
Improving the Classification of Software Behaviors using
Ensembles of Control-Flow and Data-Flow Classifiers

James F. Bowring, Mary Jean Harrold, and James M. Rehg
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

{bowring | harrold | rehg}@cc.gatech.edu

ABSTRACT
One approach to the automatic classification of program
behaviors is to view these behaviors as the collection of
all the program’s executions. Many features of these ex-
ecutions, such as branch profiles, can be measured, and
if these features accurately predict behavior, we can build
automatic behavior classifiers from them using statistical
machine-learning techniques. Two key problems in the de-
velopment of useful classifiers are (1) the costs of collecting
and modeling data and (2) the adaptation of classifiers to
new or unknown behaviors. We address the first problem by
concentrating on the properties and costs of individual fea-
tures and the second problem by using the active-learning
paradigm. In this paper, we present our technique for mod-
eling a data-flow feature as a stochastic process exhibiting
the Markov property. We introduce the novel concept of
databins to summarize, as Markov models, the transitions
of values for selected variables. We show by empirical studies
that databin-based classifiers are effective. We also describe
ensembles of classifiers and how they can leverage their com-
ponents to improve classification rates. We show by em-
pirical studies that ensembles of control-flow and data-flow
based classifiers can be more effective than either component
classifier.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification; G.3 [Mathe-
matics of Computing]: Probability and Statistics; I.2.6 [Ar-
tificial Intelligence]: Learning

General Terms: Measurement, Reliability, Experimenta-
tion, Verification

Keywords: Software testing, software behavior, machine
learning, Markov models

1. INTRODUCTION
The automatic detection and classification of software be-

haviors is an important component of many software de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

velopment and maintenance activities. For example, to im-
prove the quality of software after its release, developers can
monitor the deployed software and use the results of the
monitoring to determine automatically the frequency and
properties of the software behaviors, including failures [7,
20]. For another example, to facilitate autonomic comput-
ing, developers can model software systems as self-regulating
biological systems, which requires automated behavior de-
tection to support system self-awareness [1, 10, 15].

One approach to analyzing behaviors is to view a pro-
gram’s behaviors as the collection of all its executions. There
are many features of these executions, such as branch pro-
files, for which we can collect statistical measures. If these
features are accurate predictors of program behavior, we
can build models and automatic behavior classifiers from
them using a broad range of statistical machine-learning
techniques.

Recent research in software engineering has resulted in
approaches that use established procedures to build predic-
tive models from statistical measures of program executions
(e.g., [5, 7, 11, 16, 21]). These approaches model large sets
of features and train classifiers using batch-learning, wherein
the machine-learning process depends on a fixed quantity of
manually-labeled training data. These approaches do not,
however, address two key problems in the development of
useful classifiers for software engineering applications. The
first problem concerns the costs of modeling features and
collecting data. Creating models requires analysis of the
properties of the considered features, which can result in
significant space and computational costs. Program instru-
mentation, which is the most common way to collect data
from executions, adds execution overhead to a program in
terms of both memory and running time. Because feature
modeling and data collection efforts are proportional to the
number of features monitored, identifying the most effective
features can provide significant savings. The second problem
concerns the need for classifiers to adapt to and recognize
new behaviors of a program. New behaviors may appear
as the usage of a program matures and evolves and as it is
subjected to new inputs. Classifiers built once, such as at
program release, by batch learning on a known distribution
of behaviors cannot adapt so as to correctly classify new
behaviors. An approach that accommodates new behaviors
can result in a resilient classifier that is useful for the lifetime
of a program.

To address the first problem with existing techniques, we
are concentrating on identifying the properties and costs of
individual features. In previous work, we showed that pro-

1

files of individual control-flow features can form the basis
for effective classifiers [3]. This focus on individual features
contrasts with related work (e.g., [21]) that uses randomly
selected sets of features. Specifically, we demonstrated that
branch-profile and method-call-profile features can be mod-
eled as stochastic processes that exhibit the Markov prop-
erty, which implies that predictions about future states de-
pend only on the current state. Because Markov models
are “history-less,” they are efficient summarizers of events.
We developed an automated clustering technique for Markov
models of a single feature that aggregates multiple program
executions into effective classifiers. By investigating the pre-
dictive power of individual features, we seek to understand
the costs of using each feature.

To address the second problem with existing techniques,
we are using active learning, where the classifier trains incre-
mentally on a series of labeled data elements that summarize
a feature of program executions. During each iteration of ac-
tive learning, the current classifier selects from the pool of
unlabeled executions those that exhibit unknown behaviors.
A test engineer, or an oracle, labels these selected executions
for inclusion in the training set for the next round of learn-
ing. In this way, the classifier adapts by extending the scope
of behaviors that it recognizes. We have demonstrated that
active learning can make better use of the resources avail-
able for analyzing and labeling program execution data than
does batch learning [3].

In our previous work, we concentrated on control-flow fea-
tures, and built classifiers that correctly classified new ex-
ecutions between 50% and 90% of the time. Although our
classifiers performed well in most cases, there were cases in
which the control-flow features were poor predictors. To see
this, consider two versions of a program that exhibit identi-
cal control-flow for all or most of their inputs, but produce
conflicting outputs. A simple example of this is a straight-
line program P , with no conditional statements, that calcu-
lates the square of a number x. If one version of P calculates
x2 using the multiplication operator, as in “x ∗ x,” and an-
other version of P mistakenly uses the addition operator, as
in “x + x,” both versions will exhibit identical control-flow
behavior under all inputs. However, the two versions will
produce the same output only when the input is either 0
or 2. In all other cases, the data-flow behaviors of the two
versions of P differ.

To capture the data-flow behaviors of programs for use
in building classifiers, we developed the novel concept of
databins as a way to summarize as Markov models the tran-
sitions of values for selected variables. A databin for a
variable during one execution is one of a small number of
percentile ranges of the values of that variable that acts as
a state in a state-transition matrix containing each transi-
tion’s relative frequency or profile. To provide a classifier
that is sensitive to different features of a program’s exe-
cution, we also developed an ensemble classifier that com-
bines the two complementary features—branch profiles and
databin profiles.

In this paper, we introduce our classification technique
based on databin profiles. We show, using empirical stud-
ies, that behavior classifiers based on databin profiles can
be effective and that active learning is less expensive than
batch learning for training databin-based classifiers. We also
present ensemble classifiers that are composed of two clas-
sifiers built from different features. In this paper, we show

empirically that ensemble classifiers based on branch profiles
and databin profiles can outperform their component classi-
fiers. The improvement realized with an ensemble classifier
is consistent with results in machine learning, and arises
when two good classifiers view a set of data from differ-
ent but complementary perspectives [12]. Thus, our finding
of improved classification rates for ensembles suggests that
control-flow and data-flow features of program executions
capture divergent statistical views of behaviors.

The main contributions of this paper are:

1. The introduction of databin transitions as a stochastic
representation of data-flow in a program;

2. The description of an ensemble classifier that combines
control-flow and data-flow based classifiers;

3. Empirical studies that demonstrate that

(a) active learning of databin-profile classifiers is more
cost effective than with batch learning, as we have
previously shown for branch-profile classifiers and

(b) branch-profile based classifiers are generally more
effective than databin-profile based classifiers

(c) ensembles of classifiers based on branch-profiles
and databin-profiles can outperform classifiers
based on either feature individually.

2. BUILDING BEHAVIOR CLASSIFIERS
In this section we overview our previous work in utilizing

Markov models of state-transition profiles to build behavior
classifiers. We also review our approach to reducing the
costs associated with classifier building.

2.1 Modeling a Feature’s State Transitions
In our work, we seek to isolate and evaluate individual

features, and to do so, we concentrate on the subset of fea-
tures that profile state transitions in program executions.
We define a state transition for a program feature as a
transition from one program entity to another. Types of
control-flow state transitions include branches (source state-
ment to sink statement), method calls (caller to callee), and
branch-to-branch. Types of data-flow state transitions in-
clude definition-use transitions; we discuss data-flow transi-
tions in more detail in Section 3.

In previous work, we showed that control-flow state-transi-
tion features can describe stochastic processes that exhibit
the Markov property by building Markov models from them
that effectively predict program behaviors. The Markov
property provides that the probability distribution of future
states of a process depends only on the current state. Thus,
a Markov model captures the time-independent probability
of being in state s1 at time t + 1 given that the state at
time t was s0. In this modeling context, the states of the
Markov model are the program execution states that de-
fine the feature of interest. For example, the Markov model
states for a branch are the state transitions between source
nodes and sink nodes representing the branch in the control-
flow graph1(CFG) of a program. The relative frequency of a
state transition during a program execution provides a mea-
sure of its probability. For a source node that is a predicate
there are two branches, “true” and “false,” each represent-
ing a transition to a different sink node. The transition

1A control-flow graph is a directed graph in which nodes
represent statements or basic blocks and edges represent the
flow of control between the statements or basic blocks.

2

w/ Behavior Labels

Training Instances =
Classifiers

Cb1,…,Cbn
Profiles

 Behavior Groups

b1,…,bn

Event Transition

Program
P

Instrument P
to profile

event
transitions

Test Suite
w/ Behavior

Oracle

Execute &
Label

Behaviors
P̂

Stage 1. Prepare Training Instances

Train one
Classifier
per Group

Group by
Behavior
Labels

Assemble
Classifier

C for P

Classifier
C

Stage 2. Train Classifier

Figure 1: Technique: Stage 1 - Prepare Training Instances; Stage 2 - Train Classifier.

probabilities between this source node state and each of the
two sink nodes states, in the Markov model, are the relative
execution frequencies, or profiles, of the respective branches.

2.2 Training Classifiers
We developed a two-stage technique for training behav-

ior classifiers from the profile data of a state-transition fea-
ture of a program collected during multiple executions. We
demonstrated its use in building classifiers from branch-
profile data [3], but the technique is generally applicable
to any state-transition feature. Figure 1 shows a dataflow
diagram2 of our technique. The technique takes as inputs a
subject program P , a test suite with a behavior oracle, and
outputs a Classifier C. P ’s Test Suite contains test inputs.
The Behavior Oracle outputs a behavior label bk, such as
“pass” or “fail,” for each execution ek of P induced by test
input tk.

In Stage 1, Prepare Training Instances, the technique in-
struments P to get P̂ so that as P̂ executes, it records state-
transition profiles for the chosen feature. For each execution
ek of P̂ with test input tk, the behavior oracle labels ek.
This produces a training instance—consisting of ek’s state-
transition profiles and its behavior label—that is stored in
a database of Training Instances.

In Stage 2, Train Classifier, the technique first groups the
training instances from the database by the distinct behav-
ior labels b1, . . . , bn generated by the behavior oracle. For
example, if the behavior labels are “pass” and “fail,” the
result is two behavior groups. Then, the technique converts
each training instance in each behavior group to a Markov
model, as discussed above. The technique uses an automatic
clustering algorithm to train one classifier Cbk per behavior
group bk. The clustering algorithm is an adaptation of an
established procedure known as agglomerative hierarchical
clustering [9]. Using this procedure, each training instance
is initially considered to be a cluster of size one. The tech-
nique proceeds iteratively by finding the two clusters that
are nearest to each other according to some similarity func-
tion. These two clusters are then merged into one cluster,
and the procedure repeats. The stopping criterion is either

2In a dataflow diagram, boxes represent external entities,
(i.e., inputs and outputs), circles represent processes, arrows
depict the flow of data, and parallel horizontal lines in the
center represent a database.

a desired number of clusters or some valuation of the quality
of the remaining clusters. Finally, our technique assembles
the group classifiers, Cb1 , . . . , Cbn into the classifier C for P .

2.3 Using the Classifier
We use classifier C to label executions of P̂ that were not

in the training set. The new execution is modeled from the
collected profile data. Each constituent clustered model of
C rates the execution with a probability score. The model
in C with the highest probability score for the new execu-
tion provides the behavior label. For example, if there were
three clusters representing behavior label “pass” and two
clusters representing behavior label “fail,” the scoring pro-
cess would produce five probabilities or votes. The cluster
with the highest relative probability wins the vote and labels
the execution.

The probability score, PS, is the probability that the model
M could produce the sequence of state transitions in the
subject execution. As an example, consider an execution of
a program with the following trace of branches:

{Branch1, Branch3, Branch1, Branch3, Branch2}.

Suppose we have a cluster model M with the following prob-
abilities, Pr(), for these three branches:

Pr(Branch1) = 0.9, Pr(Branch2) = 0.1, Pr(Branch3) = 0.333.

To calculate the probability score PS that the Markov model
M produced the trace, we compute the product of the suc-
cessive probabilities of the trace using the probabilities in
M :

PS = Pr(Branch1) ∗ Pr(Branch3) ∗ Pr(Branch1) ∗
Pr(Branch3) ∗ Pr(Branch2).

PS = 0.9 ∗ 0.333 ∗ 0.9 ∗ 0.333 ∗ 0.1 = 0.008982.

For active learning, we specify that the classifier report a
subject execution as unknown whenever this calculated prob-
ability is below some heuristically-determined threshold. We
detail this heuristic in Section 5 (Empirical Studies).

Note that probabilities calculated by multiplication can
become very small. To overcome this, we use a standard
technique with Markov models of converting the probabili-
ties to their negative natural logarithms and then summing
them. This transformation preserves the ordering of the re-
sults.

3

2.4 Active Learning and Cost Reduction
Active learning can provide cost savings in the construc-

tion of classifiers over the batch-learning approach. In active
learning, the predictions of the current classifier inform the
decision about which data item to process next during clas-
sifier training. This filtering process reduces the manual ef-
fort required to label new data. Active learning is especially
useful when the scope of the data is not fully known, which
is generally the case with software behaviors. For example,
in our technique, we can begin with a small test suite to
produce a small training set and then use the resultant clas-
sifier to classify new executions induced by additional test
inputs. Our classifier will either label each new execution’s
behavior or report it as unknown. When these unknown
behaviors do occur, the active learning paradigm provides
for qualitative feedback from an oracle. The oracle in this
case is a test engineer who evaluates the execution and then
manually labels the behavior. After the oracle labels the ex-
ecution, that execution becomes a new training instance for
the classifier. The new, refined classifier can now recognize
the new behavior.

The cost savings in this process are directly proportional
to the number of executions that must be evaluated and la-
beled by a test engineer. Conventionally, test engineers eval-
uate every test execution and label it. Using active learning,
we start with a small test suite and then we evaluate, label,
and incorporate into the model only those additional execu-
tions that the classifier deems as new or unknown. At the
limit, active learning may require that every new execution
be evaluated, thereby providing no savings over the conven-
tional process. However, we have demonstrated in previous
work that active learning can reduce evaluation costs over
batch learning while also yielding a better classifier [3].

3. DATA-FLOW FEATURES
To extend the range of features for our classifiers, and

based on our success in modeling control-flow features as
stochastic processes, we sought to model data-flows as sto-
chastic processes. We can define a state transition for a
data-flow feature as a transition from one variable state
to another. Types of data-flow state transitions include
definition-use pairs and transitions between values or value
ranges of variables.

We found experimentally that traditional data-flow transi-
tions such as definition-use pairs were quite similar in struc-
ture to those we have seen with control-flow transitions. As
an alternative, we elected to model the transitions in the
flow of data values as a way to extract a distinct feature
from an execution.

In modeling data-flows as state transitions of the values of
variables, we encountered three main problems. First, most
programs use a wide range of variables and types, each of
which may be instantiated numerous times. Tracking the
values of these variables would be at best expensive and at
worst intractable. Second, a single variable’s range of val-
ues might differ between executions. For example, suppose
one execution of a program calculates the mean of values
in [0, . . . , 1] and another execution calculates the mean of
values in [103, . . . , 105]. Lack of normalization of this differ-
ence of ranges for each variable complicates the collection
and modeling of the value ranges. Third, the number of
states for a single variable could become intractable if each

Transition Matrix Markov Model

databin 1 2 3 databin 1 2 3
1 2 1 1 1 0.5 0.25 0.25
2 1 1 1 2 0.33 0.33 0.33
3 1 1 1 3 0.33 0.33 0.33

Figure 2: Databin example.

distinct value were to be considered as a state. For example,
a loop variable that iterates through all 8-bit integers would
produce an unwieldy number of states. Clearly, a method
for controlling the size of this state space is required.

To solve the first problem, we needed to reduce the num-
ber of variables while preserving the predictive power of our
behavior model. After exploring the variable space of a num-
ber of our subjects, we arrived at the following simplifying
heuristic to reduce the number of considered variables:

1. Consider every use of each field of structures and classes
as the use of a single variable.

2. Consider all elements of an array as instances of a sin-
gle variable if not considered by the previous restric-
tion.

3. Ignore constants.
4. Ignore variables that behave as constants.
5. Ignore variables local to any method.
6. Ignore pointer variables.
7. Ignore booleans and variables that take only two values
8. Consider only the first character of any string variable

3.1 Databin Models
To solve the second and third problems, we created a rep-

resentation that partitions the range of values into a fixed
number of bins (this approach is similar to that used in
histograms). These bins, which we call databins, are per-
centiles of the range for a given variable, where each per-
centile becomes a state in a transition matrix. The use of
databins solves the problems of normalization and of defin-
ing a tractable set of states for a variable. For example,
consider a databin count of 3. In this case, the range of
a variable’s values will be partitioned or binned into three
percentile ranges: the lower third, the middle third, and the
upper third. If the range of a variable var during an execu-
tion is [0, . . . , 8], then Databin-1 represents [0, 1, 2]; Databin-
2 represents [3, 4, 5]; and Databin-3 represents [6, 7, 8]. If
we consider individual databins as equivalence classes for
the values of var across executions, this binning into per-
centiles of the range provides the required normalization.
For instance, if the range of var during another execution
were [0, . . . , 23], then the three databins would be [0, . . . , 7],
[8, . . . , 15], and [16, . . . , 23].

During a program’s execution, we measure state-transition
profiles for databins. From these we build stochastic mod-
els of a variable’s behaviors. Consider our variable var and
three databins. Suppose we collect the following sequence of
values for var during an execution: 0, 1, 2, 6, 1, 4, 8, 8, 5, 5, 1.
The range is [0, . . . , 8], and the three databins are [0, 1, 2],
[3, 4, 5], and [6, 7, 8]. We transform this sequence of values
to a sequence of databins, using the integers 1, 2, 3 to repre-
sent the three databins: 1, 1, 1, 3, 1, 2, 3, 3, 2, 2, 1. We convert
this sequence of databins to a transition matrix of size 3x3
by traversing it and counting transitions. Note that for a
transition matrix, the starting state is a row label, and the

4

ending state is a column label. By normalizing the transi-
tion matrix, we obtain a Markov model representation. The
two matrices are shown in Figure 2.

3.2 Databin Classifiers
For the branch-profile feature, we model each execution

of the program as a single transition matrix and equivalent
Markov model. For databins, we model each execution as
a set of databin transition matrices, with one matrix for
each variable. Thus we use as the component models only
those Markov models that form the diagonal of the larger
Markov model that represents all possible transitions, as
shown abstractly in Figure 3. In the figure, each box along
the diagonal is a Markov model similar to the one shown
in Figure 2, representing a summary of the transitions be-
tween percentile ranges for one variable. In this paper, we
do not consider the potential transitions between the values
of different variables, depicted as empty cells in Figure 3.

Referring to our technique shown in Figure 1, the clus-
tering process requires a similarity metric to compare two
databin models. We calculate similarity as the sum of the
pair-wise similarity measures between each of the Markov
models in the set of variable models. We previously demon-
strated that a useful heuristic for the similarity of two Markov
models is their Hamming distance when a threshold trans-
forms very low values to zeroes [3]. We also require a pro-
cedure to merge two databin models. Again, we proceed
by defining the merged model as the set of merged Markov
models, where the models of matching variables are merged.

With these modifications, our technique for building clas-
sifiers (Figure 1) will also build a classifier from databin pro-
files. Note that the classifier C produced by our technique
is a collection of clusters, each of which is itself a databin
model created by the successive mergings of the clustering
process. To use this classifier to label a new subject exe-
cution, we proceed in a fashion similar to that detailed in
Section 2. First we calculate the probabilities that each of
the component clusters in the classifier produced the sub-
ject execution, as represented by its databin profiles. These
probabilities are calculated as the product of the probabil-
ities that each variable model in the cluster’s set of vari-
ables produced the corresponding databin profiles for the
same variable in the subject execution. For example, sup-
pose that we have a program with two variables v1 and v2,
and that we have created a classifier C, using our technique.
One of the clusters of C is a databin model consisting of two
Markov models, one for each of v1 and v2. Further suppose
that these models are both identical to the one shown on
the right in Figure 2. We ask this databin model to score a
new execution that has the following databin profiles of the
form (databinfrom, databinto, profile):

v1: (1,1,3); (2,3,1) v2: (1,2,2); (3,2,1)

The probability score, PS, is calculated as the product of
the probability that the databin model’s v1 produced v1 in
the execution times the similar calculation for v2:

PS = Pr(v1) ∗ Pr(v2) = [(0.53) ∗ (0.331)] ∗ [(0.252) ∗ (0.331)] =
0.00085078.

The cluster in C with the highest relative probability
above a given threshold wins the right to label the execu-
tion’s behavior. If all the probabilities fall below the thresh-
old, then the classifier reports that the behavior is unknown.

v1 v2 v3 v4 v5
v1 V1
v2 V2
v3 V3
v4 V4
v5 V5

Figure 3: Abstracted Markov model for five vari-
ables each with a databin transition matrix.

4. ENSEMBLES
Our technique produces classifiers from the state-transition

profiles of a single feature, such as branch profiles or databin
profiles. These classifiers label new executions based on sta-
tistical summaries of the particular feature. Consider a pro-
gram P and suppose that we use our technique to build two
classifiers for P—one based on branch profiles, Cbranch, and
the other based on databin profiles, Cdatabin. Additionally,
suppose that we produce a set of new executions for which
we collect both branch profiles and databin profiles. We are
interested in the extent to which Cbranch and Cdatabin agree
on their classifications. If there is a divergence in agreement,
we would like to know if we can leverage it to produce a bet-
ter classifier by somehow combining Cbranch and Cdatabin.

One approach is to combine two or more feature-based
classifiers into an ensemble classifier. The machine-learning
community uses ensemble classifiers in a wide variety of ap-
plications. Hansen and Salamon show that the necessary
and sufficient conditions for ensemble classifiers to outper-
form their component classifiers are that the components
each have classification error rates less than 0.5 and that
they have diverging classifications of the same test data [12].
Ensemble classifiers fall into two general categories: those
that manipulate the data directly during training, and those
that bring together existing classifiers. The first category
includes bagging and boosting, which train iteratively on
weighted data sets [4, 24]. The second category includes
weighted voting algorithms [18].

In this paper, we explore using binary feature ensembles of
classifiers: one based on control-flow profiles and the other
based on data-flow profiles. As a result, we can use a simple
weighted voting scheme to produce the ensemble’s classifica-
tion. The two component classifiers report their respective
labels, including “unknown,” and their confidence in these
labels. We have previously defined the “unknown” label to
mean that the probability associated with the label is below
a threshold. This is a special case of our confidence measure,
which is a normalized distance from this threshold. The vot-
ing scheme consists of comparing the labels reported by the
two classifiers. If the two classifiers agree, the common label
is used to label the execution. If they disagree, the classi-
fier with the higher confidence wins the vote and its label is
used to label the execution. We have developed a heuristic
for defining the threshold after each training session. The
classifier classifies its own training set of data and produces
a range of probabilities, calculated as described in Section 2.
The threshold is the mean of these values.

5

Subject LOC branches variables test cases

flex 7447 2538 60 533
sed 6102 2560 12 1293
space 5420 1228 25 13585
print tokens 481 133 7 4072
replace 415 150 32 5542
schedule 227 74 15 2650

Table 1: Table of subject programs.

5. EMPIRICAL STUDIES
The goals of our empirical studies are to evaluate the per-

formance of databin-based classifiers, and then to compare
them with branch-based classifiers directly and as cooper-
ating members of ensemble classifiers. As discussed earlier,
we have previously shown the efficacy of control-flow based
classifiers and the advantage of using active learning to build
them [3]. To reach our goals, we pose the following research
questions:

Q1: How does active learning compare with batch learn-
ing for databin-based classifiers?

Q2: How do ensemble classifiers composed of both a
control-flow and a data-flow classifier perform under active-
learning?

5.1 Measure of Dependent Variable
Our measure of the quality of a classifier is the classifica-

tion rate, which is the only dependent variable used in these
evaluations. The classification rate is defined as

number of test instances correctly classified
total number of test instances classified

.

Our classifiers provide a confidence measure with each clas-
sification. If the confidence level is below a heuristically-
determined threshold value, then the classification result is
set aside and the classifier reports instead that the given
test instance is unknown. This threshold is set each time
the classifier trains: the classifier classifies its own training
set and computes the parametric statistics for the probabil-
ities produced. The threshold is the mean of these prob-
abilities. In calculating the classification rate, those test
instances that are reported as unknown are considered to
be incorrectly classified. For example, suppose classifier C
scores a total of 100 executions and correctly classifies 80
and reports that 5 are unknown. Then the classification
rate for C is 80

100
= 0.8.

5.2 Subject Programs and Infrastructure
As subjects for our studies we used six C programs—flex

and sed [8], space [23, 25], and three of the Siemens test sub-
jects (print tokens, replace, and schedule) [14, 22] —as listed
in Table 1. The table shows averages across versions for each
subject for lines of code (LOC3), number of branches, num-
ber of databin variables used in our studies, and number of
test cases available.

Each subject has a variety of versions with actual or in-
jected faults and a binary-valued fault matrix labeling the
behaviors of the versions when exercised with the available
test cases. For these studies we considered only the behavior
labels “pass” and “fail,” as provided by the fault matrices.
We selected a subset of the available versions that had a

3Excludes comments, blanks, standalone “[,” “],” “(,” or “)”

better than ten percent proportion of failing to passing test
cases, thereby increasing the likelihood that random selec-
tion of test cases for a subject would include those that
failed.

5.2.1 Databin-profile Feature
For databins, we determined empirically that a bin count

of 5 provided a better rate of classification than bin counts
greater or less than 5, such as 3 or 7. Thus, for each mod-
eled variable, we used a transition array of size 5x5. For a
given subject in Stage 1 of our technique (Figure 1), we ex-
ecuted an instrumented version of the subject and collected
the databin-profile data. We used Daikon’s front end for C,
Kvasir, that instruments and executes C programs using the
DWARF-2 debugging format.4 Kvasir produces trace files of
the values assigned to variables, which we post-processed to
reduce the number of variables as described in Section 3, and
to calculate the state-transition profiles between pairs of the
five databins for each variable. We used our tool Argo to
construct and serialize a set of data instances from the mod-
els for each execution, including the behavior label of “pass”
or “fail.” Argo, written in C#, implements our technique
for constructing classifiers and for conducting classification
experiments on subject programs.

5.2.2 Branch-profile Feature
In our previous work, we found that the three control-

flow features we studied—branch profiles, method-call pro-
files, and branch-to-branch profiles—yielded classifiers with
similar classification rates. However, classifiers built from
the branch-profile feature produced the highest classifica-
tion rate on average, and were the least expensive in terms
of both modeling and collecting data. Thus, to answer Q2,
we chose the branch profile as the representative control-flow
feature based on its performance for these subjects.

To collect data for the branch-profile feature of a given
subject, we again followed Stage 1 of our technique (Fig-
ure 1), and executed an instrumented version of the subject
and collected the branch-profile data. We used the Aristo-
tle analysis system5 to instrument each subject to profile
branches. We used our tool Argo to construct and serialize
a set of data instances from the models for each execution,
including the behavior label of “pass” or “fail.”

5.3 Empirical Method
To facilitate the use of databin-profile and branch-profile

features together in an ensemble, we used the same set of
training instances and thus the same set of test instances at
each iteration for both classifiers. A training instance and
a test instance both refer to data collected from a single
execution. A classifier trains on the former and evaluates
the latter. Both training and test instances are drawn from
a general pool of data instances. For each version of each
subject, our empirical method proceeds as follows for fifteen
repetitions:

1. Partition the data instances. From the set of data
instances, select at random 250 instances to be the
pool of training instances. The remaining data in-
stances become the set of test instances.

4http://pag.csail.mit.edu/daikon
5http://www.cc.gatech.edu/aristotle/

6

space

print_tokens replace schedule

cl
as

si
fic

at
io

n
ra

te
cl

as
si

fic
at

io
n

ra
te

flex sed

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 1 2 3 4 5 6 7 8 9 10
epoch

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 1 2 3 4 5 6 7 8 9 10
epoch

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 1 2 3 4 5 6 7 8 9 10
epoch

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 1 2 3 4 5 6 7 8 9 10

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 1 2 3 4 5 6 7 8 9 10
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 1 2 3 4 5 6 7 8 9 10
epoch epoch

epoch

Figure 4: Active (solid line) vs. batch (dotted line) learning for databin-profile feature.

2. Initialize batch and active learning. Select 25
training instances with the label “pass” at random
from the pool of training instances and construct two
classifiers, CBatch = CActive. Classify the set of test
instances and report the results.

3. Batch Learning. Repeat nine times: Select 25 train-
ing instances from the pool of training instances and
incorporate them into CBatch; Classify the set of test
instances and report the results.

4. Active Learning. Repeat nine times: Select at most
25 training instances from the pool of training instances
that the current Active classifier labels as unknown;
Incorporate them into CActive; Classify the set of test
instances and report the results.

The evaluation of the ensemble classifiers did not involve
additional classifier building. Rather, at each iteration of
step 4 in the preceding protocol the ensemble classifier was
formed from the branch-profile and databin-profile classi-
fiers. Then the classification process was the voting mecha-
nism described in Section 4.

5.4 Results
In this section, we present the results of our investigations

into the two research questions.

5.4.1 Research Question 1
Question Q1 explores the classification rates of databin-

based classifiers under batch and active learning. The re-
sults are shown in Figure 4 as an individual graph for each
of the six subjects. Within each graph, the horizontal axis
shows the ten training epochs6 corresponding to the incre-
ments of 25 training instances used for the batch learning.
Within each graph, the vertical axis shows the classification
rate, the dependent measure, which ranges from 0.0 to 1.0.
The dotted vertical line on each graph denotes the epoch at

6An epoch represents an iteration of the training process.

which the active learner stopped finding new behaviors in
the pool of training instances. Two lines (plots) are shown
on each graph—the solid line for the classification rate of
the active learner and the dashed line for the classification
rate of the batch learner. The results show that across all
subjects, the use of active learning improves the rate of clas-
sification over that of batch learning for the databin-profile
based classifiers. Also note that the batch learners at epoch
ten have incorporated all 250 training instances, whereas the
active learners stopped acquiring new training instances in
the vicinity of five epochs (see vertical dotted lines), or 125
training instances, depending on the subject.

For all subjects, the initial classifier, which trained only
on the label “pass,” has a classification rate above 0.5. How-
ever, for flex, sed, space, and schedule, the classification rate
of the batch learning classifier falls below 0.5 (i.e. that which
random choice could achieve) with succeeding epochs.

5.4.2 Research Question 2
Question Q2 compares the classification rates of branch-

profile and databin-profile classifiers built using active learn-
ing and then explores the classification rates of ensemble
classifiers composed of one of each. Each component classi-
fier is built using active learning. The results are shown in
Figure 5 as an individual graph for each of the six subjects.
Within each graph, the horizontal axis shows the ten train-
ing epochs. Within each graph, the vertical axis shows the
classification rate, the dependent measure, which for these
results ranges between 0.3 and 1.0. Three lines (plots) are
shown on each graph—the dashed line for the branch-profile
classifier, the dotted line for the databin-profile classifier,
and the solid line for the ensemble classifier.

The graphs show that in all cases, except for flex, both of
the component classifiers begin at a classification rate above
0.5 and this corresponds to an error rate below 0.5, which is
one of the necessary and sufficient properties for successful
ensembles (see Section 4.) Given this property, it follows

7

space

print_tokens replace schedule

cl
as

si
fic

at
io

n
ra

te
cl

as
si

fic
at

io
n

ra
te

flex sed

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10
0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10
0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10
0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10

Figure 5: Ensemble classifiers (solid line) of branch-profile (dashed line) and databin-profile (dotted line)
classifiers.

that any improvement in the ensemble over the two compo-
nent classifiers represents the divergence of their respective
classifications. In the case of flex, space and print tokens, for
instance, the contribution of databin profiles is negligible, as
the ensemble does only marginally better than the branch-
profile classifier. In the case of sed, replace and schedule, for
instance, there is an approximate 10% improvement of the
ensemble over either component classifier. The graphs also
show that in all cases, branch profiles do better than databin
profiles. In those cases where the ensemble does produce
an improvement, we can infer that the databin classifier is
divergent from the branch classifier. This means that the
databin classifier contributes new information to the ensem-
ble.

6. RELATED WORK
The previous work that is closest in spirit and method to

our work is that of Podgurski and colleagues [7, 21]. Their
work uses clustering techniques to build statistical models
from program executions and applies them to the tasks of
fault detection and failure categorization. The two primary
differences between our technique and this previous work are
the central role of Markov models in our approach and our
use of active-learning techniques to improve the efficiency
of behavior modeling. An additional difference is that we
explore the utility of using individual control-flow and data-
flow features instead of a large set of features.

Dickinson, Leon, and Podgurski demonstrate the advan-
tage of automated clustering of execution profiles over ran-
dom selection for finding failures [7]. They use the pro-
files of many different features as the basis for cluster for-
mation. We concentrate on three features that summarize
event transitions—branch profiles, method-call profiles and
databin profiles. We show the utility of Markov models built
from these feature profiles as predictors of program behav-
ior. In Podgurski et al. [21], clustering is combined with

feature selection, and multidimensional scaling is used to
visualize the resulting grouping of executions. In both of
these works, the clusters are formed just once using batch
learning and then the clusters are used for subsequent analy-
sis. In contrast, we explore an active learning technique that
interleaves clustering with evaluation for greater efficiency.

Another group of related papers share our approach of
using Markov models to describe the stochastic dynamic
behavior of program executions. Whittaker and Poore use
Markov chains to model software usage from specifications
prior to implementation [26]. In contrast, we use Markov
models to describe the statistical distribution of transitions
measured from executing programs. Cook and Wolf con-
firm the power of Markov models as encoders of individual
executions in their study of automated process discovery
from execution traces [6]. They concentrate on transform-
ing Markov models into finite state machines as models of
process. In comparison, our technique uses Markov mod-
els to directly classify program behaviors. Jha, Tan, and
Maxion use Markov models of event traces as the basis for
intrusion detection [16]. They address the problem of scor-
ing events that have not been encountered during training,
whereas we focus on the role of clustering techniques in de-
veloping accurate classifiers.

The final category of related work uses a wide range of al-
ternative statistical learning methods to analyze program
executions. Although the models and methods in these
works differ substantially from ours in detail, we share a
common goal of developing useful characterizations of ag-
gregate program behaviors. Harder, Mellen, and Ernst au-
tomatically classify software behavior using an operational
differencing technique [13]. Their method extracts formal
operational abstractions from statistical summaries of pro-
gram executions and uses them to automate the augmen-
tation of test suites. In comparison, our modeling of pro-
gram behavior is based exclusively on the Markov statistics

8

of events. Brun and Ernst use dynamic invariant detection
to extract program properties relevant to revealing faults
and then apply batch learning techniques to rank and select
these properties [5]. However, the properties they select are
themselves formed from a large number of disparate features
and the authors’ focus is only on fault-localization and not
on program behavior in general. In contrast, we seek to
isolate the features critical to describing various behaviors.
Additionally, we apply active learning to the construction of
the classifiers in contrast to the batch learning used by the
authors. Lin and Ernst propose batch learning of execution
data to build mode controllers for multi-mode programs [17].
Again, the authors use a large feature space in contrast to
our use of specific stochastic features as well as batch learn-
ing, where we use active learning.

Gross and colleagues propose the Software Dependabil-
ity Framework, which monitors running programs, collects
statistics, and, using multivariate state estimation, auto-
matically builds models for use in predicting failures dur-
ing execution [11]. This framework does not discriminate
among features as we do. Also, we use Markov statistics of
event-transitions instead of multivariate estimates to model
program behaviors. Their models are built once using batch
learning whereas we leverage active learning.

Munson and Elbaum posit that actual executions are the
final source of reliability measures [19]. They model pro-
gram executions as transitions between program modules,
with an additional terminal state to represent failure. They
focus on reliability estimation by modeling the probability
of transitions to this failure state. We focus on behavior
classification for programs that may not have a well-defined
failure state.

7. DISCUSSION, CONCLUSIONS, AND FU-
TURE WORK

In this paper, we have extended our work on the auto-
mated modeling and classification of software behaviors and
presented databin profiles, a new data-flow state-transition
feature of program executions. We showed that databin pro-
files can be modeled as a stochastic process that exhibits the
Markov property. We add databin profiles to our collection
of features that can provide effective summaries of behav-
iors, which includes branch profiles and method-call profiles.
One goal of our work is to discover and document the in-
dividual features of program executions that have the best
predictive power in known code constructs.

In this paper, we also presented a set of empirical stud-
ies that indicate the efficiency and effectiveness of our ap-
proach for a set of subjects. These studies validate the use-
fulness of databin modeling and demonstrate that, as with
our previous work with control-flow features, active learning
is more efficient and effective than the conventional batch
learning for databin profiles. These studies also that show
that, for our subject programs, the branch-profile feature
has up to 10% more predictive power than the databin pro-
files. However, the competitive performance of the databin
classifier suggests that data-flow features may be as impor-
tant as control-flow features in characterizing program be-
havior. Additionally, our empirical studies show that en-
semble classifiers composed of two classifiers, one based on
branch profiles and the other based on databin profiles, can
yield a classification rate superior to or as good as either
component classifier. This finding of improved classification

rates for ensembles suggests that control-flow and data-flow
features of program executions can capture divergent statis-
tical views of behaviors for some subjects.

Although our empirical studies provide evidence of the po-
tential usefulness of our approach, there are several threats
to the validity of our results. Threats to the external valid-
ity of an experiment limit our ability to generalize from our
results. The primary threats to external validity for these
studies arise because we have considered only versions of six
C programs. We cannot claim that these results generalize
to other programs. In particular, we cannot generalize as
to the effectiveness of either control-flow or data-flow fea-
tures as predictors of behavior. Future work will include
the evaluation of these features for other subjects.

Threats to the internal validity of an experiment occur
when there are unknown causal relationships between the
independent and dependent variables. In these studies, one
threat to internal validity is the finite number of test cases
for each subject. The collective properties of the test suites
may affect our classification rates. A second threat is that we
used only one clustering algorithm and that we set thresh-
olds heuristically during the classification process. Thresh-
old levels are key to our detection of unknown behaviors. A
third threat arises from our definition of databins, where we
constrained all variables to five databins. Nevertheless, the
work suggests a number of research questions and additional
areas for future work.

First, in this paper, the cost of the improvement in the
ensemble classifier is the added cost of the databin-profile
classifier, which must be compared to the cost advantage
of the improvement in classification rate. These costs are
subject- and task-specific and need to be evaluated on a
case-by-case basis. Because databin profiles can be effec-
tive predictors, as shown in the graphs in Figure 4, we will
explore additional techniques to reduce the costs of model-
ing and data collection for databins. In these studies, we
collected traces of each variable during execution, and then
processed the trace to define and profile the databin tran-
sitions. One way to reduce costs, for example, is to make
informed estimates of the databins for a variable after a few
initial executions, and then perform profiling on-line, with-
out the need for recording a trace.

Second, the results for flex demonstrate that databin pro-
files are not always useful. This may be due to the particu-
lar design of databin profiles. Other data-flow features may
have better predictive power in some cases. We will investi-
gate other formulations of databins, including, for instance,
tuning the number of databins per variable. We will extend
our research to include transition profiles of conventional
data-flows such as definition-use pairs.

Finally, we have shown that ensemble classifiers can com-
bine branch-profile and databin-profile classifiers to advan-
tage. We will investigate more closely the mapping between
program structures and these features to learn whether spe-
cific code structures are better suited to a particular feature.
We will investigate whether we can extend the ensemble con-
struct to include features extracted in a more granular fash-
ion from parts of the program. If so, we could leverage the
advantages of both, while eliminating the costs of unneces-
sary data collection. Once the local features are specified,
we could apply the techniques of Software Tomography [2]
to distribute the data collection and monitoring tasks more
efficiently.

9

Acknowledgements
This work was supported in part by National Science Foun-
dation awards under CCR-0096321, CCR-0205422, and SBE-
0123532 to Georgia Tech, and by the State of Georgia to
Georgia Tech under the Yamacraw Mission, and by the Of-
fice of Naval Research through a National Defense Science
and Engineering Graduate (NDSEG) Fellowship. Gaurav
Sharma assisted with implementing databins.

8. REFERENCES
[1] G. S. Blair, G. Coulson, L. Blair, H. Duran-Limon,

P. Grace, R. Moreira, and N. Parlavantzas. Reflection,
self-awareness and self-healing in openorb. In WOSS
’02: Proceedings of the first workshop on Self-healing
systems, pages 9–14, 2002.

[2] J. Bowring, A. Orso, and M. J. Harrold. Monitoring
deployed software using software tomography. In
Proceedings of the ACM Workshop on Program
Analysis for Software Tools and Engineering, pages
2–9, November 2002.

[3] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active
learning for automatic classification of software
behavior. In ISSTA ’04: Proceedings of the 2004 ACM
SIGSOFT international symposium on Software
testing and analysis, pages 195–205, 2004.

[4] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[5] Y. Brun and M. D. Ernst. Finding latent code errors
via machine learning over program executions. In
ICSE’04, Proceedings of the 26th International
Conference on Software Engineering, pages 480–490,
Edinburgh, Scotland, May 26–28, 2004.

[6] J. E. Cook and A. L. Wolf. Automating process
discovery through event-data analysis. In Proceedings
of the 17th International Conference on Software
Engineering (ICSE’95), pages 73–82, January 1999.

[7] W. Dickinson, D. Leon, and A. Podgurski. Finding
failures by cluster analysis of execution profiles. In
Proceedings of the 23rd International Conference on
Software Engineering (ICSE’01), pages 339–348, May
2001.

[8] H. Do, S. Elbaum, and G. Rothermel. Infrastructure
support for controlled experimentation with software
testing and regression testing techniques. In
Proceedings of the International Symposium on
Empirical Software Engineering, pages 66–70, August
2004.

[9] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. John Wiley and Sons, Inc., New York,
2001.

[10] D. Garlan and B. Schmerl. Model-based adaptation
for self-healing systems. In Proceedings of the first
workshop on Self-healing systems, pages 27–32, 2002.

[11] K. C. Gross, S. McMaster, A. Porter, A. Urmanov,
and L. Votta. Proactive system maintenance using
software telemetry. In Proceedings of the 1st
International Conference on Remote Analysis and
Measurement of Software Systems (RAMSS’03), pages
24–26, May 2003.

[12] L. K. Hansen and P. Salamon. Neural network

ensembles. IEEE Trans. Pattern Anal. Mach. Intell.,
12(10):993–1001, 1990.

[13] M. Harder, J. Mellen, and M. D. Ernst. Improving
test suites via operational abstraction. In Proceedings
of the 25rd International Conference on Software
Engineering (ICSE’03), pages 60–71, May 2003.

[14] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In
Proceedings of the 16th International Conference on
Software Engineering, pages 191–200, May 1994.

[15] IBM Research. Autonomic computing, 2004.
http://www.research.ibm.com/autonomic/.

[16] S. Jha, K. Tan, and R. A. Maxion. Markov chains,
classifiers, and intrusion detection. In Proceedings of
the 14th IEEE Computer Security Foundations
Workshop (CSFW’01), pages 206–219, June 2001.

[17] L. Lin and M. D. Ernst. Improving adaptability via
program steering. In ISSTA 2004, Proceedings of the
2004 International Symposium on Software Testing
and Analysis, pages 206–216, Boston, MA, USA,
July 12–14, 2004.

[18] N. Littlestone and M. K. Warmuth. The weighted
majority algorithm. In IEEE Symposium on
Foundations of Computer Science, pages 256–261,
1989.

[19] J. C. Munson and S. Elbaum. Software reliability as a
function of user execution patterns. In Proceedings of
the Thirty-second Annual Hawaii International
Conference on System Sciences, January 1999.

[20] A. Orso, D. Liang, M. J. Harrold, and R. Lipton.
Gamma system: Continuous evolution of software
after deployment. In Proceedings of the International
Symposium on Software Testing and Analysis, pages
65–69, July 2002.

[21] A. Podgurski, D. Leon, P. Francis, W. Masri,
M. Minch, J. Sun, and B. Wang. Automated support
for classifying software failure reports. In Proceedings
of the 25rd International Conference on Software
Engineering (ICSE’03), pages 465–474, May 2003.

[22] G. Rothermel and M. J. Harrold. Empirical studies of
a safe regression test selection technique. IEEE
Transactions on Software Engineering, 24(6):401–419,
June 1998.

[23] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering,
27(10):929–948, October 2001.

[24] R. E. Schapire. Theoretical views of boosting and
applications. In Algorithmic Learning Theory, 10th
International Conference, ALT ’99, Tokyo, Japan,
December 1999, Proceedings, volume 1720, pages
13–25. Springer, 1999.

[25] F. I. Vokolos and P. G. Frankl. Empirical evaluation of
the textual differencing regression testing technique.
In Proceedings of the International Conference on
Software Maintenance, pages 44–53, July 1998.

[26] J. A. Whittaker and J. H. Poore. Markov analysis of
software specifications. ACM Transactions on
Software Engineering and Methodology, 2(1):93–106,
January 1996.

10

	x:

