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ABSTRACT
Dropping tuples has been commonly used for load shedding. How-
ever, tuple dropping generally is inadequate to shed load for multi-
way windowed stream joins. The output rate can be unnecessarily
and severely degraded because tuple dropping does not recognize
time correlations likely to exist among the streams. This paper in-
troduces GrubJoin: an adaptive multi-way windowed stream join
that efficiently performs time correlation-aware CPU load shed-
ding. GrubJoin maximizes the output rate by achieving near-
optimal window harvesting within an operator throttling frame-
work, i.e., regulating the fractions of the join windows that are
processed by the multi-way join. Window harvesting performs the
join using only certain more useful segments of the join windows.
Due mainly to the combinatorial explosion of possible multi-way
join sequences involving various segments of individual join win-
dows, GrubJoin faces a set of unique challenges, such as determin-
ing the optimal window harvesting configuration and learning the
time correlations among the streams. To tackle these challenges,
we formalize window harvesting as an optimization problem, de-
velop greedy heuristics to determine near-optimal window harvest-
ing configurations and use approximation techniques to capture the
time correlations among the streams. Experimental results show
that GrubJoin is vastly superior to tuple dropping when time cor-
relations exist among the streams and is equally effective as tuple
dropping in the absence of time correlations.

1. INTRODUCTION
In today’s highly networked and digital world, businesses of-

ten rely on time critical tasks that require analyzing data from on-
line sources and generating response in real-time. In many indus-
tries, the on-line data to be analyzed comes in the form of data
streams, i.e. as time ordered series of events or readings. Ex-
amples include stock tickers in financial services, link statistics in
networking and telecommunications, sensor network readings in
environmental monitoring and emergency response, and surveil-
lance data in Homeland Security. In these examples, rapidly in-
creasing rates of data streams and stringent response time require-
ments of applications force a paradigm shift in how the data is pro-
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cessed, moving away from the traditional “store and then process”
model of database management systems (DBMSs) to “on-the fly
processing” model of emerging data stream management systems
(DSMSs). This shift has recently created a strong interest in re-
search on DSMSs, in both academia [1, 4, 5] and industry [17].

CPU load shedding is needed in DSMSs when the available pro-
cessing resources are not sufficient to handle the processing de-
mands of the continuous queries installed in the system, under cur-
rent rates of the input streams. Without load shedding, the mis-
match between the available resources and the demands will result
in delays that violate the response time requirements of the queries.
It will also cause unbounded growth in system queues that over-
loads memory capacity and further bogs down the system. As a so-
lution to these problems, CPU load shedding can be broadly defined
as a mechanism to reduce the amount of processing performed for
evaluating stream queries, in an effort to match the service rate of
the DSMS to its input rate, at the cost of producing a degraded
output. Depending on the stream operators, the output degradation
may take different forms, such as a lower resolution in a multime-
dia encoder operator or a subset result in a join operator.

Joins are key operators in DSMSs and costlier to evaluate when
compared with others, such as selections and projections. They are
usually used to correlate events from different data streams. As
examples, we list two stream join applications.

Example 1 [8] - Finding similar news items from different news
sources: Assuming that news items from CNN, Reuters, and BBC
are represented by weighted keywords (join attribute) in their re-
spective streams, we can perform a windowed inner product join to
find similar news items from different sources.

Example 2 [11] - Tracking objects using multiple video (sensor)
sources: Assuming that scenes (readings) from video (sensor)
sources are represented by multi-attribute tuples of numerical val-
ues (join attribute), we can perform a distance-based similarity join
to detect objects that appear in all of the video (sensor) sources.

Hence, it is important to study load shedding techniques in the
context of stream joins, particularly in the face of busrty and un-
predictable stream rates. In this paper, we focus on CPU load
shedding for multi-way windowed stream joins. Join operations
are performed on the tuples stored within user-defined time-based
join windows, which constitute one of the most common join types
in the DSMS research [3, 10, 13].

So far, the predominantly used approach to CPU load shedding
in stream joins has been tuple dropping [2, 18]. This can be seen as
a stream throttling approach, where the rates of the input streams
are sufficiently reduced via the use of tuple dropping, in order to
sustain a stable system. However, tuple dropping generally is in-
adequate to shed load for multi-way windowed stream joins. The
output rate of a multi-way join can be unnecessarily and severely



degraded because tuple dropping does not recognize and exploit the
time correlations likely to exist among the streams.

The time correlation assumption indicates that for pairs of
matching tuples from two streams, there exists a non-flat match
probability distribution which is a function of the time difference
between the timestamps of the tuples. For instance, in Example 1
above, it is more likely that a news item from one source will match
with a temporally close news item from another source. In this case
the streams are almost aligned and the probability that a tuple from
one stream will match with a tuple from another stream decreases
as the difference between their timestamps increase. However, the
streams can also be unaligned, either due to delays in the delivery
path, such as network and processing delays, or due to the inherent
time of event generation effects in the application. As an illustra-
tion to the latter, in Example 2 above, similar tuples appearing in
different video streams or similar readings found in different sensor
streams will have a lag between their timestamps, due to the time
it takes for an object to pass through all cameras or all sensors.

In this paper, we introduce GrubJoin1: an adaptive multi-way
windowed stream join that efficiently performs time correlation-
aware CPU load shedding. While shedding load, GrubJoin max-
imizes the output rate by achieving near-optimal window harvest-
ing within an operator throttling framework. In contrast to stream
throttling, operator throttling performs load shedding within the
stream operator, i.e., regulating the amount of work performed by
the join, similar in spirit to the concept of partial processing de-
scribed in [8] for two-way stream joins. This requires altering the
processing logic of the multi-way join by parameterizing it with
a throttle fraction. The parameterized join incurs only a throttle
fraction of the processing cost required to perform the full join op-
eration. As a side effect, the quality or the quantity of the output
produced may be decreased when load shedding is performed.

Window harvesting performs effective load shedding by execut-
ing the join operations on tuples only from certain more useful seg-
ments of the join windows. For efficient implementation, Grub-
Join divides each join window into multiple small-sized segments
of basic windows. Due mainly to the combinatorial explosion of
possible multi-way join sequences involving various segments of
individual join windows, GrubJoin faces a set of challenges in per-
forming window harvesting. These challenges are unique for a
multi-way windowed stream join and do not exist for a two-way
windowed stream join. In particular, there are three major chal-
lenges that should be resolved:

− First, mechanisms are needed to configure window harvesting
parameters to match the required throttle fraction imposed by op-
erator throttling. We should also be able to assess the optimality of
these mechanisms in terms of output rate, with respect to the best
achievable for a given throttle fraction and known time correlations
between the streams.

− Second, in order to be able to react and adapt to the possibly
changing stream rates in a timely manner, the reconfiguration of
window harvesting parameters must be a lightweight operation, so
that the processing cost of reconfiguration does not consume the
processing resources used to perform the join.

− And third, we should develop low cost mechanisms for learning
the time correlations among the streams, in case they are not known
or are changing and should also be adapted.

We tackle the first challenge by developing a cost model and for-
mulating window harvesting as an optimization problem. We han-
dle the latter two challenges by developing GrubJoin - a multi-way
1As an intransitive verb, grub means “to search laboriously by digging”. It relates to
the way join windows are processed with window harvesting.

stream join algorithm that employs i) greedy heuristics for making
near-optimal window harvesting decisions, and ii) approximation
techniques to capture time correlations among the streams.

To the best of our knowledge, this is the first work on time
correlation-aware CPU load shedding for multi-way windowed
stream joins that are adaptive to the input stream rates. However,
we are not the first to point out and take advantage of the time cor-
relation effects in join processing. In the context of limited memory
binary stream joins, the age-based load shedding framework of [16]
pointed out the importance of time correlation effects and exploited
it to make tuple replacement decisions. Furthermore, in the context
of traditional joins, the database literature includes join operators
such as Drag-Join [12], that capitalized on the time of data creation
effects in data warehouses, that are very similar to the time corre-
lation effects in stream joins. Moreover, similar time correlation
assumptions are used to develop load shedding techniques for two-
way stream joins [8]. However, the window harvesting problem, as
it is formulated in this paper, involves unique challenges stemming
from the multi-way nature of the join operation.

Summary of Contributions
In summary, this paper makes three major contributions:

1) We introduce window harvesting as an in-operator load shedding
technique for multi-way windowed stream joins, that can adjust the
amount of shedding performed based on the throttle fraction de-
fined by our operator throttling framework. We formalize window
harvesting configuration as an optimization problem and show how
it can be utilized to exploit the time correlations among the streams
to maximize the output rate of the join.

2) We develop the GrubJoin algorithm, that can adapt to the
changes in the input stream rates, the current system load, and the
time correlations among the streams. It performs near-optimal win-
dow harvesting and has very low overhead, thanks to the heuristic
methods it employs for performing reconfiguration of harvesting
parameters, and the approximation techniques it uses to learn the
time correlations among the streams.

3) We report results from our experimental studies and show that
GrubJoin performs vastly superior to tuple dropping in terms of
output rate when time correlations exist among the streams, and is
equally effective as tuple dropping in the absence of correlations.

2. PRELIMINARIES
Before going into the details of operator throttling and window

harvesting, in this section we present our window-based stream join
model, introduce some notations, and describe the basics of multi-
way windowed stream join processing.

We denote the ith input stream by Si, where i ∈ [1..m] and
m ≥ 2 denotes the number of input streams of the join opera-
tor, i.e. we have an m-way join. Each stream is a sequence of
tuples ordered by an increasing timestamp. We denote a tuple by
t and its timestamp by T (t). Current time is denoted by T . We
assume that tuples are assigned timestamps upon their entrance to
the DSMS. We do not enforce any particular schema type for the
input streams. Schemas of the streams can include attributes that
are single-valued, set valued, user defined, or binary. The only re-
quirement is to have timestamps and an appropriate join condition
defined over the input streams. We denote the current rate, in terms
of tuples per second, of an input stream Si as λi.

An m-way stream join operator has m join windows, as shown
in the 3-way join example of Figure 1. The join window for stream
Si is denoted by Wi, and has a user defined size, in terms of sec-
onds, denoted by wi. A tuple t from Si is kept in Wi only if
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T ≥ T (t) ≥ T − wi. The join operator has buffers (queues) at-
tached to its inputs and output. The input stream tuples are pushed
into their respective input buffers either directly from their source
or from output of other operators. The join operator processes tu-
ples by fetching them from its input buffers, processes the join, and
pushes the resulting tuples into the output buffer.

The GrubJoin algorithm we develop in this paper can be seen as
a descendant of MJoin [20]. MJoins have been shown to be very ef-
fective for performing fine-grained adaptation and are very suitable
for streaming scenarios, where the rates of the streams are bursty
and may soar during peak times. In an MJoin, there are m differ-
ent join directions, one for each stream, and for each join direction
there is an associated join order. ith direction of the join describes
how a tuple t from Si is processed by the join algorithm, after it
is fetched from the input buffer. The join order for direction i, de-
noted by Ri = {ri,1, ri,2, . . . , ri,m−1}, defines an ordered set of
window indexes that will be used during the processing of t ∈ Si.
In particular, tuple t will first be matched against the tuples in win-
dow Wl, where l = ri,1. Here, ri,j is the jth join window index in
Ri. If there is a match, then the index of the next window to be used
for further matching is given by ri,2, and so on. For any direction,
the join order consists of m − 1 distinct window indices, i.e. Ri is
a permutation of {1, . . . , m} − {i}. Although there are (m − 1)!
possible choices of orderings for each join direction, this number
can be smaller depending on the join graph of the particular join
at hand. We will talk more about join order selection in Section 5.
Figure 1 illustrates join directions and orders for an example 3-way
join. Once the join order for each direction is decided, the pro-
cessing is carried out in an NLJ (nested-loop join) fashion. Since
we do not focus on any particular type of join condition, NLJ is a
natural choice. See Section 7 for a discussion on applying indexed
processing to our approach, for special types of joins.

3. OPERATOR THROTTLING
Operator throttling is a load shedding framework for stream op-

erators, that regulates the amount of load shedding to be performed
by calculating and maintaining a throttle fraction, and relies on an
in-operator load shedding technique to reduce the CPU cost of ex-
ecuting the operator in accordance with the throttle fraction. We
denote the throttle fraction by z. It has a value in the range (0, 1].
Concretely, z = φ means that the in-operator load shedding tech-
nique should adjust the processing logic of the operator such that
the CPU cost of executing it is reduced to φ times the original. As

expected, this will have side-effects on the quality or quantity of
the output from the operator. In the case of stream joins, applying
in-operator load shedding will result in a reduced output rate. Note
that the concept of operator throttling is general and applies to op-
erators other than joins. For instance, an aggregation operator can
use the throttle fraction to adjust its aggregate re-evaluation interval
to shed load [19], or a data compression operator can decrease its
compression ratio based on the throttle fraction [14].

3.1 Setting of the Throttle Fraction
The correct setting of the throttle fraction depends on the per-

formance of the join operator under current system load and the
incoming stream rates. We capture this as follows.

Let us denote the adaptation interval by ∆. This means that the
throttle fraction z is adjusted every ∆ seconds. Let us denote the
tuple consumption rate of the join operator for Si, measured for the
last adaptation interval, by αi. In other words, αi is the tuple pop
rate of the join operator for the buffer attached to Si, during the
last ∆ seconds. On the other hand, let λ′

i be the tuple push rate for
the same buffer during the last adaptation interval. Using αi’s and
λ′

i’s we capture the performance of the join operator under current
system load and incoming stream rates, denoted by β, as:

β =
m∑

i=1

αi/
m∑

i=1

λ′
i

The β value is used to adjust the throttle fraction as follows. We
start with a z value of 1, optimistically assuming that we will be
able to fully execute the operator without any overload. At each
adaptation step (∆ seconds), we update z from its old value zold

based on the formula:

z =

{
β · zold β < 1

min(1, γ · zold) otherwise

If β is smaller than 1, z is updated by multiplying its old value with
β, with the aim of adjusting the amount of shedding performed by
the in-operator load shedder to match the tuple consumption rate
of the operator to tuple production rate of the streams. Otherwise
(β ≥ 1), the join is able to process all the incoming tuples with the
current setting of z, in a timely manner. In this latter case, z is set
to minimum of 1 and γ ∗ r, where γ is called the boost factor. This
is aimed at increasing the throttle fraction, assuming that additional
processing resources are available. If not, the throttle fraction will
be readjusted during the next adaptation step. Note that, higher val-
ues of the boost factor result in being more aggressive at increasing
the throttle fraction.
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Figure 2: z adaptation example

Figure 2 shows an ex-
ample of throttle fraction
adaptation from our imple-
mentation of GrubJoin us-
ing operator throttling. In
this example ∆ is set to
4 seconds and γ is set
to 1.2. Other experimen-
tal parameters are not of
interest for this example.
The input stream rates are
shown as a function of
time using the left y-axis,
and the throttle fraction z is shown as a function of time using the
right y-axis. Looking at the figure, besides the observation that the
z value adapts to the changing rates by following an inversely pro-
portional trend, we also see that the reaction in the throttle fraction



follows the rate change events with a delay due to the length of
the adaptation interval. Although in this example ∆ is sufficiently
small to adapt to the bursty nature of the streams, in general its
setting is closely related with the length of the bursts. Moreover,
the time it takes for the in-operator load shedder to perform recon-
figuration in accordance with the throttle fraction is an important
limitation in how frequent the adaptation can be performed, thus
how small ∆ can be. We discuss more about this in Section 4.2.

3.2 Buffer Capacity vs. Tuple Dropping
As opposed to stream throttling, operator throttling does not nec-

essarily drop tuples from the incoming streams. The decision of
how the load shedding will be performed is left to the in-operator
load shedder, which may choose to retain all unexpired tuples
within its join windows. However, depending on the size of the in-
put buffers, operator throttling framework may still result in drop-
ping tuples outside the join operator, albeit only during times of
mismatch between the last set value of the throttle fraction and its
ideal value. As an example, consider the starting time of the join,
at which point we have z = 1. If the stream rates are higher than
the operator can handle with z set to 1, then the gap between the
incoming tuple rate and the tuple consumption rate of the operator
will result in growing number of tuples within buffers. This trend
will continue until the next adaptation step, at which time throttle
fraction will be adjusted to stabilize the system. However, if during
this interval the buffers fill up, then some tuples will be dropped.
The buffer size can be increased to prevent tuple dropping, at the
cost of introducing delay. If buffer sizes are small, then tuple drop-
ping will be observed only during times of transition, during which
throttle fraction is higher than what it should ideally be.

4. WINDOW HARVESTING
Window harvesting is an in-operator load shedding technique we

develop for multi-way windowed stream joins. The basic idea be-
hind window harvesting is to use only certain fragments of the join
windows for processing, in an effort to reduce the CPU demand of
the operator, as dictated by the throttle fraction. By making use
of the time correlations among the streams in deciding which seg-
ments of the join windows are more valuable for output tuple gen-
eration, window harvesting aims at maximizing the output rate of
the join. In the rest of this section, we first describe the fundamen-
tals of window harvesting and then formulate window harvesting
as an optimization problem.

4.1 Fundamentals
Window harvesting involves organizing join windows into a set

of basic windows and for each join direction selecting the segments
of the windows to use for performing the join.

4.1.1 Basic Windows
Each join window Wi is divided into basic windows of size b

seconds. Basic windows are treated as integral units, thus there is
always one extra basic window in each join window to handle tuple
expiration. In other words, Wi consists of 1 + ni basic windows,
where ni = �wi/b�. The first basic window is partially full, and
the last basic window contains some expired tuples (tuples whose
timestamps are out of the join window’s time range, i.e. T (t) <
T−wi). Every b seconds the first basic window fills completely and
the last basic window expires totally. Thus, the last basic window
is emptied and it is moved in front of the basic window list as the
new first basic window.

At any time, the unexpired tuples in Wi can be though of orga-
nized into ni logical basic windows, where the jth logical basic

window (j ∈ [1..ni]), denoted by Bi,j , corresponds to the end-
ing ϑ portion of the jth basic window plus the beginning 1 − ϑ
portion of the j + 1th basic window. We have ϑ = δ/b, where
δ is the time elapsed since the last basic window expiration took
place. This small distinction between logical and real basic win-
dows become handy when selecting segments of the join windows
to process. Note that, accessing the tuples in a logical basic window
does not require a search operation. A basic window is organized
as timestamp ordered doubly linked list. As a result, for accessing
tuples in Bi,j we can perform iteration over the i + 1th basic win-
dow and backward iteration over the ith basic window. Concepts
related with basic windows are illustrated in Figure 3.

There are two major advantages of using basic windows. First,
basic windows make expired tuple management more efficient [9].
This is because the expired tuples are removed from the join win-
dows in batches, i.e. one basic window at a time. Second, without
basic windows, accessing tuples in a logical basic window will re-
quire a search operation to locate a tuple within the logical basic
window’s time range.

4.1.2 Configuration Parameters
There are two sets of configuration parameters for window har-

vesting, which together determine the segments of the windows that
will be used for join processing. These are:

• Harvest fractions; zi,j , i ∈ [1..m], j ∈ [1..m − 1]: For the
ith direction of the join, the fraction of the jth window in the join
order (i.e. join window Wl, where l = ri,j) that will be used
for join processing is determined by the harvest fraction parameter
zi,j ∈ (0, 1]. There are m · (m − 1) different harvest fractions.
Their setting is strongly tied with the throttle fraction and the time
correlations among the streams. We defer the details to Section 4.2.

• Window rankings; sv
i,j , i ∈ [1..m], j ∈ [1..m − 1], v ∈

[1..nri,j ]: For the ith direction of the join, we define an ordering
over the logical basic windows of the jth window in the join order
(i.e. join window Wl, where l = ri,j), such that sv

i,j gives the index
of the logical basic window that has rank v in this ordering. Bl,s1

i,j

is the first logical basic window in this order, i.e. the one with rank
1. The ordering defined by sv

i,j values is strongly influenced by the
time correlations among the streams (see Section 4.2 for details).

In summary, segments of the join window Wl, where l = ri,j ,
that will be processed during the execution of the ith direction of
the join is selected as follows. We first pick Bl,s1

i,j
, then Bl,s2

i,j
,

and so on, until the total fraction of Wl processed reaches zi,j .
Any portion of window Wl that is not picked is not used during the
execution of the ith direction of the join.

Figure 3 shows an example of window harvesting for a 3-way
join, for the join direction R1. In the example, we have ni = 5
for i ∈ [1..3]. This means that we have 5 logical basic windows
within each join window and as a result 6 basic windows per join
window in practice. The join order for direction 1 is given as
R1 = {3, 2}. This means W3 is the first window in the join or-
der of R1 (i.e. r1,1 = 3) and W2 is the second (i.e. r1,2 = 2). We
have z1,1 = 0.6. This means that nr1,1 · z1,1 = 5 · 0.6 = 3 logical
basic windows from Wr1,1 = W3 are to be processed. Noting that
we have s1

1,1 = 4, s2
1,1 = 3, and s3

1,1 = 5, the logical basic win-
dows within W3 that are going to be processed are selected as 3, 4,
and 5. They are marked in the figure with horizontal lines, their
associated rankings written on top. The corresponding portions of
the basic windows are also shaded in the figure. Note that there is a
small shift between the logical basic windows and the actual basic
windows (recall ϑ from Section 4.1.1). Along the similar lines, the
logical basic windows 2 and 3 from W2 are also marked in the fig-
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ure, noting that r1,2 = 2, z1,2 = 0.4 corresponds to 2 logical basic
windows, and we have s1

1,2 = 3, s2
1,2 = 2.

In the rest of this section, we describe the setting of window
harvesting configuration parameters.

4.2 Configuration of Window Harvesting
Configuration of window harvesting involves setting the window

ranking parameters and the harvest fraction parameters. This con-
figuration is performed at the adaptation step, every ∆ seconds.

4.2.1 Setting of Window Rankings
We set window ranking parameters sv

i,j’s in two steps. First step
is called score assignment. Concretely, for the ith direction of the
join and the jth window in the join order Ri, that is Wl where
l = ri,j , we assign a score to each logical basic window within
Wl. We denote the score of the kth logical basic window, which is
Bl,k, by pk

i,j . We define pk
i,j as the probability that an output tuple

(. . . , t(i), . . . , t(l), . . .) has:

b · (k − 1) ≤ T (t(i)) − T (t(l)) ≤ b · k
Here, t(i) denotes a tuple from Si. This way, a logical basic win-
dow in Wl is scored based on the likelihood of having an output
tuple whose encompassed tuples from Si and Sl have an offset be-
tween their timestamps such that this offset is within the time range
of the logical basic window.

The score values are calculated using the time correlations
among the streams. For now, we will assume that the time corre-
lations are given in the form of probability density functions (pdfs)
denoted by fi,j , where i, j ∈ [1..m]. Let us define Ai,j as a ran-
dom variable representing the difference T (t(i)) − T (t(j)) in the
timestamps of tuples t(i) and t(j) encompassed in an output tuple
of the join. Then fi,j : [−wi, wj ] → [0,∞) is the probability
density function for the random variable Ai,j . With this definition,
we have pk

i,j =
∫ b·k

b·(k−1)
fi,ri,j (x)dx. In practice, we develop a

lightweight method for approximating a subset of these pdfs and
calculating pk

i,j’s from this subset efficiently. The details are given
in Section 5 as part of the GrubJoin.

The second step of the setting of window ranking parameters is
called score ordering. In this step, we sort the scores {pk

i,j : k ∈
[1..nri,j ]} in descending order and set sv

i,j to k, where v is the rank
of pk

i,j in the sorted set of scores. If the time correlations among the
streams change, then a new set of scores and thus a new assignment

for the window rankings is needed. This is again handled by the
reconfiguration performed at every adaptation step.

4.2.2 Setting of Harvest Fractions
Harvest fractions are set by taking into account the throttle frac-

tion and the time correlations among the streams. First, we have
to make sure that the CPU cost of performing the join agrees with
the throttle fraction z. This means that the cost should be at most
equal to z times the cost of performing the full join. Let C({zi,j})
denote the cost of performing the join for the given setting of the
harvest fractions, and C(1) denote the cost of performing the full
join. We say that a particular setting of harvest fractions is feasible
if and only if z · C(1) ≥ C({zi,j}).

Second, among the feasible set of settings of the harvest frac-
tions, we should prefer the one that results in the maximum output
rate. Let O({zi,j}) denote the output rate of the join operator for
the given setting of the harvest fractions. Then our objective is to
maximize O({zi,j}). In short, we have an optimization problem:

Optimal Window Harvesting Problem:

argmax
{zi,j}

O({zi,j})

s.t. z · C(1) ≥ C({zi,j})

We now describe the formulations for functions C and O. Our
formulations are similar to previous work [13, 2], with the excep-
tion that we integrate time correlations among the streams into the
processing cost and output rate computations.

4.3 Formulation of C({zi,j}) and O({zi,j})
For the formulation of C, we will assume that the processing cost

of performing the NLJ join is proportional to the number of tuple
comparisons made per time unit. We do not include the cost of
tuple insertion and removal in the following derivations, although
they can be added with little effort.

The total cost C is equal to the sum of the costs of individual
join directions, where the cost of performing the ith direction is
λi times the number of tuple comparisons made for processing a
single tuple from Si. We denote the latter with Ci. Thus, we have:

C =
m∑

i=1

(λi · Ci)

Ci is equal to the sum of the number of tuple comparisons made
for processing each window in the join order Ri. The number of
tuple comparisons performed for the jth window in the join order,
that is Wri,j , is equal to the number of times Wri,j is iterated over,
denoted by Ni,j , times the number of tuples used from Wri,j . The
latter is calculated as zi,j · Si,j , where Si,j = λri,j · wri,j gives
the number of tuples in Wri,j . We have:

Ci =

m−1∑
j=1

(zi,j · Si,j · Ni,j)

Ni,j , which is the number of times Wri,j is iterated over for
evaluating the ith direction of the join, is equal to the number of
partial join results we get by going through only the first j−1 win-
dows in the join order Ri. We have Ni,1 = 1 as a base case. Ni,2,
that is the number of partial join results we get by going through
Wri,1 , is equal to Pi,1 · σi,ri,1 · Si,1, where σi,ri,1 denotes the se-
lectivity between Wi and Wri,1 , and as before Si,1 is the number
of tuples in Wri,1 . Here, Pi,1 is a yield factor that accounts for
the fact that we only use zi,j fraction of Wri,j . If the pdfs cap-
turing the time correlations among the streams are flat, then we



have Pi,j = zi,j . We describe how Pi,j is generalized to arbi-
trary time correlations shortly. By noting that for j ≥ 2 we have
Ni,j = Ni,j−1 ·Pi,j−1 ·σi,ri,j−1 ·Si,j−1 as our recursion rule, we
generalize our formulation as follows:

Ni,j =

j−1∏
k=1

(
Pi,k · σi,ri,k · Si,k

)
In the formulation of Pi,j , for brevity we will assume that zi,j

is a multiple of 1/nri,j , i.e. an integral number of logical basic
windows are selected from Wri,j for processing. Then we have:

Pi,j =

zi,j ·nri,j∑
k=1

p
sk

i,j

i,j /

nri,j∑
k=1

pk
i,j

To calculate Pi,j , we use a scaled version of zi,j which is the
sum of the scores of the logical basic windows selected from Wri,j

divided by the sum of the scores from all logical basic windows in
Wri,j . Note that pk

i,j’s (logical basic window scores) are calculated
from the time correlation pdfs as described earlier in Section 4.2.1.
If fi,j is flat, then we have pk

i,j = 1/nri,j , ∀k ∈ [1..nri,j ] and as
a consequence Pi,j = zi,j . Otherwise, we have Pi,j > zi,j . This
means that we are able to obtain Pi,j fraction of the total number
of matching tuples from Wri,j by iterating over only zi,j < Pi,j

fraction of Wri,j . This is a result of selecting the logical basic
windows that are more valuable for producing join output. This is
accomplished by utilizing the window rankings during the selec-
tion process. Recall that these rankings (sv

i,j’s) are calculated from
logical basic window scores.

We easily formulate O using Ni,j’s. Recalling that Ni,j is equal
to the number of partial join results we get by going through only
the first j−1 windows in the join order Ri, we conclude that Ni,m

is the number of output tuples we get by fully executing the ith join
direction. Since O is the total output rate of the join, we have:

O =
m∑

i=1

λi · Ni,m

4.4 Bruteforce Solution
One way to solve the optimal window harvesting problem is to

enumerate all possible harvest fraction settings assuming that the
harvest fractions are set to result in selecting an integral number
logical basic windows, i.e. ∀ i∈[1..m]

j∈[1..m−1]

, zi,j · nri,j ∈ N. Al-

though straightforward to implement, this bruteforce approach re-
sults in considering

∏m
i=1 nm−1

i possible configurations. If we

have ∀i ∈ [1..m], ni = n, then we can simplify this as O(nm2
).

As we will show in the experimental section, this is computation-
ally very expensive due to the long time required to solve the op-
timization problem with enumeration, and makes it almost impos-
sible to perform frequent adaptation. In the next section we will
discuss an efficient heuristic that can find near-optimal solutions
quickly, with much smaller computational complexity.

4.4.1 Example of Optimal Configuration
Figure 4 shows an example scenario illustrating the setting of

window harvesting parameters optimally. In this scenario we have
a 3-way join with λ1 = 300, λ2 = 100, λ3 = 150, w1 =
w2 = w3 = 10, b = 2, and z = 0.5. The topmost graph
on the left in Figure 4 shows the selectivities, whereas the two
graphs next to it show the time correlation pdfs, f2,1 and f3,1. By
looking at f2,1, we can see that there is a time lag between the
streams S1 and S2, since most of the matching tuples from these
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Figure 4: Optimal window harvesting example

two streams has a timestamp difference of about 4 seconds, S2 tu-
ple being lagged. Moreover, the probability that two tuples from
S1 and S2 match decreases as the difference in their timestamps
deviates from the 4 second time lag. By looking at f3,1, we can
say that the streams S1 and S3 are also unaligned, with S3 lagging
behind by around 5 seconds. In other words, most of the S3 tuples
match with S1 tuples that are around 5 seconds older. By compar-
ing f2,1 and f3,1, we can also deduce that S3 is slightly lagging
behind S2, by around 1 seconds. As a result, our intuition tells us
that the third join direction is more valuable then the others, since
the tuples from other streams that are expected to match with an
S3 tuple are already within the join windows when an S3 tuple is
fetched. In this example, the join orders are configured as follows:
R1 = {2, 3}, R2 = {3, 1}, R3 = {2, 1}. This decision is based on
the low selectivity first heuristic [20], as it will be discussed in the
next section. The resulting window harvesting configuration, ob-
tained by solving the optimal window harvesting problem by using
the bruteforce approach, is shown in the lower row of Figure 4. The
logical basic windows selected for processing are marked with dark
circles and the selections are shown for each join direction. We ob-
serve that in the resulting configuration we have z3,1 = z3,2 = 1,
since all the logical basic windows are selected for processing in
R3. This is inline with our intuition that the third direction of the
join is more valuable than the others.2

5. GRUBJOIN
GrubJoin is a multi-way windowed stream join operator with

built-in window-harvesting. It uses two main methods to make
window harvesting work in practice. First, it employs a heuristic
method to set the harvest fractions, and second it uses approxima-
tion techniques to learn the time correlations among the streams
and to set the logical basic window scores based on that. In this
section we describe the details of these two methods.

5.1 Heuristic Setting of Harvest Fractions
The heuristic method we use for setting the harvest fractions is

greedy in nature. It starts by setting zi,j = 0, ∀i, j. At each greedy
step it considers a set of settings for the harvest fractions, called
the candidate set, and picks the one with the highest evaluation

2See a demo at http://members.fortunecity.com/grubjoin/



metric as the new setting of the harvest fractions. Any setting in the
candidate set must be a forward step in increasing the zi,j values,
i.e. we must have ∀i, j, zi,j ≥ zold

i,j , where {zold
i,j } is the setting

of the harvest fractions that was picked at the end of the previous
greedy step. The process terminates once a step with an empty
candidate set is reached. We introduce three different evaluation
metrics for deciding on the best configuration within the candidate
set. In what follows, we first describe the candidate set generation
and then introduce the three alternative evaluation metrics.

5.1.1 Candidate Set Generation
The candidate set is generated as follows. For the ith direction of

the join and the jth window within the join order Ri, we add a new
setting into the candidate set by increasing zi,j by di,j . In the rest
of the paper we take di,j as 1/nri,j . This corresponds to increas-
ing the number of logical basic windows selected for processing by
one. This results in m · (m−1) different settings, which is also the
maximum size of the candidate set. The candidate set is then fil-
tered to remove the settings which are infeasible, i.e. do not satisfy
the processing constraint of the optimal window harvesting prob-
lem dictated by the throttle fraction z. Once a setting in which zu,v

is incremented is found to be infeasible, then the harvest fraction
zu,v is frozen and no further settings in which zu,v is incremented
are considered in the future steps of the algorithm.

There is one small complication to the above described way of
generating candidate sets. Concretely, when we have ∀j, zi,j = 0
for the ith join direction at the start of a greedy step, then it makes
no sense to create a candidate setting in which only one harvest
fraction is non-zero for the ith join direction. This is because no
join output can be produced from a join direction if there is one or
more windows in the join order for which the harvest fraction is set
to zero. As a result, we say that a join direction i is not initialized
if and only if there is a j such that zi,j = 0. If at the start of a
greedy step, we have a join direction that is not initialized, say ith
direction, then instead of creating m − 1 candidate settings for the
ith direction, we generate only one setting in which all the harvest
fractions for the ith direction are incremented, i.e. ∀j, zi,j = di,j .

Computational Complexity: In the worst case, the greedy algo-
rithm will have (m − 1) · ∑m

i=1 ni steps, since at the end of each
step at least one harvest fraction is incremented for a selected join
direction and window within that direction. Taking into account
that the candidate set can have a maximum size of m · (m− 1) for
each step, the total number of settings considered during the execu-
tion of the greedy heuristic is bounded by m · (m− 1)2 ·∑m

i=1 ni.
If we have ∀i ∈ [1..m], ni = n, then we can simplify this as

O(n ·m4). This is much better than the O(nm2
) complexity of the

exhaustive algorithm, and as we will show in the next section it has
satisfactory running time performance.

5.1.2 Evaluation Metrics
The evaluation metric used for picking the best setting among

the candidate settings has a tremendous impact on the optimality of
the heuristic. We introduce three alternative evaluation metrics and
experimentally compare their optimality in the next section. These
evaluation metrics are:

• Best Output: The best output metric picks the candidate setting
that results in the highest join output O({zi,j}).
• Best Output Per Cost: The best output per cost metric picks

the candidate setting that results in the highest join output to join
cost ratio O({zi,j})/C({zi,j}).
• Best Delta Output Per Delta Cost: Let {zold

i,j } denote the set-
ting of the harvest fractions from the last step. Then the best delta

GREEDYPICK(z)
(1) cO ← cC ← 0 {current cost and output}
(2) ∀ 1≤i≤m , Ii ← false {initialization indicators}
(3) ∀ 1≤i≤m

1≤j≤m−1 , Fi,j ← false {frozen fraction indicators}
(4) ∀ 1≤i≤m

1≤j≤m−1 , zi,j ← 0 {fraction parameters}
(5) while true
(6) bS ← 0 {best score for this step}
(7) u← v ← −1 {direction and window indices}
(8) for i← 1 to m {for each direction}
(9) if Ii = true {if already initialized}
(10) for j ← 1 to m− 1 {for each window in join order}
(11) if zi,j = 1 or Fi,j = true {zi,j is maxed or frozen}
(12) continue{move to next setting}
(13) z′ ← zi,j {store old value}
(14) zi,j ← MIN(1, zi,j + di,j) {increment}
(15) S ← EVAL(z, {zi,j}, cO, cC)
(16) zi,j ← z′ {reset to old value}
(17) if S > bS {update best solution}
(18) bS ← S; u← i; v ← j
(19) else if S < 0 {infeasible setting}
(20) Fi,j ← true {froze zi,j}
(21) else {if not initialized}
(22) ∀ 1≤j≤m−1 , zi,j ← di,j {increment all}
(23) S ← EVAL(z, {zi,j}, cO, cC)
(24) ∀ 1≤j≤m−1 , zi,j ← 0 {reset all}
(25) if S > bS {update best solution}
(26) bS ← S; u← i
(27) if u = −1 {no feasible configurations found}
(28) break{further increment not possible}
(29) if Iu = false {if not initialized}
(30) Iu ← true {update initialization indicator}
(31) ∀ 1≤j≤m−1 , zu,j ← di,j {increment all}
(32) else zu,v = zu,v + di,j {increment}
(33) cC = C({zi,j}) {update current cost}
(34) cO = O({zi,j}) {update current output}
(35) return {zi,j} {Final result}

EVAL(z, {zi,j}, cO, cC)
(1) S ← −1 {metric score of the solution}
(2) if C({zi,j}) > r · C(1) {if not feasible}
(3) return S {return negative metric score}
(4) switch(heuristic type)
(5) case BestOutput:
(6) S ← O({zi,j}); break
(7) case BestOutputPerCost:

(8) S ← O({zi,j})
C({zi,j}) ; break

(9) case BestDeltaOutputPerDeltaCost:

(10) S ← O({zi,j})−cO

C({zi,j})−cC
; break

(11) return S {return the metric score}

Figure 5: Greedy Heuristic for setting the harvest fractions

output per delta cost metric picks the setting that results in the high-

est additional output to additional cost ratio
O({zi,j})−O({zold

i,j })
C({zi,j})−C({zold

i,j }) .

Figure 5 gives the pseudo code for the heuristic setting of the
harvest fractions. In the pseudo code the candidate sets are not
explicitly maintained. Instead, they are iterated over on-the-fly and
the candidate setting that results in the best evaluation metric is
used as the new setting of the harvest fractions.

5.1.3 Illustration of the Greedy Heuristic
Figure 6 depicts an example illustrating the inner workings of

the greedy heuristic for a 3-way join. The example starts with a
setting in which zi,j = 0.2, ∀i, j and shows the following greedy
steps of the heuristic. The harvest fraction settings are shown as
3-by-2 matrices in the figure. Similarly, 3-by-2 matrices are used
(on the right side of the figure) to show the frozen harvest fractions.
Initially none of the harvest fractions are frozen. In the first step a
candidate set with six settings is created. In each setting one of
the six harvest fractions is incremented by 0.1. As shown in the
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Figure 6: Illustration of the greedy heuristic

figure, out of these six settings the two are found to be infeasible,
and are marked with a cross. These two settings are the ones in
which z3,1 and z3,2 were incremented, and thus these two harvest
fractions are frozen at their last values. Among the remaining four
settings the one in which z2,1 is increased is found to give the high-
est evaluation metric score. This setting is marked with an arrow
in the figure, and forms the base setting for the next greedy step.
The remaining three settings, marked with a line in the figure, are
simply discarded. In the second step only four new settings are cre-
ated, since two of the harvest fractions were frozen. As shown in
the figure, among these four new settings two are found to be in-
feasible and thus two more harvest fractions are frozen. The setting
marked with the arrow is found to have the best evaluation metric
score and forms the basis setting for the next step. However, both
of the two settings created for the next step are found to be infeasi-
ble and thus the last setting from the second step is determined as
the final setting. It is marked with a frame in the figure.

5.2 Learning Time Correlations
The time correlations among the streams can be learned by mon-

itoring the output of the join operator. Recall that the time corre-
lations are captured by the pdfs fi,j , where i, j ∈ [1..m]. fi,j is
defined as the pdf of the difference T (t(i)) − T (t(j)) in the times-
tamps of the tuples t(i) ∈ Si and t(j) ∈ Sj encompassed in an
output tuple of the join. We can approximate fi,j by building a his-
togram on the difference T (t(i))−T (t(j)) by analyzing the output
tuples produced by the join algorithm.

This straightforward method of approximating the time correla-
tions has two important shortcomings. First and foremost, since
window harvesting uses only certain portions of the join windows,
changing time correlations cannot be captured. Second, for each
output tuple of the join we have to update O(m2) number of his-
tograms to approximate all pdfs, which hinders the performance.
We tackle the first problem by using window shredding, and the
second one through the use of sampling and per stream histograms.
We now describe these two techniques.

5.2.1 Window Shredding
For a randomly sampled subset of tuples, we do not perform the

join using window harvesting, but instead we use window shred-
ding. We denote our sampling parameter by ω. On the average,

for only ω fraction of the tuples we perform window shredding. ω
is usually small (< 0.1). Window shredding is performed by exe-
cuting the join fully, except that the first window in the join order
of a join direction is processed only partially based on the throttle
fraction z. The tuples to be used from such windows are selected so
that they are roughly evenly distributed within the window’s time
range. This way, we get rid of the bias introduced in the output
due to window harvesting, and can safely use the output generated
from window shredding for building histograms to capture the time
correlations. Moreover, since window shredding only processes z
fraction of the first windows in the join orders, it respects the pro-
cessing constraint of the optimal window harvesting problem.

5.2.2 Per Stream Histograms
Although the histograms used for approximating the time cor-

relation pdfs are updated only for the output tuples generated from
window shredding, the need for maintaining m·(m−1) histograms
is still excessive and unnecessary. We propose to maintain only m
histograms, one for each stream. The histogram associated with Wi

is denoted by Li and it is an approximation to the pdf fi,1, i.e. the
probability distribution for the random variable Ai,1 (introduced in
Section 4.2.1).

Maintaining only m histograms that are updated only for the out-
put tuples generated from window shredding introduces very little
overhead, but necessitates developing a new method to calculate
logical basic window scores (pk

i,j’s) from these m histograms. Re-

call that we had pk
i,j =

∫ b·k
b·(k−1)

fi,ri,j (x)dx. Since we do not
maintain histograms for all pdfs (fi,j’s), this formulation should be
updated. We now describe the new method we use for calculating
logical basic window scores.

We start with introducing some notations. We will assume that
the histograms are equi-width histograms, although extension to
other types are possible. Li has a valid time range of [−wi, w1],
which is the input domain of fi,1. Let Li(I) denote the frequency
for the time range I , and Li[k] denote the frequency for the kth
bucket in Li. Let Li[k

∗] and Li[k∗] denote the higher and lower
points of the kth bucket’s time range, respectively. Finally, let |Li|
denote the number of buckets in Li.

From the definition of pk
i,j , we have:

pk
i,j = P{Ai,l ∈ b · [k − 1, k]}, where ri,j = l

For the case of i = 1, nothing that Ai,j = −Aj,i, we have:

pk
1,j = P{Al,1 ∈ b · [−k,−k + 1]}

=

∫ −b·(k−1)

x=−b·k
fl,1(x) dx

We can approximate this using Ll, as follows:

pk
1,j ≈ Ll(b · [−k,−k + 1]) (1)

For the case of i �= 1, we will use the trick Ai,l = Ai,1 − Al,1:

pk
i,j = P{(Ai,1 − Al,1) ∈ b · [k − 1, k]}

= P{Ai,1 ∈ b · [k − 1, k] + Al,1}
Making the simplifying assumption that Al,1 and Ai,1 are inde-

pendent, we get:

pk
i,j =

∫ w1

x=−wl

fl,1(x) · P{Ai,1 ∈ b · [k − 1, k] + x} dx

=

∫ w1

x=−wl

fl,1(x) ·
∫ b·k+x

y=b·(k−1)+x

fi,1(y) dy dx
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We can approximate this using Ll and Li, as follows:

pk
i,j ≈

|Ll|∑
v=1

(
Ll[v] · Li(b · [k − 1, k] +

Ll[v
∗] + Ll[v∗]

2
)

)
(2)

Equations (1) and (2) are used together to calculate the logical
basic window scores by only using the m histograms we maintain.
In summary, we only need to capture the pdfs fi,1, ∀i ∈ [1..m]
to calculate pk

i,j values. This is achieved by maintaining Li for
approximating fi,1. Li’s are updated only for output tuples gen-
erated from window shredding. Moreover, window shredding is
performed only for a sampled subset of input tuples defined by the
sampling parameter ω. The logical basic window scores are calcu-
lated from Li’s during the adaptation step (every ∆ seconds). This
whole process results in very little overhead during majority of the
time frame of the join execution. Most of the computations are
performed during the adaptation step.

5.3 Join Orders and Selectivities
The GrubJoin algorithm uses the MJoin [20] approach for setting

the join orders Ri, ∀i ∈ [1..m]. This setting is based on the low
selectivity first heuristic. Concretely, let Ui be the sorted set {σi,j :
1 ≤ j �= i ≤ m}, in ascending order. Then we set ri,j to k, where
σi,k is the jth item in the set Ui. This technique assumes that all
possible join orderings are possible, as it is in a star shaped join
graph. In practice, the possible join orders should be pruned based
on the join graph and then the heuristic should be applied.

Although the low selectivity first heuristic has been shown to
be effective, there is no guarantee of optimality. In this work, we
choose to exclude join order selection from our optimal window
harvesting configuration problem, and treat it as an independent is-
sue. We require that the join orders are set before the window har-
vesting parameters are to be determined. This helps cutting down
the search space of the problem significantly. Using a well estab-
lished heuristic for order selection and solving the window harvest-
ing configuration problem separately is an effective technique that
makes it possible to execute adaptation step much faster. This en-
ables more frequent adaptation.

6. EXPERIMENTAL RESULTS
The GrubJoin algorithm has been implemented within our opera-

tor throttling based load shedding framework and has been success-
fully demonstrated as part of a large-scale stream processing proto-
type at IBM Watson Research. Here, we report three sets of exper-
imental results to demonstrate the effectiveness of our approach.

The first set of experiments evaluate the optimality and the run-
time performance of the proposed heuristic algorithms used to set
the harvest fractions. The second set of experiments use syntheti-
cally generated streams to demonstrate the superiority of window
harvesting to tuple dropping, and to show the scalability of our ap-
proach with respect to various parameters, such as the number of
join streams and the incoming stream rates. The third set of exper-
iments show some anecdotal results from a real-world video join
application. All experiments presented in this paper are performed
on an IBM PC with 512MB main memory and 2.4Ghz Intel Pen-
tium4 processor, using Java with Sun JDK 1.5.

6.1 Setting of Harvest Fractions
An important measure for judging the effectiveness of the three

alternative metrics used in the candidate set evaluation phase of
the greedy heuristic, is the optimality of the resulting setting of the
harvest fractions with respect to the output rate of the join, com-
pared to the best achievable obtained by setting the harvest frac-
tions using the exhaustive search algorithm. The graphs in Fig-
ure 7 show optimality as a function throttle fraction z for the three
evaluation metrics, namely BestOutput, BestOutputPerCost,
and BestDeltaOutputPerDeltaCost. An optimality value of
φ ∈ [0, 1] means that the setting of the harvest fractions obtained
from the heuristic yields a join output rate of φ times the best
achievable, i.e. O({zi,j}) = φ · O({z∗

i,j}) where {z∗
i,j} is the op-

timal setting of the harvest fractions obtained from the exhaustive
search algorithm and {zi,j} is the setting obtained from the heuris-
tic. For this experiment we have m = 3, w1 = w2 = w3 = 10,
and b = 1. All results are averages of 500 runs. For each run,
a random stream rate is assigned to each of the three streams us-
ing a uniform distribution with range [100, 500]. Similarly, se-
lectivities are randomly assigned. We observe from Figure 7 that
BestOutputPerCost performs well only for very small z val-
ues (< 0.2), whereas BestOutput performs well only for large
z values (z ≥ 0.4). BestDeltaOutputPerDeltaCost is supe-
rior to other two alternatives and performs optimally for z ≥ 0.4
and within 0.98 of the optimal elsewhere. We conclude that
BestDeltaOutputPerDeltaCost provides a good approxima-
tion to the optimal setting of harvest fractions. We next study the
advantage of heuristic methods in terms of running time perfor-
mance, compared to the exhaustive algorithm.

The graphs in Figure 8 plot the time taken to set the harvest
fractions (in milliseconds) as a function of the number of logical
basic windows per join window (n), for exhaustive and greedy ap-
proaches. The results are shown for 3-way, 4-way, and 5-way joins
with the greedy approach and for only 3-way join with the exhaus-



tive approach. Throttle fraction z is set to 0.25 in this experiment.
Note that the y-axis is in logarithmic scale. As expected, the ex-
haustive approach takes several orders of magnitude more time than
the greedy approach. Moreover, the time taken for the greedy ap-
proach increases with increasing n and m, in compliance with its
complexity of O(n · m4). However, what is important to observe
here is the absolute values. For instance, for a 3-way join the ex-
haustive algorithm takes around 3 seconds for n = 10 and around
30 seconds for n = 20. Both of these values are simply unac-
ceptable for performing fine grained adaptation. On the other hand,
for n ≤ 20 the greedy approach performs the setting of harvest
fractions within 10 milliseconds for m = 5 and much faster for
m ≤ 4.
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Figure 10: Running time of
greedy algorithms w.r.t. z

The graphs in Figure 9
plot the time taken to set
the harvest fractions as a
function of throttle frac-
tion z, for greedy approach
with m = 3, 4, and 5.
Note that z affects the to-
tal number of greedy steps,
thus the running time. The
best case is when we have
z ≈ 0 and the search
terminates after the first
step. The worst case oc-
curs when we have z = 1,
resulting in ≈ n ·m · (m−
1) steps. We can see this
effect from Figure 9 by ob-
serving that the running time performance worsens as z gets closer
to 1. Although the degradation in performance for large z is ex-
pected due to increased number of greedy steps, it can be avoided
by reversing the working logic of the greedy heuristic. Concretely,
instead of starting from zi,j = 0, ∀i, j and increasing the harvest
fractions gradually, we can start from zi,j = 1, ∀i, j and decrease
the harvest fractions gradually. We call this version of the greedy
algorithm greedy reverse. Note that greedy reverse is expected to
run fast when z is large, but its performance will degrade when
z is small. The solution is to switch between the two algorithms
based on the value of z. We call this version of the algorithm
greedy double-sided. It uses the original greedy algorithm when
z ≤ 0.5(m−1)/2 and greedy reverse otherwise. The graphs in Fig-
ure 10 plot the time taken to set the harvest fractions as a function of
throttle fraction z, for m = 3 with three variations of the greedy al-
gorithm. It is clear from the figure that greedy double-sided makes
the switch from greedy to greedy reverse when z goes beyond 0.5
and gets best of the both worlds, i.e. performs good for both small
and large values of the throttle fraction z.

6.2 Results on Join Output Rate
In this section, we report results on the effectiveness of GrubJoin

with respect to join output rate, under heavy system load due to
high rates of the incoming input streams. We compare GrubJoin
with a stream throttling based approach called RandomDrop. In
the case of RandomDrop, excessive load is shed by placing drop
operators in front of input stream buffers, where the parameters of
the drop operators are set based on the input stream rates using the
static optimization framework of [2]. We report results on 3-way,
4-way, and 5-way joins. When not explicitly stated, the join refers
to a 3-way join. The window size is set to wi = 20, ∀i and b is set
to 2, resulting in 10 logical basic windows per join window. The
sampling parameter ω is set to 0.1 for all experiments. The results

reported in this section are from averages of several runs. Unless
stated otherwise, each run is 1 minutes, and the initial 20 seconds
are used for warm-up. The default value of the adaptation period ∆
is 5 seconds for the GrubJoin algorithm, although we experiment
with other ∆ values in some of the experiments.

The join type we employ in the experiments reported in this
subsection is ε-join. A set of tuples are considered to be match-
ing iff their values (assuming single-valued numerical attributes)
are within ε distance of each other. ε is taken as 1 in the experi-
ments. We model stream Si as a stochastic process Xi = {Xi(ϕ)}.
Xi(ϕ) is the random variable representing the value of the tuple
t ∈ Si with timestamp T (t) = ϕ. A tuple simply consists of a
single numerical attribute with the domain D = [0, D] and an as-
sociated timestamp. We define Xi(t) as follows:

Xi(ϕ) = (D/η) · (ϕ + τi) + κi · N (0, 1) mod D

In other words, Xi is a linearly increasing process (with wrap-
around period η) that has a random Gaussian component. There are
two important parameters that make this model useful for studying
GrubJoin. First, the parameter κi, named as deviation parame-
ter, enables us to adjust the amount of time correlations among the
streams. If we have κi = 0, ∀i, then the values for the time-aligned
portions of the streams will be exactly the same, i.e. the streams
are identical with possible lags between them based on the setting
of τi’s. If κi values are large, then the streams are mostly random,
so we do not have any time correlation left. Second, the parameter
τ (named as lag parameter) enables us to introduce lags between
the streams. We can set τi = 0, ∀i to have aligned streams. Al-
ternatively, we can set τi to any value within the range (0, η] to
create non-aligned streams. We set D = 1000, η = 50, and vary
the time lag parameters (τi’s) and the deviation parameters (κi’s)
to generate a rich set of scenarios. Note that GrubJoin is expected
to provide additional benefits when the time correlations among the
streams are strong and the streams are non-aligned.

Varying λ, Input Rates
The graphs in Figure 11 show the output rate of the join as a func-
tion of the input stream rates, for GrubJoin and RandomDrop. For
each approach, we report results for both aligned and non-aligned
scenarios. In the aligned case, we have τi = 0, ∀i and in the non-
aligned case we have τ1 = 0, τ2 = 5, and τ3 = 15. The deviation
parameters are set as κ1 = κ2 = 2 and κ3 = 50. As a result,
there is strong time correlation between S1 and S2, whereas S3 is
more random. We make three major observation from Figure 11.
First, we see that GrubJoin and Random Drop perform the same
for small values of the input rates, since there is no need for load
shedding until the rates reach 100 tuples/seconds. Second, we see
that GrubJoin is vastly superior to RandomDrop when the input
stream rates are high. Moreover, the improvement in the output
rate becomes more prominent for increasing input rates, i.e. when
there is a greater need for load shedding. Third, GrubJoin provides
up to 65% better output rate for the aligned case and up to 150%
improvement for the non-aligned case. This is because the lag-
awareness nature of GrubJoin gives it an additional upper hand for
sustaining a high output rate when the streams are non-aligned.

Varying Time Correlations
The graphs in Figure 12 study the effect of varying the amount of
time correlations among the streams on the output rate of the join,
with GrubJoin and RandomDrop for the non-aligned case. Recall
that the deviation parameter κ is used to alter the amount of time
correlations. It can be increased to remove the time correlations.
In this experiment κ3 is altered to study the change in output rate.
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The other settings are same with the previous experiment, except
that the input rates are fixed at 200 tuples/second. We plot the out-
put rate as a function of κ3 in Figure 12. We observe that the join
output rate for GrubJoin and Random Drop are very close when
the time correlations are almost totally removed. This is observed
by looking at the right end of the x-axis. However, for the major-
ity of the deviation parameter’s range, GrubJoin outperforms Ran-
domDrop. The improvement provided by GrubJoin is 250% when
κ3 = 25, 150% when κ3 = 50, and %25 when κ3 = 75. It is also
worth describing the behavior of RandomDrop in this experiment.
Note that as κ gets larger, RandomDrop start to suffer less from its
inability to exploit time correlations by using only the usefull seg-
ments of the join windows for processing. On the other hand, when
κ gest smaller, the selectivity of the join increases as a side effect
and in general the output rate increases. These two contrasting fac-
tors result in a bimodal graph for RandomDrop.

Varying m, # of Input Streams
We study the effect of m (number of input streams) on the improve-
ment provided by GrubJoin, in Figure 13. The m values are listed
on the x-axis, whereas the corresponding output rates are shown
in bars using the left y-axis. The improvement in the output rate
(in terms of percentage) is shown using the right y-axis. Results
are shown for both aligned and non-aligned scenarios. The input
rates are set to 100 tuples/second for this experiment. We observe
that, compared to RandomDrop, GrubJoin provides an improve-
ment in output rate that is linearly increasing with the number of
input streams. Moreover, this improvement is more prominent for
non-aligned scenarios and reaches up to 700% when we have a 5-
way join. This shows the importance of performing intelligent load
shedding for multi-way windowed stream joins. Naturally, joins
with more input streams are costlier to evaluate. For such joins,
effective load shedding techniques play an even more crucial role
in keeping the output rate high.

Overhead of Adaptation
In order to adapt to the changes in the input stream rates, the
GrubJoin algorithm re-adjusts the window rankings and harvest
fractions every ∆ seconds. We now experiment with a scenario
where input stream rates change as a function of time. We study
the effect of using different ∆ values on the output rate of the
join. Recall that the default value for ∆ was 5 seconds. In this
scenario the stream rates start from 100 tuples/second, change to
150tuples/second after 8 seconds, and change to 50tuples/second
after another 8 seconds. The graphs in Figure 14 plot the output rate
of GrubJoin as a function of ∆, for different m values. Remember

that larger values of m increases the running time of the heuris-
tic used for setting the harvest fractions, thus is expected to have
a profound effect on how frequent we can perform the adaptation.
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Figure 14: Effect of adaptation
period on output rate

The ∆ range used in this
experiment is [0.5, 8]. We
observe from Figure 14
that the best output rate is
achieved with the smallest
∆ value 0.5 for m = 3.
This is because for m =
3, adaptation step is very
cheap in terms of com-
putational cost. We see
that the best output rate is
achieved for ∆ = 1 for
m = 4 and for ∆ = 3 for
m = 5. The O(n · m4)
complexity of the adapta-
tion step is a major factor
for this change in the ideal setting of the adaptation period for larger
m. In general, a default value of ∆ = 5 seems to be too conserva-
tive for stream rates that show frequent fluctuations. In order to get
better performance, the adaptation period can be shortened. The
exact value of ∆ to use depends on the number of input streams,
m.
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Figure 15: Tuple dropping be-
havior of operator throttling

In Section 3.2, we have
mentioned that the oper-
ator throttling framework
can lead to dropping tuples
during times of transition,
when the throttle fraction
is not yet set to its ideal
value. This is especially
true when the input buffers
are small. In the experi-
ments reported in this sec-
tion we have used very
small buffers with size 10
tuples. However, as stated
before, the tuple drops can
be avoided by increasing the buffer size, at the cost of introducing
delay. The graph in Figure 15 plots the average tuple drop rates
of input buffers as a function of buffer size and input stream rates.
The throttle fraction z is set to 1, 20 seconds before the average



drop rates are measured. The adaptation interval is set to its default
value, i.e. ∆ = 5. As seen from the figure, 1 second buffers can
cut the drop rate around 30% and 2 seconds buffers around 50%
for input stream rates of around 200 tuples/second. However, in
the experiments reported in this paper we chose not to use such
large buffers, as they will introduce delays in the output tuples.

6.3 Video Join: A Case Study

7. DISCUSSIONS
Memory Load Shedding: This paper focuses on CPU load shed-

ding for multi-way windowed stream joins. However, memory is
also an important resource that may become a limiting factor when
the join windows can not hold all the unexpired tuples due to lim-
ited memory capacity. The only way to handle limited memory
scenarios is to develop tuple admission policies for join windows.
Tuple admission policies decide which tuples should be inserted
into join windows and which tuples should be removed from the
join windows when there is no more space left to accommodate a
newly admitted tuple. A straightforward memory conserving tuple
admission policy for GrubJoin is to allow every tuple into join win-
dows and to remove tuples from the logical basic windows that are
not selected for processing such that there are no selected logical
basic windows with larger indicies within the same join windows.
More formally, the tuples within the logical basic windows listed
in the following list can be dropped:{

Bi,j : ¬∃u, v, k s.t.
(
ru,v = i ∧ k ∈ [1..zu,v · ni] ∧ sk

u,v ≥ j
)}

Indexed Join Processing: We have so far assumed that the join
is performed in a NLJ fashion. However, special types of joins
can be accelerated by appropriate index structures. For instance
ε-joins can be accelerated through sorted trees and equi-joins can
be accelerated through hash tables. As long as the cost of finding
matching tuples within a join window is proportional (not necessar-
ily linearly) to the fraction of the window used, our solution can be
extended to work with indexed joins by pluging in the appropriate
cost model. Note that these indexes are to be build on top of basic
windows, which is an additional advantage, since tuple insertion
and deletion costs are very significant for indexed joins. We have
shown in our technical report [8] that, our ideas can be successfully
implemented for set-based joins [15] using inverted indexes. One
case that will not significantly benefit from load shedding is the
equi-join scenario. In an equi-join, the time taken to find matching
tuples within a join window is constant with hashtables and is inde-
pendent of the window size. Thus, most of the time is spent during
output tuple generation. As a result, the design space to develop
intelligent CPU load shedding techniques is very small.

8. RELATED WORK
The related work in the literature on load shedding in stream join

operators can be classified along four major dimensions. The first
dimension defines the metric that is to be optimized when shed-
ding load. Our work aims at maximizing the output rate of the join,
also known as the MAX-subset metric [7]. Although output rate
has been the predominantly used metric for join load shedding op-
timization [2, 8, 7, 16, 21], other metrics have also been introduced
in the literature, such as the Archive-metric proposed in [7], and
the sampled output rate metric introduced in [16].

The second dimension defines the constrained resource that ne-
cessitates load shedding. CPU and memory are the two major lim-
iting resources in join processing. Thus, in the context of stream
joins, works on memory load shedding [16, 7, 21] and CPU load

shedding [2, 8] have received significant interest. In the case of
user-defined join windows, the memory is expected to be less of
an issue. Our experience shows that for multi-way joins, CPU be-
comes a limiting factor before the memory does. As a result, our
work focuses on CPU load shedding. However, as discussed in
Section 7, our framework can also be used for saving memory.

The third dimension defines the stream characteristic that is ex-
ploited for the purpose of optimizing the load shedding process.
Stream rates, window sizes, and selectivities among the streams are
the commonly used stream characteristics that are used for the pur-
pose of load shedding optimization [2, 13]. However, these works
do not incorporate tuple semantics into the decision process. In se-
mantic load shedding, the load shedding decisions are influenced
by the values of the tuples. In frequency-based semantic load shed-
ding, tuples whose values frequently appear in the join windows
are considered as more important [7, 21]. However, this approach
only works for equi-joins. In time correlation-based semantic load
shedding, also called age-based load shedding [16], a tuple’s prof-
itability in terms of producing join output depends on the difference
between its timestamp and the timestamp of the tuple it is matched
against [8, 16]. Our work takes this latter approach.

The fourth dimension defines the fundamental technique that
is employed for shedding load. In the limited memory sce-
narios the problem is a caching one [2] and thus tuple admis-
sion/replacement is the most commonly used technique for shed-
ding memory load [16, 7, 21]. On the other hand, CPU load
shedding can be achieved by either dropping tuples from the input
streams (i.e. stream throttling) [2] or by only processing a subset of
join windows [8]. As we show in this paper, our window harvesting
technique is superior to tuple dropping and prefers to perform the
join partially, as dictated by our operator throttling framework.

To the best of our knowledge, this is the first work to address
the adaptive CPU load shedding problem for multi-way stream
joins. The most relevant works in the literature are the tuple drop-
ping based optimization framework of [2], which supports multiple
streams but is not adaptive, and the partial processing based load
shedding framework of [8] which is adaptive but only works for
two-way joins. The age-based load shedding framework of [16]
is also relevant, as our work and [16] share the time correlation
assumption. However, the memory load shedding techniques used
in [16] are not applicable to the CPU load shedding problem and
like [8], [16] is designed for two-way joins. Finally, [6] deals with
the CPU load shedding problem in the context of stream joins, how-
ever the focus is on the special case in which one of the relations
resides on the disk and the other one is streaming in real-time.

9. CONCLUSION
We have introduced a new load shedding framework for multi-

way windowed stream joins, named operator throttling, that adjusts
the amount of load shedding to be performed by setting a throttle
fraction and leaves the load shedding decisions to the in-operator
load shedder. We have developed window harvesting as an in-
operator load shedding technique, that encourages to keep stream
tuples within the join windows and sheds excessive load by pro-
cessing only certain segments of the join windows, that are more
useful for producing join output. Window harvesting can learn and
exploit existing time correlations among the streams to prioritize
segments of the join windows, in order to maximize the output rate
of the join. We have designed several heuristic and approximation
based techniques to make window harvesting effective in practice.
Putting all these together, we have described an efficient implemen-
tation of a multi-way windowed stream join operator called Grub-
Join, which has built-in window harvesting based load shedding ca-



pability and integrates with our operator throttling framework. We
have conducted several experimental studies to show that GrubJoin
is vastly superior to tuple dropping based alternatives when time
correlations exist among the input streams, and is equally effective
as tuple dropping in the absence of such correlations.
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