
 1

A Unified Model of Pattern-Matching Circuit Architectures

Tech Report GIT-CERCS-05-20

Christopher R. Clark and David E. Schimmel
Center for Experimental Research in Computer Systems

School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA

{cclark, schimmel}@ece.gatech.edu

Abstract

There has been a significant volume of recent work on FPGA designs for pat-
tern matching. Although various pattern-matching architectures have been
presented, attempts to compare different designs have been inconclusive, or even
misleading, due to the lack of a common evaluation framework. In this paper, we
present an analytical model of FPGA pattern-matching architectures that quanti-
tatively expresses the relationships between pattern properties, circuit area, and
circuit delay. We derive equations that show how the performance of each archi-
tecture is dependent on the properties of the pattern set. This model enables
many different pattern-matching architectures to be compared in order to deter-
mine the optimal design for a given pattern-matching application.

1. Introduction

In recent years, there have been a number of studies on FPGA designs for pattern matching [3-
15]. Despite the amount of work done in this area, there is not a clear picture of the relative
trade-offs of different approaches. Some authors have tried to make comparisons between im-
plementations by using data from different publications, but variations in the FPGA devices and
patterns used have resulted in conflicting results. With the right combination of patterns, circuit
parameters, and metrics, a particular architecture can be made to look better than others, but, un-
der different conditions, another architecture might be better. No attempt has been made to
evaluate a wide range of architectures under a common framework. In this paper, we develop an
analytical model of FPGA pattern-matching circuits and use the model to describe most recently-
published designs while illuminating several novel approaches. The unified model of pattern-
matching designs presented here allows a system designer to make an informed choice of circuit
architecture for a particular application.

First, we define some terminology and notation used in the model. Then, we describe the
components that make up a pattern-matching circuit. Next, factors affecting circuit delay are
discussed and techniques for trading increased area for reduced delay are presented. Finally, the
model is used to derive architecture-specific equations that predict pattern-matching circuit prop-
erties based on pattern set properties.

 2

The remainder of this paper covers design approaches for building FPGA pattern-
matching circuits that tailor the reconfigurable logic and routing resources to a particular pattern
set. Other approaches, such as those that use embedded memory blocks or off-chip memory to
store programmable hash tables [9] or state machines [4], are not considered at this time. We are
investigating models of these approaches, and they may be included in the future.

2. Model Definition

The basic pattern-matching problem considered here is that in which a set of patterns is to be
searched for in one or more bodies of text. The pattern set is used to generate a pattern-matching
circuit description that is compiled into an FPGA configuration file. This FPGA pattern-
matching system is then used to concurrently detect all occurrences of the patterns contained in a
given data stream. In this section, we define notation for describing various attributes of patterns
and FPGAs.

2.1. Pattern Model

The patterns and the text stream are made up of symbols from an alphabet Σ that contains σ char-
acters. Each character is represented by a binary sequence of b bits, where ()2logb σ⎡ ⎤= ⎢ ⎥ . A

pattern x of length x is a sequence of characters x[0], x[1], …, x[m-1], where []x j ∈Σ . The set
of all patterns to be considered is denoted by P and contains p patterns. We define Θk[j] as the
number of occurrences of a particular character θk at index j across all patterns. The largest in-
dex of occurrence of θk in any pattern is λk. The total number of occurrences of θk in P, Θk, is
calculated by adding up the number of occurrences at each index using (1).

1

0
[]

k

k k
j

j
λ −

=

Θ = Θ∑ (1)

The length of the longest pattern in P is Λ. The number of unique characters used in P is
Ω. The total number of characters in P is denoted by M and can be determined either by sum-
ming the lengths of each pattern in P, or by summing the total occurrences of each character in Σ
as shown by (2).

1 1

p

k k
k k

M x
σ

= =

= = Θ∑ ∑ (2)

2.2. FPGA Model

Our model is based on an FPGA architecture that is commonly used in modern commercial
products, such as the Xilinx Virtex [2] and Altera Stratix [1] lines of devices. These FPGAs con-
tain an array of homogeneous logic elements that are connected to a configurable routing
network. Each FPGA logic element (LE) contains a 4-input look-up table (LUT) and a one-bit
flip-flop (FF), as shown in Figure 1. A LUT can be programmed to implement any logical func-
tion with up to four inputs and one output. The output of each LE connects to the routing
network and is selectable between either a registered or unregistered version of the LUT output.

 3

Multiple levels of LEs can be cascaded to implement functions with more than four inputs. For
example, Figure 2 shows how a 16-input function can be computed with two levels of LEs. In
general, a basic Boolean logic function (i.e. AND, OR, XOR) of n inputs can be implemented in

()4log n⎡ ⎤⎢ ⎥ LE levels using a total of ()fA n LEs, as given by

 ()
()4log

1
.

4

n

f k
k

nA n
⎡ ⎤⎢ ⎥

=

⎡ ⎤= ⎢ ⎥⎢ ⎥
∑ (3)

Because an LE is the fundamental unit of circuit area in an FPGA, we refer to ()fA n as the area
required to implement an n-input function. If the registered output of each LE is selected, the
latency of the function (the number of clock cycles required to compute the final output) is equal
to the number of LE levels and is computed using

 () ()4log .fL n n⎡ ⎤= ⎢ ⎥ (4)

The area required to implement an n-bit register using LEs with a single flip-flop can be
expressed by

 () .rA n n= (5)

3. Pattern-Matching Circuit Components

In general, a pattern-matching circuit consists of three main components: a method of decoding
input characters, a means of storing the history of inputs, and a mechanism for determining when
pattern matches have occurred. The input to the circuit is a stream of text characters and the out-
put is a set of wires indicating which patterns have been matched. The following sections
describe the functionality and available design parameters for each aspect of a pattern-matching
circuit.

Figure 1. An FPGA Logic Element (LE) Figure 2. A 16-input function computed using

LEs with 4-input LUTs

 4

3.1. Input Text Stream

The input text stream provides characters that are compared against the stored patterns. In the
simplest case, the pattern-matching circuit reads one text character per clock cycle. By trading
increased circuit area for more parallelism, it is possible to handle N characters per cycle. When
the input is processed in multi-character substrings, a pattern may start at any offset within a sub-
string. Therefore, the circuit must separately check all N offsets in parallel, effectively
increasing the pattern count to p N× . The width of the input data bus is N b× bits.

3.2. Character Decoding

We define character decoding as the process of generating a one-bit character-match signal from
a b-bit encoded input character. Functionally, a character decoder is equivalent to a binary com-
parator with one input fixed at compile-time. In a pattern-matching circuit, the fixed input has
the value of a pattern character. An optimized implementation of a character decoder is a b-bit
AND function with active-high inputs in positions corresponding to ‘1’ bits and active-low in-
puts in positions corresponding to ‘0’ bits in the encoded representation of a pattern character.

There are several possible configurations for connecting the inputs and outputs of the
character decoders to other pattern-matching circuit components. The decoder inputs can either
be directly connected to the input text stream, or they can be connected to the input history regis-
ters described in the next section. If the decoder inputs come from the input text stream, then the
decoder outputs will connect to the input history component, as shown in Figure 3. Otherwise,
the decoder inputs will be taken from the input history, and the outputs of the decoders will be
connected to the pattern-match functions associated with one or more patterns, as in Figure 4. If
the decoder outputs are used by exactly one pattern, we call this a per pattern decoding design.
If all of the patterns share the same group of decoders, this is a global decoding design. There is
also an approach between per pattern and global decoding called shared decoding that divides
the pattern set into multiple non-intersecting subsets and uses a distinct group of decoders for
each subset.

3.3. Input History

Most FPGA pattern-matchers are designed to process an input stream by consuming a small
number of characters per clock cycle. Therefore, in order to determine if a full pattern has been
received from the input, the circuit must store some information about the sequence of characters
received in the past. We call this information on previous inputs the input history. The input
history also has multiple configuration options. The history can read its input directly from the
input stream and store encoded character information (Figure 4), or it can read its input from the

Figure 3. Decoded history design:
decoding performed before history

 Figure 4. Encoded history design:
decoding performed after history

 5

character decoders and store decoded character information (Figure 3). In an encoded history
design, the output of the history registers connects to character decoders, while in a decoded his-
tory design, the history outputs connect to pattern-match functions. With either design type, the
history can be implemented in a global, shared, or per pattern manner.

3.4. Matching Functions

Every pattern in the pattern set will have an associated pattern-match function in the circuit.
Each pattern-match function uses the information produced by the decoding and history compo-
nents to determine if a character sequence has occurred in the input text stream that matches its
associated pattern. The one-bit outputs of all the pattern-match functions form a result vector
that indicates which patterns have been found.

4. Area-Delay Trade-Off

In this section, we discuss some delay and latency considerations. A pattern-matching circuit
consists of an input bus, three types of functional components, and connections between these
elements. The sources of circuit delay are the logic and routing delays within components and
the routing delays of communication paths between components. In the following sections, we
describe how our model handles these intra-component delay and inter-component delays.

In constructing our model, when faced with a design decision that involves a trade-off
between delay and latency, we always opt to reduce delay and increase latency. This approach is
in-line with the goals of most FPGA pattern-matching applications, which use an FPGA-based
design specifically for its ability to provide higher throughput than other approaches (e.g. soft-
ware). Adding a few cycles of latency to each pattern-matching operation to achieve a
significant increase in throughput is generally preferred over a lower-latency, lower-throughput
solution.

4.1. Intra-Component Delay

Logic delay within a component can be significant in architectures that use functions with a large
number of inputs and multiple levels of LEs. However, since the output of each LE can be regis-
tered, the maximum logic delay can be limited to the delay of a single level of logic without any
additional area usage. The extra latency introduced is relatively low because the number of lev-
els of logic within a component is a logarithmic function of the number of inputs. Although
some FPGA architectures allow unrelated logic to use the LUT and FF of an LE independently,
this feature is rarely used by the design tools1. Therefore, we consider registering the output of
each LE to be a low-cost method of minimizing logic delay, and we assume that this approach is
used throughout the designs.

Routing is another source of intra-component delay. Within their components, all of the
pattern-matching architectures in our model use only local point-to-point connections with no
additional fan-out. In addition to the benefits of short, low fan-out connections, the effects of
routing delay are further mitigated by the use of registered LE outputs that allows a larger por-
tion of the clock period to be allocated to routing. Therefore, we assume that, under reasonable

1 For example, with default settings, the MAP program in the Xilinx ISE package will not place unrelated logic in the same LE

until over 99% of the chip’s logic resources have been utilized.

 6

logic utilization conditions (e.g. less than 90% total LE utilization), intra-component routing will
not be on the critical path.

4.2. Inter-Component Delay

Inter-component connections include connections between the decoding, history, and matching
components, as well as connections from the input bus to any of the components. The data path
in all of the pattern-matching architectures consists of a sequence of connections from the input
bus to the matching components. The elements on this path can be divided into two groups: a
shared unit that is used by multiple patterns and a distributed set of per-pattern units. The con-
tents of the units vary between architectures. The shared unit always includes the input bus, and
each per-pattern unit always includes a match function. History and decoding components can
be located in either group.

Since multiple sources in the shared unit connect to multiple destinations in the per-
pattern unit, the wires between the shared and per-pattern units can span long distances and have
high fan-out. The number of unique wires and the fan-out of each wire depend on the type of
components being connected, and also on the properties of the pattern set. However, in all cases,
the number, length, and fan-out of these wires increases as the number of patterns is increased.
Thus, for most interesting pattern set sizes, the inter-component connection that links the shared
and per-pattern units often becomes the critical path of the entire design.

4.3. Pipelined Wires

It is desirable to reduce the delay of the wires on the critical path in order to increase the clock
frequency and the overall throughput of the circuit. One method of decreasing delay, at the cost
of increased latency, is to pipeline the wires. Some FPGA pattern-matching implementations
have applied this approach by using a tree of registers [10, 13]. The root of the tree is the signal
source and each of the leaf registers drives multiple destination loads. The place-and-route soft-
ware will automatically spread out the stages of the tree and place the final register stages near
destination loads. This technique is effective at reducing delay for two reasons: (1) it decreases
the distance a signal must travel in a single clock cycle, and (2) it reduces and localizes the fan-
out of wires.

We have conducted experiments to demonstrate the relationship between fan-out and de-
lay in FPGA devices. An FPGA routing network consists of multi-wire routing channels
between each row and column of the LE array with programmable switchboxes at each intersec-
tion. We constructed simple circuit designs consisting of a single source register (S) connected
to multiple destination registers that represent loads (L). Relative location constraints were ap-
plied to each register to force the circuits to have a layout similar to that of Figure 5. The use of
a square layout of LEs with the source in the center provides the lowest achievable worst-case
delay for a given fan-out.

The Xilinx ISE tools were used to compile designs with different numbers of loads for a
Virtex II Pro 100 FPGA with a speed grade of -6. An optimistic target clock period goal of 1.0
ns was used to ensure that the tools would find the best possible routing configuration. The
maximum path delay is plotted against fan-out load in Figure 6. The log-log plot clearly shows
that delay increases as a logarithmic function of fan-out. This is the expected behavior and indi-

 7

cates that the switchboxes perform optimal buffering and repowering to control the transmission
delay of a signal traversing multiple switches.

Given the results above, it is apparent that fan-out can be used as an estimator of delay in
FPGA circuits. Thus, using a pipelined fan-out tree to reduce the fan-out of critical signals is an
effective strategy for reducing critical path delay. This observation is the basis of an area-delay
trade-off used by our model. When building a pattern-matching circuit, we first choose a value,
FLimit, which is the desired maximum fan-out after pipelining. Then, we determine the signal in
the design with the highest fan-out, FMax. Next, we calculate the fan-out tree depth required to
reduce the fan-out of this signal to below the chosen limit using the formula

 () log .
LimitDepth F MaxT F⎡ ⎤= ⎢ ⎥ (6)

Then, for each signal in the critical path, we calculate the minimum branching factor that ensures
the fan-out limit is not exceeded. The depth of all trees is kept the same to maintain synchroni-
zation. The branching factor for a signal with fan-out F is

 ()
1

.
DepthT

Factor
Limit

FT F
F

⎡ ⎤
⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎢ ⎥

 (7)

Finally, we calculate the number of nodes in the fan-out tree using

 () ()
0

.
DepthT

k
Nodes Factor Factor

k
T T T

=

= ∑ (8)

Some researchers have proposed another approach to reduce the delay of critical inter-
component connections. Both Baker et. al. [3] and Sourdis et. al. [14] partition the pattern set
into multiple smaller subsets before generating the pattern-matching circuit. These designs use a
separate shared unit for each subset and assign different per-pattern unit to each shared unit.
There is some area overhead due to replication among the shared units, but a carefully-chosen
pattern partitioning algorithm can minimize the overhead. This approach can reduce the length

1.0

10.0

10 100 1000 10000

Fan-out Load

D
el

ay
 (n

s)

Figure 5. Fan-out test circuit
using a 5 5× array of LEs

 Figure 6. Path delay as a function of fan-out in
Xilinx Virtex II Pro FPGA

 8

and fan-out of the wires on the critical path, but the pipelining technique described above may
still need to be applied to some wires to reach the desired delay value.

5. Pattern-Matching Architectures

Enumerating all combinations of the pattern-matching circuit component design parameters de-
scribed above yields a large family of pattern-matching architectures. Actually, the design space
is even larger because these parameters can be applied to two different implementation styles of
pattern-matching circuits: brute-force designs and finite automata designs. The key distinction
between the two design styles is in how the pattern-match functions are implemented. In a
brute-force design, pattern-match functions perform comparisons of all pattern characters in each
clock cycle. In a finite automata design, pattern-match functions are pipelined and only perform
comparisons on the current input characters in each cycle. A finite automata pattern-match func-
tion is the next-state logic of a state machine that makes transitions in each cycle based on the
current state and the current input characters. The state bits of the state machine serve as im-
plicit history elements that track which characters of the pattern have been matched.

The following sections introduce the pattern-matching architectures that are described by
our model. Several of the architectures that collectively cover all the design parameters are de-
scribed and analyzed in detail. For each of these architectures, equations have been derived that
predict circuit area requirements based on the parameters of the pattern set.

The total area (A) of any pattern-matching circuit is the sum of the areas used by its four
components: character decoders (AD), history registers (AH), match functions (AM), and fan-out
trees (AF).

 D H M FA A A A A= + + + (9)

The latency of a pattern-matching circuit is the number of clock cycles between the time when
an input is changed and the time when the outputs reflect the change. The latency of a brute-
force design is the sum of the latencies of its components.

 D H M FL L L L L= + + + (10)

5.1. Brute-Force Designs

All the possible configurations of history and decoding components for brute-force designs are
listed in Table 1. The first column contains a shorthand notation that will be used to refer to the
architectures for the remainder of this paper. There are six configurations (GdS, GdP, SeG, SdP,
PeG, PeS) that are not feasible because their history and decoding styles conflict. References are
provided for architectures with published implementations. Interestingly, there are several feasi-
ble architectures that have not been studied in the literature.

 9

5.1.1. PeP: Per Pattern Encoded History, Per Pattern Decoding

The PeP architecture is perhaps the most straightforward design. In this design, dedicated his-
tory, decoding, and matching components are allocated for each pattern, as depicted in Figure 7.
A pipelined fan-out tree is used to distribute the input bus to each of the per-pattern units. Figure
8 shows the internal details of a per-pattern unit that processes two input characters per clock
cycle and detects the three-character pattern “abc”.

The encoded input history is formed by connecting each character from the input bus to a
separate serial-in parallel-out (SIPO) shift register. A wire labeled () c t sα − carries a b-bit en-
coded character read from character position c of the input word s cycles ago. The length of
each history shift register is a function of the pattern length, the input character position, and the
number of input characters, and is found by

 .kc
k

x c
h

N
⎡ ⎤+

= ⎢ ⎥
⎢ ⎥

 (11)

The latency of a history component is equal to the length of its longest shift register. The total
area used by the input history for all patterns is

1

1 0

() .
p N

c
H k r

k c
A h N A b

−

= =

⎡ ⎤= × ×⎣ ⎦∑ ∑ (12)

Table 1. Brute-force architectures

Architecture History Decoding Implementations
GeG Global encoded Global None
GeS Global encoded Shared None
GeP Global encoded per Pattern None
GdG Global decoded Global Baker [3], Sourdis [14]
GdS Global decoded Shared —
GdP Global decoded per Pattern —
SeG Shared encoded Global —
SeS Shared encoded Shared None
SeP Shared encoded per Pattern None
SdG Shared decoded Global None
SdS Shared decoded Shared Baker [3], Sourdis [14]
SdP Shared decoded per Pattern —
PeG per Pattern encoded Global —
PeS per Pattern encoded Shared —
PeP per Pattern encoded per Pattern Sourdis [13]
PdG per Pattern decoded Global None
PdS per Pattern decoded Shared None
PdP per Pattern decoded per Pattern None

 10

A per-pattern decoding component contains a character decoder for each character in the
pattern for each of the N starting position offsets. Thus, the total area used by character decoders
is the sum of the area used by the decoding components associated with each pattern, and is
equal to

1

() .
p

D k f
k

A x N A b
=

⎡ ⎤= × ×⎣ ⎦∑ (13)

A pattern-match function is a sum-of-products expression that determines if all the char-
acters at any offset match the pattern. The area used by match functions for all patterns is

 () ()
1

.
p

M f k f
k

A A x N A N
=

⎡ ⎤= × +⎣ ⎦∑ (14)

It is possible to reduce the total area used by the decoding and matching components by
consolidating them. For each offset, the kx character decoders and the product term of the

match function can be combined and computed using one AND operation of kx b× bits. The
sum term of the match function remains the same but now takes its inputs from the combined
AND functions. With this design, the area used for decoding and matching for all patterns is

 () ()&
1

.
p

D M f k f
k

A A x b N A N
=

⎡ ⎤= × × +⎣ ⎦∑ (15)

In the PeP architecture, the input bus is connected to every per-pattern unit, so its fan-out

is equal to p. If p, which is FMax, is greater than FLimit, a pipelined fan-out tree is required, and
its area usage is

 ()() () .F Nodes Factor rA T T p A N b= × × (16)

BF Match Function

Pattern 1

Pattern p

.

.

.

N×b

Input

p

Matches

N×
b

1

Decoding

 1N b x× ×

 1N x×

 0
 1b h× 1

 1
Nb h −× . . .

FO Tree

History

b
a

c

)(0 tα

b
a

c

Match

b
)1(0 −tα

)(1 tα
b

)1(1 −tαN×b

Input

History

Offset 0

Offset 1

Decoding
BF Match Function

Figure 7. PeP architecture Figure 8. PeP circuit for pattern “abc” with N = 2

 11

5.1.2. GeP: Global Encoded History, Per Pattern Decoding

The GeP architecture is very similar to the PeP architecture, as shown in Figure 9. The main dif-
ference is that the per-pattern units do not have history components; instead, they all share N
global history components. The length of the SIPO history register for each input character posi-
tion c depends on the length of the longest pattern in P and the number of input characters, and is
computed by

 .c ch
N

Λ +⎡ ⎤= ⎢ ⎥⎢ ⎥
 (17)

The total area used by the global history is

1

0

() .
N

c
H r

c
A h N A b

−

=

⎡ ⎤= × ×⎣ ⎦∑ (18)

The area used by the decoding and matching components is the same as in the PeP architecture,
and is found using (13) and (14), respectively. It is also possible to save area by using the com-
bined decode and match functions, whose area is given by (15).

In this design, the shared unit includes a global encoded history and the critical delay
component is due to connections from the history to the per-pattern decoding components. Each
of the history registers may be connected to a different number of per-pattern units, so the fan-
out of each will vary. For a history signal () c t sα − , which represents the character that ap-
peared on the input bus s cycles ago in position c, the fan-out is determined by counting the
number of its usages according to (19).

 ()
()

()()

1
0

1
0

 , if 0

 , if 0

N c
jc
N
j

N c j s
F s

N s N c j s

− −

=

−

=

⎧ − − =⎪= ⎨
× + − − >⎪⎩

∑
∑

 (19)

1N b x× ×
1N x×

pN b x× ×1 1(1)N Nt hα − −− −

0 0(1)t hα − −

0()tα

0N b h× ×

1NN b h −× ×

0()tα

Figure 9. GeP architecture

 12

This equation uses a function, ()n , which returns the number of patterns in the pattern set with
length equal to or greater than n. Since the inputs to all of the per-pattern decoding components
are aligned to the beginning of the history, the outputs of the history registers closer to the be-
ginning will have higher fan-out than those towards the end of the shift registers. The maximum
fan-out, FMax, of any register is p, and this will determine the depth of the fan-out trees associ-
ated with all history registers. The total area used by all fan-out trees in the design is calculated
by summing the sizes of each using (20).

 ()()()
1 1

0 0

()
N h

c
F Nodes Factor r

c s
A T T F s A b

− −

= =

⎡ ⎤= ×⎢ ⎥⎣ ⎦∑ ∑ (20)

5.1.3. GdG: Global Decoded History, Global Decoding

The GdG architecture is depicted in Figure 10. In global decoding designs, such as GdG, each of
the N characters from the input bus is connected to a different group of Ω character decoders
with one b-bit decoder for each of the unique characters used in the pattern set. The total area
used by character decoders in the GdG design is

 () .D fA N A b= Ω× × (21)

The input history is implemented as a one-bit SIPO shift register attached to each decoder
output. The lengths of the history registers vary based on the positions within the patterns where
each character occurs. The length of the longest register is determined by the longest pattern in
the set as follows,

 1 .Max
Nh
N

Λ + −⎡ ⎤= ⎢ ⎥⎢ ⎥
 (22)

BF Match
Function

Pattern 1

Pattern p

.

.

. p

Matches1

Decoding

FO Tree

FO Tree

.

.

.

b

b

N×b

Input

Decoding

.

.

.

0
0θ

0
1σθ −

1
0
Nθ −

1
1

N
σθ

−
−

1N x×

pN x×

.

.

.

.

.

.

()0 0
0 0 1t hθ − −

0
0 ()tθ

1

1

History

()1 1
1 1 1N Nt hσ σθ − −
− −− −

1
1 ()N tσθ
−
−

1

1

FO Tree

FO Tree

.

.

.

.

.

.

0
0h

0
1hσ −

1
 0
Nh −

1
1

Nhσ
−
−

History

History

History

Figure 10. GdG architecture

 13

The length of the history register for a decoder output c
kθ is the maximum history position with

non-zero fan-out and is found using equations (23), (24), and (26).

 ()
1

0
max
Maxh

c c
k ks

h s
−

=
= Φ (23)

 ()
()
()

0 , if 0

1 , if 0

c
kc

k c
k

F s
s

s F s

⎧ =⎪Φ = ⎨
+ >⎪⎩

 (24)

The total area used by the input history is determined by summing the area of the registers for
each decoder output using

 ()
1 1

0 0
1 .

N
c

H k r
c k

A h A
σ− −

= =

⎡ ⎤= ×⎣ ⎦∑ ∑ (25)

A history output wire labeled ()c
k t sθ − carries a signal that indicates whether or not the charac-

ter read from the input text stream s cycles ago in character position c of the input word was the
character θk.

In the GdG design, the critical path arises from the non-local wires connecting the de-
coded history signals to the per-pattern match functions distributed throughout the logic array.
For a history signal ()c

k t sθ − the fan-out is given by (26).

 ()
()

()()

1
0

1
0

 , if 0

 , if 0

N c
kjc

k N
kj

N c j s
F s

N s N c j s

− −

=

−

=

⎧ Θ − − =⎪= ⎨
Θ × + − − >⎪⎩

∑
∑

 (26)

The signal with the maximum fan-out is determined by evaluating (26) for each combination of
offset, character value, and history position and finding the maximum value using (27).

 ()
11 1

0 0 0
max max max

MaxhN
c

Max kc k s
F F s

σ −− −

= = =
= (27)

The total area used by all fan-out trees in the design is calculated by summing the sizes of each
according to (28).

 ()()() ()
11 1

0 0 0

1
khN

c
F Nodes Factor k r

c k s
A T T F s A

σ −− −

= = =

⎡ ⎤= ×⎢ ⎥⎣ ⎦∑ ∑ ∑ (28)

The inputs to each pattern-match function are taken from the appropriate history register
fan-out tree output. The number of inputs to the function for a pattern x is equal to the length of
the pattern times N. The brute-force pattern-match function is the same as that used in the previ-
ously described brute-force designs, and thus, the total area used by the pattern-match functions
is given by (14).

 14

5.2. Finite Automata Designs

All the possible configurations of history and decoding components for finite automata
(FA) designs are listed in Table 2. There is one design (GfS) that is not feasible because its his-
tory and decoding styles conflict (i.e. shared decoding means that the patterns are divided into
separate groups, while a global FA requires a single group of patterns). In FA designs, there is
no notion of encoded or decoded history because the state bits of the state machine serve as im-
plicit history elements. A history based on a global FA implies that all of the patterns are
compared against the input text stream using a single FA. A design using a global FA will detect
a match of any pattern, but it will not be able to indicate which particular pattern has been
matched, making it undesirable for some applications. Similarly, a design that groups patterns
into sets and uses an FA to compare each set will only be able to indicate to which set a match-
ing pattern belongs. A common use of a shared FA history is as part of a prefix tree. In a prefix
tree design, patterns with common prefixes are grouped together, and a shared FA is used to
match each prefix, reducing redundant logic. The match output of the FA for a prefix is con-
nected to the input of multiple per-pattern FA that match the suffixes of each pattern.

There are two types of finite automata: non-deterministic finite automata (NFA) and de-
terministic finite automata (DFA). NFA-based pattern-matching circuits have been implemented
in [5-8, 10, 12, 15], and DFA-based circuits have been implemented in [11]. In this paper, only
the more common NFA approach is discussed. The analysis of DFA circuits would be similar,
but the implementation of the match function would be different.

5.2.1. PfP: Per Pattern FA History, Per Pattern Decoding

In the PfP design, as depicted in Figure 11, there is no logic in the shared unit. Each input char-
acter () c tα must be broadcast to a character decoder associated with every pattern character, so
its fan-out is equal to M. There are N identical fan-out trees used to distribute the input charac-
ters to the per-pattern units. The area used by these trees of registers is

 ()() ()F Nodes Factor rA T T M A b N= × × (29)

Table 2. Finite automata pattern-matching architectures

Architecture History Decoding Implementations
GfG Global FA Global None
GfS Global FA Shared —
GfP Global FA per Pattern Sidhu [12], Franklin [10]
SfG Shared FA Global Clark [7] (in prefix tree)
SfS Shared FA Shared None
SfP Shared FA per Pattern Franklin [10] (in prefix tree)
PfG per Pattern FA Global Cho [5], Clark [7, 8]
PfS per Pattern FA Shared None
PfP per Pattern FA per Pattern Cho [6], Clark [7], Moscola [11]

 15

The PfP design uses per-pattern decoding and includes a character decoder for each pattern char-
acter at each offset, so the total area used by decoders is

 () .D fA M N A b= × × (30)

The finite automata pattern-match functions used in this design consist of state bits and

next-state logic. The NFA state machines are constructed as pipelines with one state bit per state
and allow multiple active states. The number of states, or pipeline stages, in an NFA match
function for a pattern of length m is

 () 1 .m NS m
N

+ −⎡ ⎤= ⎢ ⎥⎢ ⎥
 (31)

A next-state AND function is associated with each pipeline stage as shown in Figure 12. The
inputs to this function are the output of the state register from the previous stage (if any) and the
outputs of up to N character decoders. The number of inputs to the next-state function for a
given offset and stage is calculated using (32).

()

()()

min , , if 0

(,) 1 min , , if 0

0 , if

k

k
k

k

N offset x stage

x offset
offset stage N x offset N stage stage

N
x o

stage

η

− =

+
= + + − × < ≤

+
>

ffset
N

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

 (32)

The output of the last level of logic in each next-state function is registered and serves as a state
bit. For every pattern, an NFA state machine is instantiated for each of N offsets, and an N-input

Decoding

FA Match
Function

Pattern 1

Pattern p

.

.

.

N×b

Input

p

Matches
1

1N x× 1N b x× ×

pN b x× ×

FO Tree

1()N tα −

0 ()tα

FO Tree

b

b

.

.

.

)(0 tα
)(1 tα

NFA Match Function

Match

b
a

c

b
a

c

Offset 0

Offset 1

Decoding

)(0 tα

)(1 tα
)(0 tα
)(1 tα

Figure 11. PfP architecture Figure 12. PfP circuit for pattern “abc” with N = 2

 16

OR function determines if any of the NFA reach their final state, indicating a pattern match. The
total area used by NFA match functions for all patterns is

()

()() ()
11

1 0 0
, + .

kS xp N

M f f
k c s

A A c s A Nη
−−

= = =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟=
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ ∑ (33)

5.2.2. PfG: Per Pattern FA History, Global Decoding

The PfG design (Figure 13) uses the same NFA pattern match functions as the PfP design, and
their area usage is given by (33). Unlike the PfP design, the PfG design uses global decoders
shared by all patterns. Therefore, the total area used by decoders in this design is independent of
the number of characters in the pattern and is a function of the number of unique alphabet char-
acters used as indicated by

 () .D fA N A b= Ω× × (34)

The output of the decoders is distributed to the appropriate stages of the per-pattern NFA match
functions. For a decoder output c

kθ , the fan-out is equal to kΘ , and fan-out trees are used on
these signals. The depth of each tree is determined by the maximum kΘ for all k. The total area
used by all fan-out trees is

 ()() ()
1

0

1 .F Nodes Factor k r
k

A T T A N
σ −

=

⎡ ⎤= Θ × ×⎣ ⎦∑ (35)

FA Match
Function

Pattern 1

Pattern p

.

.

.

p

Matches
1

Decoding

FO Tree

FO Tree

.

.

.b

b

N×b

Input

Decoding

FO Tree

FO Tree

.

.

.

.

.

.

0
0θ

0
1σθ −

1
0
Nθ −

1
1

N
σθ

−
−

1N x×

pN x×

Figure 13. PfG architecture

 17

References

[1] "Stratix Devices," Altera Corporation,
http://www.altera.com/products/devices/stratix/stx-index.jsp

[2] "Xilinx: Virtex Series," Xilinx, Inc.,
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/index.htm

[3] Z. K. Baker and V. K. Prasanna, "A Methodology for Synthesis of Efficient Intrusion De-
tection Systems on FPGAs," In Proceedings of IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 135-144, 2004.

[4] Z. K. Baker and V. K. Prasanna, "Time and Area Efficient Pattern Matching on FPGAs,"
In Proceedings of ACM International Symposium on Field Programmable Gate Arrays
(FPGA), pp. 223-232, 2004.

[5] Y. H. Cho and W. H. Mangione-Smith, "Deep Packet Filter with Dedicated Logic and
Read Only Memories," In Proceedings of IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), pp. 125-134, 2004.

[6] Y. H. Cho, S. Navab, and W. H. Mangione-Smith, "Specialized Hardware for Deep Net-
work Packet Filtering," In Proceedings of International Conference on Field
Programmable Logic and Applications (FPL), pp. 452-461, 2002.

[7] C. R. Clark and D. E. Schimmel, "Efficient Reconfigurable Logic Circuits for Matching
Complex Network Intrusion Detection Patterns," In Proceedings of International Confer-
ence on Field Programmable Logic and Applications (FPL), pp. 956-959, 2003.

[8] C. R. Clark and D. E. Schimmel, "Scalable Pattern Matching for High-Speed Networks,"
In Proceedings of IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), pp. 249-257, 2004.

[9] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. W. Lockwood, "Deep Packet In-
spection Using Parallel Bloom Filters," In Proceedings of Symposium on High
Performance Interconnects (HotI), pp. 44-51, 2003.

[10] R. Franklin, D. Carver, and B. L. Hutchings, "Assisting Network Intrusion Detection
with Reconfigurable Hardware," In Proceedings of IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 111-120, 2002.

[11] J. Moscola, J. W. Lockwood, R. P. Loui, and M. Pachos, "Implementation of a Content-
Scanning Module for an Internet Firewall," In Proceedings of IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 31-38, 2003.

[12] R. Sidhu and V. K. Prasanna, "Fast Regular Expression Matching using FPGAs," In Pro-
ceedings of IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2001.

[13] I. Sourdis and D. Pnevmatikatos, "Fast, Large-Scale String Match for a 10 Gbps FPGA-
based Network Intrusion Detection System," In Proceedings of International Conference
on Field Programmable Logic and Applications (FPL), pp. 880-889, 2003.

[14] I. Sourdis and D. Pnevmatikatos, "Pre-Decoded CAMs for Efficient and High-Speed
NIDS Pattern Matching," In Proceedings of IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 258-267, 2004.

[15] P. Sutton, "Partial Character Decoding for Improved Regular Expression Matching in
FPGAs," In Proceedings of IEEE International Conference on Field-Programmable
Technology (FPT), pp. 25-32, 2004.

	Introduction
	Model Definition
	Pattern Model
	FPGA Model

	Pattern-Matching Circuit Components
	Input Text Stream
	Character Decoding
	Input History
	Matching Functions

	Area-Delay Trade-Off
	Intra-Component Delay
	Inter-Component Delay

	Pattern-Matching Architectures
	Brute-Force Designs
	PeP: Per Pattern Encoded History, Per Pattern Decoding
	GeP: Global Encoded History, Per Pattern Decoding
	GdG: Global Decoded History, Global Decoding

	Finite Automata Designs
	PfP: Per Pattern FA History, Per Pattern Decoding
	PfG: Per Pattern FA History, Global Decoding

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

