

An Approach Towards Enabling Intelligent Networking Services for Distributed

Multimedia Applications

Srikanth Sundaragopalan, Ada Gavrilovska, Sanjay Kumar, Karsten Schwan
{srikanth, ada, ksanjay, schwan}@cc.gatech.edu

Center for Experimental Research in Computer Science

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Abstract

An increase in network speeds and addition of
new services in the Internet has increased the
demand for intelligence and flexibility in network
systems. This paper explores the extent to which
an emergent class of programmable networking
devices – network processors, can be used to
deliver more efficient, innovative services to
multimedia applications. We present and
experimentally evaluate an architecture model,
which enables the dynamic creation of
application-specific services on programmable
communication devices, using the Intel IXP2400
network processor and an image manipulation
application.

1. Introduction

An increase in speed of networks and addition of
new services in the Internet has increased the
demand for intelligence and flexibility in
network systems. Distributed multiplayer video
games based on distributed virtual environments
are becoming increasingly popular [12]. These
applications involve periodic exchange of
messages between the participating machines
using some distributed agreement protocol [13].
On the other hand distributed streaming
applications involve large volumes of
audio/video data to be transmitted across a wide
range of clients [8]. Both of these classes of
applications need two kinds of strict
requirements: (1) bandwidth to send large
amount of data and (2) processing power in
participating hosts to ensure timely processing
and distribution of the content on continuous
basis. These applications typically rely on the
existence of an underlying communication
infrastructure, such as application-level overlays
or peer-to-peer networks. Application-specific
processing actions are executed at intermediate
nodes to implement data distribution

functionality and ensure end-user QoS
requirements. In addition, intermediate nodes
may execute other application components.
Therefore, the deployment of new distributed
services must have predictable impact of the
performance of existing CPU loads at these
nodes.

Recent advancement in the network speed
(Gigabit networks) has far reduced our concern
about the bandwidth needed for such
applications. However, the increase in
sustainable bandwidth continues to present
challenges. First, the growth in the network
speed is fast approaching the memory interface
speeds of general-purpose processors, making
even a single memory reference impact the
performance of the network application. Though
the network is able to deliver data at high speeds,
the overlay host machine becomes a bottleneck
in processing and delivering them. Second, the
increase in diverse mobile and wireless end-user
platforms has created demand for continuous
delivery of application services in resource poor
environments (e.g., low-bandwidth connectivity,
and limited computation power). In order to meet
the high-bandwidth, low and predictable latency
requirements of multimedia applications,
additional processing needs to be applied to the
data path in the overlays.

We argue that such processing and
distribution of high bandwidth data must be
carried out in the fastpath to get the maximum
performance. The fastpath processing could be
entirely supported by dedicated hardware, if only
for their cost and inflexibility. With emergence
of high-speed programmable network processors
(NPs), software based solutions are considered
feasible compared to their costly hardware based
counterparts. Performance of previous
implementations of software based router and
QoS has strengthened the cause of exploring
various services that can be added at network
processor level [1,5,6,7,11]. Network processors

 1

mailto:srikanth, ada, ksanjay, schwan}@cc.gatech.edu

such as IXP 2xxx series are one such high-speed
programmable processor, which meets these
requirements with less cost and greater flexibility
through their programmable nature.

This paper presents and evaluates a flexible
architecture built for platforms with
programmable network interfaces, which
supports efficient execution of variety of services
required in distributed media applications.
Experimental results in Section 5 demonstrate
the feasibility of implementing media services on
communication cores, and the performance
improvements, which this approach can deliver.

The remainder of the paper is organized as
follows. Section 2 discusses the different classes
of services needed in distributed media
applications targeted by our work. It also briefly
describes the Intel IXP NPs, used as an
implementation platform in our work. Next, in
Section 3 we describe the proposed architecture.
Details regarding the IXP2400-based
implementation are presented in Section 4.
Experimental results appear in Section 5.
Concluding remarks and outline of future
research directions are given at the end.

2. Distributed Media Services

A wide range of multimedia services could be
supported at the network level with the use of
high-speed network processors. We can broadly
classify these services as:

• Path transforming services (PathX) --

manipulation on the media stream, and
• Data transforming services (DataX) --

manipulation of the data content.

The first set includes services such as
routing, multicasting, broadcasting, prioritizing,
filtering, etc. For example, removing certain
frames from an MPEG stream to produce an
MPEG video with reduced, but still satisfactory
quality can be easily supported on these
platforms. All of these services would require
access and manipulation of the protocol and
application level headers, but still leave the data
content unmodified.

The second category includes services such
as transforming/transcoding the data in different
format representation, down sampling image
quality by modifying the image, cropping the
image to match to client view, compression
algorithms, encryption, etc. Applications which
require such functionality at the network level,
include visualization of remote experiments, or

camera-captured data for a pool of clients with
wide range of interests in the ongoing
visualization, and/or which use devices with
varying computational or networking capabilities
[9]. These applications need services which (1)
render appropriate view of imaging data on
behalf of the clients, and (2) match the quality of
the image stream to the client’s interests, or
device and connection capabilities.

Finally, consider services like application-
level IP multicasting, needed in variety of
distributed media applications [13]. In these
services, once the data is received, it needs to be
duplicated to ‘n’ other members, as indicated in
the routing tables. Such duplication involves
heavy copying, and imposes additional loads on
the host’s memory and I/O infrastructure.
Moreover these packets need to be received by
the network adapter, processed through the IP
and UDP1 stacks and then delivered to the
application, which manages multicast routing
functionality. In addition, for large application
level data, we need to consider the delays due to
fragmentation and reassembly. One could
remove this multi layer approach by handling
such duplication at the network level itself. One
approach could be to program such multicasting
logic into programmable networking devices
such as the IXP NPs. Such programmable
processors provide sufficient headroom for
carrying out application level packet
manipulation and still be in fast path [4,2].

2.1. IXP 2xxx Architecture
The proposed architecture assumes the
availability of programmable communication
cores or network cards at (at least some) nodes
participating in the distributed infrastructure. Our
implementation uses network processors from
the Intel IXP family, specifically the IXP2400,
attached to standard Linux-based hosts, to
represent these future platforms. Some of the
design here assumes that any network processor
will have similar architecture and functionality
of Intel IXP 2400. The feature that is important
from the perspective of our design is the
presence of multiple processing engines (such as
the microengines of IXP2400), which can be
pipelined in arbitrary manner to perform certain
tasks.We briefly outline the key architectural
features of the IXP2400 architecture. For more
detailed information on the IXP2400 refer to [3].

The Intel IXP2xxx Network Processors have
specialized hardware to support network

1 Multicast is supported with UDP only

 2

operations, which gives the ability to implement
network services with high packet throughput
and low latency [3]. In addition to the network
centric operations, it also provides support for
data processing in the form of CRC checksum
calculations, integer arithmetic etc. Figure 1
shows the functional units of IXP2400 network
processor.

The IXP2400 network processor offers an
increased number of microengines at higher
speeds, additional memory, a faster host-ANP
PCI-based interconnect, and other technology
improvements. The IXP2400 chip includes eight
8-way multithreaded microengines for data
movement and processing, an Xscale core for
management and other functions, local SRAM
and DRAM controllers and an integral PCI
interface with three DMA channels. The Radisys

ENP2611 board [9] on which the IXP2400
resides includes a 600MHz IXP2400, 256MB
DRAM, 8MB SRAM, a POS-PHY Level 3
FPGA which connects to 3 Gigabit interfaces
and a PCI interface. An Xscale core, running
Linux, is primarily used for initialization,
management and debugging. The IXP2400 is
attached to hosts running standard Linux kernels
over a PCI interface. Data is delivered to and
from the host-resident application components
through the IXP’s network interfaces.

There is wide range of development tools
available which aid the application development
for IXP Programmers. These include workbench
simulators, SDK’s, debugging utilities (data
watch, memory watch etc), performance-
gathering utilities, etc.

 3

 Figure 1. IXP2400 Block Architecture (source, Intel IXA)

3. System Architecture

Figure 2 presents the high-level view of the
distributed infrastructure targeted by our work,
and can be described as follows. Media data is
exchanged on continuous basis on top of an
application-level overlay. The data may traverse
intermediate nodes on the path from sources to
destinations. The processing at these
intermediate nodes may involve solely overlay

routing actions, or may require additional
application-specific data content and path
manipulations. Based on the processing actions
required, or the existing loads at intermediate
nodes, the data path may be mapped to their
dedicated communication cores, at the network
interface level. The mapping of processing
actions to individual nodes in the overlay is
responsibility of the middleware layer utilized by
the distributed applications, and is not the focus

SDRAM
CONTR
OLLER

SRAM
CONTR
OLLER

Intel
Xscale
Core

PCI
Interface

Microen
gine

Microen
gine

Microen
gine

Microen
gine

Microen
gine

Microen
gine

Microen
gine

Microen
gine

HASH
UNIT

MSF

SCRATCH
PAD

of this paper.
Individual nodes enhanced with

programmable communication interfaces, similar
to those discussed in [2] are depicted in Figure 3.
In addition to data distribution functionality, the
general purpose host CPU may execute other
application components. The distribution of data
in the overlay, and deployment of processing on
behalf of overlay clients is managed by a
Distribution Manager. This layer drives any
reconfiguration actions through which the data
path through this node can be offloaded onto the
communication interface (e.g., programmable
NIC, attached NP, dedicated communication
core, etc.).

Figure 2. Distributed Application Overlays

Figure 3. System Architecture

The core functionality implemented on the
fast path is encapsulated by the Rx and Tx tasks,
which implement receive- and transmit-side
protocol processing. Additional DataX and
PathX tasks may be deployed on the fast path to

implemented new services, thereby forming a
processing pipeline. Depending on the
underlying platform architecture and resource
availability, DataX and PathX tasks are mapped
to separate execution contexts (e.g., threads,
microengines, processing elements). This may be
particularly needed for DataX tasks, which have
greater computational requirements and include
repeated access to data content stored in chip
memory. PathX tasks may be combined and
executed jointly with the Tx processing.
Compositions of DataX and PathX tasks can be
formed to represent variety of services, ranging
from data filter, transcoding, or multicast [2,7].

The processing executed as part of the DataX
and PathX blocks can be dynamically configured
through the host-resident FastPath Configuration
interface. Fast path state and resource utilization
is available at the host, so that host-resident
control components can make estimates
regarding service levels sustainable with the
current fast path configuration. Currently, we
assume that all QoS-related data path
reconfigurations are triggered by the
middleware. Our future work will consider
augmenting the architecture with functionality to
detect QoS-violating conditions, and trigger
appropriate actions.

hosts data path
control

hosts with
programmable NIs 4. Implementation Detail

4.1. IXP2400-based Architecture
Our current implementation assigns individual
blocks from the fastpath pipeline to separate
microengines on the IXP2400 NPs. Each task
may be executed by one or more hardware
supported context, i.e. microengine threads.
Communication between pipeline stages is
implemented through controlled access to shared
ring buffers. SRAM based data descriptors
describe the application level data, stored across
multiple DRAM resident buffers.
Communication with the host-resident control
processes occurs via using shared mailboxes
implemented on top of a PCI-based interface,
similar to [10]. Fastpath reconfiguration requires
involvement of the Xscale core, and has already
been implemented for the previous generation
IXP NPs with practically negligible service
interruption (28-30 microseconds).

H
O
S
T

Application

Data Distribution Mgt

Fast Path (Re-)Configuration

control plane

Data

X
Path

X
Rx Tx

fastpath NI

4.2. Image Processing Application
As an instance of the pipelined architecture, we
have implemented a Packet Forwarding
Application and an Image Filtering Application
to benchmark application level data manipulation

 4

in fast path. Figure 4 shows the implementation
details of the Image Filtering Application.

As shown in the figure we have implemented
two flavors of the filtering algorithm to compare
memory performance. In the first algorithm we
assemble the entire Image on to SRAM and then
do the gray filtering. We do this instead of
directly manipulating the buffers on the DRAM
for two reasons. The first being that, there are
certain application level processing which needs
the complete data to act upon. This makes the
data manipulation algorithm simple. Another
reason is that, repeated access to the application
data would amortize the cost for copying it on to

the SRAM as there is a significance cycle count
difference between a DRAM read and a SRAM
read operation. Also, reading the fragmented
data on DRAM may be costly if there is huge
number of such data reads.

The second algorithm is complex in the
sense; it needs to manipulate fragmented data in
DRAM. But, avoiding the memory copy from
DRAM to SRAM could trade off such a
complexity. As said above, this kind of
algorithm would make sense where there is a
limited amount of application level data
manipulation.

 Receive

Micro Engine

 Packet Buffers in

DRAM
Scratch Ring with
receiving packet
handles

 1. Assembles packet handles of all

the fragments and forms a linked list.
2. Uses CAM as lookup to
assembling the fragment handles
3. Triggers the Filter Micro engine
once all fragments have been
received giving it the linked list

Packet_dl
Micro Engine

Linked List of Packet
Handles in SRAM

Next Neighbor
Ring used to trigger
Filter Micro engine

 Algorithm -1

1. Assembles the entire application
level data onto SRAM
2. Gray scale the Image
3. Fragment the Image
4. Enqueue the packet handles to
Transmit Micro engine

Algorithm -2
1. Manipulates the Image directly on
DRAM
2. Form the modified linked list of
packet handles
4. Enqueue the packet handles to
Transmit Micro engine

 Filter
 Micro engine

Scratch Ring with
to be transmitted
packet handles

 Transmit

 Micro engine

Figure 4. Image Processing Application

 5

4.3. Efficient Multicast Implementation
The pipeline architecture assumes that each
microengine is dedicated to a task. The data
stream will pass through this pipeline, when it is
in the fast path. The ability to assign the same
task to multiple processing contexts permits us to
exploit the IXP’s hardware supported parallelism
and create efficient implementations for variety
of services.

Consider the support for application level
multicasting on attached network processors. We
could build the routing logic to be executed at
the core and do the duplication at the micro
engines. This means that the core will get
involved in multicast routing algorithms to build
the routing tables and store it in shared space
which the micro engines can access. When
packets arrive from the network, the micro
engines can use the routing tables to route the
packets to the destinations. A straightforward
implementation would be to duplicate these
packets n times and send it. But, such an
operation would involve a huge number of
memory copying. As an alternate approach, one
could exploit the parallelism provided by these
micro engines and do intelligent duplication.

Figure 5. Parallel Packet Processing

Figure 5 shows such logic. As and when
packets arrive, they are assembled and are ready
to be transmitted to their respective destinations.
Unlike the traditional way of duplicating the
packets n times, we will work on individual
packets exclusively and modify their headers to
reflect the destinations. In our current
implementation, each of the eight hardware
assisted thread of the micro engine, works on
individual packets. Each thread picks up a fully
assembled packet and takes the first destination

in the routing table to write into the IP header of
the packet. It then places a transmit request for
that packet to the Transmit driver. The transmit
driver transmits the first 64 bytes of the packet
and signals back the thread, which placed the
request without freeing the packet buffer. Once
the signal is received the thread goes ahead and
picks up the next destination from the routing
table and overwrites the IP header to the new
value. This is absolutely acceptable, as the IP
header has been transmitted in the first 64 bytes
and thus achieving a near zero duplication of
packets. Once the thread is done with all
destinations, the packet buffer is freed. The next
packet from the queue is picked up and the
procedure is started all over again.

5. Performance Analysis

We have carried out different sets of experiments
to analyze the performance of application level
data manipulation.

Host 2 User

Kernel

5.1. General setup
We run the set of experiments in different setups.
The first configuration, presented in Figure 6, is
a purely host-based, in which the data path from
source to destination traverses an intermediate
general purpose host node. In the second setup,
the data path traverses an IXP NP on its route to
destination (see Figure 7). In each case,
additional processing is applied to the data at the

Host1 Host3NIC Routing
Table

Figure 6. Host-based Test-bed
Rx
Driver

Rx
Driver

Thread-1

Thread-2 Signal back Host 2 User

Kernel

Host1 Host3IXP

Thread-8

Figure 7. IXP-based Test-bed

 6

intermediate node. Our host machines are 4 CPU
with Intel Xeon processors, each with 2.4 GHz
clock speed. The IXP test-bed uses the
aforementioned Radisys ENP2611 boards, with
eight microengines running at 600 MHz each. In
order to simulate additional processing on the
intermediate nodes in a distributed infrastructure,
we run a CPU intensive process on the host
machines, the applu application from the
CPU2000 benchmark suite. The experiments use
data streams generated from a flow of PPM
images of varying sizes (which span across
multiple Ethernet frames), and transmit these at
maximum rates.

For the host based experiments, images are
sent from first host to second host via UDP.
Here, the user level application waits for the
entire data to be arrived and then either forwards
or grey scales the image and sends it to the third
host. In the third host, we either use raw sockets
to capture Ethernet frames or receive the data
using UDP depending on the performance
measurement needed. For latency measurements
we use UDP itself in host-3, but for measuring
the throughput we need to capture Ethernet
frames of these UDP packets and so we use raw
sockets in host-3.

For the IXP based test bed, the image is
packetized into Ethernet frames and is pumped
into the LAN through raw sockets. The IXP
network processor receives them and either
forwards or grey filters the Image before
dispatching it to the third host. In host-3, we
again use raw socket application to capture the
Ethernet frames.

5.2. End-to-End latency
PPM Images are fragmented into 1500 bytes
Ethernet frames and are put into the LAN using
raw sockets API. The first timestamp is recorded
when all the Ethernet frames are sent into the
LAN from host-1 and the second one when we
receive all the frames back on host-3. The
difference between them is noted. Again, we
repeat the same experiment with the host-1 and
host-3 interchanged. This is done in order to
remove the discrepancies in the two host
machines clocks. We add the difference obtained
in both the runs and divide it by 2 to get the
actual end-to-end latency between these hosts.
The experiment is carried out both on the host
based test bed and the IXP based test bed.

Tables 1 and 2 show the end-to-end latency
for image of different sizes for the host-based
and the IXP-based configuration, respectively.
The results show that, there is a substantial

latency difference between host-based test bed
and the IXP-based test bed for images of lesser
size and significantly less difference when the
image size is big. This is because the kernel/user
space overhead and the stack-processing
(UDP/IP) overhead are quite significant
compared to the processing carried out on the
data content itself.

Note that these latency measurements are for
the image processing application, which requires
computationally and data intensive processing at
the intermediate node. For tasks with lower
resource requirements, such as those
implementing PathX services, the latency
decreases are more significant for larger data
sizes.

Image
Size

Number of
Ethernet Frame
(1490 bytes each)

End-to-end
Latency
(micro secs)

57616
bytes

41 frames 8290

14436
bytes

11 frames 2956

3636
bytes

3 frames 1499

936 bytes 1 frame 1256
Table 1. End-to-end Latency for Host based

Test bed

Image
Size

Number of
Ethernet
Frame
(1490 bytes
each)

End-to-
end
Latency
(micro
secs)

Percentage
decrease in
Latency

57616
bytes

41 frames 7150 16 %

14436
bytes

11 frames 1935.5 52 %

3636
bytes

3 frames 621 141 %

936
bytes

1 frame 340 269 %

Table 2. End-to-end Latency for IXP based
Test-bed

5.3. Throughput
The throughput measurements are carried out in
with the same setup as above. In the host based
approach, Image data is sent over UDP from
host-1. host-2 receives the entire image and does
grey filtering on it and dispatches the filtered
image to host-3. In host-3 we run a raw socket
application to capture the Ethernet frames of the

 7

UDP packets. The timestamp when the first
Ethernet frame is received is recorded and then
again the timestamp when the last one is
received is recorded. Again, we evaluate a PathX
forwarding task, and a DataX grey scaling task.

The results are presented in Table 3. In both
case the IXP-based implementation of the
service outperforms the host-one. Simulation
measurements indicate that the IXP-based
implementation will significantly outperform the
host-based implementation under increased
network loads, in spite of the disparity of the
computational capacity of the host CPUs vs. the
IXP microengines.

 IXP-

based
(Mbps)

Host-based
(Mbps)

Gains
(%)

DataX 94.7 93.9 1
PathX 94.5 91.8 3
Table 3. Through measurements for the host-

vs. IXP-based test-bed.

Other services evaluated in our work on this
and previous IXP-based platforms include (1)
filtering of entire application-level messages
(e.g., image frames), to meet end-user quality
requirements, (2) multicast, (3) image cropping
to match the data delivered to the client’s current
interests, (4) format translation, and others. The
results of these experiments indicate that
programmable networking devices can provide
support for performance improvements in
distributed applications with strict bandwidth or
latency/jitter requirements.

6. Conclusions

Technology advances have created the ability to
bring intelligence into the networking
infrastructure. This work explores one
architecture, which using off-the-shelf
programmable communication devices, creates
enhanced platforms for flexible support for
customized delivery of media streams. We
demonstrate experimentally performance
improvements attained on these platforms, for a
range of services needed in distributed
multimedia applications.

Our future work will continue to investigate
mechanisms for exploiting the programmability
of the networking infrastructure and delivering
scalable and predictable services to different
classes of applications. We are currently
considering the deployment of middleware-level

functionality onto programmable NPs,
generalization of the host-NP control
mechanisms, and techniques for efficient
representation and caching of application-level
meta-data regarding data formats and processing
actions.

Acknowledgment: Ramkumar Gandhapuneni
and Prashant Thakare worked on the original
implementation of the imaging application.

References:

1. A. Gavrilovska, S. Kumar, K. Schwan, The

Execution of Event-Action Rules on
Programmable Network Processors,
Workshop on Operating System and
Architectural Support for the On-Demand IT
Infrastructure (OASIS 2004), held with
ASPLOS-XI, Boston, MA, Oct. 2004.

2. A. Gavrilovska, K. Schwan, O. Nordstrom,
H. Seifu, Network Processors as Building
Blocks in Overlay Networks, Hot
Interconnects 11, Stanford, CA, Aug. 2003.

3. IXP Intel Network Processor Family,
http://developer.intel.com/design/npfamily

4. T. Spalink, S. Karlin, L. Peterson, Y.
Gottlieb, Building a Robust Software-Based
Router Using Network Processors,
Proceedings of 18th SOSP 2001, Banff,
Canada, 2001.

5. Y-D. Lin, Y-N. Lin, S-C. Yang, Y-S. Lin,
DiffServ over Network Processors:
Implementation and Evaluation, Proc. of
Hot Interconnects 10, Aug. 2002.

6. X. Zhuang, W. Shi, I. Paul, K. Schwan,
Efficient Implementation of the DWCS
Algorithm on High-Speed Programmable
Network Processors, Proc. of Multimedia
Networks and Systems (MMNS), Oct. 2002.

7. S. Roy, J. Ankcorn, S. Wee, An Architecture
for Componentized, Network-Based Media
Services, Proc. of IEEE International
Conference on Multimedia and Expo, Jul,
2003.

8. M. Wolf, Z. Cai, W. Huang, K. Schwan,
SmartPointer: Personalized Scientific Data
Portals in Your Hand, Supercomputing
2002, Nov. 2002.

9. Radisys Corporation. ENP-2611 Data Sheet.
http://www.radisys.com

10. K. Mackenzie, W. Shi, A. McDonald, I.
Ganev, An Intel IXP1200-based Network
Interface, Proceedings of the Workshop on
Novel Uses of System Area Networks at
HPCA (SAN-2 2003), Anaheim, CA, 2003

 8

http://developer.intel.com/design/npfamily
http://www.radisys.com/

11. Path 1 Network Technologies, Professional
Digital Video Gateways for the Broadcaster
and Multi-Service Operator, Delivered by
Path 1 Network Technologies* and Intel®
Network Processors. White Paper, 2002.

12. M.R.Stytz, Distributed virtual environments,
Computer Graphics and Applications, IEEE,
Volume: 16, Issue: 3, May 1996

13. C. Diot, L. Gautier, A distributed
architecture for multiplayer interactive
applications on the Internet, Network, IEEE,
Volume: 13, Issue: 4, July – August 1999.

 9

	Abstract
	Figure 1. IXP2400 Block Architecture (source, Intel IXA)
	Figure 2. Distributed Application Overlays
	Figure 3. System Architecture
	Figure 5. Parallel Packet Processing

