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Abstract

Mirror objects are the key building blocks in the virtual `workbenches' and `portals' for scienti�c and

engineering applications constructed by our group. This paper uses mirror objects in the implementation of

the RTTB design workbench, which controls components of the RTTB rapid tooling and prototyping testbed.

Mirror objects continuously mirror the states of remote software or even hardware entities, and the operations

performed on mirrors are automatically propagated to these entities. Thus, end users perceive mirrors as

virtualizations of remote entities. This paper presents the concept of mirror objects, their JMOSS Java-based

implementation, the interoperation of JMOSS Java mirrors with the CORBA-based MOSS mirror object

implementation, demonstrations of mirror functionality and utility with a virtual `design workbench' used by

engineers for rapid tooling and prototyping processes, and performance evaluations of mirror objects. We also

present initial evaluations of JMOSS mirrors in mobile environments, where workbench users can continue

their PC-based online interactions via handheld devices carried to the shopoor.

1 Introduction

The Internet has created new opportunities for scienti�c collaboration. Scientists and engineers working in geo-

graphically di�erent locations may use remote visualizations to access the results of their large-scale simulations,

and they may update information gathered by remote instruments[20]. In addition, real-time collaboration tools

enable them to evaluate and discuss their results and insights with remote colleagues [18], and they can even

interact with their complex applications while they are running, perhaps simply to monitor their progress or to

perform tasks like online program steering[24, 29].

Virtual `Workbenches' for scientists and engineers. We are developing an interactive "Design Workbench"

for the Rapid Tooling Testbed(RTTB)[26] being developed by researchers in Mechanical Engineering at Georgia

Tech. The RTTB permits engineers to rapidly design, simulate, and prototype new mechanical parts using rapid

prototyping manufacturing methods. The "Design Workbench" presents to such users an online virtualization

of the RTTB, enabling them to (1) remotely interact with ongoing design simulations and with the software

packages implementing those simulations, (2) utilize graphical interfaces to interact with instrumented portions

of the physical RTTB (e.g., cameras viewing rapid tooling machines), and (3) use diverse interfaces ranging from

web browsers or Java-based visualizations to high end 3D graphics displays that render in real-time the potentially

large amounts of data being produced and evaluated. Moreover, such interactions may be maintained even as

end users move from one interface or access device to another, perhaps initially inspecting an ongoing design

simulation from their oÆce machines, but then continuing their work while inspecting the associated prototype

manufacture on the shopoor, using handheld, wireless-connected devices. Finally, the design workbench assumes

that simulations and prototyping processes are distributed and concurrent, the former typically comprised of

multiple software components executing in parallel on multiprocessor or distributed machines, the latter involving

multiple prototyping and manufacturing machines on the shopoor. Other research groups have formulated

similar characterizations for scienti�c or engineering `workbenches' (sometimes also called `portals') [17, 19, 5].

In comparison to remote inspection and instrumentation [20], an interactivity system like the design workbench

puts equal weights on both the monitoring and control of its remote system. Speci�cally, the workbench must

control the RTTB system's software packages, where computations may be started, paused, resumed, or stopped;
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the parameter values being used may be changed and ongoing results captured. Such controls may be performed

using computers located on the shopoor or from a remote web browser. While an experiment is being performed,

multiple engineers may jointly observe ongoing computations, not only with respect to their �nal results, but

also including the outputs of intermediate computational steps. Based on the insights thus derived, engineers

can steer their simulations by changing certain simulation parameters, then view the results of these changes

and possibly, experiment with alternative parameter settings. The intents are to (1) remove the need for the

physical presence of end users in the laboratory, (2) speed up the process of running simulations via which

users experiment with di�erent designs and design parameters, and (3) support the rapid construction of such

experiments utilizing both commercial and experimental simulation components. More detail on the design

workbench appears in Section 4, and an earlier implementation of the design workbench is described in [26, 12].

Mirror objects { building blocks for distributed workbenches and portals. This paper presents the

design and implementation of mirror objects[6, 9], which are key building blocks used in the RTTB design

workbench and in other interactivity systems for high performance applications constructed by our group. Mirror

objects provide the basic functionality needed for workbench construction, in that they `mirror' those behaviors of

the target application being viewed or controlled via the workbench that are important to end users. Speci�cally,

the state of a mirror object matches the state of an application component, because component updates trigger

consequent updates of the mirror object's state. Furthermore, operations performed on the mirror object trigger

updates to the application component that is being mirrored, thereby turning operations performed within

the workbench into operations performed on the target application. E�ectively, mirror objects are faithful

virtualizations of applications components.

JMOSS Java mirrors. This paper uses the JMOSS Java implementation of mirror objects to implement the

RTTB design workbench. We have also used mirror objects to monitor and tune high performance codes[9], and

to implement scienti�c workbenches and portals, as described in [24] and in [30]. In ongoing work, mirror objects

are being used to virtualize remote sensor devices in ubiquitous and embedded systems.

A previous publication by our group explains the design and implementation of the MOSS C/C++-based

mirror objects, and their use for the online performance monitoring and steering of high performance, parallel and

distributed codes[9]. This paper describes the JMOSS Java-based implementation of mirrors and their use for

construction of realistic virtual workbenches. The main results presented in this paper (1) include performance

evaluations that demonstrate the ability of JMOSS to mirror the state required for online control of the RTTB

system via the design workbench, and (2) they show that the use of JMOSS mirrors exhibits overheads acceptable

to high performance applications.

One advantage of Java (JMOSS) vs. non-Java (MOSS) mirror objects is their support of mobility. Such

functionality makes it easy to construct mobile workbench components, where an end user can easily move his

interactions from the desktop to a mobile device and back to the desktop, whenever needed. Three properties of

JMOSS mirror objects are key to enabling such mobility. First, JMOSS mirrors may be moved at any time, by

simple execution of a `move' command, typically performed in response to some user action, such as initiating

the `hando�' from the desktop machine to a palmtop device. Second, JMOSS mirrors may be directly associated

with certain application state, or they may mirror other MOSS or JMOSS mirrors, thus making it easy to de�ne

and re�ne the amounts of state (and its presentation) needed for handheld vs. other interface and access devices.

Third, JMOSS migrations can be customized, where each migration may choose what internal state is migrated,

thereby making it easy to move subsets of the state to a handheld device with a small screen vs. moving larger

amounts of state to a handheld with a larger screen and more memory.Or, even when migrating to a handheld

device of the same type as used previously, if its memory already contains other useful data or if migration

must be performed quickly despite slow network connections, then the migration of a JMOSS mirror object to

it may be customized to reduce bandwith or memory needs and migration delays. Measurements presented in

this paper also demonstrate the utility of customized migration for the design workbench. For instance, we show

that customized migration and mirroring enable real-time updates of mirror objects, compared to `full' mirroring

which results in delays for mirror updates exceeding 140ms for 100Kbyte data sets.

Hierarchical mirrors, mirror mobility, and customized migration are also useful for dynamic load balancing

or to enable alternative representations and presentations of workbench components and data, making it easy

for instance, to have simultaneous high resolution and wire-frame presentations of certain data, or to move a
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Figure 1: Mirror Object Architecture

rendering process from a highly to a lightly loaded machine. This paper does not explore these capabilities of

mirrors in detail.

Interoperation of MOSS and JMOSS. In general, realistic engineering and scienti�c workbenches should

o�er both Java- and C/C++-based support. For the RTTB workbench, this implies the use of both MOSS

and JMOSS in its implementation. Our motivation is twofold. First, the relative inability of Java to move

large amounts of data prompts us to avoid using Java-based mirrors for certain workbench components, such

as those that analyze the large outputs of the structural analyses performed for the mechanical parts being

prototyped (e.g., the ProE �nite element analysis code routinely outputs more than 100Kbytes of data even

for small designs). Yet at the same time, second, it is important to permit workbenches to employ the wide

variety of tools present in the Java domain, including the tools we use to generate 2D and 3D parts displays.

These statements are equally true for the scienti�c workbenches we have constructed, which use Java-based tools

like VisAD and Habanero[16] for smaller-scale visualizations and for collaboration, respectively, while also using

non-Java tools like Vis5D or CAVE5D to create 3D or immensive displays of large data sets, or even using the

parallel methods o�ered by POVRAY to perform high-quality rendering of such data in real-time. Given this

variety of tools and implementation platforms, a useful workbench building block must support the mixed use

of Java and non-Java tools. The MOSS/JMOSS mirror objects presented in this paper constitute such building

blocks.

The overheads implied by interoperation of Java with non-Java programs are also evaluated in this paper.

For example, we show that data conversion from raw data to Java objects is not overly expensive, typically

adding less than 15% to data transfer costs. In addition, we show that the monitoring overheads implied by

using JMOSS mirror objects are only slightly larger than those experienced by basic Java socket connections

transferring the same amounts of data.

Overview. The remainder of this paper �rst provides an overview of the Mirror Object Model in Section 2.

In Section 3, we discuss the key JMOSS concepts and their implementation. The use of mirror objects for

constructing the RTTB workbench is demonstrated in Section 4. Performance evaluations and microbenchmarks

appear in Section 5. Related work is discussed in Section 6, and Section 7 contains conclusions and future work.

2 The Mirror Object Model

Basic functionality. The Mirror Object Model views all application-level entities as objects with associated

methods and state, even when the application is actually written in Fortran or C. To implement mirroring, we thus

rely on the target applications' instrumentation. The results presented in this paper use manual instrumentation

methods, but better methods are well-known, including source code annotations[9, 13], compiler and linker
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support, or even runtime binary editing[14]. In any case, mirror objects are `linked' to the target applications they

mirror via asynchronous events updating their states in response to application-level state changes. Speci�cally,

the JMOSS implementation of mirror objects generates for each state change in an instrumented application-

level object a monitoring event, which is forwarded to the mirror object and updates its state. This process is

asynchronous, in that application-level state changes are not delayed until mirror-level state changes have been

completed. Our motivation is to avoid imposing unnecessary overheads on the high performance applications

monitored and controlled by mirror objects.

The intent of mirror objects is to be faithful virtualizations of the application components they mirror. Thus,

methods executed on mirrors that update their internal states must result in updates performed on application-

level components. Such updates are implemented via synchronous remote method invocations that trigger

`steering' actions on application components. Details on program steering infrastructures and instrumentation

appear in [29, 9]. For this paper, it suÆces to state that an update operation on a mirror object is not complete

until the steering action on the target application component has been performed. The purpose is to o�er a

simple update model to workbench users. In JMOSS, both the monitoring and the update consistency models

may be adjusted for each mirror object, by changing its monitoring and update policies, respectively. Such

policy changes are not explored here, but are discussed elsewhere in the context of useful consistency policies for

distributed objects on shared and distributed memory machines (see [27]).

Mirror objects also contain the additional methods and/or derived state implied by the roles they play in

virtual workbenches. They may o�er certain state transformation of display methods, for instance, so that they

render transformed and not raw, unintelligible application state[24, 30].

In general, then, the Mirror Object Model places interactivity and transformation methods and state into

"mirror objects", requiring the application to be instrumented, but not requiring it to be enhanced with all of

the additional state and methods implied by its interactive use. Mirror objects are analogues of the `objects'

contained in the target applications, sharing their state via monitoring and implementing their updates via

remote method invocation.

Application programs may be mirrored many times and in many places, as per their instrumentation. In

addition, a single application `object' may be associated with any number of mirror objects, where by default, all

mirrors observe the same application-level changes, and an operation executed on any mirror is synchronously

reected to the application-level object being mirrored. Thus, inherent in mirror objects is basic support for

multiple observers and operators able to view the same data, each in ways customized to their individual needs.

Not built into basic mirror objects are application-dependent update semantics, such as those that may require

multiple mirrors to perform updates before the application-level object is updated. Finally, mirror objects

themselves may be further mirrored, thereby creating hierarchies of mirrors and thereby, enabling the interactivity

system to supply the application- and mirror-derived data they need to new objects and methods providing useful

functionality.

MOSS and JMOSS mirror objects. Figure 1 depicts the architecture of MOSS and JMOSS mirror objects.

MOSS is an implementation of mirror objects based on CORBA [9, 6] and supports both Fortran and C/C++

target applications.

JMOSS is the implementation of mirror objects realized in Java and evaluated in detail in this paper. JMOSS

interoperates with MOSS mirror objects and/or with instrumented non-Java programs via a C-Java converter for

the basic data types being exchanged between both. Monitored state of application objects required by mirrors

is represented as typed monitoring events and propagated using the ECho and JECho event distribution systems,

respectively, for MOSS and JMOSS objects. ECho and JECho, described in detail in [7] and in [30], implement

the asynchronous transport of typed events via publish/subscribe communication infrastructures. Speci�cally,

each mirror object subscribes to the event channels to which the application-level monitoring events they desire

are sent. Thus, one mirror object can also receive events emanating from multiple application components, for

instance to track timings or durations of certain application-level actions. Conversely, to propagate to application

components the state changes resulting from operations on mirror objects, a MOSS mirror uses a thin object

invocation layer termed the Object Transport Layer (OTL), whereas a JMOSS mirror object employs Java's

remote method invocation (RMI) facility.
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Figure 1 depicts a scenario in which a MOSS mirror object is further mirrored into the Java domain, using

JMOSS. ECho events transport application-level updates to the MOSS mirror, and JECho events transport

MOSS mirror updates to JMOSS mirrors. Performance evaluations appearing in Section 5 will evaluate the total

delays and the data throughput experienced by this con�guration. They will also evaluate the delays implied

by JMOSS mirror object updates �rst propagated via RMI to MOSS objects and then propagated via OTL to

application-resident objects. The versions of ECho and JECho employed in these experiments are those described

in [7] and [30], using the underlying DataExchange and PBIO typed event representations[8]. Finally, it is the

Java mirror object that either acts as or interacts with some Java- or browser-based user interface. We next

describe those details of the JMOSS implementation required to understand its more advanced functionality,

such as migration.

3 JMOSS Implementation

We have already explained how JMOSS/MOSS utilize the ECho and JECho publish/subscribe communication

infrastructures for purposes of monitoring object state, and how updates on mirror objects are propagated to

the application via RMI and OTL method invocations and via program steering functionality. Furthermore,

for propagating updates on mirror objects to application-level objects, the lightweight OTL object transport

layer are used by MOSS and JMOSS uses Java's standard implementation of RMI. Both ECho and JECho o�er

eÆcient implementations of event channels, but only JECho o�ers facilities for runtime migration, which are

used in the JMOSS implementation of migratable mirror objects.

This section will describe the JMOSS implementation, speci�cally focusing on its additional functionality

compared MOSS. We discuss interesting issues with the implementation and use of JMOSS concern the manner

in which Java objects are instrumented, the interoperation of JMOSS with MOSS objects, Java mirror migration,

the customization of such migration and customized mirroring. We also discuss implementation choices and

possible improvements.

The remainder of this section explains sample mirror objects and their implementation in more detail, using

the RTTB application as an example.

Interoperation of MOSS and JMOSS Objects. MOSS and JMOSS objects interact via the Java native

interface. Speci�cally, a MOSS mirror produces events described in some standard native form. These events

are received by the MOSS native library linked with the JVM, then converted to Java objects, followed by the

invocation of appropriate JECho-provided Java event delivery methods. JMOSS's Java/native translation library

translates Java objects to/from native data represented with the PBIO binary data format. Conversely, a Java

mirror object interacts with a MOSS object by calling native procedures in the MOSS library. Java Object and

JMOSS Mirrors . Now we describe how to make an existing Java object available for steering and monitoring

and how to create its mirror object. The interactions of any JMOSS mirrors with a Java object are controlled by

a `wrapper' object. Each such wrapper controls access to the internal state of the Java object. Such state is read

by calling the wrapper's `get attribute' methods, and it is updated with `set attribute' methods. The wrapper

also propagates state updates to Java mirror objects, by creation of appropriate event channels, subscription

to such channels as a provider, and publication of the state to the JMOSS mirrors that have subscribed to

the channel. Finally, the wrapper handles invocations on Java application object by updating its internal state

and invoking the proper methods on Java application object. Figure 2 shows the relationship between Java

application object(Java object corresponding to MOSS mirror in our object model),Java wrapper object and

JMOSS mirror object in interactive program.

JMOSS provide a tool called jmossw wrapper generator assists users in the creation of wrappers for existing

Java object. With the help of jmossw, to create a wrapper, users:

1. De�ne JMOSS mirror interface in Java, which is a remote interface that extends java.rmi.Remote;

2. De�ne State class, which de�nes the interesting state to be contained in the Java application object;

3. Use jmossw to generate a wrapper class from mirror interface and State class; and
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4. Supply implementations of the `get' and 'set' attribute methods to be used by the wrapper class, as well

as perform any additional modi�cations of the wrapper class that may be required.

A sample code segment for the RTTB design workbench, including the mirror interface and the State class

de�ned by the user, and the wrapper class generated by jmossw is shown in shown in appendix A.

JMOSS mirror object receives application's state updates by subscribing to appropriate JECho's channel

created by the wrapper. The steering operations are accomplished by invoking the wrapper object's methods

using RMI. JMOSS provides another tool jmossm to help users write interactive programs from scratch. jmossm

is a mirror object generator which creates JMOSS mirror object for users. A sample JMOSS mirror object

MirrorExperiment generated by jmossm can be found in appendix B.

With the help of the jmossw and jmossm generators, the construction of portals or workbenches is rather

simple. The original application in c/c++ is properly instrumented. MOSS mirrors for the application are

created using MOSS. Java object corresponding to MOSS mirror is created. The user de�nes the Java interface

and uses jmossw and jmossm to generate Java wrapper and Java mirror. Program monitoring and steering are

performed by inspecting Java mirror objects and calling their methods.

Discussion. Several comments may be made about JMOSS mirror objects and their functionality. First,

extending the functionality of MOSS mirror objects, JMOSS mirrors permit developers to vary the ways in

which state monitoring and state updates are propagated, using either synchronous or asynchronous methods.

Asynchronous methods are particularly important when large numbers of updates are made or when perturbation

on the target application must be small. Measurements contrasting synchronous with asynchronous event delivery

appear in [30].

Second, method calls on mirror objects are de�ned for each attribute contained in its mirror state. Speci�cally,

for each attribute, get and set methods are available. Their execution results in the inspection and return of

mirror object state or in the execution of an RMI call that updates the state of the object being mirrored.

Additional methods for mirror objects may be explicitly de�ned by workbench developers.

Third, to implement eÆcient data transfer across the MOSS and JMOSS non-Java vs. Java execution en-

vironments, we use a Java-C converter and Java's JNI interface. to support the eÆcient conversion between

the binary data representations being used (i.e., encoded with PBIO[8]) and the Java objects corresponding to

them. This enables JMOSS to better address the real-time operational needs of the high performance appli-

cations it virtualizes. Performance measurements in Section 5 demonstrate the eÆciency of Java to non-Java

communications.
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Finally, by using wrapper classes and providing tools like javaw and javaw, we separate the Java wrapper

from Java application and minimize the modi�cation of existing Java objects.

3.1 Advanced JMOSS Functionality

Customized Migration. JMOSS mirror objects can migrate while in use. Such migration is implemented

using the MOBject lightweight object migration system, which is also used by JECho when event consumers or

producers migrate while event channels are in use. MOBject is based on the Mole[28] system for Java agents,

but o�ers reduced migration overheads compared to Mole. MOBject is lightweight in that it does not use object

serialization or RMI to migrate objects, whereas Mole uses both for agent migration. Instead, MObject migrates

objects with JECho's optimized object streams and send() methods. The JECho object stream is a simpli�ed

version of Java's standard object stream, o�ering cost savings of up to 71% compared to the regular stream for

object serialization or deserialization time.

While JMOSS mirrors migrate, additional updates to be received by them are not lost. Instead, the event

channel that feeds updates to the mirror bu�ers and then produces all events sent to it, in the same order

observed if migration had not occurred. The details of this implementation are described in [30].

Important to mobile workbench components is JMOSS' ability to customize migration, by variation of the

amounts of state transported from the `old' to the `new' object. TheMOBject object migration facility implements

this functionality as follows. First, when an object is ready to migrate, it calls the migrateTo(location)method.

Second, after location has approved of the migration, the original object copy is suspended by suspending all

of its threads. Third, the original mirror object is serialized, including the objects it references. Fourth, the

serialized object is sent to the destination location using a JECho send() operation. Fourth, the object is

reconstructed at the destination and resumes its execution. In this process, customized migration involves (1)

customizing the amounts of state transferred during migration, (2) controlling the ways in which state is restored

at the target, and (3) changing the target object's behavior in comparison to the original one. Concerning (1),

users may declare only certain object �elds to be serializable. Fields not declared as such are ignored during

migration. The declaration:

private ObjectStreamField[] serialFields;

contains the names and types of all �elds to be serialized during migration (by default, `serialFields' contains all

�elds in the class being migrated). Concerning (2) customization is possible during deserialization, where during

object initialization, for instance, user-provided procedures may recompute the values of �elds that were not

migrated. Finally, (3) the MOBject migration facility permits the class of the target object to di�er from that

of the original one, so that the new object may use implementations of methods better matched to the migrated

object's new tasks (e.g., for rendering data on a small handheld's display).

Before MObject starts real migration, it will call the method stop( ) and give the object a chance to dispose

of any objects he doesn't really need. Thus, the user may de�ne serialFields in the method stop( ) in order to

customize the serialization. serialFields itself and objectName must be serialized. When the serialized stream

reaches the destination, the object location �rst deserializes to get the values of serialFields and objectName.

According to the object name, the location creates a new object or retrieves from somewhere, such as a code

repository. According to the �elds stored in serialFields, MObject can deserialize the left stream and assign the

value to the �elds with the same names as the source. Since some �elds at the destination may be recomputed

from other �elds, the user can customize the deserialization by de�ning a reconstruction procedures in the

method prepare( ), which is a function called before the agent start running. For example, if there are three

�elds low, high and average in a class. average = (hight+low)/2. We only need to serialize low and high during

migration. After it reaches the destination, we can recompute the average from low and high. The code to do

the recomputation should be put in the method prepare( ). Thus, JMOSS realized customizable migration by

customizing serialization and deserialization. The di�erent version of some object is speci�ed by the variable

objectName de�ned in the class MObject, which is moved with the Object. The mobile object system will
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create an instance speci�ed in the variable when it reaches the destination. The class can be loaded locally or

downloaded from a remote repository by a class server.

Customized Mirroring. Customized migration permits us to change the amounts of state migrated and the

ways in which state is initialized and used at the target. In contrast, customized mirroring controls how state

updates on mirror objects are performed. This is important because mirrors are updated continuously. , in

accordance with changes in the target application being mirrored. Thus, Customizing this update process can

have signi�cant e�ects. For instance, rather than sending two values to the mirror only to then compute their

average in the mirror and discard the originals, customized mirroring permits us to `move' at runtime this

averaging computation from the mirror to the object being mirrored, thereby reducing communication overheads

at only slightly increased perturbation in the target application.

Customization of state mirroring is critical to JMOSS's ability to deliver suitable performance for the het-

erogeneous underlying hardware used by the RTTB design workbench. JMOSS' customization of mirroring uses

low-level support for handler migration o�ered by the JECho event transport facility employed by JMOSS. To

use such support, JMOSS allows each mirror object to de�ne a `policy object' that controls how state information

is transmitted from the target to the mirror object. This policy object is the entity being moved by JECho's

lower level support for event channel customization. This support, termed `eager handlers', in described in detail

in [30].

JMOSS accomplishes customizable mirroring by employing JECho's eager handler. Eager handler permits an

event consumer to specialize the content and the manner of handling and delivery of events by producers. This

is achieved by 'splitting' the consumer's event handler into two parts, with one part remaining in the consumer's

space and the other part replicated and sent into each event supplier's space. We term the latter event modulator

while the other part that stays local to the consumer event demodulator,as events now go through the remote

part of the handler �rst then travels through the wire and handed to the local part. JMOSS's policy object

is implemented as a modulator. The policy object is speci�ed when creating the consumer handle. A policy

object is modulator which speci�es its response to relevant state changes occurring at the supplier by de�ning

intercept functions. One of the intercept function is Enqueue method. Enqueue is invoked at the time a producer

pushes an event onto the channel. The method can perform any operation on the event, including discarding

and transforming the event. Through its policy object, a mirror object can control if, how or when the updates

are sent. The policy object can be dynamically changed at runtime. pch.reset is used to set the new policy

object. The following code segment demonstrates a policy object which speci�es that the mirror object is only

interested in the �nal result. Customizable mirroring enable the mirror object to dynamically control propagation

of application state in accordance with its interest and resource availability.

public class PolicyObject extends FIFOModulator {

public void enqueue(DECEvent e) {

State state = (State)e;

if(state.status == DONE)

super.enqueue(e);

else

return;

}

}

4 The RTTB Design Workbench

This section demonstrates the usage of mirror objects for construction of a design workbench used by Mechanical

Engineers. The workbench and the physical machines associated with it are termed the RTTB Rapid Tooling

Testbed.
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4.1 The RTTB Testbed

The RTTB testbed is intended to be a distributed computing environment to support product design, pro-

totyping, and manufacturing[25]. The engineers using it are experimenting with di�erent design processes and

di�erent sets of tasks, personnel, vendors, software, and equipment. As part of the RTTB e�ort, multiple comput-

ing infrastructures have provided communication, information sharing, work-ow, and distributed computation

capabilities[11]. The design workbench described in this paper constitutes one such infrastructure.

Rapid prototyping and tooling. The RTTB addresses a set of emerging and commercial rapid prototyping

and rapid tooling technologies for producing parts[26]. It utilizes both commercial and research software ap-

plications for design, including CAD systems like ProEngineer (ProE), SolidWorks, and CODA, synthesis tools

like DSIDES and OptdesX, analysis tools like the ANSYS �nite element analysis package used in this paper[2],

manufacturing process simulation methods like MoldFlow and CMOLD, and process planning (e.g., CABSS) and

selection tools. A typical usage scenario involves a designer designing a product, such as a cell-phone, and need-

ing a set of prototypes of the product's housing for functional tests. Depending upon the number of prototypes

needed and the testing requirements, RP technologies (such as stereolithography or selective laser sintering) may

be selected, or a rapid tooling process may be selected in order to fabricate a larger number of housings. If

a small number of prototypes is needed, a RP technology will be selected, along with a suitable material. If

rapid tooling is used, then a particular process must be selected, a mold designed and fabricated, and the parts

injection molded. Rapid tooling refers to a class of manufacturing processes that involve fabricating molds for

injection molding. These molds may be built on a RP machine, they may be cast using patterns produced on

a RP machine, or they may be machined. Since there are alternative rapid tooling processes, several di�erent

people or organizations, may be involved. For example, a rapid tooling process may involve the part designer, a

service bureau that manages the manufacturing process, a mold designer, a mold manufacturer, and an injection

molder. The decisions necessary to manufacture and deliver quality parts to the designer will be made by some

combination of these people and organizations.

Using the RTTB Workbench. To understand how a distributed computing environment like the RTTB

design workbench can aid RTTB users, consider the potential interaction among the parts,mold designers and

the service bureau manager. Assume that a designer has an initial housing design and needs 20 prototypes for

durability and drop tests. After identifying three possible rapid tooling processes, by describing his situation to

the service bureau manager, they agree on three candidate rapid tooling processes. the designer uses the RTTB

workbench to start a multiobjective optimization code, to �ne-tune his design and incorporate manufacturing and

material characteristics into the design process. In each optimization loop, �nite element analyses are required

for strength determination and injection molding simulations are required (each of which requires several hours

of computation time). As the optimization progresses, the designer and manager are monitors its progress and

perhaps, also steers it using RTTB mirror objects. At a point in time, the manager designer realizes that an

alternative rapid tooling process becomes favorable, but needs to check with a third party. another vendor

in another city. He thus directs the RTTB workbench to mirror his view of the computation status to the

third party, but the vendor to get his input. The RTTB tailors this view as appropriate, to suit the third

party's computational capabilities and to hide proprietary information, for example. that is not relevant to the

vendor's expertise. The vendor then checks the suitability of his equipment for this application and provides

manufacturing process capability information to the product designer, so that the designer's optimization process

can be �ne-tuned to suit this particular vendor.

Actions like those described above use the full complement of RTTB workbench functionality, including

dynamic mirror object creation and deletion, their migration and customization, and continuous application

monitoring and control via mirrors. Mirror objects have to interact with both research and commercial codes.

In summary, the needs regarding distributed computations for the RTTB include wrappers for commercial and

research codes, coordination among these codes and humans, information/document sharing, custom mirror, and

custom migration.

Sample RTTB con�guration and use. The more speci�c RTTB con�guration shown in Figures 3 and 4 is

the basis for some of the experimental evaluations performed in Section 5. As illustrated in these �gures, this

con�guration of the RTTB is divided into three phases, normally associated with the product design timeline,
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Figure 3: The Rapid Tooling TestBed
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Figure 4: Gear Design Process in RTTB
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Figure 5: RTTB Application in Wireless Environment

which is comprised of which are design, design for manufacture, and manufacturing. During the design phase,

requirements are entered into the testbed. These requirements consist of a part representation along with

the design speci�cations for the part. In the DFM stage, suitable part and mold materials, rapid prototype

technologies, and injection molding technologies are selected for the fabrication of both the injection molding

tooling and the part. In addition, the injection molding tooling is designed and the part is tailored to facilitate

the manufacturing of both the mold and part. The �nal stage involves the actual manufacturing of both the

tooling and the part.

The scenario shown in these �gures concerns the design of a spur gear, given a set of design requirements, such

as gear ratio, transmission power and turning speed, etc. The designer has to present an optimal preliminary

design by constructing a response surface of the maximum stress on the gear teeth vs. di�erent gear dimensions.

Figure 4 depicts this design process. In step 1, the design requirements are evaluated, and the designer presents

a basic design blueprint. Then in step 2, the design space is reduced by calculating the maximum bending stress

using engineering formulation. In order to construct an accurate response surface of the maximum bending stress

vs. dimensions of the gear, an experiment is designed. 33 gears are selected within the design space and each of

them is analyzed using Finite Element Analysis software for the maximum bending stress on teeth. Therefore, in

step 3, an experiment is designed, including 33 samples. The CAD models of the samples (gears) are constructed

using the ProEngineer (ProE) software package. Each gear is then analyzed using the AnSys package, in step 4.

Finally, the maximum bending stress of each experiment sample is calculated, the response surface is constructed,

and the optimal gear dimensions are decided by selecting one point on the response surface with the minimum

bending stress. Experiment Details. The simulation experiment including steps 3, 4 and 5 is what we explore

in this paper. In order to construct an accurate response surface, 33 samples are selected within the design space.

And each sample (a gear design) takes 5 to 7 minutes to be constructed in ProEngineer and analyzed in Ansys.

Therefore, a signi�cant time savings for the designer can be achieved by running the experiment in parallel and

allowing the designer to inspect the on-going simulation results. That is, after the experiment is designed, the

samples can be parsed, and each sample can be executed in one computer.

In this experiment, four software packages are run to analyze a sample, the experiment designing and parsing

package FeaGett, Geometric Modeling package ProEngineer, the Finite Element Analysis package Ansys, and

the response surface calculating package FdMaxi. FeaGett and FdMaxi are locally developed research packages.

System Realization Lab,Georgia Institute of Technology. A typical sample procedure involves generating a trail
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Figure 6: RTTB workbench

�le from a parameter �le (FeaGett), executing the simulation program (ProE), then the analysis program (Ansys)

and computing the �nal result (FdMaxi). In our current implementation, all components used in a sample are

`wrapped' into an object containing all relevant attributes and status information. The JMOSS system operates

the wrappers that further manipulate the commercial software packages.

This experiment executes multiple simulations and analyses in parallel..Multiple simulations run on worksta-

tions connected via Ethernet. Researchers use Linux iPAQ pocket PC to control and monitor ongoing experiments

via wireless network. Figure 5 shows the environment. For each sample we have a set of attributes, including

input parameters, intermediate results, �nal result, current status and a unique id. The user creates a mirror

object, through which end users can initiate certain activities, monitor and control their execution, and even

change parameters in the ongoing experiment. The user observes the ongoing computation at each of the nodes,

not only the �nal result, but also intermediate steps. Full control over the computation is also enabled: the

computation can be started, paused, resumed, or stopped, parameter values can be changed, for which both

local and browser-based interfaces may be used, both of which employ mirror objects. Since intermediate results

are typically quite large, engineers are interested only in viewing small subsets of these results, again using mirror

objects and thereby, reducing the overheads implied by dynamically viewing such data.

Outcomes and Discussion. Figure 6 depicts the RTTB workbench architecture built using MOSS and JMOSS,

including the parallel nature of ongoing experiments, the mirroring targeting multiple end users and user inter-

faces, and the online control exerted via those interfaces. This picture and this section's explanations indicate

that the use of mirror objects for RTTB workbench construction has several desirable outcomes. First, it removes

the need for the physical presence of end users on the laboratory computers where certain software packages

are installed and available, while still enabling them to both view and control ongoing computational processes.

Second, the multi-source, multi-target nature of mirror objects makes it easy for one designer to view multiple

aspects of one experiment and for multiple designers to collaborate on a single ongoing experiment. Third, a

single designer can even start and control multiple instances of an experiment, thus using parallelism to speed

up the design process. Fourth, experiments may be constructed using both commercial and research software,

and can even include remote views of camera images centered on certain production machines. Finally, while not

done in the sample scenario shown in Figure 6, the mirror objects used within the workbench may be migrated

to remote sites or machines, even while experiments are ongoing, thus giving designers considerable freedom

to interact with collaborators or remote vendors and with the physical machines involved in rapid tooling or

prototyping processes.
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5 Performance

5.1 Basic Benchmarks

The purpose of the results shown in this section is to establish the basic performance of the MOSS/JMOSS

systems, in part to demonstrate that mirror objects constructed with them are viable means for mirroring and

controlling high performance applications like those occurring in the RTTB testbed.

Figure 7 depicts the basic software con�guration used in all experiments, involving a target application

component, a MOSS mirror, and a JMOSS mirror. The times measured are labeled with T1-T4, and the �gure

also shows the software being exercised, including the event transport systems ECho and JECho and the remote

object invocation methods OTL and RMI. All measurements are performed on three UltraSparc Stations (Ultra

30) running Solaris 2.7, connected by 100Mbps Ethernet.

Basic measurements. We �rst evaluate the time required to complete a roundtrip through a MOSS mirror and

ending up in a Java object using the JNI interface (see Figure 8. This represents the minimum delay one could

experience when viewing and controlling a RTTB testbed software component via MOSS from some Java-based

interface. Each test is comprised of a user-level Java program initiating some steering action, communicating his

request to the application via JNI and OTL, then executing the requested state changes in the application and

�nally, sending the updated state information back to the Java program via ECho and the C-Java converter.

When executing a steering procedure in the target application, and when varying both the sizes of steering

parameters from Java client to application and the amounts of state mirrored from application to Java client,

results depicted in Figure 7 demonstrate the following. First, basic round-trip costs are roughly 2 milliseconds,

and they increase signi�cantly only when data sizes (the data used is an array of oats) exceed 1Kbytes. Second,

C-Java conversion costs are acceptable for the relatively simple array data structures used in these tests, adding

no more than 20% to the total costs of such a round-trip (e.g., consider the table entry for data of size 10K, where

conversion costs add 1 millisecond to the 5 millisecond delay experienced by the MOSS mirror). For complex

nested data structures being transported, conversion costs tend to increase by another 10-20%.

Comparison to Java sockets. A second set of tests measures the end-to-end delay for a JMOSS mirror object,

using RMI to propagate an operation on the JMOSS mirror to the MOSS mirror, then using OTL to propagate

it to the target application component. Monitoring entails the use of both ECho and JECho, including C-Java

conversion. We again vary the amounts of state being mirrored and transferred from the application to the

JMOSS object in response to each steering action, and we also compare to these measurements the costs of using

a Java socket to communicate between the MOSS and JMOSS mirror objects. Our intent is to demonstrate that
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Figure 8: Elapsed real-time for MOSS(T1)and MOSS+Conversion(T2)

JMOSS performance does not much exceed that of basic Java communications. The results shown in Figure 9

demonstrate that JMOSS round trip time is comparable to Java socket communication delays, including for large

data transfers.

The di�erence between JMOSS and sockets is due to two factors. First, both RMI and JECho are built on top

of Java Sockets, thus adding delays. In addition, a JMOSS mirror object has to wait for the return of a remote

call before initiating a second call, since RMI call is a synchronous operation. When using our own asynchronous

version of RMI, JECho's performance is quite close to the performance of Java sockets, as shown in [30]. This

demonstrates that more eÆcient RMI implementations[15] will substantially improve JMOSS performance. It

also shows that changes to update semantics for MOSS or JMOSS mirrors can substantially improve mirror

object performance. The utility of such changes depends on the ways in which mirrors are used, however.

Migration Costs. Figure 10 shows the basic costs of mirror object migration, which include the cost of migrating

the mirror object itself and of migrating the event channel associated with it. In the �rst setup, the object is

migrated across two workstations connected with via 100MB Ethernet. The second setup uses one workstation

and one iPAQ H3650 handheld device. The iPAQ is connected to the workstation via a IEEE 802.11b wireless

network. Again, we vary the amounts of object state being migrated. Results show that migration costs strongly

depend on the amounts of state migrated. They also show that migration cost can be quite high, especially

when using wireless networks. This motivates our work on customized mirroring and migration, using which the

amounts of state mirrored or migrated can be reduced. Customized Mirroring. Our �nal microbenchmarks

evaluate the utility of custom mirroring, using end-to-end measurements between a JMOSS Java mirror object

and a native program. The times shown are delays of MOSS, MOSS+conversion and JMOSS(the sums of MOSS,

data conversion, and J delays) for di�erent sizes of data. These results indicate that JMOSS mirror objects are

somewhat impractical for mirroring large amounts of state(JMOSS's latency is more than 5 times larger than

MOSS for 100KB data), thus arguing for customizing mirroring to suppress undesired state information. A

simple demonstration of customized mirroring used in the performance results depicted in Figure 12 is one in

which only 10% of total state is mirrored from the MOSS mirror to the JMOSS object. This results show that

JMOSS's response times after customized mirroring are comparable to MOSS. This results in a reduction of

total mirroring delay from approximate 150 to 30 milliseconds. For design workbench end users, this would

mean the di�erence between receiving what appears to be non-real-time vs. real-time service. Mobile Mirrors.

Mobile mirrors operate in an environment where network latency is high, bandwidth is low, and connections may
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Figure 13: Elapsed real-time of JMOSS on Wired vs. Wireless networks

be intermittent. A simple wireless-connected mirror object is depicted in Figure 13. The �gure also lists the

basic costs experienced by JMOSS objects when using a wireless network. In these measurement, the application

object is running on a workstation, and one mirror object resides on an iPAQ H3650 running the Linux operating

system. 802.11b wireless LAN communication devices are used.

In comparison to the latencies experienced over a wired network, shown in Figure 9, our results show that the

latency over the wireless network can be more than 70 times larger. In our con�guration, this increased latency

is due to the limited bandwidth available in the wireless domain (802.11b WaveLAN devices o�er a maximum

of 11MB/sec bandwidth, but the e�ective bandwidth achieved in our lab, due to interference and shared use

by other devices, is typically no more than 300Kbytes/sec). In environments like these, functionalities like

customized mirroring and migration are critical for achieving what appears to be real-time, interactive mirroring

to end user.

Bene�ts attained from parallel tool execution. Bene�ts derived from the embarrassingly parallel execution

of multiple instances of the same simulation are well-understood. We will not reproduce the performance results

attained in this fashion. It is interesting to note, however, that the parallel execution of multiple simulation

instances need not lead to a corresponding linear decrease in the total design time experienced by the parts

15



designer. This is because new settings for design parameters may be based on the results of previous experiments.

This issue is being studied further by the Mechanical Engineers running the RTTB project.

5.2 Summary and Discussion

The MOSS and JMOSS implementations use well-optimized implementations for the event-based transport of

state mirrored from application to mirror objects (i.e., ECho and JECho have been well-tuned, as described

in [30] and in [7]). This is because mirror updates tend to be frequent, because mirrors should appear to end

users as if they where in fact, certain target application component(s). However, neither OTL nor RMI have

been optimized, so that experiments in which large state must be transferred from the mirror to the application

exhibit low performance. While we have not yet experienced design workbench usage requiring higher RMI or

OTL performance, ongoing work in our group is addressing these issues.

Benchmarks also demonstrate the importance of customizing mirroring and migration, in both cases reducing

data transfer needs and therefore, signi�cantly reducing the latencies of such actions.

6 Related Work

The high performance computing community has undertaken multiple e�orts to understand and evaluate the

utility of object technologies for high performance, distributed applications. The Diesel Combustion Collabora-

tory (DCC)[21] was a pilot project to develop and deploy collaborative technologies to combustion researchers

distributed throughout the DOE national laboratories, academia and industry. The result was a problem-solving

environment for combustion research. Similarly, the DCC selected the Product Realization Environment (PRE),

a CORBA-based framework that shields software developers from raw CORBA, and its vendor implementation

as a software architecture for tool integration and data exchange. Compared with the DCC, JMOSS provides

additional support for mobility and for customizing mirroring and migration. In addition, mirror objects ap-

pear to match well the functional requirements of workbenches that virtualize remote software and/or hardware

components. Security is a key aspect of the DCC; we do not address this issue.

Deepview[23] is a service-based framework for microscopy that is distributed, extensible, and maximizes the

uses of common o�-the-shelf software. It uses a standard CORBA object system implementation. In contrast to

CORBA-based implementations of functionality akin to what is o�ered by mirror objects, MOSS demonstrates

substantially better performance for state mirroring[7, 9]. JECho and thus, JMOSS also demonstrate improved

performance for state mirroring compared to other Java-implemented event systems. Furthermore, we support

the eÆcient integration and use of both Java and non-Java components into workbenches. Other systems o�er

less eÆcient methods for such interoperability via IIOP.

Other environments built on top of CORBA include JACO3 (Java- and CORBA- based Collaborative Envi-

ronments for Coupled Simulation) and Webow from Syracuse[1]. Compared with JMOSS, higher levels of skill

and working knowledge of CORBA are required by programmers who wish to integrate a tool or application into

these systems.

The Common Portal Architecture (CPA)[3] is a common component architecture speci�cation, with a refer-

ence implementation described in [4]. The philosophy of CCA is to precisely de�ne the rules for constructing

components, to specify the required behavior a component must exhibit, and to de�ne the interfaces between

components and the framework. The goal is to provide standard ways of building components that are eas-

ily reused in CCA-compliant frameworks, such as the portal architectures being designed for high performance

applications[17, 19]. MOSS and JMOSS are not CCA-compliant, but the functionality they o�er must be present

in most of the workbenches and portals currently being developed. Thus, our work provides insights into what

constitutes useful CCA functionality.

Cactus[10] is an open source problem solving environment designed for scientists and engineers which also

supports remote monitoring and steering. It enables parallel computation across di�erent architectures and
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collaborative code development across multiple users. Cactus uses thorn http to permit it to act as a web server,

to change steerable parameters and to query information about an ongoing experiment. Compared to Cactus,

MOSS and JMOSS o�er higher performance and additional support for eÆcient object monitoring and steering,

as well as mobility. Speci�cally, we focus on how to construct interactive components that eÆciently interact

with target applications in distributed and dynamic heterogeneous systems. Toward these ends, we o�er runtime

customization for mirroring and mobility.

7 Conclusions and Future Work

This paper presents the concept of mirror objects and their Java-based implementation. Mirror objects support

the development of eÆcient interactivity infrastructures for high performance applications, by enabling end users

to view and control distributed and parallel high performance applications. Two implementations of mirror

objects, one CORBA-compliant, the other using Java, interoperate in order to o�er both high performance

component monitoring and control and the ability to take advantage of the rich set of tools available in the

Java domain. In addition, the JMOSS Java mirror objects described in detail in this paper o�er features

not easily realized in the CORBA domain, such as mobility, customizable migration and customizable mirroring.

Customizable migration is useful to reduce communication bandwidth needs or delays, especially when migrating

from stationary PCs to handheld devices. Customizable mirroring enables developers to control and reduce the

amounts of information extracted from the high performance programs and/or physical devices remotely viewed

and controlled.

Mirror objects may themselves be mirrored, thus enabling the construction of rich interactivity systems that

both contain `mirrors' of their target applications and o�er new functionality to help end users understand and

manipulate these complex targets. In particular, by supporting the use of mirror objects in web browsers it

is easy to o�er remote access and collaboration support via interfaces that range from high end machines to

handheld or even simpler, web-enabled devices. Our intent is to support functionality like teachers in schools

guiding students through a simulation running on a remote supercomputer, a corporate home oÆce collaborating

with �eld representatives equipped only with laptops and wireless links, or engineers operating in oÆces and on

shopoors.

Ongoing and future work with JMOSS includes optimizing its constructs for remote method invocation as

well as experimentation with and automation of its customization features, speci�cally addressing mobility.
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A Sample Wrapper Object

The following is a sample code segment for the RTTB design workbench, including the mirror interface and the
State class de�ned by the user, and the wrapper class generated by jmossw. The original Java class Experiment
interacts with the target application via a MOSS mirror not shown in this code fragment:

/* user defined mirror interface */

public interface RemoteExpInterface extends java.rmi.Remote {

static final String appName="RTTB";

State state;

...

int runProe(String trailFile,String proeFile)throws RemoteException;

int runAnsys(String proeFile,String ansysFile)throws RemoteException;

int runFdmaxi(String ansysFile) throws RemoteException;

int start(int N2, float Fw, int Pd, float Load, String

trailFile) throws RemoteException;

int pause( ) throws RemoteException;

int stop( ) throws RemoteException;

int resume( ) throws RemoteException;

}

/* user defined state class */

class State {

int status;

float finalResult;

...

}
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/*wrapper class generated by jmossw */

class RemoteExperiment extends UnicastRemoteObject

implements RemoteExpInterface, jecho.PushSupplier{

protected Experiment appObject;

PushSupplierHandle tpsh;

//associate the application object with wrapper object

RemoteExperiment(Experiment app) throws RemoteException {

appObject = app;

JMOSS_init(RemoteExpInterface.appName);

appObject.wrapperObject = this;

}

// initialize event channel and RMI call

void JMOSS_init(String appName) {

try {

tpsh=new PushSupplierHandle (this,"java.lang.Object");

String chanName = "JMOSS-"+appName;

String bindName = "//localhost"+"/"+"JMOSS-"+appName;

tpsh.connectTo (new EventChannel(chanName,

"java.lang.Object")))

RemoteExpeInterface exp = new RemoteExperiment();

Naming.rebind(bindName, this);

}catch (Exception e) { e.printStackTrace();}

state = new State( );

}

// attribute access methods

void experiment_Set_status(int command) throws RemoteException {

state.status = command;

//user's code to change application object's state

tpsh.send(state,true);

}

int experiment_Get_status( ) throws RemoteException {

return State.status;}

...

// methods defined in mirror interface

int start(int N2, float Fw, int Pd,float Load, String trailFile)

throws RemoteException {/*user's code */}

...

int pause( ) throws RemoteException {/*user's code;*/}

int resume( )throws RemoteException {/*user's code;*/}

}

State and RemoteExpInterfaceare the user-de�ned `state' class and mirror interface, respectively. RemoteExperiment

is the wrapper class generated by jmossw. The application-level 'object' described by class Experiment is not

shown here.State de�nes the state contained in the mirror object. In the trivial case, this state exactly corre-

sponds to the state of the application object being mirrored. RemoteExpInterface de�nes methods that mirror

objects can call to steer the application. RemoteExperiment implements the mirror interface. Its constructor

assigns the wrapped application object to variable appObject, creates event channels, registers the remote object,

and noti�es the application of the wrapper object. Wrapper is an event provider from the mirror object's point

of view. The events it provides as a JECho PushSupplier are the state changes occurring in the instrumented

application object that are of interest to the Java mirror.

Following these de�nitions, the JMOSS init called by the constructor initializes the RMI call mechanism,

creates the event channel for transporting monitoring information from the application to the mirror object

20



(JMOSS currently uses one event channel per monitored application object), binds the event channel to the

mirror object, and �nally, creates the mirror state (see the new State call). As stated earlier, accesses to state

attributes occur only via get/set methods that are generated by the wrapper generator. The methods de�ned on

this particular object get and set certain experiment attributes. An attribute set method call on a wrapper

object results in an update of the wrapper and application's state that is also propagated to the mirror objects

(see the tpsh.send call in the code). This call o�ers an option as to whether such updates should be done

asynchronously or synchronously ('true' means 'synchronous' and is the default option). An attribute get

call returns the desired application state, not by actually calling the application object, but by reading and

returning the wrapper's state. Recall that its state updates are performed automatically, via events pushed by

the application-level event provider.

The �nal lines of code in this example involve running, pausing, and stopping the actual application com-

ponents remotely controlled via the RTTB design workbench. These components include codes like ProE[22],

Ansys[2], and experimental packages like FdMaxi. Such creation and control is done via user-provided operations

de�ned on application components.

An additional variable, wrapperObject, which refers to the wrapper object, should be added to the application

class de�niation. Wherever user-de�ned state is changed in the application, a method call statement which

invokes the wrapper's set method should be inserted. This ensures that the wrapper's state is changed and that

these state changes are propagated to the appropriate mirror objects.

B Sample Mirror Object

The example shown here is a sample JMOSS mirror object MirrorExperiment used in RTTB runs, which is

generated by mirror generatorjmossm.

MirrorExperiment's initialization method subscribes to the event channel and then acquires a remote refer-

ence of wrapper object. MirrorExperiment has all methods de�ned in mirror interface. The implementations

of these methods are remote method invocation on the wrapper object. User should implement push( ) method,

which handles state updates.

public class MirrorExperiment implements jecho.PushConsumer{

PushConsumerHandle dpch;

RemoteExpInterface exp;

State state;

MirrorExperiment(appName, remotehost) {

JMOSS_init(appName,remotehost);

}

JMOSS_init(String appName,Stirng remotehost) {

dpch = new PushConsumerHandle(this, new PolicyObject( ));

try {

String chanName = "JMOSS-"+appName;

dpch.connectTo (EventChannel.open (chanName),-1))

String bindName = "//remotehost"+"/"+"JMOSS-"+appName;

exp = (RemoteExpInterface) Naming.lookup(bindName);

...

} catch (Exception e) {

System.err.println("Monitor exception:"+e.getMessage());

e.printStackTrace();

}

int runProe(String trailFile,String proeFile){

exp.runProe(trailFile,proeFile);}
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...

...

int pause( ) throws RemoteException {

exp.pause( );

...

//user's code to process state update

public void push (Object obj) {

float minStress = 3.0;

State state = (State)obj;

System.out.println("Current status:" + state.status);

...

if(state.status == DONE || state.result >= minStress)

System.out.println("OK");

...

}

}
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