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Abstract

One of the most prominent and comprehensive ways of data collection in sensor networks is to periodically

extract raw sensor readings. This way of data collection enables complex analysis of data, which may not be

possible with in-network aggregation or query processing.However, this flexibility in data analysis comes at

the cost of power consumption. In this paper, we introduceselective samplingfor energy-efficient periodic

data collection in sensor networks. The main idea behind selective sampling is to use a dynamically changing

subset of nodes as samplers such that the sensor readings of sampler nodes are directly collected, whereas

the values of non-sampler nodes are predicted through the use of probabilistic models that are locally and

periodically constructed in an in-network manner. Selective sampling can be effectively used to increase

the network lifetime while keeping quality of the collecteddata high, in scenarios where either the spatial

density of the network deployment is superfluous relative tothe required spatial resolution for data analysis

or certain amount of data quality can be traded off in order todecrease the overall power consumption of the

network. Our selective sampling approach consists of threemain mechanisms. First,sensing-driven cluster

constructionis used to create clusters within the network such that nodeswith close sensor readings are

assigned to the same clusters. Second,correlation-based sampler selection and model derivationis used to

determine the sampler nodes and to calculate the parametersof probabilistic models that capture the spatial

and temporal correlations among sensor readings. Last,selective data collection and model-based prediction

is used to minimize the number of messages used to extract data from the network. A unique feature of our

selective sampling mechanisms is the use of localized schemes, as opposed to the protocols requiring global

information, to select and dynamically refine the subset of sensor nodes serving as samplers and the model-

based value prediction for non-sampler nodes. Such runtimeadaptations create a data collection schedule

which is self-optimizing in response to changes in energy levels of nodes and environmental dynamics.

Keywords: C.2.7.c Sensor networks, C.2.0.b Data communications, H.2.1.a Data models
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1 Introduction

Advances in wireless network technologies, low-power processor and chip design, and micro electromechani-

cal systems have facilitated the proliferation of small, low cost, low power sensor devices that enable seamless

integration of the physical world with pervasive networks [17]. The prominent features of such sensor devices

are their ability to perform computation, wireless communication, and environmental sensing. On the bright

side, the continued price drop in low power sensor devices and their decentralized and unattended nature of

operation make sensor networks an attractive tool for extracting and gathering data by sensing real-world

phenomena from the physical environment. Environmental monitoring applications are expected to benefit

enormously from these developments, as evidenced by recentsensor network deployments supporting such

applications [33, 6].

On the downside, the large and growing number of networked sensors and their unattended deployment

present a number of unique system design challenges, different from those posed by existing computer net-

works: (1)Sensors are power-constrained.A major limitation of sensor devices is their limited battery life.

Wireless communication is a major source of energy consumption, where sensing can also play an important

role [15] depending on the particular type of sensing performed (ex. solar radiation sensors [41]). On the

other hand, computation is relatively less energy consuming. Motes [23] developed at UC Berkeley and man-

ufactured by Crossbow Inc. [14] are good examples of this typeof sensor nodes. (2)Sensor networks must

deal with high system dynamics.Sensor devices and sensor networks experience a wide range of dynamics,

including spatial and temporal change trends in the sensed values that contribute to environmental dynamics,

changes in user demands that contribute to task dynamics as to what is being sensed and what is considered

interesting changes [18], and changes in the energy levels of the sensor nodes, their location or connectiv-

ity that contribute to network dynamics. One of the main objectives in configuring networks of sensors for

large scale data collection is to achieve longer lifetimes for sensor network deployments by keeping energy

consumption at minimum, while maintaining sufficiently high quality and resolution of the collected data to

enable meaningful analysis. These configurations should beperiodically re-adjusted to adapt to the various

changes resulting from high system dynamics.

Data Collection in Sensor Networks –We can broadly divide data collection, a major functionality sup-

ported by sensor networks, into two categories. Inevent baseddata collection, the sensors are responsible for

detecting and reporting (to a base node) events, such as spotting moving targets [27]. Event based data collec-

tion is less demanding in terms of the amount of wireless communication, since local filtering is performed

at the sensor nodes, and only events are propagated to the base node. In certain applications, the sensors may

need to collaborate in order to detect events. Detecting complex events may necessitate non-trivial distributed
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algorithms [29] that require involvement of multiple sensor nodes. An inherent downside of this kind of data

collection is the impossibility of performing in-depth analysis on the raw sensor readings, since they are not

extracted from the network.

In periodic data collection, periodic updates are sent to the base node from the sensor network, based

on the most recent information sensed from the environment.We further classify this approach into two. In

query baseddata collection, long standing queries (also called continuous queries [30]) are used to express

user or application specific information interests and these queries are installed “inside” the network. Most

of the schemes following this approach [31, 32] support aggregate queries, such as minimum, average, and

maximum. These types of queries result in periodically generating an aggregate of the recent samples of

all nodes. Although aggregation lends itself to simple distributed implementations that enable complete in-

network processing of queries, it falls short in supportingholistic aggregates [31] over sensor samples, such

as quantiles. Similar to the case of event based data collection, the raw data is not extracted from the network

and complex data analysis that requires integration of samples from various nodes at various times, cannot be

performed with in-network aggregation.

The most comprehensive way of data collection is to extract raw samples from the network through peri-

odic reporting of each sampled value from every sensor node.This scheme enables arbitrary data analysis at a

sensor stream processing center once the data is collected.Such increased flexibility in data analysis comes at

the cost of high energy consumption due to excessive communication and consequently decreases the network

lifetime. One way of tackling this problem is to use distributed data compression to reduce the total size of the

data transmitted on the wireless channel. However, such approaches may require to gather samples belonging

to different time intervals before performing compressionon them [3]. This may introduce delays, undesir-

able for real-time applications. As shown in [3], compression techniques that typically trade-off accuracy

and delay can cut down the communication cost, thus reduce the energy consumption rate and increase the

network lifetime. In this paper, we develop an alternative approach based onselective sampling. The main

idea behind selective sampling is to use a carefully selected dynamically changing subset of nodes to sample

and to predict the values of the rest of the nodes using probabilistic models. Such models are constructed

by exploiting both spatial and temporal correlations existent in sample readings of sensor nodes. There are

two major scenarios that can highly benefit from this approach. First, in many sensor network applications,

node density of the deployment is selected to result in a spatial resolution higher than the required, mainly

because of the short lifespan of the sensor nodes [39], or dueto the lack of knowledge about the nature of the

phenomenon of interest. As a result, selective sampling caneffectively reduce the number of nodes used to

sample data, decrease the energy consumption rate of the network, and thus can increase the overall network

lifetime. Second and more importantly, there is an inherenttrade-off between the accuracy of the collected
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data and the network lifetime. If the application at hand cantolerate certain levels of error, then selective

sampling can be effectively used to save energy by decreasing the quality of received data within acceptable

bounds. Such tradeoff is especially useful when the energy left in the network is low and the energy con-

sumption rate is high. A key challenge is to design effectivemechanisms that can increase the lifetime of the

network while keeping the accuracy of the collected data at satisfactory levels.
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Figure 1: Illustration of energy-quality trade-off

Figure 1 illustrates this trade off graphically. Ini-

tially, perfect accuracy is sustained with high rate of en-

ergy consumption. Later, selective sampling is used to

decrease the rate of energy consumption, while intro-

ducing some reduction in data quality, to obtain an in-

creased network lifetime. Note that, it is also possible to

use different degrees of selective sampling, depending

on the desired energy/quality trade-off.

Another key challenge in designing an energy efficient selective sampling architecture is to empower the

system with the ability to respond to high network dynamics.Concretely, the selective sampling approach

should support large number of unattended autonomous nodesand should equip the energy-efficient data

collection algorithms with self-configuring and self-optimizing capabilities by enabling run-time adaptation

to re-select the subset of nodes to sample and to re-construct the correlation-based probabilistic models to

enhance the quality of value prediction of non-sampler nodes.

Contributions and Scope of the Paper

With the above challenges in mind, we identify a number of concrete design principles in designing an effec-

tive selective sampling architecture that can respond to changes in energy levels at nodes and network dynam-

ics. First, we need to organize the network into coordination groups such that good probabilistic models can

be locally constructed to closely capture the spatial correlations of sensor readings amongst the nodes within

each group. Second, we need to utilize the constructed models to find and select the sampler nodes whose sen-

sor readings can provide high accuracy for the prediction tobe performed for the non-sampler nodes. Third,

but not the least, we need to perform periodic reassignmentsin order to balance power consumption of the

nodes and adapt to possibly changing correlations between sensor readings.

Our selective sampling architecture consists of a three-phase framework and a set of localized algorithms

for generating and executing energy-aware data collectionschedules. First, we developSensing-driven Clus-

ter Constructionalgorithm to group together the nodes such that the ones thatare close to each other in terms

of their sensor readings (thus the namesensing-driven) as well as network hops are put into the same clusters.
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This is aimed at building a network organization that facilitates local coordination for performing selective

sampling and is designed to improve the prediction quality via its sensing-driven nature. Second, we develop

Correlation-based Sampler Selection and Model Derivationalgorithms to partition the nodes within each clus-

ter into a set of subclusters to assist the selection of a set of sampler nodes and to construct one probabilistic

model for each subcluster. We address the issues of high prediction accuracy and balanced power consump-

tion by enabling periodic re-configuration of node clustersand periodic re-selection of sampler nodes and

re-construction of correlation-based probabilistic models. This allows our selective sampling approach to

adapt to possibly changing correlations between sensor readings and balance power consumption of nodes in

response to environment and task dynamics. In the third phase, we generate and execute the data collection

schedule to collect data from the sensor network in an energy-efficient manner by developing theSelective

Data Collection and Model-based Predictionalgorithms, aiming at keeping the wireless communication at

minimum. This enables us to strike a good balance between network lifetime and data quality.

2 System Model and Overview

We describe the system model and introduce the basic concepts through an overview of the selective sampling

architecture and a brief discussion on the set of algorithmsemployed. For reference convenience, we list the

set of basic notations used in the paper in Tables 1, 2, 3, and 4. Each table lists the set of notations introduced

in its associated section.

2.1 Network Architecture

We design our selective sampling based data collection system using a three-layer network architecture. The

first and basic layer is the wireless network formed byN sensor nodes and adata collection treeconstructed

on top of the network. We denote a node in the network bypi, wherei ∈ {1, . . . , N}. Each node is assumed

to be able to communicate only with its neighbors, that is, the nodes within its communication range. The set

of neighbor nodes of nodepi is denoted bynbr(pi). The neighbor relationship is assumed to be symmetric.

The nodes that can communicate with each other form aconnectivity graph. Figure 2 depicts a segment from

a network of hundred sensor nodes. The edges of the connectivity graph are shown with light blue lines (light

gray in grayscale). Sensor nodes use a data collection tree for the purpose of propagating their sensed values

to a base node. The base node is also the root of the data collection tree. This tree is formed in response to

a data collection request, which starts the data collectionprocess. In Figure 2, base node is the shaded one

labeled as “56”. Every node in the data collection tree, except the root, has a parent node and every non-leaf

node has a set of children nodes. The edges of the data collection tree are shown in red color (dark gray

in grayscale) in Figure 2. The data collection tree can be easily build in a distributed manner, for instance,

by circulating a tree formation message originated from thebase node and making use of a min-hop parent
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selection policy [3], or similar algorithms used for in-network aggregation [32, 31].

Notation Meaning

N Total number of nodes in the network
pi ith node in the network

nbr(pi) Neighbors of nodepi in the connectivity graph
ei(t) Energy left at nodepi at timet
hi Cluster head node of the cluster that nodepi belongs to
H Set of cluster head nodes in the network
Ci Set of nodes in the cluster with head nodepi

Gi Set of subclusters in clusterCi, whereGi(j) is
the set of nodes in thejth subcluster inGi

Ki Number of subclusters inGi, also denoted as|Gi|
Si Data collection schedule for clusterCi, whereSi[pj ] is

the status (sampler/non-sampler) of nodepj in Si

Table 1: Notations for network architecture

The second layer of the architecture consists of node

clusters, which partition the sensor network into disjoint

regions. Each node in the network belongs to a cluster

and each cluster elects a node within the cluster to be the

cluster head, and creates acluster-connection treewith

the cluster head as its root node to establish the com-

munication between nodes and their cluster head (see

Section 3.2 for further detail). We associate each nodepi with a cluster head indicatorhi, i ∈ {1, . . . , N}, to

denote the cluster head node of the cluster that nodepi belongs to. The set of cluster head nodes are denoted

by H, and is defined formally asH = {pi| hi = pi}. Note thathi = pi implies thatpi is a cluster head node

(of clusteri). A cluster withpi as its head node is denoted byCi and is defined as the set of nodes that belong

to it, including its cluster head nodepi. Formally,Ci = {pj| hj = pi}. Given a nodepj haspi as its cluster

head (hj = pi), we saypj is in Ci (pj ∈ Ci). A cluster is illustrated on the upper left corner of Figure2 with a

closed line covering the nodes that belong to the cluster. The cluster head node is drawn in bold and is labeled

as “12”. An example cluster-connection tree is shown in the figure, where its edges are drawn in dark blue

(using dashed lines).

Figure 2: System Architecture

The third layer of our architecture is built on top of the

node clusters in the network, by further partitioning each node

cluster into a set ofsubclusters. Each node in the network

belongs to a subcluster. The set of subclusters inCi is denoted

by Gi, where the number of subclusters inCi is denoted by

Ki whereKi = |Gi|. A subcluster withinGi is denoted by

Gi(j), j ∈ {1, . . . , Ki}, and is defined as the set of nodes that

belong to thejth subcluster inGi. Given a node clusterCi,

only the head nodepi of this cluster knows all its subclusters

(Gi(j), j ∈ {1, . . . , Ki}). Thus the subcluster information is

local to the cluster head nodepi and is transparent to other nodes within the clusterCi. In Figure 2, we show

four subclusters for the node cluster with node “12” as its cluster head and these subclusters are circled with

closed dashed lines. A key feature of our selective samplingapproach is that not all the nodes in the network

need to sample and send the sampled values (sensor readings)to the base node via the data collection tree.

One of the design ideas is to partition the node cluster in such a way that we can elect a few nodes within each

subcluster as the sampling nodes and create a probabilisticmodel to predict the values of other nodes within
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this subcluster. From now on, we refer to the nodes that do sampling assamplernodes. In Figure 2, we show

sampler nodes with double circled lines (i.e., nodes labeled “3”, “11”, “21”, and “32”). For each clusterCi,

there exists a data collection scheduleSi, which defines the nodes that are samplers in this node cluster. We

use the Boolean predicate denoted bySi[pj] as an indicator that defines whether nodepj ∈ Ci is a sampler or

not. We use the [] notation whenever the indexing is by nodes.

2.2 Selective Sampling Overview

We give an overview of the three main mechanisms that form thecrux of our selective sampling approach to

data collection. A detailed description of each mechanism is provided in the subsequent sections.

The first mechanism is to construct clusters within the network. This is achieved by thesensing-driven

cluster constructionalgorithm, that is executed periodically at everyτc seconds, in order to perform cluster

refinement by incorporating changes in the energy level distribution and the sensing behavior changes of the

nodes. We callτc the clustering period. The node clustering algorithm performs two main tasks− cluster

head selection and cluster formation. The cluster head selection component is responsible for defining the

guidelines on how to choose certain number of nodes in the network to serve as cluster heads. An important

design criterion for cluster head selection is to make sure that on the long run the job of being a cluster head

is evenly distributed among all the nodes in the network to avoid burning out the battery life of certain sensor

nodes too earlier. The cluster formation component is in charge of constructing clusters according to two

metrics. First, nodes that are similar to each other in termsof their sampled values (sensor readings) in the

past should be clustered into one group. Second, nodes that are clustered together should be close to each

other within certain network hops. The first metric is based on value similarity of sensor readings, which is a

distinguishing feature compared to naive minimum-hop based cluster formation where a node joins the cluster

that has the closest cluster head node in terms of network hops.

The second mechanism is to create the subclusters for each ofthe node clusters. The goal of further

dividing the node clusters into subclusters is to facilitate the selection of the nodes to serve as samplers and

the generation of the probabilistic models for value predication of non-sampler nodes. This is achieved by

thecorrelation-based sampler selection and model derivationalgorithm that is executed periodically at every

τu seconds.τu is called theschedule update periodand is typically defined as a multiple ofτu. Concretely,

given a node cluster, the cluster head node carries out the sampler selection and model derivation task locally

in three steps. In the first step, the cluster head node uses historical data from nodes in its cluster to capture

the spatial and temporal correlations in sensor readings and calculate the subclusters so that the nodes whose

sample values are highly correlated are put into the same subclusters. In the second step, these subclusters are

used to select a set of sampler nodes such that there is at least one sampler node selected from each subcluster.

7



This selection of samplers forms the sampling schedule for the cluster. We introduce a system-wide parameter

σ ∈ (0, 1] to define the average fraction of nodes that should be used as samplers.σ is called thesampling

fraction. Once the sampler nodes are determined, only these nodes collect sample readings and the values

of the non-sampler nodes will be predicted at the processingcenter (or the base node) using a probabilistic

model that is constructed for each subcluster. Thus, the third step here is to construct and report a probabilistic

model for each subcluster within the network based on the historical readings of all nodes in the subcluster.

We introduce a system-supplied parameterβ, which defines the average size of the subclusters.β is called the

subcluster granularityand its setting influences the size and number of the subclusters used in the network.

The third mechanism, is to collect the sampled values from the network and to perform the prediction after

the samples are received. This is achieved by theselective data collection and model-based predictionalgo-

rithm. The selective data collection component works in twosteps: (1) Each sampler node samples its reading

everyτd seconds, called thedesired sampling period. τd sets the temporal resolution of the data collection.

(2) To empower our selective sampling architecture with self-adaptation, we also need to periodically sample

sensor readings from all nodes in the network. Concretely, ateveryτf seconds (τf is a multiple ofτd) all

nodes perform sampling. These samples are collected (through the use of cluster-connection trees) and used

by the cluster head nodes, aiming at incorporating newly established correlations among sensor readings and

network dynamics into decision making process of correlation-based sampler selection and model derivation.

τf is a system-supplied parameter, called theforced sampling period. The model-based predication compo-

nent is responsible for estimating values of non-sampler nodes within each subcluster using readings of the

sampler nodes and the parameters of the probabilistic modelconstructed for that subcluster.

3 Sensing-driven Cluster Construction

The goal of sensing-driven cluster construction is to form anetwork organization that can facilitate selective

sampling through localized algorithms, while achieving the global objectives of energy-awareness and high

quality data collection. In particular, clusters help perform operations such as sampler selection and model

derivation in a localized manner. By emphasizing on sensing-driven clustering, it also helps to derive bet-

ter prediction models to increase the prediction quality. The sensing-driven clustering algorithm, executed

periodically at everyτc seconds, performs two main tasks− cluster head selection and cluster formation.

3.1 Cluster Head Selection

During the cluster head selection phase, nodes decide whether they should take the role of a cluster head or

not. Concretely, every node is initialized not to be a clusterhead and does not have an associated cluster in the

beginning of a cluster head selection phase. A nodepi first calculates a value calledhead selection probability,
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denoted bysi. This probability is calculated based on two factors. The first one is a system wide parameter

calledcluster count factor, denoted byfc. It is a value in the range (0,1] and defines the average fraction of

nodes that will be selected as cluster heads. In other words,fc ∗N number of nodes will be selected as cluster

heads on the average, with an average cluster size of1/fc. The factors that can affect the decision on the

number of clusters and thus the setting offc include the size and density of the network. The second factor

involved in the setting ofsi is therelative energy levelof the node. We denote the energy available at nodepi

at timet asei(t). Notation Meaning

si Head selection probability
ri Round counter of nodepi used for clustering

TTL Max. number of hops a cluster formation message can travel
µi Mean of the sensor readings nodepi has sampled
Ti Smallest hop distances from cluster heads in proximity ofpi,

as known topi during cluster formation
Vi Means of readings from cluster heads in proximity ofpi,

as known topi during cluster formation
Zi Attraction scores for cluster heads in proximity ofpi,

whereZi[pj ] is the attraction score for nodepj ∈ H

fc Cluster count factor
α Data importance factor
τc Clustering period

Table 2: Notations for sensing-driven clustering

The relative energy level is calculated by com-

paring the energy available at nodepi with the av-

erage energy available at the nodes within its one

hop neighborhood. The value of the head selection

probability is then calculated by multiplying the

cluster count factor with the relative energy level.

Formally, si = fc ∗ ei(t)∗(|nbr(pi)|+1)
ei(t)+

P

pj∈nbr(pi)
ej(t)

. This en-

ables us to favor nodes with higher energy levels for clusterhead selection. Oncesi is calculated, nodepi

is chosen as a cluster head with probabilitysi. If selected as a cluster head,pi initializes a number of states

before starting to circulate cluster formation messages tobegin the cluster formation process (described in the

next subsection). Concretely,pi setshi to pi indicating that it now belongs to the cluster with headpi (itself)

and also increments itsround counter, denoted byri to note that a new cluster has been selected for the new

clustering round. Ifpi is not selected as a cluster head, it waits for some time to receive cluster formation

messages from other nodes. If no such message is received, itrepeats the whole process starting from the

si calculation. Considering most realistic scenarios governing energy values available at nodes and practical

settings offc (< 0.2), this process results in selecting approximatelyfc ∗N number of nodes as cluster heads.

The pseudo code is given in the CLUSTINIT procedure of Alg. 1.

3.2 Cluster Formation

The cluster formation phase starts right after the cluster head selection phase. It organizes the network of

sensors into node clusters in two major steps:message circulationandcluster engagement.

Message circulation stepinvolves the circulation of cluster formation messages within the network. These

messages are originated at cluster head nodes. Once a nodepi is chosen to be a cluster head, it prepares a

messagem to be circulated within a bounded number of hops, and structures the messagem as follows. It

setsm.org to its node identifierpi. This field represents the originator of the cluster formation message. It

setsm.ttl to TTL, whereTTL is a system-wide parameter that defines the maximum number ofhops this
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message can travel within the network. This field indicates the number of remaining hops the message can

travel. It setsm.rnd to its round counterri. It setsm.src to pi, indicating the sender of the message. Finally,

it setsm.dmu to µi. Here,µi denotes the mean of the sensor readings nodepi has sampled during the time

period preceding this round (ri) of cluster formation. The messagem is then sent to all neighbors of nodepi.

Alg. 1: Sensing-driven cluster construction
CLUSTINIT(pi)
(1) hi ← nil
(2) while hi = nil
(3) t← Current time
(4) si ← fc ∗

ei(t)∗(|nbr(pi)|+1)
ei(t)+

P

pj∈nbr(pi)
ej(t)

(5) if rand(0, 1) < si

(6) hi ← pi

(7) ri ← ri + 1 /* ri ← 0 during system init */
(8) m.org ← pi, m.ttl← TTL
(9) m.rnd← ri, msg.src← pi

(10) m.dmu← µi

(11) foreach pj ∈ nbr(pi)
(12) SENDMSG(pj , m)
(13) else if a cluster formation message received
(14) return

RECEIVEMSG(pi, m)
(1) if m.rnd > ri

(2) ri ← m.rnd
(3) Ti ← ∅, Vi ← ∅
(4) else if m.rnd < ri

(5) return
(6) a← 1 + TTL−m.ttl
(7) if Ti[m.org] 6= ∅ and Ti[m.org] < a
(8) return
(9) Ti[m.org]← a, Vi[m.org]← m.dmu
(10) m.ttl← m.ttl − 1, m.src← pi

(11) foreach pj ∈ nbr(pi)\msg.src
(12) SENDMSG(pj , m)

PICKCLUSTERS(pi)
(1) y ← 1/N (µi| µi, σi)
(2) foreach j, Ti[pj ] 6= ∅
(3) a← 1− Ti[pj ]/TTL /* hop distance factor */
(4) b← N (Vi[pj ]| µi, σi) ∗ y /* data distance factor */
(5) Zi[pj ]← a + α ∗ b
(6) hi ← argmaxpj

(Zi[pj ])

Upon reception of a messagem at a nodepi, we

first compare thernd field of the message topi’s cur-

rent round counterri. If m.rnd is smaller thanri, we

discard the message, since it is likely a delayed mes-

sage in some earlier clustering round and should be

disregarded. Ifm.rnd is larger thanri, then this is

the first cluster formation messagepi has received for

the new round. As a result, we incrementri to in-

dicate that nodepi is now part of the current round.

Moreover, we initialize two data structures, denoted

by Ti andVi. Both are initially empty.Ti[pj] stores

the shortest known hop count from a cluster head node

pj to nodepi, if a cluster formation message is re-

ceived frompj. Vi[pj] storesdmu field of the clus-

ter formation messages that originated from nodepj

and reached nodepi. Once the processing of thernd

field of the message is over, we calculate the number

of hops this message traveled, by investigating thettl

field, which yields the value1 + TTL − m.ttl. If

Ti[m.org] is not empty (meaning this is not the first message we receivedin this round that originated from

nodem.org) andT [m.org] is smaller than or equal to the number of hops the current message has traveled,

we discard the message. Otherwise, we setT [m.org] to 1 + TTL − m.ttl andVi[m.org] to m.dmu. Once

Ti andVi are updated with the new information, we modify and forward the message to all neighbors ofpi,

except the node specified bysrc field of the message. The modification on the message involvesdecrementing

thettl field and setting thesrc field to pi. The pseudo code for the message circulation phase is given within

the CLUSTINIT and RECEIVEMSG procedures in Alg. 1.

Cluster engagement stepinvolves making a decision about which cluster to join, oncehop distance and mean

sample value information are collected. Concretely, a nodepi that is not a cluster head, performs the following
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procedure to determine its cluster. For each cluster head node from which it has received a cluster formation

message in this round (i.e.{pj| Ti[pj] 6= ∅}), it calculates anattraction score, denoted byZi[pj], for the cluster

headpj. Then it joins the cluster head with the highest attraction score, i.e., it setshi to argmaxpj
(Zi[pj]).

The calculation of the attraction scoreZi[pj] involves two factors. The first factor is called thehop distance

factor and is calculated as1 − Ti[pj]/TTL. It takes its minimum value 0 whenpi is TTL hops away from

pj and its maximum value1 − 1/TTL whenpi is one hop away frompj. The second factor is called the

data distance factorand it is calculated asN (Vi[pj]| µi, ς
2
i )/N (µi| µi, ς

2
i ). Here,N represents the Normal

distribution andς2
i is a locally estimated variance of the sampled values at nodepi. The data distance factor

measures the similarity between the mean of the sensor readings at nodepi and the mean readings at its cluster

head nodepj. It takes its maximum value of 1 whenVi[pj] is equal toµi. Its value decreases as the difference

betweenVi[pj] andµi increases, and approaches to 0 when the difference approaches to infinity. This is a

generic way to calculate the data distance factor and does not require detailed knowledge about the data being

collected. However, if such knowledge is available, a domain-specific data distance function can be applied.

For instance, if a domain expert can set a system wide parameter ∆ to be the maximum acceptable bound of

the difference between the mean sample value of a node and themean sample value of its head node, then we

can specify a distance functionf(d) = d/∆, whered is set to|Vi[pj] − µi|. In this case, the data distance

factor can be calculated asmax(0, 1 − f(d)). With this definition, the distance factor will take its maximum

value of 1 whend is 0, and its value will linearly decrease to 0 asd reaches∆.

We compute the attraction score as a weighted sum of the hop distance factor and the data distance factor,

where the latter is multiplied by a factor calleddata importance factor, denoted byα. α takes a value in the

range[0,∞). A value of 0 means only hop distance is used for the purpose ofclustering. Larger values result

in a clustering that is more dependent on the distances between the mean sample values of the nodes. The

pseudo code for cluster engagement step is given by the PICKCLUSTERSprocedure in Alg. 1.

Cluster-connection tree formation: Each node cluster in the network not only elects a cluster head node

but also forms a cluster connection tree during the cluster construction. Such cluster connection trees are

used to accomplish the communication of nodes with their cluster heads. Concretely, the cluster-connection

trees are formed as follows: When a nodepi receives a cluster formation message originated at a cluster head

nodepj, pi notes down the node from which it has received this cluster formation message as the candidate

for becoming the parent node ofpi in the cluster connection tree anchored atpj. If there are several distinct

cluster head nodes that circulate a cluster formation message to nodepi, then for each one of such cluster

heads, saypj, pi stores only one forwarder node, saypu, which is the one that has forwarded the cluster

formation message ofpj with the highest TTL value. Now this forwarder nodepu becomes the parent pointer
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of pi for clusterCj. After nodes have decided on which of the node clusters to join at the end of the cluster

engagement step, each node sends a confirmation message to its corresponding cluster head using the parent

pointer stored for that cluster. If a nodepi is in clusterCj or has forwarded a confirmation message destined

to the cluster head nodepj, then it keeps its parent pointer associated withCj and at the same time it also

records the nodes from which it has received a confirmation message destined to the cluster head nodepj as

its child pointers in the cluster connection tree rooted atpj. Any parent pointers that are not used to forward a

confirmation message can be dropped to minimize the state kept for maintaining cluster-connection trees. All

nodes that keep their parent pointers for clusterCj are part of the cluster-connection tree ofCj. It is important

to note that a node that participates in the cluster-connection tree of a node clusterCj maynot necessarily be

a member ofCj, i.e. it is possible thathi 6= pj. This property ensures that with the cluster-connection tree of

a node clusterCj, its cluster headpj can reach all nodes inCj and vice versa.

3.3 Effect ofα on Clustering

We use an example scenario to illustrate the effect ofα on clustering. Figure 3 (a) shows an arrangement of

100 sensor nodes and the connectivity graph of the sensor network formed by these nodes. In the background,

it also shows a colored image that represents the environmental values that are sensed by the nodes. The color

on the image changes from tones of red (light gray in grayscale) to tones of blue (dark gray in grayscale)

moving diagonally from the upper right corner to the lower left corner, representing a decrease in the sensed

values. Figures 3 (b), (c), and (d) show three different clusterings of the network for different values ofα (0,

10, 20 respectively), usingfc = 0.1 andTTL = 5. Each cluster is shown with a different color. Nodes within

the same cluster are labeled with a unique cluster identifier. The cluster head nodes are marked with a circle.

It is clearly observed that, with increasedα, the clusters tend to align diagonally, resulting in a clustering

where nodes sampling similar values are assigned to the sameclusters. However, this effect is limited by the

value ofTTL, since a node cannot belong to a cluster whose cluster head ismore thatTTL hops away. We

provide a quantitative study on the effect ofα on the quality of the clustering in Section 7.

From both Algorithm 1 and Figure 3(c) and (d), one can observethat combining hop distance factor

and sensor reading similarity captured by data distance factor, some of the resulting clusters may appear

disconnected. As discussed in the previous section, by creating a cluster-connection tree for each node cluster,

we guarantee that a cluster head node can reach all nodes in its cluster. When the number of connected

subcomponents within a cluster is large, the overhead for a cluster head to communicate with nodes within its

cluster will increase. However, the number of connected subcomponents of a sensing-driven cluster can not

be large in practice due to three major reasons: First, sincethere is a fixed TTL value used in cluster creation,

the nodes that belong to the same cluster can not be more than aspecified number of hops away, thus it is
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not possible that two nodes from different parts of the network are put within the same cluster just because

the values they are sensing are very similar. Second, the decision to join a cluster is not only data dependent.

Instead, it is a combination (adjusted byα) of hop distance factor and data distance factor that definesa node’s

affinity to join a cluster. As a result, unless TTL andα values are both set to impractically large values, there

won’t be many connected components belonging to the same cluster. Finally, since the sensor readings are

expected to be spatially correlated, it is unlikely to have contiguous regions with highly heterogeneous sensor

readings (which would have resulted in clusters with many connected subcomponents).

3.4 Setting of Clustering Periodτc
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Figure 3: Illustration of sensing-driven clustering

The setting of clustering periodτc involves two con-

siderations. First, the cluster head nodes have addi-

tional responsibilities when compared to other nodes,

due to sampler selection and model derivation process

(see more detail in the next section), which causes them

to consume energy at higher rates. Therefore, large

τc values may result in imbalanced power levels and

decrease network connectivity in the long run. Con-

sequently, the value ofτc parameter should be small

enough to enable selection of alternate nodes as clus-

ter heads. However, its value is expected to be much

larger than the desired sampling and forced sampling

periods,τd and τf . Second, time dependent changes in sensor readings may render the current clustering

obsolete with respect to data distance factor. For instance, in environmental monitoring applications, different

times of a day may result in different node clusters. Thus, clustering period should be adjusted accordingly to

enable continued refinement of the clustering structure in response to different sensing patterns resulting from

environmental changes.

4 Correlation-based Sampler Selection and Model Derivation

The goal of sampler selection and model derivation is three folds. First, it needs to further group nodes within

each node cluster into a set of subclusters such that the sensor readings of the nodes within each subcluster

are highly correlated (thus prediction is more effective).Second, it needs to derive and report (to sampler

nodes) a sampling schedule that defines the sampler nodes. And third, it needs to derive and report (to the

base node) parameters of the probabilistic models associated with each subcluster so that prediction can be
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performed. Correlation-based sampler selection and model derivation is performed by each cluster head node

through a three-step process, namelysubclustering, sampler selection, andmodel and schedule reporting. We

now describe these three steps in detail.

Subclustering stepis used to create subclusters that form a basis for selectingsampler nodes of the network,

deriving correlations among nodes within subclusters, constructing probabilistic models accordingly, and per-

forming value predication of non-sampler nodes. Higher correlations among the nodes within each subcluster

typically lead to higher quality sampler selection and higher accuracy of model-based value prediction of

non-sampler nodes. Thus, given a cluster, the first issue involved in developing an effective subclustering

algorithm is to obtain samples from nodes within this cluster. The second issue is to compute correlations

between every pair of nodes within the cluster and define a correlation distance metric that can be used as the

distance function for subclustering. Notation Meaning

Di Forced samples collected at nodepi ∈ H, whereDi[pj ] is
the series of consecutive forced samples from nodepj ∈ Ci

Ci Correlation matrix at nodepi ∈ H, whereCi[pu, pv ] is
the correlation between the seriesDi[pu] andDi[pv ]

Di Subclustering distance matrix at nodepi ∈ H, where
Di[pu, pv ] is the subclustering distance betweenpu andpv

β Subcluster granularity
σ Sampling fraction
τu Schedule update period

Table 3: Notations for correlation-based sampler selec-
tion and model derivation notations

Forced sampling.Recall from Section 2.2, we in-

troduce the concept of forced sampling period. By

periodically collecting sample readings from all

nodes in the network (forced sampling), the cluster

head nodes can refine the subclustering structure

by invoking a new run of the subclustering pro-

cess, which utilizes the forced samples collected during the most recent clustering period to generate a new

set of subclusters, each associated with a newly derived correlation-based probabilistic model. We denote

the forced samples collected at cluster head nodepi by Di. Di[pj] denotes the series of consecutive forced

samples from nodepj, wherepj is in the node cluster withpi as the head (i.e.pj ∈ Ci).

Correlation matrix and correlation distance metric.During subclustering, a cluster head nodepi takes the

following concrete actions. It first creates a correlation matrix Ci such that for any two nodes in the clus-

ter Ci, saypu andpv, Ci[pu, pv] is equal to the correlation between the seriesDi[pu] andDi[pv], formally
(Di[pu]−E[Di[pu]])∗(Di[pv ]−E[Di[pv ]])T

L∗
√

Var(Di[pu])∗
√

Var(Di[pv ])
, whereL is the length of the series andT represents matrix transpose. This is

a textbook definition [10] of correlation between two series, expressed using the notations introduced within

the context of this work. Correlation values are always in therange[−1, 1], -1 and 1 representing strongest

negative and positive correlation. A value of 0 implies two series are not correlated. As a result, the absolute

correlation can be used as a metric to define how good two nodesare, in terms of predicting one’s sample

from another’s. For each node cluster, we first compute its correlation matrix using forced samples. Then we

calculate the correlation distance metric between nodes, denoted byDi. Di[pu, pv] is defined as1−|Ci[pu, pv]|.
Once we get the distance metric, we use agglomerative clustering [21] to subcluster the nodes within clus-

14



ter Ci into Ki number of subclusters, whereGi(j) denotes the set of nodes in thejth subcluster. We use a

system-wide parameter calledsubcluster granularity, denoted byβ, to define average subcluster size. Thus,

Ki is calculated by⌈|Ci|/β⌉. We’ll discuss the effects ofβ on performance later in this section. The pseudo

code for the subclustering step is given within the SUBCLUSTERANDDERIVE procedure in Alg. 2.

Alg. 2: Corr.-based Sampler Select. and Model Derivation
DERIVESCHEDULE(pi ∈ H)
(1) Periodically, everyτu seconds
(2) Di: data collected since last schedule derivation,Di[pj ](k) is the

kth forced sample from nodepj collected at nodepi

(3) (Si, Ci, Gi)← SUBCLUSTERANDDERIVE(pi, Di)
(4) for j = 1 to |Gi|
(5) Xi,j : Xi,j [pu] = E[Di[pu]]; pu ∈ Gi(j)

(6) Yi,j : Yi,j [pu, pv ] = Ci[pu, pv ] ∗
p

Var(Di[pu]) ∗
p

Var(Di[pv ]); pu, pv ∈ Gi(j)
(7) SENDMSG(base,Xi,j ,Yi,j )
(8) foreach pj ∈ Ci

(9) Di[pj ]← ∅
(10) SENDMSG(pj , Si[pj ])

SUBCLUSTERANDDERIVE(pi ∈ H)
(1) ∀pu, pv ∈ Ci, Ci[pu, pv ]← Correlation betweenDi[pu], Di[pv ]
(2) ∀pu, pv ∈ Ci, Di[pu, pv ]← 1− |Ci[pu, pv ]|
(3) Ki ← ⌈|Ci|/β⌉ /* number of subclusters */
(4) Cluster the nodes inCi, usingDi as distance metric, intoKi

subclusters
(5) Gi(j) : nodes in thejth subcluster withinCi, j ∈ {1, . . . , Ki}
(6) t← Current time
(7) ∀pu ∈ Ci, Si[pu]← 0
(8) foreach j ∈ {1, . . . , Ki}
(9) a← ⌈σ ∗ |Gi(j)|⌉
(10) foreach pu ∈ Gi(j), in decreasing order ofeu(t)
(11) Si[pu]← 1
(12) if a = |{pv | Si[pu] = 1}| then break
(13) return (Si, Ci, Gi)

Sampler selection stepis performed to create or

update a data collection scheduleSi for each clus-

ter Ci, in order to select the subset of nodes that

are best qualified to serve as samplers throughout

the next schedule update periodτu. After a clus-

ter head nodepi forms the subclusters, it initializes

the data collection scheduleSi to zero for all nodes

within its cluster, i.e.Si[pj] = 0,∀pj ∈ Ci. Then

for each subclusterGi(j), it determines the num-

ber of sampler nodes to be selected from that sub-

cluster based on the size of the subclusterGi(j)

and the sampling fraction parameterσ defined in

Section 2. At least one node should be selected as

a sampler node from each subcluster. Thus we can

calculate the number of sampler nodes for a given

subclusterGi(j) by ⌈σ ∗ |Gi(j)|⌉. Based on the above formula, we can calculate the actual fraction of nodes

selected as the sampler nodes of the network at any given instance of time. This actual fraction may de-

viate from the system-supplied sampling fraction parameter σ. We refer to the actual fraction of sampler

nodes as theeffectiveσ to distinguish it from the system-suppliedσ. The effectiveσ can be estimated as

fc ∗ ⌈1/(fc ∗ β)⌉ ∗ ⌈β ∗ σ⌉. The pseudo code for the derivation step is given within the SUBCLUSTERAND-

DERIVE procedure in Alg. 2.

Model and schedule reporting stepis performed by a cluster head node in two steps, after generating the

data collection schedule for each node cluster. First, the cluster head informs the nodes about their status as

samplers or non-samplers. Then the cluster head sends the summary information to the base node, which will

be used to derive the parameters of probabilistic models used in predicting the values of non-sampler nodes.

To implement the first step, a cluster head nodepi notifies each nodepj within its cluster aboutpj ’s new

status with regard to being a sampler node or not by sendingSi[pj] to pj. To realize the second step, for each

subclusterGi(j), pi calculates a data mean vector for nodes within the subcluster, denoted byXi,j, as follows:
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Xi,j[pu] = E[Di[pu]], pu ∈ Gi(j). pi also calculates a data covariance matrix for nodes within the subcluster,

denoted byYi,j and defined as follows:Yi,j[pu, pv] = Ci[pu, pv] ∗
√

Var(Di[pu]) ∗
√

Var(Di[pv]), pu, pv ∈
Gi(j). For each subclusterGi(j), pi sendsXi,j, Yi,j and the identifiers of the nodes within the subcluster,

to the base node. This information will later be used for deriving the parameters of a Multi-Variate Normal

(MVN) model for each subcluster (see Section 5). The pseudo code is given within the DERIVESCHEDULE

procedure of Alg. 2.

4.1 Effects ofβ on Performance

The setting of the system supplied parameterβ (subcluster granularity) may have effects on the overall perfor-

mance of a selective sampling based data collection system,especially in terms of sampler selection quality,

value predication quality, messaging cost, and energy consumption. Intuitively, large values ofβ may de-

crease the prediction quality, because it will result in large subclusters with potentially low overall correlation

between its members. On the other hand, too small values may also decrease the prediction quality, since the

opportunity to exploit the spatial correlations fully willbe missed with very smallβ. Regarding the messaging

cost of sending sampling summarization and model derivation information to the base node, one extreme case

is where each cluster has one subcluster (very largeβ). In this case, the covariance matrix may become very

large and sending it to the base station may increase the messaging cost and have a negative effect on the

energy-efficiency. In contrast, smallerβ values will result in a lower messaging cost, since covariance values

of node pairs belonging to different subclusters will not bereported. Although the the second dimension fa-

vors a smallβ value, decreasing beta will increase the deviation of effective σ from the system specifiedσ,

introducing another dimension. For instance, havingβ = 2 will result in a minimum effectiveσ of around

0.5, even ifσ is specified much smaller. This is because each subcluster must have at least one sampler node.

Consequently, the energy saving expected whenσ is set to a certain value is dependent on the setting ofβ.

In summary, smallβ values can make it impossible to practice high energy saving/low prediction quality

scenarios. We investigate these issues quantitatively in Section 7.

4.2 Setting of Schedule Update Periodτu

The schedule update periodτu is a system supplied parameter and it defines the time interval for re-computing

the subclusters of a node cluster in the network. Several factors may affect the setting ofτu. First, the nodes

that are samplers consume more energy compared to non-samplers, since they perform sensing and report

their sensed values. Consequently, the value ofτu parameter should be small enough to enable selection of

alternate nodes as samplers through the use of energy-awareschedule derivation process, in order to balance

power levels of the nodes. Moreover, such alternate node selections help in evenly distributing the error of
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prediction among all the nodes. As a result,τu is provisioned to be smaller compared toτc, so that we can

provide fine-grained sampler re-selection without much overhead. Second, the correlations among sensor

readings of different nodes may change with time and deteriorate the prediction quality. As a result, the

schedule update period should be adjusted accordingly, based on dynamics of the specific application at hand.

5 Selective Data Collection and Model-based Prediction

Notation Meaning

Xi,j Data mean vector for nodes inGi(j), whereXi,j [pu] is
the mean of the forced samples from nodepu ∈ Gi(j).

Yi,j Data covariance matrix for nodes inGi(j), whereYi,j [pu, pv ]
is the covariance between the seriesDi[pu] andDi[pv ]

U+
i,j Set of nodes belonging toGi(j) that are samplers

U−
i,j Set of nodes belonging toGi(j) that are not samplers

W+
i,j Set of last reported sensor readings of nodes inU+

i,j

W−
i,j Set of predicted sensor readings of nodes inU−

i,j

τd Desired sampling period
τf Forced sampling period

Table 4: Notations for Selective data collection and
model-based prediction parameters

Our selective sampling approach achieves energy

efficiency of data collection services by collecting

sample readings from only a subset of nodes (sam-

pler nodes) that are carefully selected and dynam-

ically changing (after every schedule update pe-

riod). The values of non-sampler nodes are pre-

dicted using probabilistic models whose parame-

ters are derived from the recent samples of nodes

that are spatially and temporally correlated. The energy saving is a result of smaller number of messages used

to extract and collect data from the network, which is a direct benefit of smaller number of sensing operations

performed. Although all nodes have to sample after every forced sampling period (recall that these samples

are used for predicting the parameters of MVN models for the subclusters), these forced samples do not prop-

agate up to the base node, and are collected locally at cluster head nodes. Instead, only a summary of the

model parameters are submitted to the base node after each correlation-based model derivation step.

In effect, one sample value from every node is calculated at the base node (or at the sensor stream pro-

cessing center). However, a sample value comes from either adirect sample or apredictedsample. Direct

samples are the ones that originate from actual sensor readings. If a nodepi is a sampler, i.e.Sj[pi] = 1

wherehi = pj, it periodically reports its sensor reading to the base nodeusing the data collection tree, i.e.

after every desired sampling periodτd, except when forced sampling and desired sampling periods coincide

(recall thatτf is a multiple ofτd). In the latter case, the sensor reading is sent to the cluster head nodehi using

the cluster-connection tree, and is forwarded to base node from there. If a nodepi is a non-sampler node, i.e.

Sj[pi] = 0 wherehi = pj, then it only samples after every forced sampling period, and its sensor readings are

sent to the cluster head nodehi using the cluster-connection tree and arenot forwarded to the base node. A

short pseudo code describing this is given by the SENSDATA procedure in Alg. 3.
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5.1 Calculating predicted sample values

The problem of predicting the sample values of non-sampler nodes can be described as follows. Given a set

of sample values belonging to same sampling step from sampler nodes within a subclusterGi(j), how can we

predict the set of sample values belonging to non-sampler nodes withinGi(j), given the mean vectorXi,j and

covariance matrixYi,j for the subcluster. We denote the set of sampler nodes from subclusterGi(j) by U+
i,j,

defined as{pu| pu ∈ Gi(j), Si[pu] = 1}. Similarly, we denote the set of non-sampler nodes byU−i,j, defined

as{pu| pu ∈ Gi(j), Si[pu] = 0}. Let W+
i,j be the set of sample values from the same sampling step, received

from the sampler nodesU+
i,j. Using a MVN model to capture the spatial and temporal correlations within a

subcluster, we utilize the following theorem that can be found in texts on statistical inference [10], to predict

the values of the non-sampler nodes: Alg. 3: Selective Data Collection and Model-based Prediction
SENSDATA (pi)
(1) if Sj [pi] = 0, wherehi = pj

(2) Periodically, everyτf seconds
(3) di ← SENSE()
(4) SENDMSG(hi, di)
(5) else
(6) Periodically, everyτd seconds
(7) di ← SENSE()
(8) t← Current time
(9) if mod(t, τf ) = 0
(10) SENDMSG(hi, di)
(11) else
(12) SENDMSG(base, di)

PREDICTDATA (i, j, U+, U−, W+)
U+ = {p

u
+
1

, . . . , p
u
+
k

} : set of nodes fromjth subcluster inCi whose data

values are received
U− = {p

u
−

1
, . . . , p

u
−

l

} : set of nodes fromjth subcluster inCi whose data

values are missing
W+ : W+(a), a ∈ {1, . . . , k} is the value reported by nodep

u
+
a

(1) Xi,j : mean vector forjth subcluster inCi

(2) Yi,j : covariance matrix forjth subcluster inCi

(3) for a = 1 to l
(4) µ1(a)← Xi,j [pu

−
a

]

(5) for b = 1 to l, Σ11(a, b)← Yi,j [pu
−
a

, p
u
−

b

]

(6) for b = 1 to k, Σ12(a, b)← Yi,j [pu
−
a

, p
u
+
b

]

(7) for a = 1 to k
(8) µ2(a)← Xi,j [pu

+
a

]

(9) for b = 1 to k, Σ22(a, b)← Yi,j [pu
+
a

, p
u
+
b

]

(10) µ∗ = µ1 + Σ12 ∗ Σ−1
22 ∗ (W+ − µ2)

(11) Σ∗ = Σ11 − Σ12 ∗ Σ−1
22 ∗ ΣT

12
(12) UseN (µ∗, Σ∗) to predict values of nodes inU−

Theorem 1: Let X be a MVN distributed ran-

dom variable with meanµ and covariance matrix

Σ. Let µ be partitioned as





µ1

µ2



 and Σ parti-

tioned as





Σ11 Σ12

Σ21 Σ22



. According to this,X is

also partitioned asX1 andX2. Then the distribu-

tion of X1 givenX2 = A is also MVN with mean

µ∗ = µ1 + Σ12 ∗ Σ−1
22 ∗ (A − µ2) and covariance

matrixΣ∗ = Σ11 − Σ12 ∗ Σ−1
22 ∗ Σ21.

In accordance with the theorem, we construct

µ1 andµ2 such that they contain the mean values

in Xi,j that belong to nodes inU−i,j andU+
i,j, respec-

tively. A similar procedure is performed to con-

structΣ11, Σ12, Σ21, andΣ22 from Yi,j. Σ11 con-

tains a subset ofXi,j which describes the covari-

ance among the nodes inU−i,j, andΣ22 among the

nodes inU+
i,j. Σ12 contains a subset ofXi,j which describes the covariance between the nodes inU−i,j andU+

i,j,

andΣ21 is its transpose. Then the theorem can be directly applied topredict the values of non-sampler nodes

U−i,j, denoted byW−
i,j. W−

i,j can be set toµ∗ = µ1 + Σ12 ∗Σ−1
22 ∗ (W+

i,j −µ2), which is the maximum likelihood

estimate, orN (µ∗, Σ∗) can be used to predict the values with desired confidence intervals. We use the former

in the rest of the paper. The details of prediction step is given by the PREDICTDATA procedure in Alg. 3.
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5.2 Prediction Models

The detailed algorithm governing the prediction step can consider alternative inference methods and/or statis-

tical models with their associated parameter specifications, in addition to the prediction method described in

this section and the Multi-Variate Normal model used with data mean vector and data covariance matrix as

its parameters. Our data collection framework is flexible enough to accommodate such alternative prediction

methodologies. For instance, we can keep the MVN model and change the inference method to Bayesian

inference. This can provide significant improvement in prediction quality if prior distributions of the samples

are available or can be constructed from historical data. This flexibility allows us to understand how differ-

ent statistical inference methods may impact the quality ofthe model-based prediction. We can go one step

further and change the statistical model used, as long as themodel parameters can be easily derived locally at

the cluster heads and are reasonably compact in size.

5.3 Setting of Forced and Desired Sampling Periodsτf and τd

The setting of forced sampling periodτf involves three considerations. First, increased number offorced

samples (thus smallerτf ) may be desirable, since it can improve the ability to capture correlations in sensor

readings better. Second, large number of forced samples cancause the memory constraint on sensor nodes

to be a limiting factor, since the cluster head nodes are usedto collect forced samples. Pertaining to this,

a lower bound onτf can be computed based on the number of nodes in a cluster and the schedule update

periodτu. For instance, if we want the forced samples to occupy an average memory size ofM units where

each sensor reading occupyR units, then we should setτf to a value larger thanτu∗R
fc∗M

. Third, less frequent

forced sampling results in smaller set of forced samples, which is more favorable in terms of messaging cost

and overall energy consumption. In summary, the value ofτf should be set taking into account the memory

constraint and the desired trade-off between prediction quality and network lifetime. The setting of desired

sampling periodτd defines the temporal resolution of the collected data and is application specific.

6 Analytical Analysis of Overall Messaging Cost

In this section, we provide an analytical study on the messaging cost of data collection based on our selective

sampling architecture. For the purpose of comparison, we introduce two variations of selective sampling−
centralapproach andlocal approach. The central approach presents one extreme of the spectrum, in which

both the model prediction and the value prediction of non-sampling nodes are carried out at the base node or

processing center outside the network. This means that all forced samples are forwarded to the base node to

compute the correlations in a centralized location. In the local approach, value prediction is performed at the
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cluster heads instead of the base nodes or the processing center outside the network, and predicted values are

reported to the base node. Although the local approach results in a large messaging cost and works against

the idea of selective sampling, it can be used to serve as a base case for comparison. The selective sampling

solution falls in between these two extremes. We thus call itthe hybrid approach due to the fact that the

spatial and temporal correlations are captured and summarized locally within the network, whereas the value

prediction is performed centrally at the base node or outside the network.

In the rest of this section, we calculate the total number of messages sent and received (spent) within the

network during a time interval ofT seconds, denoted byMh
t , M c

t , andM l
t , respectively for hybrid, central,

and local approaches. We denote the total number of clusterings and subclusterings performed during the

time interval of lengthT asNnc andNns. We haveNnc = ⌊T/τc⌋ andNns = ⌊T/τu⌋. Similarly, the total

number of forced samplings and desired samplings are denoted byNfs andNds. We haveNfs = ⌊T/τf⌋ and

Nds = ⌊T/τd⌋.
The total number of messages can be broken into three components, namely messages spent duringi)

cluster construction,ii ) schedule and model derivation, andiii ) selective data collection. The messages spent

during cluster construction, denoted byMtc, is same for all approaches and can be defined asMtc = Nnc∗Mcs,

whereMcs denotes the number of messages spent during one clustering step. SinceNnc is expected to be much

smaller thanNns, Nfs, andNds, we omit the derivation ofMcs in the interest of space1. Now we describe the

derivation of the remaining two componentsii ) and iii ), for three different scenarios. We use the notations

Ib
i andIc

i to denote the distance of nodepi (in terms of hops) to the base node and its cluster head nodehi,

respectively. Each message is assumed to have the size of a basic message, where a basic message includes a

node identifier and a sensor reading.

The derivation for theHybrid Approach is as follows:

Mh
ts = Nns ∗

N
∑

i=1

Ic
i + Nns ∗

∑

pi∈H



Ib
i ∗

Ki
∑

j=1

(

|Gi(j)| ∗
3 + |Gi(j)|

4

)





Mh
tm = Nfs ∗

∑

pi∈H

∑

pj∈Ci

(Ic
j + Si[pj ] ∗ Ib

i ) + (Nds − Nfs) ∗
∑

pi∈H

∑

pj∈Ci

(Si[pj ] ∗ Ib
j )

Mh
t = Mtc + Mh

ts + Mh
tm (1)

HereMh
ts denotes the schedule and model derivation component for thehybrid approach. It consists of two

subcomponents, messages spent for notifying each node after schedules are derived, and the messages spent

for reporting the covariance matrix, mean vector, and the node identifiers to the base node for each subclus-

ter. Note that the covariance matrix is symmetric and thus not all the entries are reported.Mh
tm denotes the

data collection component for the hybrid approach. In summary, it counts the messages from sampler nodes

1HoweverMtc is accounted for in the experimental results of Section 7.
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and non-sampler nodes. Messages from non-sampler nodes areforwarded up to the cluster heads after every

forced sampling period. On the other hand, messages from sampler nodes are forwarded up to the base node

after every desired sampling period (except whenτd andτf coincide). Finally, the total number of messages

for the hybrid approach, denoted byMh
t , is calculated in Equation 1 as the sum of three components.

The derivation for theCentral Approach is as follows:

M c
ts = Nns ∗

N
∑

i=1

Ic
i

M c
tm = Nfs ∗

N
∑

i=1

Ib
i + (Nds − Nfs) ∗

∑

pi∈H

∑

pj∈Ci

(Si[pj ] ∗ Ib
j )

M c
t = Mtc + M c

ts + M c
tm (2)

HereM c
ts denotes the schedule and model derivation component for thecentral approach. It consists of the

messages used for notifying each node after schedules are derived. As opposed to hybrid scenario, it doesnot

include the reporting of covariance matrices or mean vectors. M c
tm denotes the data collection component for

the central approach. Different from the hybrid scenario, all forced samples are forwarded up to the base node.

Finally, the total number of messages for the central approach, denoted byM c
t , is calculated in Equation 2 as

the sum of three components.

The derivation for theLocal Approach is as follows:

M l
ts = Nns ∗

N
∑

i=1

Ic
i

M l
tm = Mh

tm + Nds ∗
∑

pi∈H

∑

pj∈Ci

(Ib
i ∗ (1 − Si[pj ]))

M l
t = Mtc + M l

ts + M l
tm (3)

HereM l
ts denotes the schedule and model derivation component for thelocal approach and is identical to the

same component of the central approach.M l
tm denotes the data collection component for the local approach.

It can be considered as the data collection component of the hybrid approach, plus the number of messages

spent for forwarding the predicted samples from the clusterhead nodes to the base node. Finally, the total

number of messages for the local approach, denoted byM l
t , is calculated in Equation 3.

7 Performance Study

We present analytical and simulation based experimental results to study the effectiveness of our selective

sampling approach. We divided the experiments into two sets. The first set of experiments compares different

variations of selective sampling and studies the impact of various parameters on performance, with regard to

messaging cost. These results are based on analytical derivations. The second set of experiments study the

effect of various system parameters on the quality of collected data as well as the quality/lifetime trade-off.

These experiments are based on simulations using real-world data.
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7.1 Messaging Cost
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Figure 4: Analysis of messaging cost

We calculate the total number of messages spent for data col-

lection using different approaches, namely hybrid, central, local

and non-selective, and compare the results for different values of

system parameters. The non-selective case refers tonäıveperi-

odic data collection with no support for selective sampling.

In general, the gap between local and non-selective ap-

proaches, with the local approach being more expensive in terms

of messaging cost, indicates the overhead of cluster construc-

tion, sampler selection and model derivation, and selective data

collection steps when the savings due to selective samplingare

removed (local approach). On the other hand, the gap between

central and hybrid approaches, with the hybrid being less expen-

sive thus better, indicates the savings obtained by only reporting

the summary of correlations among sensor nodes within each

of the subclusters (hybrid approach), instead of forwarding all

forced samples to the base node (central approach). The default

parameters used in this set of experiments are as follows. The to-

tal time is set toT = 1000000 units. The total number of nodes

in the network is set to 600 unless specified otherwise.fc is se-

lected to result in an average cluster size of30 nodes. Desired

and forced sampling periods are set toτd = 1 andτf = 10 time

units. Clustering period is set toτc = 5000 time units and the

schedule update period is set toτu = 1000 time units. Sampling

fractionσ is set to0.25 andβ is set to10.

Figure 4(a) plots the total number of messages as a function

of the sampling fractionσ. We make several observations from

the figure. First, as expected, central and hybrid approaches pro-

vide significant improvement over local and non-selective ap-

proaches. This improvement decreases asσ increases, since in-

creasing values ofσ imply that larger number of nodes are be-

coming samplers. Second, the overhead of schedule and modelderivation step can be observed by comparing
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non-selective and local approaches. Note that the gap between the two is very small and implies that this

step incurs very small messaging overhead. Third, the improvement provided by the hybrid approach can be

observed by comparing hybrid and central approaches. We seean improvement ranging from 50% to 12% to

around 0%, whileσ increases from0.1 to 0.5 to 0.9. This shows that the hybrid approach is superior to the

central approach and is effective in terms of messaging costespecially whenσ is small.

Figure 4 (b) plots the total number of messages as a function of the desired sampling period to forced

sampling period ratio (τd/τf ). In this experimentτd is fixed at 1 andτf is altered. We make two observations.

First, there is an increasing overhead in the total number ofmessages with increasingτd/τf , as it is observed

from the gap between local and non-selective approaches. This is mainly due to the increasing number of

forced samples, which results in higher number of values from sampler nodes to first visit the cluster head node

and then reach the base node, causing an overhead compared toforwarding values directly to the base node.

Second, we observe that the hybrid approach prevails over other alternatives and provides an improvement

over central approach, ranging from 10% to 42% whileτd/τf ranges from0.1 to 0.5. This is because the

forced samples are only propagated up to the cluster head node with the hybrid approach.

Figure 4 (c) plots the total number of messages as a function of the number of nodes. The main observation

from the figure is that, central and hybrid approaches scale better with increasing number of nodes, where the

hybrid approach keeps its relative advantage over central approach (around %25 in this case) for different

network sizes. Figure 4 (d) plots the total number of messages as a function of the average cluster size (i.e.

1/fc). β is also increased as the average cluster size is increased, so that the average number of subclusters

per cluster is kept constant (around 3). From the gap betweenlocal and non-selective approaches, we can see

a clear overhead that increases with cluster size. On the other hand, this increase does not cause an overall

increase in the messaging cost of the hybrid approach until the average cluster size increases well over its

default value of30. It is observed from the figure that the best value for the average cluster size is50 for this

scenario, where smaller and larger values increase the messaging cost. It is also interesting to note that in the

extreme case, where there is a single cluster in the network,central and hybrid approaches should converge.

This can be observed from the right end of thex-axis in the figure.

7.2 Data Collection Quality

We study the data collection quality of our selective sampling approach through a set of simulation based

experiments using real data. In particular, we study the effect ofα on the quality of clustering, the effect of

α, β and subclustering methodology on the prediction error, thetrade-off between network lifetime (energy

saving) and prediction error, and the load balance in selective sampling schedule derivation. For the purpose

of experiments presented in this section, 1000 sensor nodesare placed in a square grid with a side length of
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Figure 5: Clustering quality with varyingα

Mean Absolute %90 Confidence

α Deviation (Relative) Interval

0 0.3909 (0.1840) [0.0325, 2.5260]

1 0.3732 (0.1757) [0.0301, 2.0284]

2 0.3688 (0.1736) [0.0296, 1.9040]

3 0.3644 (0.1715) [0.0290, 1.7796]

4 0.3600 (0.1695) [0.0284, 1.6552]

Table 5: Error for differentα values

1 unit and the connectivity graph of the sensor network is constructed assuming that two nodes that are at

most 0.075 units away from each other are neighbors. Settings of other relevant system parameters are as

follows. TTL is set to5. The sampling fractionσ is set to0.5. β is set to5 andfc is set to0.02 resulting in an

average cluster size of50. The data set used for the simulations is derived from the GPCPOne-Degree Daily

Precipitation Data Set (1DD Data Set) [19]. It provides daily, global 1x1-degree gridded fields of precipitation

measurements for the 3-year period starting from January 1997. This data is mapped to our unit square and

a sensor reading of a node at time stepi is derived as the average of the five readings from theith day of the

1DD data set whose grid locations are closest to the locationof the sensor node (since the dataset has high

spatial resolution).

Effect of α on the Quality of Clustering: Figure 5 plots the average coefficient of variance (CoV) of sensor

readings within same clusters (with a solid line using the left y-axis), for differentα values. For each cluster-

ing, we calculate the mean, maximum and minimum of the CoV values of the clusters, where CoV of a cluster

is calculated over the mean data values of sensor nodes within the cluster. Averages from several clusterings

are plotted as an error bar graph in Figure 5, where the two ends of the error bars correspond to average min-

imum and average maximum CoV values. Smaller CoV values in sensor readings imply a better clustering,

since our aim is to gather together sensor nodes whose readings are similar. We observe that increasingα

from 0 to 4 decreases the CoV around %50, where further increase inα do not provide improvement for this

experimental setup. To show the interplay between the shapeof the clusters and sensing-driven clustering,

Figure 5 also plots the CoV in the sizes of clusters (with a dashed line using the right y-axis). With hop based

clustering (i.e.,α = 0), the cluster sizes are expected to be more evenly distributed when compared to sensing-

driven clustering. Consequently, the CoV in the sizes of clusters increases with increasingα, implying that

the shape of clusters are being influenced by the similarity of sensor readings. These results are in line with

our visual inspection based results shown in Figure 3 in Section 3.3.
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Figure 6: Effect ofβ on prediction error
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Figure 7: MAD with different subclusterings

Effect of α on the Prediction Error: In order to observe the impact of data-centric clustering onprediction

quality, we study the effect of increasing data importance factorα on the prediction error. The second column

of Table 5 lists the mean absolute deviation (MAD) of the error in predicted sample values for differentα

values listed in the first column. The value of MAD relative tothe mean of the data values (2.1240) is also

given within parenthesis in the first column. Although we observe a small improvement around 1% in the

relative MAD whenα is increased from0 to 4, the improvement is much more prominent when we examine

the higher end of the 90% confidence interval of absolute deviation, given in the third column of Table 5. The

improvement is around0.87, which corresponds to an improvement of 25% relative to the data mean.

Effect of β on the Prediction Error: As mentioned in Section 4.1, decreasing subcluster granularity param-

eterβ is expected to increase effectiveσ. Higher effectiveσ implies larger number of sampler nodes and

thus improves the error in prediction. Figure 6 illustratesthis inference concretely, where the mean absolute

derivation (MAD) of the error in predicted sample values andeffectiveσ are plotted as a function ofβ. MAD

is plotted with a dashed line and is read from the lefty-axis, whereas effectiveσ is plotted with a dotted line

and is read from the righty-axis. We see that decreasingβ from 10 to 2 decreases MAD around 50% (from

0.44 to 0.22). However, this is mainly due to the fact that theaverage number of sampler nodes is increased

by 26% (0.54 to 0.68). To understand the impact ofβ better and to decouple it from the number of sampler

nodes, we fix effectiveσ to 0.5. Figure 6 plots MAD as a function ofβ for fixed effectiveσ, using a dash-dot

line. It is observed that both small and largeβ values result in higher MAD whereas moderate values forβ

achieve smaller MAD. This is very intuitive, since small sized models (smallβ) are unable to fully exploit the

available correlations between node samples, whereas large sized models (largeβ) become ineffective due to

decreased amount of correlation among the samples of large and diverse node groups.

Effect of Subclustering on the Prediction Error: This experiment intends to show how different subclus-

tering methods can affect the prediction error. We considerthree different methods: correlation-based sub-

25



0 20 40 60 80 100 120 140 160 180 200

0

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Time (in epochs)

M
e

a
n

 A
b

so
lu

te
 d

e
v

ia
ti

o
n

 

T

T/2

T/4

T/6

T/8

T/10

T/2, 8%

T/4, 16%

T/6, 24%

T/8, 40%

T/10, 90%

Figure 8: Prediction error vs. lifetime trade-off

2 3 4 5 6 7 8 9 10
50

55

60

65

70

75

80

85

90

95

100

β

Im
p

ro
v

e
m

e
n

t 
in

 v
a

ri
a

n
ce

 o
f 

sa
m

p
lin

g

σ = 0.2

σ = 0.4

σ = 0.6

σ = 0.8

Figure 9: Load balance in schedule
derivation

clustering (as described in Section 4), distance-based subclustering in which location closeness is used as the

metric for deciding on subclusters, and randomized subclustering which uses purely random assignment to

form subclusters. Figure 7 plots MAD as a function ofσ for these three different methods of subclustering.

The results listed in Figure 7 are averages of large number ofsubclusterings. We observe that randomized and

distance-based subclustering perform up to 15% and 10% worse respectively, when compared correlation-

based subclustering, in terms of mean absolute deviation ofthe error in value predication. The differences

between these three methods in terms of MAD is largest whenσ is smallest and disappears asσ approaches

1. This is quite intuitive, since smallerσ values imply that the prediction is performed with smaller number

of sampler node values.

Prediction Error/Lifetime Trade-off: We study the trade-off between prediction error and networklifetime

by simulating selective sampling with dynamicσ adjustment for differentσ reduction rates. We assume that

the main source of energy consumption in the network is wireless messaging and sensing. We set up a sce-

nario such that, without selective sampling the average lifetime of the network isT = 100 units. This means

that, the network enables us to collect data with 100% accuracy for 100 time units and then dies out. For

comparison, we use selective sampling and experiment with dynamically decreasingσ as time progresses, in

order to gradually decrease the average energy consumption, while introducing an increasing amount of error

in the collected data. Figure 8 plots the mean absolute deviation (MAD) as a function of time for different

σ reduction rates. In the figureT/x, x ∈ {1, 2, 4, 6, 8, 10} denotes different reduction rates, whereσ is de-

creased by0.1 everyT/x time units.σ is not dropped below0.1. A negative MAD value in the figure implies

that the network has exceeded its lifetime. Although it is obvious that the longest lifetime is achieved with

the highest reduction rate (easily read from the figure), most of the time it is more meaningful to think of

lifetime as bounded by the prediction error. In other words,we define theǫ-bounded network lifetimeas the

longest period during which the MAD is always below a user defined thresholdǫ. Different thresholds are
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plotted as horizontal dashed lines in the figure, crossing the y-axis. In order to find theσ reduction rate with

the highestǫ-bounded network lifetime, we have to find the error line thathas the largestx-axis coordinate

(lifetime) such that its correspondingy-axis coordinate (MAD) is belowǫ and above zero. Following this, the

approach with the highestǫ-bounded lifetime is indicated over eachǫ line together with the improvement in

lifetime. We observe that higher reduction rates do not always result in a longerǫ-bounded network lifetime.

For instance,T/4 provides the best improvement (around 16%) whenǫ is around0.4, whereasT/8 provides

the best improvement (around 40%) whenǫ is around0.8.

Load Balance in Sampler Selection:Although saving battery life (energy) and increasing average lifetime

of the network through the use of selective sampling is desirable, it is also important to make sure that the task

of being a sampler node is equally distributed among the nodes. To illustrate the effectiveness of our sampler

selection mechanism in achieving the goal of load balance, we compare the variation in the amount of time

nodes have served as a sampler between our sampler selectionscheme and a scenario where the sampler nodes

are selected randomly. The improvement in the variance (i.e., the percentage of decrease in variance when

using our approach compared to randomized approach) is plotted as a function ofβ for differentσ values in

Figure 9. For all settings, we observe an improvement above 50% provided by our sampler selection scheme.

8 Discussions

Setting of Selective Sampling Parameters− There are a number of system parameters involved in our

selective sampling approach to data collection in sensor networks. Most notable are:α, τd, τc, τu, τf , and

β. We have described various trade-offs involved in setting these parameters. We now give a general and

somewhat intuitive guideline for a base configuration of these parameters. Among these parameters,τd is the

one that is most straightforward to set.τd is the desired sampling period and defines the temporal resolution

of the collected data. A default value of1 seconds can provide more than enough temporal resolution for

most environmental monitoring applications. When domain-specific data distance functions are used during

the clustering phase, a basic guide for settingα is to set it to1. This results in giving equal importance to

data distance and hop distance factors. The clustering period τc and schedule update periodτu should be set

in terms of the desired sampling periodτd. Other than the cases where the phenomenon of interest is highly

dynamic, it is not necessary to perform clustering and schedule update frequently. However, re-clustering

and re-assigning sampling schedules help achieve better load balancing due to alternated sampler nodes and

cluster heads. As a result, one balanced setting for these parameters isτc = 1 hour andτu = 15 minutes. From

our experimental results, we conclude that these values result in very little overhead. The forced sampling

periodτf defines the number of the sample readings used for calculating the probabilistic model parameters.
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For the suggested setting ofτu, havingτf = 0.1 ∗ τu = 1.5 minutes results in having90 samples out of900

readings per schedule update period. This is statisticallygood enough for calculating correlations. Finally,β

is the subcluster granularity parameter and based on our experimental results, we suggest a reasonable setting

of β ∈ [5, 7]. Note that both small and large values for beta will degrade the prediction quality.

Messaging Cost and Energy Consumption− One of the most energy consuming operations in sensor

networks is the sending and receiving of messages, althoughthe energy cost of keeping the radio in the active

state also presents non-negligible cost [34]. It is important to note that our selective sampling approach to

data collection operates in a completely periodic manner. Byscheduling the selective sampling based data

collection periodically, we ensure that during most of the time there is no messaging activity in the system.

As a result, taking the number of messages exchanged during data collection as the major indicator of energy

consumption is a sound assumption. Considering the fact thatthere exist generic protocols for exploiting

such timing semantics found in most of the data collection applications [13], we can easily incorporate an

exisiting energy efficient radio management protocol in order to save energy by reducing or avoiding the need

for keeping the radio active during periods of inactivity.

Reliable Maintenance of Network Structures− There are three important network structures to be main-

tained in our selective sampling approach to data collection. These are the cluster head nodes, the cluster

connection trees, and the data collection tree. Note that the cluster connection trees and the data collection

tree are solely used for communicating with the cluster heads and the base node, respectively. This means that

these trees need not be maintained in case there is a routing mechanism already existent in the network, such

as geographical routing (ex. GPSR [25]) or other well-knownad-hoc routing mechanisms such as AODV,

DSR, and DSDV (see [8]). The use of these trees in selective sampling is completely different than their use

in aggregation schemes in which in-network processing is performed at each non-leaf node of the tree. In

selective sampling, most of the in-network processing takes place in the cluster head nodes. As a result, there

are two important issues that requires special attention for ensuring reliability. First, the failure of cluster

head nodes should be detected and in case of failures new cluster head nodes should be elected. This can be

achieved by applying classical primary/backup techniquesfrom distributed computing. Second, it is impor-

tant that the model parameters sent from the cluster head nodes are successfully transmitted to the base node.

This can be achieved by employing end-to-end acknowledgment schemes between the cluster heads and the

base node. Note that the loss of a message which includes a sensor reading destined to the base node is not

a serious problem, since the value of such a node can be predicted at the base node using the probabilistic

models and the readings of other nodes, albeit with some error. In comparison, the loss of a message in an

aggregation scheme results in neglecting the values of all the nodes under a subtree.
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9 Related Work

Energy efficiency plays a fundamental role in localized and distributed algorithms for wireless sensor networks

in the context of various different services and protocols,such as broadcasting [24], message routing [40],

medium access control [44], time synchronization [16], andlocation determination [37]. Data collection is

another important service provided by sensor networks, especially for environmental monitoring applications.

We review the literature related to sensor data collection in three categories: sensor data collection systems,

node clustering in ad-hoc networks, and probabilistic inference in sensor networks.

Sensor Data Collection Systems –In Section 1 we have discussed the distinction between our selective

sampling approach and other data collection approaches, such as those based on event detection [2], in-

network aggregation [31], and distributed compression [36]. In summary, selective sampling is designed for

energy efficient periodic collection of raw sensor readingsfrom the network for the purpose of performing

detailed data analysis that can not be done using in-networkexecuted queries or locally detected events. The

energy saving is a result of trading-off data accuracy, which is achieved by using a dynamically changing

subset of nodes as samplers. This is in some ways similar to previously proposed energy saving sensor

network topology formation algorithms, such as PEAS [43], where only a subset of nodes are made active,

while preserving the network connectivity. Selective sampling uses a similar logic, but in a different context

and for a different purpose: only a subset of nodes are used toactively sample, while the quality of the

collected data is kept high.

There are a number of recent works [22, 15, 26] that has considered the trade-off between energy con-

sumption and data collection quality. In [22] algorithms are proposed to minimize the sensor node energy

consumption in the process of answering a set of user supplied queries with specified error thresholds. The

queries are answered using uncertainty intervals cached atthe server. These cached intervals are updated

using an optimized schedule of server-initiated and sensor-initiated updates. Our selective sampling approach

is not bound to queries and collects data periodically, so that both on-line and archival applications can make

use of the collected data.

BBQ [15] is a model-driven data acquisition framework for sensor networks, that uses global optimizations

for generating energy efficient data collection schedules.It is designed for multi-sensor systems, where nodes

have multiple sensors with different energy consumption specifications. The correlations between readings

from different sensors within a node are exploited to build statistical models, which enables prediction of the

sensor readings that are energy-wise expensive to sample, from other sensor readings that are energy-wise

cheap to sample, for instance temperature readings from voltage readings. Our selective sampling approach

uses statistical models in a similar manner, but instead of modeling intra-node correlations among readings
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of different-type sensors, we model inter-node correlations among the readings of same-type sensors from

different nodes. Moreover, unlike [15], our framework is not query bound.

Snapshot Queries [26] is perhaps the most relevant work to ours. In [26], each sensor node is either

represented by one of its neighbors or it is a representativenode. Although this division is similar to sampler

and non-sampler nodes of our selective sampling approach, there is a fundamental difference. The neighboring

relationship imposed on representative nodes imply that the number of representatives is highly dependent on

the connectivity graph of the network. For instance, as the connectivity graph gets sparse, the number of

representative nodes may grow relative to the total networksize. This restriction does not apply to the number

of sampler nodes in selective sampling, since the selectionprocess is supported by a clustering algorithm and

is not limited to one-hop neighborhoods. In [26], representative nodes predict the values of their dependent

neighbors for the purpose of query evaluation. This can cut down the energy consumption dramatically for

aggregate queries, since a single value will be produced as an aggregate from the value of the representative

node and the predicted values of the dependent neighbors. However this local prediction will not support such

savings when queries have holistic aggregates [31] or require collection of readings from all nodes. Thus,

selective sampling employs a hybrid approach where prediction is performed outside the network. Moreover,

the model based prediction performed in our selective sampling approach uses correlation based schedule

derivation to subcluster nodes into groups based on how goodthese nodes are in predicting each other’s

value. Any node within the same cluster can be put into the same subcluster, independent of the neighboring

relationship between them. As opposed to this, snapshot queries does not use a model and instead employs

binary linear regression for each representative-dependent node pair.

Node Clustering in Ad-hoc Networks –With respect to ad-hoc networks, most of the previous work in

distributed node clustering have focused on constructing one-hop clusters [28, 4, 5, 7, 11]. In a one-hop

cluster, each node is at most one-hop away from its cluster head. A few exceptions to this line of work

are [12], [1], and [38]. In [1], a heuristic-based distributed algorithm is introduced for building clusters in

which each node is at mostd hops away from its cluster head.d is a system parameter and the algorithm tends

to create clusterings in which clusters have approximatelythe same size. In [12], several distributed clustering

algorithms are proposed for constructingk-hop clusters, where each node is at mostk-hops away from the

cluster head. In [38], a connectivity-based distributed node clustering algorithm is proposed, where nodes that

are “highly connected” in the connectivity graph are put into the same cluster. All these algorithms, though

distributed, do not attempt to cluster the network based on sensing structure. Hence the clusters discovered are

not necessarily “good” clusters from a prediction stand-point. In contrast, our clustering algorithm is unique

in being sensing-driven and results in clusters that improve prediction quality.
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Inference in Sensor Networks –Our selective sampling approach to energy efficient data collection in sensor

networks uses probabilistic models, whose parameters are locally inferred at the cluster head nodes and are

later used at the base node to predict the values of non-sampler sensor nodes. Several recent works have also

proposed to use probabilistic inference techniques to learn unknown variables within sensor networks [35,

20, 42, 9]. In [20], regression models are employed to fit a weighted combination of basis functions to the

sensor field, so that a small set of regression parameters canbe used to approximate the readings from the

sensor nodes. In [9], probabilistic models representing the correlations between the sensor readings at various

locations are used to perform distributed calibration. In [42], a distributed fusion scheme is described to infer a

vector of hidden parameters that linearly relate to each sensor’s reading with a Gaussian error. Finally, in [35]

a generic architecture is presented to perform distributedinference in sensor networks. The solution employs

message passing on distributed junction-trees, and can be applied to a variety of inference problems, such as

sensor field modeling, sensor fusion, and optimal control.

10 Conclusion

We introducedselective samplingfor energy-efficient periodic data collection in sensor networks. In partic-

ular, we showed that selective sampling can be effectively used to increase the network lifetime, while still

keeping quality of the collected data high. We described three main mechanisms, (i) sensing-driven cluster

construction, (ii) correlation-based sampler selection and model derivation, and (iii) selective data collection

and model-based prediction, that together form the crux of our selective sampling approach. We demonstrated

the effectiveness of selective sampling under different system settings through our reported results derived

from analytical and simulation based experimental studies.
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