.

• JPEG viewer - an application making use of libjpeg, which reads a few JPEG files (640x480, about
350KB each) from the disk and decodes them. This has the same behavior as the slideshow program
commonly found in cellphones and PDAs. The application spends most of its computing time on the
decoding portion of the program. We assume the user input to be Poisson-distributed [18].

• Scanner - this application emulates the behavior of scanning devices (e.g., bar code readers) relevant
in the handheld application domain. In our case, the data read is transferred to a remote server over
the network. Again, user input is Poisson-distributed (λ = 10, each data is 100 chars long, 128KB
buffer). However, since buffering is commonly used in such applications, this leads to a smoother, less
bursty resource usage pattern.

The applications’ resource usages are as outlined in Table 4.

Application Disk device Network device
Read Write Send Recv

WWW Browser Minimal Yes Minimal Yes
MP3 Player No No Minimal Yes
JPEG viewer Yes No No No
Scanner No No Yes No

Table 1: Applications - Resource Requirements

Workload Description Example
Periodic periodic use of a resource (ideal case) streaming audio
Bursty resource used extensively for a brief period,

followed by long periods of inactivity
web browsing

Periodic with jitter more practical scenario of periodic work-
load

streaming audio un-
der network load

Random usage pattern is random
Random with large
idle periods

same as above but idle periods are large

Table 2: Description of Workloads

To understand the effectiveness of contextual timeouts and compare it with other techniques, it is impor-
tant to determine the kinds of workloads that are suitable/unsuitable for the different techniques, based on
their usage patterns. Consider the simplest case of a single process workload and a single device. Ignoring
the cases when the device is always/never used, workloads can be classified into periodic and aperiodic ones,
based on their usage patterns. Periodic workloads issue device requests at fixed time periods. Soft real-time
applications fall under this category. So do multimedia applications since they typically operate on large
data in fixed chunks. Aperiodic workloads can be bursty or random. The former typically occurs when there
is user input involved – for example, a mail client is used to send/check mails with periods of inactivity
inbetween when the mails are read/organized. The latter is used to model the worst case scenario when idle
times cannot be predicted.

Table 2 summarizes the different workloads described above and their characteristics.
Based on this, we classify the above workloads into regular and irregular ones, with the expectation that

regular workloads are largely more predictable in terms of their device usage behavior. Periodic workloads
naturally fall into the regular workloads category, and so do periodic workloads under jitter. Even among
aperiodic workloads, some workloads can fall into the regular category. For instance, if the device access
is random but the time intervals between the device accesses are large – more specifically, greater than the
break-even time, again, our prediction will determine that the expected idle period is large enough to warrant
a power mode switch, however inaccurate the prediction value itself might be. Similarly random accesses
whose intervals are consistently below the break-even time can also be classified with regular workloads,
since the prediction determines that no power mode switches are possible. Irregular workloads are those
whose idle periods vary between values less than and more than the break-even time period.

Adapting to irregular workloads While significant energy savings can be attained from our technique
on regular workloads (due to better prediction), the same cannot be said about irregular ones. This is typified
by a workload with bursty accesses between long idle periods. In this case, the EWMA based prediction
algorithm fails to track the idle periods accurately [29]. Conventional timeouts, however, prove to be very
effective in this case, since they can selectively timeout during idle periods and ‘stay on’ during bursty
periods. For this purpose, we adopt an adaptive scheme. The scheme optimistically assumes workloads to
be regular and therefore, uses the contextual timeouts. At the same time, a low overhead mechanism is
used to track the regularity of the current workload. If found to be irregular, we switch to conventional
timeouts. We switch back to contextual timeouts whenever the workload again becomes regular. Regularity
is tracked using a 32-bit field irregular bitvector in the cache entry. This field is initially set to zero,

and its most significant bit is set to 1 whenever the Tnext use field is found to switch from a value greater
than the break-even time to one less than that or vice versa. Also, this field is shifted right by one bit
during every encountered execution context, thus exponentially decaying over time. Therefore, the value
of irregular bitvector serves as an estimate of the current workload’s degree of irregularity (a higher
numerical value indicates greater recent irregularity). This value is compared to a threshold to determine if
the workload is sufficiently regular, and consequently, whether contextual or conventional timeouts should
be used. The threshold value, again, could be chosen to reflect the desired level of aggressiveness.

5 Experimental Evaluation

Experiments are run on the modified Linux 2.4.19 kernel, on an iPAQ h3800 with a sleeve. Energy mea-
surements are carried out by measuring the voltage and the current drawn by the iPAQ, using an ADC-212
Picoscope oscilloscope, sampling at 1kHz frequency.

5.1 Workloads

The first set of experiments are carried out on the set of workloads discussed in Table 2. Each workload is
run (1) without power management, (2) with a timeout based and (3) a contextual timeout based scheme.
For comparison, we also compute the estimated energy consumption if (4) an oracular power management
technique were used. This is obtained analytically by assuming that a device that is in a low power mode is
switched to the normal mode in advance by an oracle so that no time is lost in the switching processes, with
the end result that the total time consumed in the oracular model is the same as that without any explicit
power management. That is, an end user will not be able to perceive any difference between oracular vs. no
power management.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 20000 40000 60000 80000 100000 120000

P
ow

er
 (

W
)

Time (ms)

Raw
CT (2s)

Timeout (2s)

(a) Periodic workload

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 80000 100000 120000 140000 160000 180000 200000

P
ow

er
 (

W
)

Time (ms)

Raw
CT (2s)

Timeout (2s)

(b) Workload with large random idle times

Figure 4: Regular Workloads

Experiments use an 802.11b wireless PCMCIA card, which has a break-even time of about 1 second. The
timeout period for both the conventional as well as contextual timeouts is set to 2 seconds. Experiments
were conducted multiple times for each scenario, using the same seed values for random number generators
(rand()), and variations were found to be negligible. Each run was performed over a period of five minutes.
The synthetic workloads were constructed as follows. The workload opens a TCP/IP socket and starts a loop
where it receives 100 bytes of data from a server (running in a remote machine), and performs computations
on the data, and so on. The amount of computations is varied depending on the type of workload, thus
varying the idle times between device accesses. The periodic workload has a period of about 13 seconds.
Jitter has this value varied randomly by ±10%. Random workload’s idle times are uniformly randomly

 1

 1.5

 2

 2.5

 0 20000 40000 60000 80000 100000 120000

P
ow

er
 (

W
)

Time (ms)

raw
CT(2s)

Timeout(2s)

Figure 5: Irregular Workload - Random Idle Times

generated between 0-20 seconds. For bursty workload, the idle times were picked from a HTTP trace [6].
Large random idle times are used for the last scenario. The display of the iPAQ is turned off for these
measurements.

Fig. 4 shows the power characteristics for a periodic workload and one with large random idle times.
In each graph, the power consumption over time with various schemes (no power management, convextual
and conventional timeouts) are shown. In the periodic case, the period between device accesses is about 12
seconds. It can be observed that CT doesn’t switch the power mode during the first opportunity – this is
because the Tnext use value is zero during the initial context. Once this value is estimated, we can observe
that in subsequent opportunities it is able to switch power modes immediately. The delay associated with
the timeout scheme during each context is also apparent. Similarly, with the next scenario shown, the idle
times vary widely, but are always well above the timeout value. In both the cases, we find the timeout
scheme to trail the CT scheme in device switches. This is due to the initial power mode switches avoided by
CT when it encounters the contexts for the first time, that gives it a head start. However, this difference is
not considered in the study for regular workloads, when the execution times for the schemes are compared.

Next, the behavior of the irregular workload (with random idle times) is shown in Fig. 5. CT is shown
with a solid line while conventional timeout is shown in dashed line. In this case, CT observes irregularity
in the idle times right from the beginning, and hence switches to conventional timeouts immediately. After
about 30 seconds, we see CT performing this switch and staying with conventional timeouts (due to high
variations in the estimated idle times) throughout. Starting from the 30 second mark, the timeout scheme
“lags” behind CT, but except for this lag, the behavior is the same.

The energy consumed and the execution times for the workloads with each of the techniques are summa-
rized in Fig. 6. The normalized energy values shown are the sum of the dynamic energy of the CPU and the
energy consumed by the wireless card, scaled such that the said energy consumed is 100 units when no power
management is in place. Hence, all values reported are percentage energy values normalized with respect
to no power management. Similarly for the execution times. As mentioned before, for the regular cases,
the energy and execution times are discounted for the initial “headstart” achieved by CT when it starts to
predict the idle times (the numbers for the no power management case were unchanged).

The results indicate that CT matches oracular energy management when workloads are regular. As
discussed in Sec. 4, this is the case with the periodic workload and the random workload with large inter-

(a) Normalized energy (b) Normalized execution times

Figure 6: Results on Workloads

request intervals. On a periodic workload with jitter, CTs do not match the oracular technique, but still
perform better than conventional timeouts (by 13%). In this particular case, the presence of jitter causes the
inter-request interval to fluctuate between values that are less than and greater than the break-even time.
Note that if the jitter caused the intervals to be consistently larger than or smaller than the break-even time,
CTs would be able to match the oracle. On the other hand, with bursty and random workloads, the CT
approach fails to find any pattern and so reverts to a conventional timeout based approach (causing a 6%
negative difference in energy savings). For the bursty and random workloads, the measurements shown were
taken over the first few iterations (i.e., around five minutes of execution time), hence we see a difference in
energy consumption between the CT and conventional timeouts. Over time, as CT switches to conventional
timeout, this difference will disappear. In these experiments, we are able to match the oracle only because no
power is consumed by the devices when they are suspended. If some non-zero power is still consumed in the
low-power mode, CTs cannot match the oracle, as the extra execution time will account for a corresponding
amount of energy due to this residual power.

The execution times for both of the timeout-based techniques are larger than the default case (worst case
20% with CTs and 30% with timeouts), due to the delays experienced in waking up the device. They are
almost the same for both on average, but with the irregular workloads, conventional timeout fares better
because of fewer “wrong” switches – i.e., switches made when the idle period is less than the break-even
time. As mentioned before, over the long run, this difference too will vanish once CT adapts to conventional
timeouts after determining that its predictions turn out wrong.

5.2 Applications

The next set of experiments compares contextual timeouts against aggressive or less aggressive timeout
mechanisms (realized through small or large timeout values, respectively). Instead of the workloads, we
use the actual applications discussed previously in Sec. 4. For this set of experiments, we make use of two
devices - a CF-based IDE hard disk [13], connected to the iPAQ sleeve via a CF-to-PCMCIA adaptor, and
an 802.11b PCMCIA card [28]. Only the energy consumed by these devices (with the dynamic energy of
the CPU) are reported in the results. In addition to the individual applications mentioned in the list, the
following combinations are also run:

• MP3 player and WWW browser - a regular and an irregular application,

• MP3 player and Scanner - two regular applications using the same resource, and

• Scanner and JPEG viewer - two applications using different resources.

The contextual timeout and the aggressive timeout each have timeout values set to 2.7 seconds and 11
seconds for the network and disk devices, respectively. In the conservative timeout case, the timeout values
are 10 seconds and 15 seconds, respectively. The disk device, an IBM microdrive is found to have a break-
even time of about 10 seconds. The high break-even time is due to effective inbuilt power management
in the device. For instance, the drive has a hardware-based APM wherein the disk can be spun down
immediately after it completes servicing a request. Oracular power management is not included in these
results, since unlike with workloads, the device accesses with applications are complex, and computing the
oracular behavior is not as straightforward.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50000 100000 150000 200000 250000 300000 350000 400000

P
ow

er
 (

W
)

Time (ms)

Raw
CT

Timeout

(a) WWW browser

 1

 1.5

 2

 2.5

 60000 80000 100000 120000 140000 160000 180000 200000

P
ow

er
 (

W
)

Time (ms)

Raw
CT

Timeout

(b) Streaming player

Figure 7: Applications

The behavior of the browser and the MP3 player are shown in Fig. 7. The browser is clearly bursty.
As with the random workload, CT switches to conventional timeouts after around 200 seconds, after which
the behavior of both are identical. The lost opportunities to timeout thus far, causes a difference in overall
energy consumption (Fig.8). One can also observe that the disk is being switched to its low power mode
in both the cases fairly early, but remains on throughout the experiment with the default case. The MP3
player follows the periodic workload perfectly, as fixed chunks of the file are read and decoded.

Fig. 8 shows the normalized energy and execution times of these experiments. In all cases except those
involving the browser, contextual timeouts perform as good as, or better than, the best of the conventional
timeouts. The best case scenario occurs with the scanner application, when the contextual timeout approach
saves 50% energy over a conventional timeout scheme, which by itself, accounts for a 50% savings over the
base case. Due to the buffering, the scanner application is almost periodic, despite the input following
Poisson-distribution. The energy savings in this case are even better than the more periodic mp3 player
(74% vs 55%) due to the more frequent accesses to the device with the scanner (the average idle time is 35
sec. with the mp3 player and roughly 10 sec. in the scanner). This translates to more opportunities for
the CTs, resulting in better energy savings. Note that in absolute terms energy savings are not “better”
due to frequent power mode switches. But since CT saves more energy than timeouts for each switch, the
relative energy savings increases. Another effect is the negative energy savings observed with a large timeout
value, on the scanner application. Since this value is very close to the observed average idle time for the
application, the unnecessary power mode switches cause this phenomenon. The same effect is also observed
with the timeout scheme in the jpeg application. In all other cases, the savings are not as significant. In
fact, we also observe negative energy savings with CTs in the browser scenario as noted before.

With mixed applications, the combined effects of the different accesses can be observed. In the first two
cases of mixed applications, the applications share the same device, whereas with the third case they use
different devices. Not surprisingly, the energy savings obtained in the first two cases are worse than that

(a) Normalized energy (b) Normalized execution times

Figure 8: Results on Applications

with each of the individual applications themselves (best case savings 11%), because no matter what scheme
is used, the time interval between accesses to the device is reduced, thus presenting fewer opportunities to
exploit the idle times. Particularly, scanner and mp3 player, which are both regular and have good energy
savings individually, show significant drops in energy savings when run together (74% and 55% vs. 11%).
When the applications use different devices, as in the last case–viewer and scanner applications, the energy
savings is better than the viewer application, but worse than scanner (0% and 74% vs. 24%). Again, this
follows intuition, as the viewer contributes little to the overall energy savings, but adds up to the overall
energy consumed.

5.3 Overheads

Microbenchmarks indicate that the annotation-based approach takes about 0.67µs (the cost of a system call)
to obtain the context, whereas with the stack-based approach it is 5µs. 2

Our algorithm is linear over the number of processes (p) and the number of devices (d), and is of
complexity O(p ·d). This computation is performed every time a device-related system call is executed. The
resulting overhead of the implementation is negligible. To illustrate, the MP3 player application causes a
total overhead of about 10ms due to the algorithm when the device is suspended on 11 occasions. Further, in
all experiments, the device I/O variations are found to be much greater than algorithm overhead, so increases
in execution times with contextual timeouts are primarily due to device power mode switches. This is also
apparent from the fact that in many cases, the execution times of contextual and conventional timeouts are
the same.

6 Related Work

Software controlled energy management, beyond timeout based schemes [5] is explored in multiple recent
efforts (e.g., [3] and [25]). [22] recognizes the high fraction of energy consumed by the network interface
in handheld devices and recommends aggressive energy management of devices to offer power savings while
minimizing user-visible latency. A currency-based system for managing, accounting for, and distributing
energy is discussed in [30].

2Measured for a program with 10 stack frames. Note that the cost of the stack-based approach depends on the depth of the
call stack, and increases by a few instructions for each stack frame.

Efforts to manage the energy consumption of peripherals have been undertaken both (1) with the involve-
ment of the applications using them, as well as (2) at lower layers and transparent to applications. Examples
of (1) include [4], where a profile-based approach is used to study the tradeoff between an application’s
fidelity (based on the quality of the data), and system power consumption. This is then used, along with
the history of the application’s behavior, to dynamically adapt according to the desired battery lifetime.
A similar approach is used in [14], where the power consumption of an application, for a fixed input and
environment, is predicted using its history. In [11], applications inform the operating system about their
device usage through a set of API calls, and this information is used to control the power modes of devices.
In [1], the operating system exposes to applicatins the power modes of devices. Adaptive applications (i.e.,
those that can use one device instead of another as needed) can exploit this information for their power-aware
device usage. In [27], I/O system calls made by the applications are marked deferred/abortable, so as to
allow such calls to be batched together, thus extending low-power idle periods. The main impediment in all
these approaches is their reliance on changes to applications’ sources. This limits their general utility and
additional burdens on programmers. In contrast, our approach does not require programmers to be aware
of energy management at all, and it works seamlessly with existing programs.

Efforts in (2) include [2], where service requests reaching a device are modelled as finite-state markov
chains and then used to predict future accesses. Similarly, [20] uses renewal theory to model service requests
to a wireless LAN device, assuming a pareto distribution of user input. Since these schemes are oblivious to
the context of the executing application, their predictability is limited by the accuracy of the models used.
In CTs, the context is obtained at the application level itself.

Our approach relies on predictions to passively manage peripherals (i.e., without causing any changes
to the other parts of the system). There have been many efforts where subparts of the system are actively
managed for reduced energy. In [9] and [10], power management of an 802.11 wireless device is carried out
by redesigning the communication protocol between the device and the access point. [27] actively batches
device service requests to increase low power idle periods. In [7], the compiler is responsible for transforming
the application so as to batch requests, whereas this is accomplished by modifying the operating system’s
scheduling policy in [15]. In [23], a predetermined task schedule in a real-time task is used to generate an
energy-efficient schedule for the I/O devices such that task deadlines are not missed. CTs are independent of
and makes no assumptions about the schedule used, but are unsuitable for hard real-time systems. [21] and
[8] propose using support ASICs and other VLSI design techniques to manage system peripherals so that the
main processor can be switched to a low power mode during idle periods. The latter uses EWMA to estimate
CPU idle times. A problem discussed therein is how to deal with a short idle period following a long one, that
is, how to deal with an overestimation of the idle period. The problem is solved by saturating the estimated
idle-time using a saturation constant. In contrast, in this paper, frequent mispredictions are assumed to be
caused by irregular applications. Irregularity is addressed by reverting to conventional timeouts as necessary.

7 Conclusions and Future Work

This paper introduces the notion of contextual timeouts (CTs) for aggressive energy savings in the periph-
erals of handheld devices. An implementation of CTs addresses both application workloads well-suited to
the CT approach and workloads better addressed with conventional timeout techniques. Experimental eval-
uations utilize a range of workloads representing typical usages of handheld or portable devices. With these
workloads, CT is compared against both an established energy savings technique and the ideal case of an
oracular technique. Evaluations also utilize actual workloads of real world application, again demonstrating
the utility of the CT approach to peripheral power management.

Not addressed by our research is the user-driven management of display subsystems on handheld devices,
since such management must take into account user behaviors and desires. A representative UI-based
approach of value here is described in [31]. Further, beyond power savings, there are additional effects of
frequent power mode transitions in devices, such as device lifetime or longevity. Such reliability issues are
an interesting topic for future studies.

Two key steps remain to be undertaken in our future work. The first is to generalize CT’s mixed
compiler- and system-based approach to reducing the power consumption and managing MANET (Mobile
Area NETwork) systems. That is, we wish to extend the per-platform solutions presented in this paper to the

distributed and mobile systems domain. The concrete scenarios studied in our group are from the robotics
domain, considering emergency rescue scenarios with distributed sensors and autonomous robots [17]. The
second step involves combining CT with an orthogonal DVS/DFS technique to achieve a system-wide overall
energy management service. Toward this end, we have already successfully integrated CTs with the device
windows approach for aggressive device management described in [16].

References

[1] Manish Anand, Edmund Nightingale, and Jason Flinn. Ghosts in the machine: interfaces for better
power management. In Proceedings of the 2nd international conference on Mobile systems, applications,

and services, 2004.

[2] E. Chung, L. Benini, A. Bogliolo, Y. Lu, and G. De Micheli. Dynamic power management for nonsta-
tionary service requests. IEEE Transactions on Computers, 51(11):1345–1361, 2002.

[3] Carla Ellis. The case for higher-level power management. In HOTOS-7, 1999.

[4] Jason Flinn and M. Satyanarayanan. Managing battery lifetime with energy-aware adaptation. ACM

Transactions on Computer Systems, 22(2):137–179, 2004.

[5] Richard Golding, Peter Bosch, and John Wilkes. Idleness is not sloth. Technical report, HP Labs, 1996.

[6] Steven D. Gribble. Uc berkeley home ip http traces, 1997. http://www.acm.org/sigcomm/ITA/.

[7] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini. Code transformations for energy-efficient
device management. IEEE Transactions on Computers, 53(8):974–987, 2004.

[8] Chi-Hong Hwang and Allen Wu. A predictive system shutdown method for energy saving of event-driven
computation. ACM TODAES, 5(2):226–241, 2000.

[9] Robin Kravets and P. Krishnan. Application-driven power management for mobile communication.
Wireless Networks, 6(4), 2000.

[10] Robin Kravets, Karsten Schwan, and Ken Calvert. Power-aware communication for mobile computers.
In Proceedings of MoMuC-6, 1999.

[11] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Power-aware operating systems for interactive
systems. IEEE Transactions on VLSI Systems, 10(2):119–134, 2002.

[12] Giovanni De Micheli and Luca Benini. System level power optimization: techniques and tools. ACM

Trans. Design Automation of Electronic Systems, 5(2):115–192, 2000.

[13] Ibm microdrive. http://www.hitachigst.com/tech/techlib.nsf/products/Microdrive 1GB.

[14] Dhushyanth Narayanan, Jason Flinn, and M. Satyanarayanan. Using history to improve mobile appli-
cation adaptation. In Proceedings of WMCSA-3, 2000.

[15] Ripal Nathuji and Karsten Schwan. Reducing system level power consumption for mobile and embedded
platforms. In Proceedings of ARCS, 2005.

[16] Ripal Nathuji, Balasubramanian Seshasayee, and Karsten Schwan. Combining compiler and operating
system support for energy efficient i/o on embedded platforms. In Proceedings of SCOPES, 2005.

[17] Keith O’Hara and Tucker Balch. Distributed path planning for robots in dynamic environments using
a pervasive embedded network. In AAMAS, 2004.

[18] Vern Paxson and Sally Floyd. Wide-area traffic: The failure of poisson modeling. ACM SIGCOMM,
24(4):257–268, 1994.

[19] M. Rajagopalan, S. Debray, M. Hiltunen, and R. Schlichting. Cassyopia: Compiler assisted system
optimization. In HOTOS, 2003.

[20] T. Simunic, H. Vikalo, P. Glynn, and G. De Micheli. Energy efficient design of portable wireless systems.
In Proceedings of ISLPED, 2000.

[21] Mani Srivastava, Anantha Chandrakasan, and Robert Brodersen. Predictive system shutdown and other
architectural techniques for energy efficient programmable computation. IEEE Transactions on VLSI

Systems, 4(1):42–55, 1996.

[22] Mark Stemm, Paul Gauthier, Daishi Harada, and Randy Katz. Reducing power consumption of network
interfaces for hand-held devices. In Proceedings of MoMuC-3, 1996.

[23] V. Swaminathan and K. Chakrabarty. Energy-conscious, deterministic i/o device scheduling in hard
real-time systems. IEEE Trans. on Computer-Aided Design of Integrated Circuits & Systems, 22:847–
858, 2003.

[24] Sanjay Udani and Jonathan Smith. The power broker: Intelligent power management for mobile com-
puting. Technical report, University of Pennsylvania, 1996.

[25] Amin Vahdat, Alvin Lebeck, and Carla Ellis. Every joule is precious: the case for revisiting operating
system design for energy efficiency. In Proceedings of the 9th workshop on ACM SIGOPS European

workshop, 2000.

[26] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu energy. In Proceedings of

USENIX Symposium on OSDI, 1994.

[27] Andreas Weissel, Bjorn Beutel, and Frank Bellosa. Cooperative i/o: A novel i/o semantics for energy-
aware applications. In Proceedings of OSDI-5, 2002.

[28] Lucent orinoco silver wlan card. http://www.orinocowireless.com.

[29] P. Young. Recursive estimation and time-series analysis, 1984. Springer-Verlag.

[30] Heng Zeng, Carla Ellis, Alvin Lebeck, and Amin Vahdat. Ecosystem: managing energy as a first class
operating system resource. ACM SIGPLAN Notices, 37(10):123–132, 2002.

[31] L. Zhong and N. K. Jha. Energy efficiency of handheld computer interfaces: Limits, characterization
and practice. In MobiSys, 2005.

