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Abstract 

An increase in network speeds and addition of 
new services in the Internet has increased the 
demand for intelligence and flexibility in network 
systems. This paper explores the extent to which 
an emergent class of programmable networking 
devices – network processors, can be used to 
deliver more efficient, innovative services to 
multimedia applications. We present and 
experimentally evaluate an architecture model, 
which enables the dynamic creation of 
application-specific services on programmable 
communication devices, using the Intel IXP2400 
network processor and an image manipulation 
application. 
 
 
1. Introduction 
 
An increase in speed of networks and addition of 
new services in the Internet has increased the 
demand for intelligence and flexibility in 
network systems. Distributed multiplayer video 
games based on distributed virtual environments 
are becoming increasingly popular [12]. These 
applications involve periodic exchange of 
messages between the participating machines 
using some distributed agreement protocol [13]. 
On the other hand distributed streaming 
applications involve large volumes of 
audio/video data to be transmitted across a wide 
range of clients [8]. Both of these classes of 
applications need two kinds of strict 
requirements: (1) bandwidth to send large 
amount of data and (2) processing power in 
participating hosts to ensure timely processing 
and distribution of the content on continuous 
basis. These applications typically rely on the 
existence of an underlying communication 
infrastructure, such as application-level overlays 
or peer-to-peer networks. Application-specific 
processing actions are executed at intermediate 
nodes to implement data distribution 

functionality and ensure end-user QoS 
requirements. In addition, intermediate nodes 
may execute other application components. 
Therefore, the deployment of new distributed 
services must have predictable impact of the 
performance of existing CPU loads at these 
nodes.  

Recent advancement in the network speed 
(Gigabit networks) has far reduced our concern 
about the bandwidth needed for such 
applications. However, the increase in 
sustainable bandwidth continues to present 
challenges. First, the growth in the network 
speed is fast approaching the memory interface 
speeds of general-purpose processors, making 
even a single memory reference impact the 
performance of the network application. Though 
the network is able to deliver data at high speeds, 
the overlay host machine becomes a bottleneck 
in processing and delivering them.  Second, the 
increase in diverse mobile and wireless end-user 
platforms has created demand for continuous 
delivery of application services in resource poor 
environments (e.g., low-bandwidth connectivity, 
and limited computation power). In order to meet 
the high-bandwidth, low and predictable latency 
requirements of multimedia applications, 
additional processing needs to be applied to the 
data path in the overlays.  

We argue that such processing and 
distribution of high bandwidth data must be 
carried out in the fastpath to get the maximum 
performance. The fastpath processing could be 
entirely supported by dedicated hardware, if only 
for their cost and inflexibility. With emergence 
of high-speed programmable network processors 
(NPs), software based solutions are considered 
feasible compared to their costly hardware based 
counterparts. Performance of previous 
implementations of software based router and 
QoS has strengthened the cause of exploring 
various services that can be added at network 
processor level [1,5,6,7,11]. Network processors 
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such as IXP 2xxx series are one such high-speed 
programmable processor, which meets these 
requirements with less cost and greater flexibility 
through their programmable nature. 

This paper presents and evaluates a flexible 
architecture built for platforms with 
programmable network interfaces, which 
supports efficient execution of variety of services 
required in distributed media applications.  
Experimental results in Section 5 demonstrate 
the feasibility of implementing media services on 
communication cores, and the performance 
improvements, which this approach can deliver. 

The remainder of the paper is organized as 
follows. Section 2 discusses the different classes 
of services needed in distributed media 
applications targeted by our work. It also briefly 
describes the Intel IXP NPs, used as an 
implementation platform in our work. Next, in 
Section 3 we describe the proposed architecture. 
Details regarding the IXP2400-based 
implementation are presented in Section 4. 
Experimental results appear in Section 5. 
Concluding remarks and outline of future 
research directions are given at the end. 
 
2. Distributed Media Services 
 
A wide range of multimedia services could be 
supported at the network level with the use of 
high-speed network processors. We can broadly 
classify these services as: 
 
• Path transforming services (PathX) -- 

manipulation on the media stream, and  
• Data transforming services (DataX) -- 

manipulation of the data content.  
 

The first set includes services such as 
routing, multicasting, broadcasting, prioritizing, 
filtering, etc. For example, removing certain 
frames from an MPEG stream to produce an 
MPEG video with reduced, but still satisfactory 
quality can be easily supported on these 
platforms. All of these services would require 
access and manipulation of the protocol and 
application level headers, but still leave the data 
content unmodified.  

The second category includes services such 
as transforming/transcoding the data in different 
format representation, down sampling image 
quality by modifying the image, cropping the 
image to match to client view, compression 
algorithms, encryption, etc. Applications which 
require such functionality at the network level, 
include visualization of remote experiments, or 

camera-captured data for a pool of clients with 
wide range of interests in the ongoing 
visualization, and/or which use devices with 
varying computational or networking capabilities 
[9]. These applications need services which (1) 
render appropriate view of imaging data on 
behalf of the clients, and (2) match the quality of 
the image stream to the client’s interests, or 
device and connection capabilities.  

Finally, consider services like application-
level IP multicasting, needed in variety of 
distributed media applications [13]. In these 
services, once the data is received, it needs to be 
duplicated to ‘n’ other members, as indicated in 
the routing tables. Such duplication involves 
heavy copying, and imposes additional loads on 
the host’s memory and I/O infrastructure. 
Moreover these packets need to be received by 
the network adapter, processed through the IP 
and UDP1 stacks and then delivered to the 
application, which manages multicast routing 
functionality. In addition, for large application 
level data, we need to consider the delays due to 
fragmentation and reassembly. One could 
remove this multi layer approach by handling 
such duplication at the network level itself. One 
approach could be to program such multicasting 
logic into programmable networking devices 
such as the IXP NPs. Such programmable 
processors provide sufficient headroom for 
carrying out application level packet 
manipulation and still be in fast path [4,2]. 
 
2.1. IXP 2xxx Architecture 
The proposed architecture assumes the 
availability of programmable communication 
cores or network cards at (at least some) nodes 
participating in the distributed infrastructure. Our 
implementation uses network processors from 
the Intel IXP family, specifically the IXP2400, 
attached to standard Linux-based hosts, to 
represent these future platforms. Some of the 
design here assumes that any network processor 
will have similar architecture and functionality 
of Intel IXP 2400. The feature that is important 
from the perspective of our design is the 
presence of multiple processing engines (such as 
the microengines of IXP2400), which can be 
pipelined in arbitrary manner to perform certain 
tasks.We briefly outline the key architectural 
features of the IXP2400 architecture. For more 
detailed information on the IXP2400 refer to [3]. 

The Intel IXP2xxx Network Processors have 
specialized hardware to support network 
                                                 
1 Multicast is supported with UDP only 
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operations, which gives the ability to implement 
network services with high packet throughput 
and low latency [3]. In addition to the network 
centric operations, it also provides support for 
data processing in the form of CRC checksum 
calculations, integer arithmetic etc. Figure 1 
shows the functional units of IXP2400 network 
processor. 

The IXP2400 network processor offers an 
increased number of microengines at higher 
speeds, additional memory, a faster host-ANP 
PCI-based interconnect, and other technology 
improvements. The IXP2400 chip includes eight 
8-way multithreaded microengines for data 
movement and processing, an Xscale core for 
management and other functions, local SRAM 
and DRAM controllers and an integral PCI 
interface with three DMA channels. The Radisys 

ENP2611 board [9] on which the IXP2400 
resides includes a 600MHz IXP2400, 256MB 
DRAM, 8MB SRAM, a POS-PHY Level 3 
FPGA which connects to 3 Gigabit interfaces 
and a PCI interface. An Xscale core, running 
Linux, is primarily used for initialization, 
management and debugging. The IXP2400 is 
attached to hosts running standard Linux kernels 
over a PCI interface. Data is delivered to and 
from the host-resident application components 
through the IXP’s network interfaces. 

There is wide range of development tools 
available which aid the application development 
for IXP Programmers. These include workbench 
simulators, SDK’s, debugging utilities (data 
watch, memory watch etc), performance-
gathering utilities, etc. 
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 Figure 1. IXP2400 Block Architecture (source, Intel IXA)  
 
3. System Architecture 
 
Figure 2 presents the high-level view of the 
distributed infrastructure targeted by our work, 
and can be described as follows. Media data is 
exchanged on continuous basis on top of an 
application-level overlay. The data may traverse 
intermediate nodes on the path from sources to 
destinations. The processing at these 
intermediate nodes may involve solely overlay 

routing actions, or may require additional 
application-specific data content and path 
manipulations. Based on the processing actions 
required, or the existing loads at intermediate 
nodes, the data path may be mapped to their 
dedicated communication cores, at the network 
interface level. The mapping of processing 
actions to individual nodes in the overlay is 
responsibility of the middleware layer utilized by 
the distributed applications, and is not the focus 
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of this paper. 
Individual nodes enhanced with 

programmable communication interfaces, similar 
to those discussed in [2] are depicted in Figure 3. 
In addition to data distribution functionality, the 
general purpose host CPU may execute other 
application components. The distribution of data 
in the overlay, and deployment of processing on 
behalf of overlay clients is managed by a 
Distribution Manager. This layer drives any 
reconfiguration actions through which the data 
path through this node can be offloaded onto the 
communication interface (e.g., programmable 
NIC, attached NP, dedicated communication 
core, etc.).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Distributed Application Overlays 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. System Architecture 
 

The core functionality implemented on the 
fast path is encapsulated by the Rx and Tx tasks, 
which implement receive- and transmit-side 
protocol processing. Additional DataX and 
PathX tasks may be deployed on the fast path to 

implemented new services, thereby forming a 
processing pipeline. Depending on the 
underlying platform architecture and resource 
availability, DataX and PathX tasks are mapped 
to separate execution contexts (e.g., threads, 
microengines, processing elements). This may be 
particularly needed for DataX tasks, which have 
greater computational requirements and include 
repeated access to data content stored in chip 
memory. PathX tasks may be combined and 
executed jointly with the Tx processing. 
Compositions of DataX and PathX tasks can be 
formed to represent variety of services, ranging 
from data filter, transcoding, or multicast [2,7]. 

The processing executed as part of the DataX 
and PathX blocks can be dynamically configured 
through the host-resident FastPath Configuration 
interface. Fast path state and resource utilization 
is available at the host, so that host-resident 
control components can make estimates 
regarding service levels sustainable with the 
current fast path configuration. Currently, we 
assume that all QoS-related data path 
reconfigurations are triggered by the 
middleware. Our future work will consider 
augmenting the architecture with functionality to 
detect QoS-violating conditions, and trigger 
appropriate actions.  

hosts data path 
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programmable NIs 4. Implementation Detail 

 
4.1. IXP2400-based Architecture 
Our current implementation assigns individual 
blocks from the fastpath pipeline to separate 
microengines on the IXP2400 NPs. Each task 
may be executed by one or more hardware 
supported context, i.e. microengine threads. 
Communication between pipeline stages is 
implemented through controlled access to shared 
ring buffers. SRAM based data descriptors 
describe the application level data, stored across 
multiple DRAM resident buffers. 
Communication with the host-resident control 
processes occurs via using shared mailboxes 
implemented on top of a PCI-based interface, 
similar to [10]. Fastpath reconfiguration requires 
involvement of the Xscale core, and has already 
been implemented for the previous generation 
IXP NPs with practically negligible service 
interruption (28-30 microseconds).  
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4.2. Image Processing Application 
As an instance of the pipelined architecture, we 
have implemented a Packet Forwarding 
Application and an Image Filtering Application 
to benchmark application level data manipulation 
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in fast path. Figure 4 shows the implementation 
details of the Image Filtering Application.  

As shown in the figure we have implemented 
two flavors of the filtering algorithm to compare 
memory performance. In the first algorithm we 
assemble the entire Image on to SRAM and then 
do the gray filtering. We do this instead of 
directly manipulating the buffers on the DRAM 
for two reasons. The first being that, there are 
certain application level processing which needs 
the complete data to act upon. This makes the 
data manipulation algorithm simple. Another 
reason is that, repeated access to the application 
data would amortize the cost for copying it on to 

the SRAM as there is a significance cycle count 
difference between a DRAM read and a SRAM 
read operation. Also, reading the fragmented 
data on DRAM may be costly if there is huge 
number of such data reads.  

The second algorithm is complex in the 
sense; it needs to manipulate fragmented data in 
DRAM. But, avoiding the memory copy from 
DRAM to SRAM could trade off such a 
complexity.  As said above, this kind of 
algorithm would make sense where there is a 
limited amount of application level data 
manipulation. 

 
 
 
 Receive 

Micro Engine 
 
 
 Packet Buffers in 

DRAM
Scratch Ring with 
receiving packet 
handles 

 
 
 
 1. Assembles packet handles of all 

the fragments and forms a linked list. 
2. Uses CAM as lookup to 
assembling the fragment handles 
3. Triggers the Filter Micro engine 
once all fragments have been 
received giving it the linked list 

 
Packet_dl 
Micro Engine

 
 

Linked List of Packet 
Handles in SRAM 

 
 
 

Next Neighbor 
Ring used to trigger 
Filter Micro engine

 
 
 
 Algorithm -1  

1. Assembles the entire application 
level data onto SRAM 
2. Gray scale the Image 
3. Fragment the Image 
4. Enqueue the packet handles to 
Transmit Micro engine 

Algorithm -2  
1. Manipulates the Image directly on 
DRAM 
2. Form the modified linked list of 
packet handles 
4. Enqueue the packet handles to 
Transmit Micro engine 
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Figure 4. Image Processing Application 
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4.3. Efficient Multicast Implementation 
The pipeline architecture assumes that each 
microengine is dedicated to a task. The data 
stream will pass through this pipeline, when it is 
in the fast path. The ability to assign the same 
task to multiple processing contexts permits us to 
exploit the IXP’s hardware supported parallelism 
and create efficient implementations for variety 
of services.  

Consider the support for application level 
multicasting on attached network processors. We 
could build the routing logic to be executed at 
the core and do the duplication at the micro 
engines. This means that the core will get 
involved in multicast routing algorithms to build 
the routing tables and store it in shared space 
which the micro engines can access. When 
packets arrive from the network, the micro 
engines can use the routing tables to route the 
packets to the destinations. A straightforward 
implementation would be to duplicate these 
packets n times and send it. But, such an 
operation would involve a huge number of 
memory copying. As an alternate approach, one 
could exploit the parallelism provided by these 
micro engines and do intelligent duplication.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Parallel Packet Processing 
 
 

Figure 5 shows such logic. As and when 
packets arrive, they are assembled and are ready 
to be transmitted to their respective destinations. 
Unlike the traditional way of duplicating the 
packets n times, we will work on individual 
packets exclusively and modify their headers to 
reflect the destinations. In our current 
implementation, each of the eight hardware 
assisted thread of the micro engine, works on 
individual packets. Each thread picks up a fully 
assembled packet and takes the first destination 

in the routing table to write into the IP header of 
the packet. It then places a transmit request for 
that packet to the Transmit driver. The transmit 
driver transmits the first 64 bytes of the packet 
and signals back the thread, which placed the 
request without freeing the packet buffer. Once 
the signal is received the thread goes ahead and 
picks up the next destination from the routing 
table and overwrites the IP header to the new 
value. This is absolutely acceptable, as the IP 
header has been transmitted in the first 64 bytes 
and thus achieving a near zero duplication of 
packets. Once the thread is done with all 
destinations, the packet buffer is freed. The next 
packet from the queue is picked up and the 
procedure is started all over again.  
 
5. Performance Analysis 
 
We have carried out different sets of experiments 
to analyze the performance of application level 
data manipulation.  
 

Host 2      User 
 

Kernel

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.1. General setup 
We run the set of experiments in different setups. 
The first configuration, presented in Figure 6, is 
a purely host-based, in which the data path from 
source to destination traverses an intermediate 
general purpose host node.  In the second setup, 
the data path traverses an IXP NP on its route to 
destination (see Figure 7). In each case, 
additional processing is applied to the data at the 

Host1 Host3NIC Routing 
Table 

Figure 6. Host-based Test-bed 
Rx 
Driver

Rx 
Driver

Thread-1 

Thread-2 Signal back Host 2    User 
 

Kernel 

Host1 Host3IXP 

Thread-8 

Figure 7. IXP-based Test-bed 
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intermediate node. Our host machines are 4 CPU 
with Intel Xeon processors, each with 2.4 GHz 
clock speed. The IXP test-bed uses the 
aforementioned Radisys ENP2611 boards, with 
eight microengines running at 600 MHz each. In 
order to simulate additional processing on the 
intermediate nodes in a distributed infrastructure, 
we run a CPU intensive process on the host 
machines, the applu application from the 
CPU2000 benchmark suite. The experiments use 
data streams generated from a flow of PPM 
images of varying sizes (which span across 
multiple Ethernet frames), and transmit these at 
maximum rates. 

For the host based experiments, images are 
sent from first host to second host via UDP. 
Here, the user level application waits for the 
entire data to be arrived and then either forwards 
or grey scales the image and sends it to the third 
host. In the third host, we either use raw sockets 
to capture Ethernet frames or receive the data 
using UDP depending on the performance 
measurement needed. For latency measurements 
we use UDP itself in host-3, but for measuring 
the throughput we need to capture Ethernet 
frames of these UDP packets and so we use raw 
sockets in host-3.  

For the IXP based test bed, the image is 
packetized into Ethernet frames and is pumped 
into the LAN through raw sockets. The IXP 
network processor receives them and either 
forwards or grey filters the Image before 
dispatching it to the third host. In host-3, we 
again use raw socket application to capture the 
Ethernet frames.  
 
5.2. End-to-End latency 
PPM Images are fragmented into 1500 bytes 
Ethernet frames and are put into the LAN using 
raw sockets API. The first timestamp is recorded 
when all the Ethernet frames are sent into the 
LAN from host-1 and the second one when we 
receive all the frames back on host-3. The 
difference between them is noted. Again, we 
repeat the same experiment with the host-1 and 
host-3 interchanged. This is done in order to 
remove the discrepancies in the two host 
machines clocks. We add the difference obtained 
in both the runs and divide it by 2 to get the 
actual end-to-end latency between these hosts. 
The experiment is carried out both on the host 
based test bed and the IXP based test bed.  

Tables 1 and 2 show the end-to-end latency 
for image of different sizes for the host-based 
and the IXP-based configuration, respectively. 
The results show that, there is a substantial 

latency difference between host-based test bed 
and the IXP-based test bed for images of lesser 
size and significantly less difference when the 
image size is big. This is because the kernel/user 
space overhead and the stack-processing 
(UDP/IP) overhead are quite significant 
compared to the processing carried out on the 
data content itself.  

Note that these latency measurements are for 
the image processing application, which requires 
computationally and data intensive processing at 
the intermediate node. For tasks with lower 
resource requirements, such as those 
implementing PathX services, the latency 
decreases are more significant for larger data 
sizes. 
 
Image 
Size 

Number of 
Ethernet Frame 
(1490 bytes each) 

End-to-end 
Latency 
(micro secs) 

57616 
bytes 

41 frames 8290   

14436 
bytes 

11 frames 2956   

3636  
bytes 

3 frames 1499   

936 bytes 1 frame 1256 
Table 1.  End-to-end Latency for Host based 

Test bed 
 
 
Image 
Size 

Number of 
Ethernet 
Frame 
(1490 bytes 
each) 

End-to-
end 
Latency 
(micro 
secs) 

Percentage 
decrease in 
Latency 

57616 
bytes 

41 frames 7150 16 % 

14436 
bytes 

11 frames 1935.5 52 % 

3636  
bytes 

3 frames 621 141 % 

936 
bytes 

1 frame 340 269 % 

Table 2. End-to-end Latency for  IXP based 
Test-bed 

 
5.3. Throughput 
The throughput measurements are carried out in 
with the same setup as above. In the host based 
approach, Image data is sent over UDP from 
host-1. host-2 receives the entire image and does 
grey filtering on it and dispatches the filtered 
image to host-3. In host-3 we run a raw socket 
application to capture the Ethernet frames of the 
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UDP packets. The timestamp when the first 
Ethernet frame is received is recorded and then 
again the timestamp when the last one is 
received is recorded. Again, we evaluate a PathX 
forwarding task, and a DataX grey scaling task. 

The results are presented in Table 3. In both 
case the IXP-based implementation of the 
service outperforms the host-one. Simulation 
measurements indicate that the IXP-based 
implementation will significantly outperform the 
host-based implementation under increased 
network loads, in spite of the disparity of the 
computational capacity of the host CPUs vs. the 
IXP microengines.  
 
 
 IXP-

based 
(Mbps) 

Host-based 
(Mbps) 

Gains 
(%) 

DataX 94.7 93.9 1 
PathX 94.5 91.8 3 
Table 3. Through measurements for the host- 

vs. IXP-based test-bed. 
 

Other services evaluated in our work on this 
and previous IXP-based platforms include (1) 
filtering of entire application-level messages 
(e.g., image frames), to meet end-user quality 
requirements, (2) multicast, (3) image cropping 
to match the data delivered to the client’s current 
interests, (4) format translation, and others. The 
results of these experiments indicate that 
programmable networking devices can provide 
support for performance improvements in 
distributed applications with strict bandwidth or 
latency/jitter requirements.  
 
6. Conclusions 
 
Technology advances have created the ability to 
bring intelligence into the networking 
infrastructure. This work explores one 
architecture, which using off-the-shelf 
programmable communication devices, creates 
enhanced platforms for flexible support for 
customized delivery of media streams. We 
demonstrate experimentally performance 
improvements attained on these platforms, for a 
range of services needed in distributed 
multimedia applications. 

Our future work will continue to investigate 
mechanisms for exploiting the programmability 
of the networking infrastructure and delivering 
scalable and predictable services to different 
classes of applications. We are currently 
considering the deployment of middleware-level 

functionality onto programmable NPs, 
generalization of the host-NP control 
mechanisms, and techniques for efficient 
representation and caching of application-level 
meta-data regarding data formats and processing 
actions. 
 
Acknowledgment: Ramkumar Gandhapuneni 
and Prashant Thakare worked on the original 
implementation of the imaging application. 
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