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Abstract
One of the most prominent and comprehensive ways of datactiolh in sensor networks is to periodically
extract raw sensor readings. This way of data collectiomlesacomplex analysis of data, which may not be
possible with in-network aggregation or query processhkhigwever, this flexibility in data analysis comes at
the cost of power consumption. In this paper, we introdsslective samplinfpr energy-efficient periodic
data collection in sensor networks. The main idea behiretteé sampling is to use a dynamically changing
subset of nodes as samplers such that the sensor readingsplies nodes are directly collected, whereas
the values of non-sampler nodes are predicted through #hefugrobabilistic models that are locally and
periodically constructed in an in-network manner. Selecampling can be effectively used to increase
the network lifetime while keeping quality of the collectddta high, in scenarios where either the spatial
density of the network deployment is superfluous relativeheorequired spatial resolution for data analysis
or certain amount of data quality can be traded off in ordeteiorease the overall power consumption of the
network. Our selective sampling approach consists of thra®m mechanisms. Firssensing-driven cluster
constructionis used to create clusters within the network such that nedésclose sensor readings are
assigned to the same clusters. Secaadrelation-based sampler selection and model derivatsonsed to
determine the sampler nodes and to calculate the paranoétersbabilistic models that capture the spatial
and temporal correlations among sensor readings. sel&tctive data collection and model-based prediction
is used to minimize the number of messages used to extractroat the network. A unique feature of our
selective sampling mechanisms is the use of localized sebeas opposed to the protocols requiring global
information, to select and dynamically refine the subseeoksr nodes serving as samplers and the model-
based value prediction for non-sampler nodes. Such rurdida@tations create a data collection schedule
which is self-optimizing in response to changes in energglgof nodes and environmental dynamics.
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1 Introduction

Advances in wireless network technologies, low-power gssor and chip design, and micro electromechani-
cal systems have facilitated the proliferation of small tmst, low power sensor devices that enable seamless
integration of the physical world with pervasive network3]. The prominent features of such sensor devices
are their ability to perform computation, wireless comnamation, and environmental sensing. On the bright
side, the continued price drop in low power sensor devicestla@r decentralized and unattended nature of
operation make sensor networks an attractive tool for etitrgq and gathering data by sensing real-world
phenomena from the physical environment. Environmentalitaong applications are expected to benefit
enormously from these developments, as evidenced by reeasbr network deployments supporting such
applications [33, 6].

On the downside, the large and growing number of networkedms and their unattended deployment
present a number of unique system design challenges,afifférom those posed by existing computer net-
works: (1)Sensors are power-constrained.major limitation of sensor devices is their limited batdife.
Wireless communication is a major source of energy consempivhere sensing can also play an important
role [15] depending on the particular type of sensing pen&d (ex. solar radiation sensors [41]). On the
other hand, computation is relatively less energy consgmotes [23] developed at UC Berkeley and man-
ufactured by Crossbow Inc. [14] are good examples of this tfpgensor nodes. (Zensor networks must
deal with high system dynamicSensor devices and sensor networks experience a wide radgaamics,
including spatial and temporal change trends in the sensle@s that contribute to environmental dynamics,
changes in user demands that contribute to task dynamicsvasat is being sensed and what is considered
interesting changes [18], and changes in the energy leveéleesensor nodes, their location or connectiv-
ity that contribute to network dynamics. One of the main otiyes in configuring networks of sensors for
large scale data collection is to achieve longer lifetim@ssensor network deployments by keeping energy
consumption at minimum, while maintaining sufficiently higuality and resolution of the collected data to
enable meaningful analysis. These configurations shoufskebiedically re-adjusted to adapt to the various

changes resulting from high system dynamics.

Data Collection in Sensor Networks -We can broadly divide data collection, a major functiorya$itip-
ported by sensor networks, into two categoriesevant basedata collection, the sensors are responsible for
detecting and reporting (to a base node) events, such dsgpobving targets [27]. Event based data collec-
tion is less demanding in terms of the amount of wireless cameation, since local filtering is performed
at the sensor nodes, and only events are propagated to #nadids. In certain applications, the sensors may

need to collaborate in order to detect events. Detectingptmnevents may necessitate non-trivial distributed



algorithms [29] that require involvement of multiple sensodes. An inherent downside of this kind of data
collection is the impossibility of performing in-depth dysis on the raw sensor readings, since they are not
extracted from the network.

In periodic data collectionperiodic updates are sent to the base node from the sensarrkebased
on the most recent information sensed from the environmafetfurther classify this approach into two. In
query basedlata collection, long standing queries (also called cowtirs queries [30]) are used to express
user or application specific information interests andehgseries are installed “inside” the network. Most
of the schemes following this approach [31, 32] support egate queries, such as minimum, average, and
maximum. These types of queries result in periodically gativeg an aggregate of the recent samples of
all nodes. Although aggregation lends itself to simplerdiated implementations that enable complete in-
network processing of queries, it falls short in supportigjstic aggregates [31] over sensor samples, such
as quantiles. Similar to the case of event based data doletihe raw data is not extracted from the network
and complex data analysis that requires integration of &sippm various nodes at various times, cannot be
performed with in-network aggregation.

The most comprehensive way of data collection is to extragtgamples from the network through peri-
odic reporting of each sampled value from every sensor nblaie.scheme enables arbitrary data analysis at a
sensor stream processing center once the data is coll&tel.increased flexibility in data analysis comes at
the cost of high energy consumption due to excessive contation and consequently decreases the network
lifetime. One way of tackling this problem is to use disttéx data compression to reduce the total size of the
data transmitted on the wireless channel. However, suctoappes may require to gather samples belonging
to different time intervals before performing compressionthem [3]. This may introduce delays, undesir-
able for real-time applications. As shown in [3], compressiechniques that typically trade-off accuracy
and delay can cut down the communication cost, thus red@certargy consumption rate and increase the
network lifetime. In this paper, we develop an alternatippraach based oselective samplingThe main
idea behind selective sampling is to use a carefully sedesty@amically changing subset of nodes to sample
and to predict the values of the rest of the nodes using piidiadomodels. Such models are constructed
by exploiting both spatial and temporal correlations eqsin sample readings of sensor nodes. There are
two major scenarios that can highly benefit from this apgnoagrst, in many sensor network applications,
node density of the deployment is selected to result in aapatsolution higher than the required, mainly
because of the short lifespan of the sensor nodes [39], orodie lack of knowledge about the nature of the
phenomenon of interest. As a result, selective samplingetfactively reduce the number of nodes used to
sample data, decrease the energy consumption rate of therkeind thus can increase the overall network

lifetime. Second and more importantly, there is an inhetextte-off between the accuracy of the collected
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data and the network lifetime. If the application at hand terate certain levels of error, then selective
sampling can be effectively used to save energy by decrg#senquality of received data within acceptable
bounds. Such tradeoff is especially useful when the enefjyn the network is low and the energy con-
sumption rate is high. A key challenge is to design effeatieechanisms that can increase the lifetime of the
network while keeping the accuracy of the collected datatgfactory levels.

Figure 1 illustrates this trade off graphically. Ini-
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use different degrees of selective sampling, dependin&igure 1: lllustration of energy-quality trade-off
on the desired energy/quality trade-off.

Another key challenge in designing an energy efficient sekesampling architecture is to empower the
system with the ability to respond to high network dynami€ancretely, the selective sampling approach
should support large number of unattended autonomous retteshould equip the energy-efficient data
collection algorithms with self-configuring and self-apizing capabilities by enabling run-time adaptation
to re-select the subset of nodes to sample and to re-conhsteicorrelation-based probabilistic models to
enhance the quality of value prediction of non-sampler sode

Contributions and Scope of the Paper

With the above challenges in mind, we identify a number ofccete design principles in designing an effec-
tive selective sampling architecture that can respondangeés in energy levels at nodes and network dynam-
ics. First, we need to organize the network into coordimagjmups such that good probabilistic models can
be locally constructed to closely capture the spatial ¢aties of sensor readings amongst the nodes within
each group. Second, we need to utilize the constructed mtm&hd and select the sampler nodes whose sen-
sor readings can provide high accuracy for the predictidmetperformed for the non-sampler nodes. Third,
but not the least, we need to perform periodic reassignmerdeder to balance power consumption of the
nodes and adapt to possibly changing correlations betweresosreadings.

Our selective sampling architecture consists of a threes@lframework and a set of localized algorithms
for generating and executing energy-aware data collesttbedules. First, we devel&@ensing-driven Clus-
ter Constructioralgorithm to group together the nodes such that the oneatbalose to each other in terms

of their sensor readings (thus the naseasing-drivepas well as network hops are put into the same clusters.



This is aimed at building a network organization that faates local coordination for performing selective
sampling and is designed to improve the prediction qualayité sensing-driven nature. Second, we develop
Correlation-based Sampler Selection and Model Derivasilgorithms to partition the nodes within each clus-
ter into a set of subclusters to assist the selection of af setropler nodes and to construct one probabilistic
model for each subcluster. We address the issues of higiicpoedaccuracy and balanced power consump-
tion by enabling periodic re-configuration of node clustansl periodic re-selection of sampler nodes and
re-construction of correlation-based probabilistic medeThis allows our selective sampling approach to
adapt to possibly changing correlations between sensdingsand balance power consumption of nodes in
response to environment and task dynamics. In the thirdeplvees generate and execute the data collection
schedule to collect data from the sensor network in an epeiffggrent manner by developing tt&elective
Data Collection and Model-based Predictiafgorithms, aiming at keeping the wireless communication a

minimum. This enables us to strike a good balance betweevorietifetime and data quality.
2 System Model and Overview

We describe the system model and introduce the basic canteptigh an overview of the selective sampling
architecture and a brief discussion on the set of algoritemployed. For reference convenience, we list the
set of basic notations used in the paper in Tables 1, 2, 3, aBdch table lists the set of notations introduced

in its associated section.

2.1 Network Architecture

We design our selective sampling based data collectioesyssing a three-layer network architecture. The
first and basic layer is the wireless network formed¥gensor nodes anddata collection treeconstructed

on top of the network. We denote a node in the networkbwherei € {1,..., N}. Each node is assumed
to be able to communicate only with its neighbors, that is,rtbdes within its communication range. The set
of neighbor nodes of nodg is denoted by.br(p;). The neighbor relationship is assumed to be symmetric.
The nodes that can communicate with each other foomraectivity graphFigure 2 depicts a segment from

a network of hundred sensor nodes. The edges of the conityegtiaph are shown with light blue lines (light
gray in grayscale). Sensor nodes use a data collectiondreled purpose of propagating their sensed values
to a base node. The base node is also the root of the datatmwlléee. This tree is formed in response to
a data collection request, which starts the data collegrocess. In Figure 2, base node is the shaded one
labeled as “56”. Every node in the data collection tree, pkt®e root, has a parent node and every non-leaf
node has a set of children nodes. The edges of the data cwlldcte are shown in red color (dark gray
in grayscale) in Figure 2. The data collection tree can bayeasild in a distributed manner, for instance,

by circulating a tree formation message originated fromkage node and making use of a min-hop parent



selection policy [3], or similar algorithms used for in-wetrk aggregation [32, 31].

The second layer of the architecture consists of nodigNotation | Meaning |
N Total number of nodes in the network

clusters, which partition the sensor network into disjoint___»: ith node in the network
nbr(p;) | Neighbors of node; in the connectivity graph

regions. Each node in the network belongs to a cluster ¢:(t) | Energy leftatnode; at timet

Cluster head node of the cluster that nggdelongs to
Set of cluster head nodes in the network
Set of nodes in the cluster with head ngge
. . Set of subclusters in clustér;, whereG; (j) is
cluster head, and createlaster-connection trewith the set of nodes in thgth subcluster irGi(j )
Number of subclusters i@';, also denoted a7, |
Data collection schedule for clustél;, whereS;[p;] is
the status (sampler/non-sampler) of nggen S;

and each cluster elects a node within the cluster to be the

Qo T

|

<

the cluster head as its root node to establish the com-

Section 3.2 for further detail). We associate each ngdeth a cluster head indicatdr;, : € {1,..., N}, to
denote the cluster head node of the cluster that pptelongs to. The set of cluster head nodes are denoted
by H, and is defined formally a8 = {p;| h; = p;}. Note thath; = p; implies thatp; is a cluster head node
(of cluster:). A cluster withp; as its head node is denoted @yand is defined as the set of nodes that belong
to it, including its cluster head noge. Formally,C; = {p;| h; = p;}. Given a node, hasp; as its cluster
head (; = p;), we sayp, isin C; (p; € C;). A cluster is illustrated on the upper left corner of Fig@reith a
closed line covering the nodes that belong to the clustez.Clister head node is drawn in bold and is labeled
as “12”. An example cluster-connection tree is shown in tgaré, where its edges are drawn in dark blue
(using dashed lines).

The third layer of our architecture is built on top of the
node clusters in the network, by further partitioning eactien
cluster into a set osubclusters Each node in the network
belongs to a subcluster. The set of subcluste€s is denoted
by G;, where the number of subclusters@h is denoted by
K; where K; = |G;|. A subcluster withinG; is denoted by
Gi(j),j € {1,..., K;}, and is defined as the set of nodes that

belong to thejth subcluster in7;. Given a node clustet’;,

only the head nodg; of this cluster knows all its subclusters

(Gi(y),7 € {1,..., K;}). Thus the subcluster information is Figure 2: System Architecture

local to the cluster head nogeand is transparent to other nodes within the cluétedn Figure 2, we show
four subclusters for the node cluster with node “12” as itstr head and these subclusters are circled with
closed dashed lines. A key feature of our selective samplpopgoach is that not all the nodes in the network
need to sample and send the sampled values (sensor reddirige)base node via the data collection tree.
One of the design ideas is to partition the node cluster ih sugay that we can elect a few nodes within each

subcluster as the sampling nodes and create a probabhitietiel to predict the values of other nodes within
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this subcluster. From now on, we refer to the nodes that dpkagnassamplemodes. In Figure 2, we show
sampler nodes with double circled lines (i.e., nodes lab&g, “11”, “21”, and “32”). For each clustet’;,
there exists a data collection schedflewhich defines the nodes that are samplers in this node clite
use the Boolean predicate denoted®lp;| as an indicator that defines whether ngde= C; is a sampler or

not. We use the [] notation whenever the indexing is by nodes.

2.2 Selective Sampling Overview

We give an overview of the three main mechanisms that forncthe of our selective sampling approach to
data collection. A detailed description of each mechanspravided in the subsequent sections.

The first mechanism is to construct clusters within the neétwd@his is achieved by theensing-driven
cluster constructioralgorithm, that is executed periodically at evefyseconds, in order to perform cluster
refinement by incorporating changes in the energy levetidigton and the sensing behavior changes of the
nodes. We calf, the clustering period The node clustering algorithm performs two main tasksluster
head selection and cluster formation. The cluster headtsmlecomponent is responsible for defining the
guidelines on how to choose certain number of nodes in theamkto serve as cluster heads. An important
design criterion for cluster head selection is to make swaedn the long run the job of being a cluster head
is evenly distributed among all the nodes in the network twdturning out the battery life of certain sensor
nodes too earlier. The cluster formation component is ingdhaf constructing clusters according to two
metrics. First, nodes that are similar to each other in teshiheir sampled values (sensor readings) in the
past should be clustered into one group. Second, nodesrthatustered together should be close to each
other within certain network hops. The first metric is based@ue similarity of sensor readings, which is a
distinguishing feature compared to naive minimum-hop dasester formation where a node joins the cluster
that has the closest cluster head node in terms of network hop

The second mechanism is to create the subclusters for editie ofode clusters. The goal of further
dividing the node clusters into subclusters is to fac#itdte selection of the nodes to serve as samplers and
the generation of the probabilistic models for value pration of non-sampler nodes. This is achieved by
thecorrelation-based sampler selection and model derivadilgorithm that is executed periodically at every
T, seconds., is called theschedule update periaghd is typically defined as a multiple af. Concretely,
given a node cluster, the cluster head node carries out thplsaselection and model derivation task locally
in three steps. In the first step, the cluster head node ustsibal data from nodes in its cluster to capture
the spatial and temporal correlations in sensor readind€alculate the subclusters so that the nodes whose
sample values are highly correlated are put into the sanwsibrs. In the second step, these subclusters are

used to select a set of sampler nodes such that there istadbteasampler node selected from each subcluster.



This selection of samplers forms the sampling scheduldcluster. We introduce a system-wide parameter
o € (0,1] to define the average fraction of nodes that should be useahaglers.o is called thesampling
fraction. Once the sampler nodes are determined, only these nodest@@mple readings and the values
of the non-sampler nodes will be predicted at the processemger (or the base node) using a probabilistic
model that is constructed for each subcluster. Thus, the $kep here is to construct and report a probabilistic
model for each subcluster within the network based on thetsl readings of all nodes in the subcluster.
We introduce a system-supplied parametewhich defines the average size of the subclustérs called the
subcluster granularityand its setting influences the size and number of the sulectussed in the network.

The third mechanism, is to collect the sampled values fram#twork and to perform the prediction after
the samples are received. This is achieved bystiective data collection and model-based predictfgo-
rithm. The selective data collection component works in $teps: (1) Each sampler node samples its reading
everyt; seconds, called theéesired sampling periadr; sets the temporal resolution of the data collection.
(2) To empower our selective sampling architecture with-agaptation, we also need to periodically sample
sensor readings from all nodes in the network. Concretelgvety 7, seconds«; is a multiple ofr,;) all
nodes perform sampling. These samples are collected ¢hrihe use of cluster-connection trees) and used
by the cluster head nodes, aiming at incorporating newblbdéished correlations among sensor readings and
network dynamics into decision making process of corretabased sampler selection and model derivation.
7; IS a system-supplied parameter, called fitreed sampling periodThe model-based predication compo-
nent is responsible for estimating values of non-sampldesavithin each subcluster using readings of the

sampler nodes and the parameters of the probabilistic noodstructed for that subcluster.

3 Sensing-driven Cluster Construction

The goal of sensing-driven cluster construction is to formetwork organization that can facilitate selective
sampling through localized algorithms, while achieving tilobal objectives of energy-awareness and high
guality data collection. In particular, clusters help peni operations such as sampler selection and model
derivation in a localized manner. By emphasizing on sendnngen clustering, it also helps to derive bet-
ter prediction models to increase the prediction qualitite Bensing-driven clustering algorithm, executed

periodically at every. seconds, performs two main taskscluster head selection and cluster formation.

3.1 Cluster Head Selection

During the cluster head selection phase, nodes decide arhigttly should take the role of a cluster head or
not. Concretely, every node is initialized not to be a clustad and does not have an associated cluster in the

beginning of a cluster head selection phase. A ngdiest calculates a value calldgtad selection probability



denoted bys;. This probability is calculated based on two factors. Th& bine is a system wide parameter
calledcluster count factardenoted byf.. It is a value in the range (0,1] and defines the average dracif
nodes that will be selected as cluster heads. In other wgrdsy number of nodes will be selected as cluster
heads on the average, with an average cluster siz¢ of The factors that can affect the decision on the
number of clusters and thus the settingfoinclude the size and density of the network. The second ffacto

involved in the setting of; is therelative energy levedf the node. We denote the energy available at ngde

attimet asei<t)- [ Notation [ Meaning |
. . Sq Head selection probability
The relative energy level is calculated by com- o Round counter of node; used for clustering
. . . TTL Max. number of hops a cluster formation message can travel
paring the energy available at nOﬁLaNlth the av- i Mean of the sensor readings nggehas sampled
. L T; Smallest hop distances from cluster heads in proximity;pf
erage energy available at the nodes within its one as known tap; during cluster formation
] ) Vi Means of readings from cluster heads in proximitypgf
hop neighborhood. The value of the head selection as known tap; during cluster formation
Z; Attraction scores for cluster heads in proximitygf
probability is then calculated by multiplying the whereZ:[p;] is the attraction score for nogg € H
fe Cluster count factor
cluster count factor with the relative energy level.| o | Dataimportance factor
Te Clustering period
Formally, s; = f, x —cQxnbre)l+D) __ = Thig en- Table 2: Notations for sensing-driven clustering

ei(t)—"_z:pje”ln'(pi) e;(t)
ables us to favor nodes with higher energy levels for cluséad selection. Once is calculated, node;

is chosen as a cluster head with probabiity If selected as a cluster head,initializes a number of states
before starting to circulate cluster formation messagégtn the cluster formation process (described in the
next subsection). Concretely, setsh; to p; indicating that it now belongs to the cluster with headitself)

and also increments iteund countey denoted by-; to note that a new cluster has been selected for the new
clustering round. lfp; is not selected as a cluster head, it waits for some time ®ivecluster formation
messages from other nodes. If no such message is receivegedts the whole process starting from the
s; calculation. Considering most realistic scenarios goveyeinergy values available at nodes and practical
settings off,. (< 0.2), this process results in selecting approximaiély N number of nodes as cluster heads.

The pseudo code is given in the @STINIT procedure of Alg. 1.

3.2 Cluster Formation

The cluster formation phase starts right after the clustéadiselection phase. It organizes the network of

sensors into node clusters in two major stepsssage circulatioandcluster engagement

Message circulation stepnvolves the circulation of cluster formation messagesinithe network. These
messages are originated at cluster head nodes. Once anisdehosen to be a cluster head, it prepares a
messagen to be circulated within a bounded number of hops, and strestthe message as follows. It
setsm.org to its node identifiep;. This field represents the originator of the cluster fororatnessage. It

setsm.ttl to TTL, whereTTL is a system-wide parameter that defines the maximum numbsspsf this
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message can travel within the network. This field indicalbesrtumber of remaining hops the message can

travel. It setsn.rnd to its round counter;. It setsm.src to p;, indicating the sender of the message. Finally,

it setsm.dmu to ;. Here,u; denotes the mean of the sensor readings poti@s sampled during the time

period preceding this round;] of cluster formation. The messageis then sent to all neighbors of nogge

Upon reception of a message at a nodep;, we

Alg. 1: Sensing-driven cluster construction

first compare thend field of the message t@’s cur-
rent round counter;. If m.rnd is smaller tharr;, we
discard the message, since it is likely a delayed mes
sage in some earlier clustering round and should be
disregarded. lin.rnd is larger thanr;, then this is
the first cluster formation messaggehas received for
the new round. As a result, we incrementto in-
dicate that node,; is now part of the current round.
Moreover, we initialize two data structures, denoted
by T; andV;. Both are initially empty.T;[p,] stores
the shortest known hop count from a cluster head nod
p,; to nodep;, if a cluster formation message is re-
ceived fromp;. V;[p;] storesdmu field of the clus-
ter formation messages that originated from npge
and reached node. Once the processing of thed
field of the message is over, we calculate the numbe
of hops this message traveled, by investigatingtthe
field, which yields the valud + TTL — m.ttl. |If

1%

C

r

CLUSTINIT(p;)

(@)
&)
(©)
(©)
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(6)
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RECEIVEM SG(p;, m)

™
&)
(©)
4
®)
(6)
(7
(8
(9)
(10
(11)
(12)

PICKCLUSTERYp;)

(@)
@)
(©)
4
©)
(6

h; < nil
while h; = nil
t < Current time
ei(t)x(|nbr(p;)|+1)
Si = fex m(t)ﬁr)z,ienbr(pl) <
if rand(0,1) < s;
hi «— p;
r; < r; +1 [* r; «— 0 during system init */
m.org < p;, m.ttl «— TTL
m.rnd «— 1;,MSG.STC < P;
m.dmu — p;
foreach p; € nbr(p;)
SENDMSG(p;, m)
else if a cluster formation message received
return

if m.rnd > r;
r; «— m.rnd
else if m.rnd < r;
return
a—1+TTL — m.ttl
if T;[m.org] #0 and T;[m.org] < a
return
Ti[m.org] < a, Vi[m.org] < m.dmu
m.ttl «— m.ttl — 1, m.src «— p;
foreach p; € nbr(p;)\msg.src
SENDMSG(p;, m)

Y 1/N (il pa, 04)

foreach j, T;[p;] # 0
a «— 1 —"T;[p;]/TTL I*hop distance factor */
b — N(Vi[p;]| pi, o) *y [* data distance factor */
Z; [pj] —a+axb

hi — argmazyp,; (Zi[p;])

T;[m.org] is not empty (meaning this is not the first message we recdivéds round that originated from

nodem.org) andT'[m.org] is smaller than or equal to the number of hops the currentagedsas traveled,

we discard the message. Otherwise, weldet.org] to 1 + TTL — m.ttl andV;[m.org] to m.dmu. Once

T; andV; are updated with the new information, we modify and forwdmel message to all neighbors jof

except the node specified byc field of the message. The modification on the message invdB@gmenting

thettl field and setting therc field to p;. The pseudo code for the message circulation phase is gixieimw

the QLUSTINIT and RECEIVEM SG procedures in Alg. 1

Cluster engagement stefnvolves making a decision about which cluster to join, omep distance and mean

sample value information are collected. Concretely, a nptleat is not a cluster head, performs the following
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procedure to determine its cluster. For each cluster hedd fiom which it has received a cluster formation
message in this round (i.¢p;| T;[p;] # 0}), it calculates amttraction scoredenoted byZ;[p,], for the cluster
headp;. Then it joins the cluster head with the highest attracticors, i.e., it setd; to argmax,,(Z[p;]).
The calculation of the attraction sco#g[p,| involves two factors. The first factor is called thep distance
factor and is calculated as— 7;[p;]/T'TL. It takes its minimum value 0 whep) is 77'L hops away from

p; and its maximum valué — 1/7TL whenp; is one hop away fronp,. The second factor is called the
data distance factoand it is calculated a8/ (V;[p;]| wi,<?)/N (| i, <?). Here, N represents the Normal
distribution and;? is a locally estimated variance of the sampled values at ppdehe data distance factor
measures the similarity between the mean of the sensongsaai node; and the mean readings at its cluster
head nodeg,. It takes its maximum value of 1 whén[p;] is equal tou;,. Its value decreases as the difference
betweenV;[p;] and; increases, and approaches to 0 when the difference app&elinfinity. This is a
generic way to calculate the data distance factor and ddeequire detailed knowledge about the data being
collected. However, if such knowledge is available, a donsgiecific data distance function can be applied.
For instance, if a domain expert can set a system wide paeaheb be the maximum acceptable bound of
the difference between the mean sample value of a node amadiduie sample value of its head node, then we
can specify a distance functiof{d) = d/A, whered is set to|V;[p;] — w|. In this case, the data distance
factor can be calculated asax(0,1 — f(d)). With this definition, the distance factor will take its manim
value of 1 whent is 0, and its value will linearly decrease to Oc&aeaches\.

We compute the attraction score as a weighted sum of the lstgndee factor and the data distance factor,
where the latter is multiplied by a factor callddta importance factgrdenoted byy. « takes a value in the
range|0, co). A value of 0 means only hop distance is used for the purposkisfering. Larger values result
in a clustering that is more dependent on the distances batitfe mean sample values of the nodes. The

pseudo code for cluster engagement step is given byithe@ USTERSprocedure in Alg. 1.

Cluster-connection tree formation: Each node cluster in the network not only elects a clusted imeale
but also forms a cluster connection tree during the clustesttuction. Such cluster connection trees are
used to accomplish the communication of nodes with thesteluheads. Concretely, the cluster-connection
trees are formed as follows: When a ngdeeceives a cluster formation message originated at a clustsl
nodep;, p; notes down the node from which it has received this clustenédion message as the candidate
for becoming the parent node pfin the cluster connection tree anchoregatlf there are several distinct
cluster head nodes that circulate a cluster formation ngeskanodep;, then for each one of such cluster
heads, say,, p; stores only one forwarder node, spy, which is the one that has forwarded the cluster

formation message of; with the highest TTL value. Now this forwarder noggbecomes the parent pointer
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of p; for clusterC;. After nodes have decided on which of the node clusters togothe end of the cluster
engagement step, each node sends a confirmation messagedoesponding cluster head using the parent
pointer stored for that cluster. If a noggis in clusterC; or has forwarded a confirmation message destined
to the cluster head nodg, then it keeps its parent pointer associated Withand at the same time it also
records the nodes from which it has received a confirmatiossage destined to the cluster head nedas

its child pointers in the cluster connection tree rooteg;afAny parent pointers that are not used to forward a
confirmation message can be dropped to minimize the statdd@paintaining cluster-connection trees. All
nodes that keep their parent pointers for clusteare part of the cluster-connection tree(df It is important

to note that a node that participates in the cluster-cororetiee of a node clust&r; maynot necessarily be

a member of’;, i.e. it is possible thak; # p,. This property ensures that with the cluster-connectiee tf

a node cluste€’;, its cluster heag, can reach all nodes iff; and vice versa.

3.3 Effect ofa on Clustering

We use an example scenario to illustrate the effeet oh clustering. Figure 3 (a) shows an arrangement of
100 sensor nodes and the connectivity graph of the senseoriefiormed by these nodes. In the background,
it also shows a colored image that represents the enviroaeriues that are sensed by the nodes. The color
on the image changes from tones of red (light gray in grag$dal tones of blue (dark gray in grayscale)
moving diagonally from the upper right corner to the lowdt torner, representing a decrease in the sensed
values. Figures 3 (b), (c), and (d) show three differentteliisgs of the network for different values af(0,

10, 20 respectively), using. = 0.1 and7T'L = 5. Each cluster is shown with a different color. Nodes within
the same cluster are labeled with a unique cluster identifiee cluster head nodes are marked with a circle.
It is clearly observed that, with increased the clusters tend to align diagonally, resulting in a dusg
where nodes sampling similar values are assigned to the dasters. However, this effect is limited by the
value of T'T'L, since a node cannot belong to a cluster whose cluster headresthat/"I"L hops away. We
provide a quantitative study on the effectcobn the quality of the clustering in Section 7.

From both Algorithm 1 and Figure 3(c) and (d), one can obséma combining hop distance factor
and sensor reading similarity captured by data distand®rfasome of the resulting clusters may appear
disconnected. As discussed in the previous section, byicgeacluster-connection tree for each node cluster,
we guarantee that a cluster head node can reach all nodesdluster. When the number of connected
subcomponents within a cluster is large, the overhead farster head to communicate with nodes within its
cluster will increase. However, the number of connecteasniponents of a sensing-driven cluster can not
be large in practice due to three major reasons: First, sivere is a fixed TTL value used in cluster creation,

the nodes that belong to the same cluster can not be more tsp@cdied number of hops away, thus it is
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not possible that two nodes from different parts of the nektvare put within the same cluster just because
the values they are sensing are very similar. Second, thsioleto join a cluster is not only data dependent.
Instead, it is a combination (adjusted dyof hop distance factor and data distance factor that defimesle’s
affinity to join a cluster. As a result, unless TTL and/alues are both set to impractically large values, there
won’'t be many connected components belonging to the sansgecluFinally, since the sensor readings are
expected to be spatially correlated, it is unlikely to hawetguous regions with highly heterogeneous sensor

readings (which would have resulted in clusters with manyeated subcomponents).

3.4 Setting of Clustering Periodr..

The setting of clustering period. involves two con-
siderations. First, the cluster head nodes have ado
tional responsibilities when compared to other nodes

due to sampler selection and model derivation proces

sequently, the value of, parameter should be small

enough to enable selection of alternate nodes as clu

(© (d)

ter heads. However, its value is expected to be much
larger than the desired sampling and forced samplindigure 3: lllustration of sensing-driven clustering
periods, 7, and ;. Second, time dependent changes in sensor readings magr iyiedcurrent clustering
obsolete with respect to data distance factor. For instanemvironmental monitoring applications, different
times of a day may result in different node clusters. Thusstering period should be adjusted accordingly to
enable continued refinement of the clustering structuresponse to different sensing patterns resulting from

environmental changes.

4 Correlation-based Sampler Selection and Model Derivation

The goal of sampler selection and model derivation is thoksf First, it needs to further group nodes within
each node cluster into a set of subclusters such that thersexalings of the nodes within each subcluster
are highly correlated (thus prediction is more effectivEecond, it needs to derive and report (to sampler
nodes) a sampling schedule that defines the sampler nodesthid, it needs to derive and report (to the

base node) parameters of the probabilistic models asedoigth each subcluster so that prediction can be
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performed. Correlation-based sampler selection and madetadion is performed by each cluster head node
through a three-step process, nanslipclusteringsampler selectiorandmodel and schedule reportingve

now describe these three steps in detalil.

Subclustering stepis used to create subclusters that form a basis for selesaimgpler nodes of the network,
deriving correlations among nodes within subclustersstranting probabilistic models accordingly, and per-
forming value predication of non-sampler nodes. Higheradations among the nodes within each subcluster
typically lead to higher quality sampler selection and leighccuracy of model-based value prediction of
non-sampler nodes. Thus, given a cluster, the first issusEved in developing an effective subclustering
algorithm is to obtain samples from nodes within this clusEhe second issue is to compute correlations

between every pair of nodes within the cluster and define r@ledion distance metric that can be used as the

distance function for subclustering. [Notation | Meaning |

: . . D; Forced samples collected at ngglec H, whereD;[p;] is
Forced Samp“ngReca” from Section 2.2, we in- the series ofpconsecutive force%ﬂsamples from rpt[;c?iza] Cy
. . C; Correlation matrix at nodg; € H, whereC;[p., pv] is
troduce the concept of forced sampling period. By the correlation between the seri(p..] and D; [pu]
. . . . D; Subclustering distance matrix at ngdec H, where
periodically collecting sample readings from all D;[pu, po] is the subclustering distance betwgenandp.
B Subcluster granularity
nodes in the network (forced sampling), the cluster o Sampling fraction
Tu Schedule update period
head nodes can refine the subclustering structurgaple 3: Notations for correlation-based sampler selec-
by invoking a new run of the subclustering pro- tion and model derivation notations

cess, which utilizes the forced samples collected duriegntlost recent clustering period to generate a new
set of subclusters, each associated with a newly derive@latipn-based probabilistic model. We denote
the forced samples collected at cluster head nod®y D;. D;[p,| denotes the series of consecutive forced
samples from nodg;, wherep; is in the node cluster with; as the head (i.ep; € C)).

Correlation matrix and correlation distance metri®uring subclustering, a cluster head nggdaakes the
following concrete actions. It first creates a correlatioatmx C; such that for any two nodes in the clus-

ter C;, sayp, andp,, C;[p.,p.] is equal to the correlation between the set&§,] and D;[p,], formally
(Dilpu] —E[Di[pu]]) *(Di[pv] —E[Dilpy

L/ Var(Dj[pu])#+/Var(D;[p.])
a textbook definition [10] of correlation between two seregressed using the notations introduced within

”)T, whereL is the length of the series afdepresents matrix transpose. This is

the context of this work. Correlation values are always inrdrge[—1, 1], -1 and 1 representing strongest
negative and positive correlation. A value of 0 implies tveoiss are not correlated. As a result, the absolute
correlation can be used as a metric to define how good two rex@esn terms of predicting one’s sample
from another’s. For each node cluster, we first compute metation matrix using forced samples. Then we
calculate the correlation distance metric between noasgted byD;. D;[p,, p,| is defined ag — |C; [p., p,||-

Once we get the distance metric, we use agglomerative dlugtf21] to subcluster the nodes within clus-
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ter C; into K; number of subclusters, whe€é(j) denotes the set of nodes in thign subcluster. We use a
system-wide parameter calledbcluster granularitydenoted by3, to define average subcluster size. Thus,
K; is calculated by |C;|/3]. We'll discuss the effects gf on performance later in this section. The pseudo
code for the subclustering step is given within thesB8 LUSTERANDDERIVE procedure in Alg. 2.

Sampler selection stefs performed to create or g 2: Corr.-based Sampler Select. and Model Derivation

update a data collection schedigfor each clus- | DERVVESCHEDULE: € H)

(1) Periodically, every-, seconds

. 2 D;: data collected since last schedule derivatibi[p;](k) is the
ter Ci, in Order tO Se|eCt the SUbSGt Of nOdeS that @ kth forced sample from noq% collected at node; [p]]( )
3) (S;,Ci, Gi) «— SUBCLUSTERANDDERIVE(p;, D;)
are best qualified to serve as samplers throughout ) for j =1 to |Gj]
(5) Xi g X jlpu] = E[D;[pu]l; pu € Gi(j)
the next schedule update period After a clus- ®) Yij t Yijlpu,po] = Cilpu,po] * /Var(Di[pu])
Var(Di[ 1;])§pu,pv € Gz(ﬂ)
ter head nodg; forms the subclusters, it initializes | () SENDMSG(base, X; 5, Vi, )
(8) foreach p; € C;
the data collection schedute to zero for all nodes 82)) [S’Ei,gpg,}vl;&j’ Silps]

within its cluster, i.e.S;[p;] = 0,Vp,; € C;. Then

SUBCLUSTERANDDERIVE(p; € H)

N s . (1)  Vpu,pv € Ci, Ci[pu, pv] < Correlation betweed; [p.], D; [pv]
for each subclustef;(j), it determines the num- @) Ypu.pw € Cy. Dilpuspol — 1 — [Cilpus po]]
(3) K; < [|C;|/B] I* number of subclusters */
ber of sampler nodes to be selected from that sub- (4)  Cluster the nodes i@, usingD; as distance metric, inté;
subclusters

cluster based on the size of the subclustef;) (5)  Gi(y) : nodes in theith subcluster withirC;, j € {1,..., K}
(6) t <« Currenttime

. . . : (7)  Vpu € Ci, Silpu] — 0
and the sampling fraction parametedefined in ® o eh St K

: 9 o % |Gi(j
Section 2. At least one node should be selected asglz)) aclo pl e(é)i‘gj), in decreasing order af, (1
(11) Silpu] < 1
a sampler node from each subcluster. Thus we can(12) if @ =|{pu| Silpu] = 1}| then break

(13) return (S;,Ci, Gs)

calculate the number of sampler nodes for a given

subclustey;(j) by [o = |G;(7)|]. Based on the above formula, we can calculate the actuaidrnect nodes
selected as the sampler nodes of the network at any giveanigestof time. This actual fraction may de-
viate from the system-supplied sampling fraction parameteWe refer to the actual fraction of sampler
nodes as theffectives to distinguish it from the system-supplied The effectives can be estimated as
fex[1/(fex B)] = [B*o]. The pseudo code for the derivation step is given within the@& USTERAND-

DERIVE procedure in Alg. 2.

Model and schedule reporting steps performed by a cluster head node in two steps, after gengte
data collection schedule for each node cluster. First, liiner head informs the nodes about their status as
samplers or non-samplers. Then the cluster head sendsrtimeasy information to the base node, which will
be used to derive the parameters of probabilistic modeld uspredicting the values of non-sampler nodes.
To implement the first step, a cluster head npgdaotifies each node, within its cluster aboup;’s new
status with regard to being a sampler node or not by senslipg| to p;. To realize the second step, for each

subclustel&;(j), p; calculates a data mean vector for nodes within the subcjulgiroted byY; ;, as follows:
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X; ilpu] = E[Di[pu]], pu € Gi(j). pi also calculates a data covariance matrix for nodes withérstibcluster,

denoted byy; ; and defined as followsY; ;[p., po] = Cilpu, po] * /Var(D;[p.]) * \/Var(D;[p,]), pu, po €

Gi(j). For each subcluster;(j), p; sendsd; ;, );; and the identifiers of the nodes within the subcluster,
to the base node. This information will later be used forweg the parameters of a Multi-Variate Normal
(MVN) model for each subcluster (see Section 5). The pseode ¢s given within the BRIVESCHEDULE

procedure of Alg. 2.

4.1 Effects ofs on Performance

The setting of the system supplied parameétésubcluster granularity) may have effects on the overafope
mance of a selective sampling based data collection systgpecially in terms of sampler selection quality,
value predication quality, messaging cost, and energyuwopson. Intuitively, large values of may de-
crease the prediction quality, because it will result igéasubclusters with potentially low overall correlation
between its members. On the other hand, too small values Isaylacrease the prediction quality, since the
opportunity to exploit the spatial correlations fully wilé missed with very small. Regarding the messaging
cost of sending sampling summarization and model deriwatitmrmation to the base node, one extreme case
is where each cluster has one subcluster (very lajgén this case, the covariance matrix may become very
large and sending it to the base station may increase theagiagscost and have a negative effect on the
energy-efficiency. In contrast, smalléwalues will result in a lower messaging cost, since covagaralues

of node pairs belonging to different subclusters will notreported. Although the the second dimension fa-
vors a small3 value, decreasing beta will increase the deviation of éffee from the system specified,
introducing another dimension. For instance, having 2 will result in a minimum effectiver of around
0.5, even ifo is specified much smaller. This is because each subclustgrirave at least one sampler node.
Consequently, the energy saving expected whemnset to a certain value is dependent on the setting. of
In summary, smallp values can make it impossible to practice high energy séewgprediction quality

scenarios. We investigate these issues quantitativelgatics 7.

4.2 Setting of Schedule Update Period,

The schedule update periaglis a system supplied parameter and it defines the time intienva-computing

the subclusters of a node cluster in the network. Severtdrfamay affect the setting of,. First, the nodes
that are samplers consume more energy compared to nonesamghce they perform sensing and report
their sensed values. Consequently, the value,gfarameter should be small enough to enable selection of
alternate nodes as samplers through the use of energy-aeledule derivation process, in order to balance

power levels of the nodes. Moreover, such alternate no@detsahs help in evenly distributing the error of
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prediction among all the nodes. As a resujt,s provisioned to be smaller comparedno so that we can
provide fine-grained sampler re-selection without muchrload. Second, the correlations among sensor
readings of different nodes may change with time and detgahe prediction quality. As a result, the

schedule update period should be adjusted accordinglgdmasdynamics of the specific application at hand.

5 Selective Data Collection and Model-based Prediction

Our selective sampling approach achieves energ

[yNotation | Meaning |

.. . . . X, Dat tor for nodes @ (5), whereX; ; [pu] |
efficiency of data collection services by collecting| 7 | faa e e e e om roc. 1 (J])'S
. Vi Data covariance matrix for nodes@; (5), whereY; ;[pu, po]

sample readings from only a subset of nodes (sam- is the covariance between the setiegp, | andD; [p,]

U;”j Set of nodes belonging 6 (j) that are samplers
pler nodes) that are carefully selected and dynan- U,, | Setofnodes belonging 0, ;) that are not samplers
. . Wit Set of last reported sensor readings of nodds;ih

k2w K2y

ically changing (after every schedule update pe W, | Setof predicted sensor readings of nodes Ty
riod). The values of non-sampler nodes are prep7¢__| Desired sampling period

Ty Forced sampling period

dicted using probabilistic models whose parame-Table 4: Notations for Selective data collection and
ters are derived from the recent samples of nodes model-based prediction parameters
that are spatially and temporally correlated. The energiygas a result of smaller number of messages used
to extract and collect data from the network, which is a dibemefit of smaller number of sensing operations
performed. Although all nodes have to sample after evergeiisampling period (recall that these samples
are used for predicting the parameters of MVN models for thekusters), these forced samples do not prop-
agate up to the base node, and are collected locally at clustel nodes. Instead, only a summary of the
model parameters are submitted to the base node after eaelation-based model derivation step.

In effect, one sample value from every node is calculateti@biase node (or at the sensor stream pro-
cessing center). However, a sample value comes from eitdgeet sample or gredictedsample. Direct
samples are the ones that originate from actual sensomg=adif a nodep; is a sampler, i.e.S;[p;| = 1
whereh; = p,, it periodically reports its sensor reading to the base nileg the data collection tree, i.e.
after every desired sampling periag except when forced sampling and desired sampling periogide
(recall thatr; is a multiple ofr,). In the latter case, the sensor reading is sent to the cluséel nodé; using
the cluster-connection tree, and is forwarded to base nodethere. If a node; is a non-sampler node, i.e.
S;lp:] = 0 whereh, = p;, then it only samples after every forced sampling period,itmsensor readings are
sent to the cluster head nodlgusing the cluster-connection tree and ao¢forwarded to the base node. A

short pseudo code describing this is given by tBE&SDATA procedure in Alg. 3.
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5.1 Calculating predicted sample values

The problem of predicting the sample values of non-sampdea can be described as follows. Given a set
of sample values belonging to same sampling step from samgdkes within a subclusté;(j), how can we
predict the set of sample values belonging to non-samplgeswithinG; (), given the mean vectot; ; and
covariance matriy); ; for the subcluster. We denote the set of sampler nodes fraaiusterG;(j) by Ujj
defined agp.| p. € Gi(j), Si[p.] = 1}. Similarly, we denote the set of non-sampler nodeé/py defined
as{p.| pu € Gi(j), Silp.] = 0}. LetW;’; be the set of sample values from the same sampling stepyeecei
from the sampler node[sfjj. Using a MVN model to capture the spatial and temporal cati@hs within a

subcluster, we utilize the following theorem that can benfibin texts on statistical inference [10], to predict

the values of the non-sampler nodes: Alg. 3:  Selective Data Collection and Model-based Prediction
. . . SENSDATA(p;)
Theorem 1: Let X be a MVN distributed ran- | (1) " s 15,] = 0, whereh, = p,
i . . i 2) Periodically, every-; seconds
dom variable with meap and covariance matrix | (3) d; — SENSH)
(4) SENDMSG(h;, d;)
.. 1251 . (5) else
Y. Letyu be partitioned as and X parti- ®) Periodically, every; seconds
M2 (7) d; — SENSH)
(8) t « Current time
. 21 2o . . . @) " mOd(t’Tf):.O .
tioned as . According to this,X is o g OV sl i)
E21 E22 (12) SENDMSsG(base, d;)

also partitioned asX; and X,. Then the distribu-

PREDICTDATA(, 5, UT, U—, WT)
tion of Xl givenX2 = Ais also MVN with mean Ut = {puf ..... puz} : set of nodes fromjth subcluster irC; whose data
values are received
'u* =+ 212 % 22—21 % (A _ MQ) and covariance U- = {pu;,...,pu;} : set of nodes fromjth subcluster irC; whose data
values are missing
matrix >* = 211 —_ 212 * 22—21 * 221. W+ :WT(a),a € {1,...,k}is the value reported by nod%j{
(1) A ;: mean vector foyth subcluster irC;
In accordance with the theorem, we construct gg fjéz}’j: Covffg”lce matrix fogth subcluster irC;
a=
111 and i, such that they contain the mean values Eg e 1toll’?[£ff_(11,b) b
respec- (6) for b =110k, X12(a,b) «— Vi ; [pu; 7pubb+]
(7) fora=1tok
tively. A similar procedure is performed to con- | (8) p2(a) < Xijp,+]
9) for b =1to k, X22(a,b) < Vi ; [pui ,pu;]
structXq, 32, Xa1, and>Xy, from Y ;. ¥4, con- (10) 1" = i + Sua + S5« (W — )

. . . . 11) S* =31 — B2 x 85, « 27
tains a subset aoft; ; which describes the covari- 512; Usw(;{2*)?0;@2(,%;\,3@283 of nodes i~

in X; ; that belong to nodes iti;; andU;’;,

ance among the nodes (u’;fj, andX,; among the

nodes mUjj Y1 contains a subset of; ; which describes the covariance between the nodéfgjirandUifj,

andX,; is its transpose. Then the theorem can be directly applipdetdict the values of non-sampler nodes
U-

Z7j’

estimate, oV (u*, 3*) can be used to predict the values with desired confidencevaise We use the former

denoted byV, . W, can be settg” = p; + 3o * Yoo * (W;j — o), which is the maximum likelihood

in the rest of the paper. The details of prediction step ismivy the REDICTDATA procedure in Alg. 3.
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5.2 Prediction Models

The detailed algorithm governing the prediction step carsiter alternative inference methods and/or statis-
tical models with their associated parameter specificatiomaddition to the prediction method described in
this section and the Multi-Variate Normal model used witlad@ean vector and data covariance matrix as
its parameters. Our data collection framework is flexibleugh to accommodate such alternative prediction
methodologies. For instance, we can keep the MVN model aadg#hthe inference method to Bayesian
inference. This can provide significant improvement in préah quality if prior distributions of the samples
are available or can be constructed from historical datas fiéxibility allows us to understand how differ-
ent statistical inference methods may impact the qualitthefmodel-based prediction. We can go one step
further and change the statistical model used, as long andkel parameters can be easily derived locally at

the cluster heads and are reasonably compact in size.

5.3 Setting of Forced and Desired Sampling Periods; and 7,

The setting of forced sampling perieg involves three considerations. First, increased numbéorckd
samples (thus smallef;) may be desirable, since it can improve the ability to captarrelations in sensor
readings better. Second, large number of forced samplesazese the memory constraint on sensor nodes
to be a limiting factor, since the cluster head nodes are tsedllect forced samples. Pertaining to this,
a lower bound orr; can be computed based on the number of nodes in a cluster erstltedule update
periodr,. For instance, if we want the forced samples to occupy arageememory size af/ units where
each sensor reading occupyunits, then we should se} to a value larger tha%*—ﬁ. Third, less frequent
forced sampling results in smaller set of forced samples;imis more favorable in terms of messaging cost
and overall energy consumption. In summary, the value; ahould be set taking into account the memory
constraint and the desired trade-off between predictialityuand network lifetime. The setting of desired

sampling period; defines the temporal resolution of the collected data andpBaation specific.

6 Analytical Analysis of Overall Messaging Cost

In this section, we provide an analytical study on the masgagpst of data collection based on our selective
sampling architecture. For the purpose of comparison, wednce two variations of selective samplirg
central approach andbcal approach. The central approach presents one extreme gbelsem, in which
both the model prediction and the value prediction of namgang nodes are carried out at the base node or
processing center outside the network. This means thatrakkdl samples are forwarded to the base node to

compute the correlations in a centralized location. In tiwal approach, value prediction is performed at the
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cluster heads instead of the base nodes or the processitay oatside the network, and predicted values are
reported to the base node. Although the local approachtseisuh large messaging cost and works against
the idea of selective sampling, it can be used to serve aseadaage for comparison. The selective sampling
solution falls in between these two extremes. We thus calidthybrid approach due to the fact that the
spatial and temporal correlations are captured and surnethlocally within the network, whereas the value
prediction is performed centrally at the base node or oet$id network.

In the rest of this section, we calculate the total number e$sages sent and received (spent) within the
network during a time interval df' seconds, denoted by//*, M¢, and M/, respectively for hybrid, central,
and local approaches. We denote the total number of cloggeand subclusterings performed during the
time interval of lengthl” as N,,. and N,,;. We haveN,,. = |T/7.] and N, = |T/7,]. Similarly, the total
number of forced samplings and desired samplings are d&bgt®& ;, and N,,. We haveN;, = |T'/7¢] and
Ngs = |T/74].

The total number of messages can be broken into three comigomeamely messages spent duripg
cluster constructioni) schedule and model derivation, aiiid selective data collection. The messages spent
during cluster construction, denoted b, is same for all approaches and can be defined.as= N,,.x M,
whereM,, denotes the number of messages spent during one clustEamdsnceV,,. is expected to be much
smaller thanV,,,;, Ny, andNy,, we omit the derivation of\/., in the interest of spaéeNow we describe the
derivation of the remaining two componemnitsandiii), for three different scenarios. We use the notations
I? and I¢ to denote the distance of nogg(in terms of hops) to the base node and its cluster head hgde
respectively. Each message is assumed to have the size sitarEssage, where a basic message includes a
node identifier and a sensor reading.

The derivation for thédybrid Approach is as follows:

N K;
hoo_ S S Z ]y 3G
Mts = Nps* Ii + Nps * (Ii * <‘Gl(.])‘ * 4

i=1 pi€H j=1
Mp, = Npgx D > (L +Silpgl # ID) + (Nas = Nps)+ Y > (Silpy] + 1)
pi€H p;jeC; p;€H p;eC;
Ml = M+ M+ My, (1)

Here M* denotes the schedule and model derivation component fdryiiid approach. It consists of two
subcomponents, messages spent for notifying each nodeselftedules are derived, and the messages spent
for reporting the covariance matrix, mean vector, and the#eridentifiers to the base node for each subclus-
ter. Note that the covariance matrix is symmetric and thusatidhe entries are reporteds/, denotes the

data collection component for the hybrid approach. In surgnitacounts the messages from sampler nodes

IHowever)/,. is accounted for in the experimental results of Section 7.
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and non-sampler nodes. Messages from non-sampler nodEswaeded up to the cluster heads after every
forced sampling period. On the other hand, messages frompleanodes are forwarded up to the base node
after every desired sampling period (except whgand7; coincide). Finally, the total number of messages

for the hybrid approach, denoted by, is calculated in Equation 1 as the sum of three components.

The derivation for th&entral Approach is as follows:

N
Mf, = Npsx» I
=1

N Mf = Mg+ Mg+ M,  (2)
Mf, = Npgx Y I'+ (Ngs— Np)x Y > (Silpi] = I9)

i=1 pi€H p]'ECi
Here M{, denotes the schedule and model derivation component farethigal approach. It consists of the
messages used for notifying each node after schedulesmredieAs opposed to hybrid scenario, it does
include the reporting of covariance matrices or mean vecfdy,, denotes the data collection component for
the central approach. Different from the hybrid scenatldpeced samples are forwarded up to the base node.
Finally, the total number of messages for the central agbradenoted by/¢, is calculated in Equation 2 as

the sum of three components.

The derivation for thé.ocal Approach is as follows:

N
Ml, = Npox Y If
=1
M; = My+M+M, (3

Mp,+ Nagx > Y (I = (1= Si[pj]))
pi.€H p;eC;
Here M}, denotes the schedule and model derivation component fdothéapproach and is identical to the

!
M;,,

same component of the central approaktH,, denotes the data collection component for the local approac
It can be considered as the data collection component ofythedhapproach, plus the number of messages
spent for forwarding the predicted samples from the cluséard nodes to the base node. Finally, the total

number of messages for the local approach, denoted bhys calculated in Equation 3.

7 Performance Study

We present analytical and simulation based experimensalteeto study the effectiveness of our selective
sampling approach. We divided the experiments into twa Jéts first set of experiments compares different
variations of selective sampling and studies the impactabus parameters on performance, with regard to
messaging cost. These results are based on analyticahtigns. The second set of experiments study the
effect of various system parameters on the quality of ctdlbclata as well as the quality/lifetime trade-off.

These experiments are based on simulations using reathwaté.
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7.1 Messaging Cost x10°
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parameters used in this set of experiments are as followestoFh
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tal time is set tdl’ = 1000000 units. The total number of nodes

# of messages

w
T

in the network is set to 600 unless specified otherwfsas se-

lected to result in an average cluster size3@inodes. Desired "

and forced sampling periods are setjo= 1 andr; = 10 time

units. Clustering period is set t¢ = 5000 time units and the zz I

schedule update period is settp= 1000 time units. Sampling 2f e

fractiono is set t00.25 and g3 is set tol0. mj: A
Figure 4(a) plots the total number of messages as a functiozﬁw oo

of the sampling fractiom. We make several observations from i 121& |
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. : Figure 4: Analysis of messaging cost
creasing values of imply that larger number of nodes are be- g y ging

coming samplers. Second, the overhead of schedule and cherdetion step can be observed by comparing
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non-selective and local approaches. Note that the gap batte two is very small and implies that this
step incurs very small messaging overhead. Third, the ingonent provided by the hybrid approach can be
observed by comparing hybrid and central approaches. Warsieprovement ranging from 50% to 12% to
around 0%, whiler increases front.1 to 0.5 to 0.9. This shows that the hybrid approach is superior to the
central approach and is effective in terms of messagingespstcially whem is small.

Figure 4 (b) plots the total number of messages as a funcfidineodesired sampling period to forced
sampling period ratior(;/7¢). In this experiment, is fixed at 1 and; is altered. We make two observations.
First, there is an increasing overhead in the total numberesfsages with increasing/ 7, as it is observed
from the gap between local and non-selective approaches. i mainly due to the increasing number of
forced samples, which results in higher number of values §ampler nodes to first visit the cluster head node
and then reach the base node, causing an overhead compé#veddading values directly to the base node.
Second, we observe that the hybrid approach prevails oher alternatives and provides an improvement
over central approach, ranging from 10% to 42% whil¢r; ranges from0.1 to 0.5. This is because the
forced samples are only propagated up to the cluster heaswiitial the hybrid approach.

Figure 4 (c) plots the total number of messages as a functitremumber of nodes. The main observation
from the figure is that, central and hybrid approaches sagtebwith increasing number of nodes, where the
hybrid approach keeps its relative advantage over cenpgaioach (around %25 in this case) for different
network sizes. Figure 4 (d) plots the total number of messagea function of the average cluster size (i.e.
1/f.). (s also increased as the average cluster size is increaséuthtghe average number of subclusters
per cluster is kept constant (around 3). From the gap beteeahand non-selective approaches, we can see
a clear overhead that increases with cluster size. On ther bdnd, this increase does not cause an overall
increase in the messaging cost of the hybrid approach ietibverage cluster size increases well over its
default value oB0. It is observed from the figure that the best value for theayecluster size i50 for this
scenario, where smaller and larger values increase theagiagscost. It is also interesting to note that in the
extreme case, where there is a single cluster in the netwerkral and hybrid approaches should converge.

This can be observed from the right end of thaxis in the figure.

7.2 Data Collection Quality

We study the data collection quality of our selective samgplpproach through a set of simulation based
experiments using real data. In particular, we study thecethf « on the quality of clustering, the effect of
«, 3 and subclustering methodology on the prediction errortrthee-off between network lifetime (energy
saving) and prediction error, and the load balance in seéeesampling schedule derivation. For the purpose

of experiments presented in this section, 1000 sensor ravégdaced in a square grid with a side length of
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Figure 5: Clustering quality with varying Table 5: Error for different values

1 unit and the connectivity graph of the sensor network isstroigted assuming that two nodes that are at
most 0.075 units away from each other are neighbors. Sstohg@ther relevant system parameters are as
follows. TT L is set to5. The sampling fractiom is set t00.5. 3 is set to5 and f, is set t00.02 resulting in an
average cluster size 6f). The data set used for the simulations is derived from the GB@RDegree Daily
Precipitation Data Set (1DD Data Set) [19]. It providesyajlobal 1x1-degree gridded fields of precipitation
measurements for the 3-year period starting from Janua®y.1%his data is mapped to our unit square and
a sensor reading of a node at time stépderived as the average of the five readings fromitinelay of the
1DD data set whose grid locations are closest to the locatidhe sensor node (since the dataset has high

spatial resolution).

Effect of a on the Quality of Clustering: Figure 5 plots the average coefficient of variance (CoV) oseen
readings within same clusters (with a solid line using tlieyiexis), for differenta values. For each cluster-
ing, we calculate the mean, maximum and minimum of the CoVesdbf the clusters, where CoV of a cluster
is calculated over the mean data values of sensor nodeshidicluster. Averages from several clusterings
are plotted as an error bar graph in Figure 5, where the twe efithe error bars correspond to average min-
imum and average maximum CoV values. Smaller CoV values iroseaadings imply a better clustering,
since our aim is to gather together sensor nodes whose gsadie similar. We observe that increasing
from O to 4 decreases the CoV around %50, where further inglieasdo not provide improvement for this
experimental setup. To show the interplay between the sbaffe clusters and sensing-driven clustering,
Figure 5 also plots the CoV in the sizes of clusters (with a dddime using the right y-axis). With hop based
clustering (i.e.qx = 0), the cluster sizes are expected to be more evenly distidhwbhen compared to sensing-
driven clustering. Consequently, the CoV in the sizes of elgsincreases with increasiiag implying that
the shape of clusters are being influenced by the similafisensor readings. These results are in line with

our visual inspection based results shown in Figure 3 iniGeat 3.
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Figure 6: Effect of3 on prediction error Figure 7: MAD with different subclusterings

Effect of « on the Prediction Error: In order to observe the impact of data-centric clusteringm@diction
quality, we study the effect of increasing data importamaédra on the prediction error. The second column
of Table 5 lists the mean absolute deviation (MAD) of the emopredicted sample values for differemt
values listed in the first column. The value of MAD relativetibe mean of the data valuez (240) is also
given within parenthesis in the first column. Although we erve a small improvement around 1% in the
relative MAD whena is increased frond to 4, the improvement is much more prominent when we examine
the higher end of the 90% confidence interval of absoluteadiewi, given in the third column of Table 5. The

improvement is around.87, which corresponds to an improvement of 25% relative to #ta chean.

Effect of 5 on the Prediction Error: As mentioned in Section 4.1, decreasing subcluster gratyutaram-
eter 3 is expected to increase effective Higher effectives implies larger number of sampler nodes and
thus improves the error in prediction. Figure 6 illustratas inference concretely, where the mean absolute
derivation (MAD) of the error in predicted sample values affdctives are plotted as a function gf. MAD

is plotted with a dashed line and is read from the deéixis, whereas effective is plotted with a dotted line
and is read from the right-axis. We see that decreasingrom 10 to 2 decreases MAD around 50% (from
0.44 to 0.22). However, this is mainly due to the fact thatahierage number of sampler nodes is increased
by 26% (0.54 to 0.68). To understand the impact dfetter and to decouple it from the number of sampler
nodes, we fix effective to 0.5. Figure 6 plots MAD as a function offor fixed effectives, using a dash-dot
line. It is observed that both small and largevalues result in higher MAD whereas moderate valuessfor
achieve smaller MAD. This is very intuitive, since smallesizmodels (smalb) are unable to fully exploit the
available correlations between node samples, whereasdagd models (larg€) become ineffective due to

decreased amount of correlation among the samples of ladydigerse node groups.

Effect of Subclustering on the Prediction Error: This experiment intends to show how different subclus-

tering methods can affect the prediction error. We condidexe different methods: correlation-based sub-
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clustering (as described in Section 4), distance-basedusibring in which location closeness is used as the
metric for deciding on subclusters, and randomized sutmring which uses purely random assignment to
form subclusters. Figure 7 plots MAD as a functionoofor these three different methods of subclustering.
The results listed in Figure 7 are averages of large numbsusloflusterings. We observe that randomized and
distance-based subclustering perform up to 15% and 10%ewespectively, when compared correlation-

based subclustering, in terms of mean absolute deviatidheoérror in value predication. The differences

between these three methods in terms of MAD is largest whisrsmallest and disappearsaspproaches

1. This is quite intuitive, since smaller values imply that the prediction is performed with smallamter

of sampler node values.

Prediction Error/Lifetime Trade-off: We study the trade-off between prediction error and netiitettme

by simulating selective sampling with dynamicadjustment for different reduction rates. We assume that
the main source of energy consumption in the network is e&®imessaging and sensing. We set up a sce-
nario such that, without selective sampling the averagéitife of the network i§” = 100 units. This means
that, the network enables us to collect data with 100% acguia 100 time units and then dies out. For
comparison, we use selective sampling and experiment witardically decreasing as time progresses, in
order to gradually decrease the average energy consumptide introducing an increasing amount of error
in the collected data. Figure 8 plots the mean absolute teni@VIAD) as a function of time for different
o reduction rates. In the figurg/z,z € {1,2,4,6,8,10} denotes different reduction rates, wherés de-
creased by).1 everyT'/x time units.c is not dropped below.1. A negative MAD value in the figure implies
that the network has exceeded its lifetime. Although it igiobs that the longest lifetime is achieved with
the highest reduction rate (easily read from the figure),trobshe time it is more meaningful to think of
lifetime as bounded by the prediction error. In other womds,define the-bounded network lifetimas the

longest period during which the MAD is always below a userrasfithreshola. Different thresholds are
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plotted as horizontal dashed lines in the figure, crossiag/thxis. In order to find the reduction rate with
the highest-bounded network lifetime, we have to find the error line thas the largest-axis coordinate
(lifetime) such that its correspondingaxis coordinate (MAD) is below and above zero. Following this, the
approach with the highestbounded lifetime is indicated over eaeline together with the improvement in
lifetime. We observe that higher reduction rates do not géwvasult in a longet-bounded network lifetime.
For instance7’/4 provides the best improvement (around 16%) whénaround).4, whereadl’/8 provides

the best improvement (around 40%) wheis around).S.

Load Balance in Sampler Selection:Although saving battery life (energy) and increasing agerifetime

of the network through the use of selective sampling is de; it is also important to make sure that the task
of being a sampler node is equally distributed among the s\otieillustrate the effectiveness of our sampler
selection mechanism in achieving the goal of load balaneegampare the variation in the amount of time
nodes have served as a sampler between our sampler setatieme and a scenario where the sampler nodes
are selected randomly. The improvement in the variance {he percentage of decrease in variance when
using our approach compared to randomized approach) ieg@las a function off for differents values in

Figure 9. For all settings, we observe an improvement ab0%& rovided by our sampler selection scheme.

8 Discussions

Setting of Selective Sampling Parameters- There are a number of system parameters involved in our
selective sampling approach to data collection in senstwarks. Most notable arex, 74, 7, 7,, 74, and

(. We have described various trade-offs involved in setthegé parameters. We now give a general and
somewhat intuitive guideline for a base configuration osthparameters. Among these parameters, the

one that is most straightforward to sej.is the desired sampling period and defines the temporalutsol

of the collected data. A default value dbfseconds can provide more than enough temporal resolution fo
most environmental monitoring applications. When domaieetfic data distance functions are used during
the clustering phase, a basic guide for settinig to set it tol. This results in giving equal importance to
data distance and hop distance factors. The clusteringgeriand schedule update perioglshould be set

in terms of the desired sampling period Other than the cases where the phenomenon of interesthly hig
dynamic, it is not necessary to perform clustering and saleedpdate frequently. However, re-clustering
and re-assigning sampling schedules help achieve be#téitdalancing due to alternated sampler nodes and
cluster heads. As a result, one balanced setting for theaepters is. = 1 hour andr,, = 15 minutes. From

our experimental results, we conclude that these valuestiesvery little overhead. The forced sampling

period7; defines the number of the sample readings used for calayditeprobabilistic model parameters.
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For the suggested setting of, havingr; = 0.1 * 7, = 1.5 minutes results in having0 samples out 0900
readings per schedule update period. This is statistigalbd enough for calculating correlations. Finally,

is the subcluster granularity parameter and based on oeriexgntal results, we suggest a reasonable setting
of # € [5,7]. Note that both small and large values for beta will degraeeprediction quality.

Messaging Cost and Energy Consumption— One of the most energy consuming operations in sensor
networks is the sending and receiving of messages, althinegtnergy cost of keeping the radio in the active
state also presents non-negligible cost [34]. It is impdrta note that our selective sampling approach to
data collection operates in a completely periodic manners@eduling the selective sampling based data
collection periodically, we ensure that during most of timeet there is no messaging activity in the system.
As a result, taking the number of messages exchanged duatagedllection as the major indicator of energy
consumption is a sound assumption. Considering the facttiea¢ exist generic protocols for exploiting
such timing semantics found in most of the data collectiopliegtions [13], we can easily incorporate an
exisiting energy efficient radio management protocol ireotd save energy by reducing or avoiding the need
for keeping the radio active during periods of inactivity.

Reliable Maintenance of Network Structures— There are three important network structures to be main-
tained in our selective sampling approach to data collactibhese are the cluster head nodes, the cluster
connection trees, and the data collection tree. Note tlaclister connection trees and the data collection
tree are solely used for communicating with the cluster b@ad the base node, respectively. This means that
these trees need not be maintained in case there is a routicigamism already existent in the network, such
as geographical routing (ex. GPSR [25]) or other well-kn@drhoc routing mechanisms such as AODV,
DSR, and DSDV (see [8]). The use of these trees in selectivplsagrs completely different than their use

in aggregation schemes in which in-network processing ifopaed at each non-leaf node of the tree. In
selective sampling, most of the in-network processingdgitace in the cluster head nodes. As a result, there
are two important issues that requires special attentiorisuring reliability. First, the failure of cluster
head nodes should be detected and in case of failures netgrdhead nodes should be elected. This can be
achieved by applying classical primary/backup technidue® distributed computing. Second, it is impor-
tant that the model parameters sent from the cluster heagbraod successfully transmitted to the base node.
This can be achieved by employing end-to-end acknowledgsaiemes between the cluster heads and the
base node. Note that the loss of a message which includesarseading destined to the base node is not
a serious problem, since the value of such a node can be feditthe base node using the probabilistic
models and the readings of other nodes, albeit with some. drr@omparison, the loss of a message in an

aggregation scheme results in neglecting the values diahbodes under a subtree.
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9 Related Work

Energy efficiency plays a fundamental role in localized asttibuted algorithms for wireless sensor networks
in the context of various different services and protocsigsh as broadcasting [24], message routing [40],
medium access control [44], time synchronization [16], &wdtion determination [37]. Data collection is
another important service provided by sensor networkgaally for environmental monitoring applications.
We review the literature related to sensor data collectiotihiee categories: sensor data collection systems,

node clustering in ad-hoc networks, and probabilisticrieriee in sensor networks.

Sensor Data Collection Systems + Section 1 we have discussed the distinction between dectse
sampling approach and other data collection approaches, &l those based on event detection [2], in-
network aggregation [31], and distributed compression. [B6summary, selective sampling is designed for
energy efficient periodic collection of raw sensor readifigsn the network for the purpose of performing
detailed data analysis that can not be done using in-netesa&uted queries or locally detected events. The
energy saving is a result of trading-off data accuracy, tisgcachieved by using a dynamically changing
subset of nodes as samplers. This is in some ways similaretdqusly proposed energy saving sensor
network topology formation algorithms, such as PEAS [43jeve only a subset of nodes are made active,
while preserving the network connectivity. Selective shngpuses a similar logic, but in a different context
and for a different purpose: only a subset of nodes are usedticely sample, while the quality of the
collected data is kept high.

There are a number of recent works [22, 15, 26] that has ceresidthe trade-off between energy con-
sumption and data collection quality. In [22] algorithmg @roposed to minimize the sensor node energy
consumption in the process of answering a set of user supglieries with specified error thresholds. The
gueries are answered using uncertainty intervals cachédteaterver. These cached intervals are updated
using an optimized schedule of server-initiated and seimstiaited updates. Our selective sampling approach
is not bound to queries and collects data periodically, abltbth on-line and archival applications can make
use of the collected data.

BBQ [15] is a model-driven data acquisition framework for semsetworks, that uses global optimizations
for generating energy efficient data collection schedutes.designed for multi-sensor systems, where nodes
have multiple sensors with different energy consumpticgcgations. The correlations between readings
from different sensors within a node are exploited to buiédistical models, which enables prediction of the
sensor readings that are energy-wise expensive to sammie,dther sensor readings that are energy-wise
cheap to sample, for instance temperature readings frotagefkeadings. Our selective sampling approach

uses statistical models in a similar manner, but insteadaxfeting intra-node correlations among readings
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of different-type sensors, we model inter-node corretetiamong the readings of same-type sensors from
different nodes. Moreover, unlike [15], our framework ig gaery bound.

Snapshot Queries [26] is perhaps the most relevant work ite. oin [26], each sensor node is either
represented by one of its neighbors or it is a representatide. Although this division is similar to sampler
and non-sampler nodes of our selective sampling apprdaete ts a fundamental difference. The neighboring
relationship imposed on representative nodes imply tlehtimber of representatives is highly dependent on
the connectivity graph of the network. For instance, as tmnectivity graph gets sparse, the number of
representative nodes may grow relative to the total netwiaek This restriction does not apply to the number
of sampler nodes in selective sampling, since the seleptiocess is supported by a clustering algorithm and
is not limited to one-hop neighborhoods. In [26], repreatwe nodes predict the values of their dependent
neighbors for the purpose of query evaluation. This can outndthe energy consumption dramatically for
aggregate queries, since a single value will be produced aggregate from the value of the representative
node and the predicted values of the dependent neighbovee\tdo this local prediction will not support such
savings when queries have holistic aggregates [31] or requilection of readings from all nodes. Thus,
selective sampling employs a hybrid approach where piedict performed outside the network. Moreover,
the model based prediction performed in our selective sag@pproach uses correlation based schedule
derivation to subcluster nodes into groups based on how gjoesk nodes are in predicting each other’s
value. Any node within the same cluster can be put into theessubcluster, independent of the neighboring
relationship between them. As opposed to this, snapshotegugoes not use a model and instead employs

binary linear regression for each representative-depgnumle pair.

Node Clustering in Ad-hoc Networks —With respect to ad-hoc networks, most of the previous work in
distributed node clustering have focused on constructmgrtwp clusters [28, 4, 5, 7, 11]. In a one-hop
cluster, each node is at most one-hop away from its clusted.hé few exceptions to this line of work
are [12], [1], and [38]. In [1], a heuristic-based distribdtalgorithm is introduced for building clusters in
which each node is at mogthops away from its cluster headis a system parameter and the algorithm tends
to create clusterings in which clusters have approximdkedysame size. In [12], several distributed clustering
algorithms are proposed for constructikghop clusters, where each node is at mie$tops away from the
cluster head. In [38], a connectivity-based distributedendustering algorithm is proposed, where nodes that
are “highly connected” in the connectivity graph are pubitite same cluster. All these algorithms, though
distributed, do not attempt to cluster the network basecdeasiag structure. Hence the clusters discovered are
not necessarily “good” clusters from a prediction standypdn contrast, our clustering algorithm is unique

in being sensing-driven and results in clusters that imprediction quality.
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Inference in Sensor Networks -Our selective sampling approach to energy efficient datacadn in sensor
networks uses probabilistic models, whose parameteroeaadly inferred at the cluster head nodes and are
later used at the base node to predict the values of non-sasgiisor nodes. Several recent works have also
proposed to use probabilistic inference techniques toleaknown variables within sensor networks [35,
20, 42, 9]. In [20], regression models are employed to fit agimeid combination of basis functions to the
sensor field, so that a small set of regression parametersecased to approximate the readings from the
sensor nodes. In [9], probabilistic models representiegtirelations between the sensor readings at various
locations are used to perform distributed calibration 42]] a distributed fusion scheme is described to infer a
vector of hidden parameters that linearly relate to eack@&reading with a Gaussian error. Finally, in [35]

a generic architecture is presented to perform distriburiience in sensor networks. The solution employs
message passing on distributed junction-trees, and capdbie@to a variety of inference problems, such as

sensor field modeling, sensor fusion, and optimal control.

10 Conclusion

We introducedselective samplinépr energy-efficient periodic data collection in sensommeks. In partic-
ular, we showed that selective sampling can be effective§duo increase the network lifetime, while still
keeping quality of the collected data high. We describedehmain mechanisms;) (sensing-driven cluster
construction (:7) correlation-based sampler selection and model derivat#om ¢:7) selective data collection
and model-based predictipthat together form the crux of our selective sampling appino We demonstrated
the effectiveness of selective sampling under differestesy settings through our reported results derived

from analytical and simulation based experimental studies
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