
SoftCache: Dynamic Optimizations for
Power and Area Reduction in Embedded Systems

Joshua B. Fryman, Hsien-Hsin S. Lee, Chad M. Huneycutt,
Center for Experimental Research in Computer Systems (CERCS)

Georgia Institute of Technology
Atlanta, GA 30332-0280�
fryman, leehs, chadh � @cercs.gatech.edu

ABSTRACT
We propose a SoftCache for low-power and reduced die area while
providing application flexibility. Our implementations demonstrate
that the network is a power efficient means for accessing remote
memory. The impact of this work suggests that SoftCache systems
may be useful in future consumer electronics. Our results show that
die power is reduced by 20%, die area is reduced by 10%, and trans-
ferring applications over the network is more energy-delay effective
than local DRAM.

1. INTRODUCTION
Embedded consumer electronics continuously add more features

while shrinking their physical size. With feature creep demanding
more memory in all computing devices, densities of DRAM and
Flash memory increase trying to keep pace. Unfortunately, energy
consumption does not decrease at a similar rate. The need for larger
feature sets and local storage works counter to longer lifetime in
battery powered operations. While energy usage and battery life
are constraining embedded devices, there are other looming issues.
For example, the demands of feature flexibility and reconfigurability
lead to a frequently changing operational behavior including switch-
ing active codecs, upgrading browsers, downloading new applica-
tions, etc.

To address these issues, companies like NTT Japan are investi-
gating solutions that perform dynamic application code migration
between the remote device and other network systems [6]. Intel has
designed the PXA 27x family of processors with integrated SRAM,
NVM, and network support. In this paper, we propose the Soft-
Cache, an explicitly software managed cache-like storage with ver-
sions built on both the Intel XScale and Sun UltraSPARC, to enable
low power yet versatile ubiquitous computing. The SoftCache con-
verts the on-chip cache structures to generic SRAM, removing the
die space for MMUs and write buffers. The cache storage area and
tag space is kept as addressable SRAM, and cache behavior is ef-
fected by execution of additional instructions.

The SoftCache provides a model where local (off-die) non-volatile
memory (NVM) requirements are reduced or eliminated, with addi-
tional storage needs coming across the network to remote storage
servers. Using the already-present network link and a distributed
client-server model, a stripped down client provides features to the
user as though no physical reduction had occurred. This is accom-
plished via the computing capacity of remote network servers. The
net result when applied to caching is an explicitly software managed
system. This provides benefits such as dynamic instrumentation and
feedback, full associativity, variable data block sizing, and flexible
resource utilization. It also demonstrates a substantial energy reduc-
tion.

The rest of this paper is organized as follows. Section 2 discusses
the SoftCache architecture and its operations. We then analyze the
area and power aspects of a SoftCache in Section 3. We discuss
related work in Section 4, and Section 5 concludes.

2. SOFTCACHE ARCHITECTURE
The basic idea behind a SoftCache system is to use remote servers

as virtual memory, which effectively contain infinite resources while
leaving the “indispensable” components on the capability-limited
embedded devices. For an always-connected environment, informa-
tion including code and data can be retrieved on demand instead
of storing all of it in the embedded device. As such, the hardware
features on these embedded devices, in particular both volatile and
non-volatile memory, can be kept at a minimal level. This may re-
duce the power and area requirements, leading to longer operation
hours and lower cost.

2.1 Basics of a SoftCache System
The SoftCache system is based on a client-server computing model.

We implemented and tested two working SoftCache prototypes, one
based on the Intel XScale platform and the other on Sun Ultra-
SPARC. During startup, a server loads the invoked application and
prepares it for translation to the embedded device; the client dynam-
ically communicates with the server to load necessary code and data
on demand for execution. The atomic granularity of each request
made by the client is called a “chunk.” The size of each code frag-
ment in a chunk, a design option, can be a basic block, a hyperblock,
a function, or even an arbitrary program partition. The data alloca-
tion, completely managed by the server, is detailed in Section 2.4.

For each target application, an arbitrary ELF file image is pro-
vided to the server and is broken into chunks of code and data for fu-
ture on-demand transfer. An exception is triggered to acquire the de-
mand chunk from the remote server whenever the client attempts to
fetch and execute non-resident code targets or data variables. Once
acquired, these chunks will then stay inside the local on-chip mem-
ory until they are eagerly evicted or de-allocated when the applica-
tion is terminated. As long as the embedded device contains just
enough on-chip RAM to hold the “hot code” and associated data, a
steady state will eventually be reached. Henceforth there will be no
more remote transfers until the execution shifts program phases into
a different code or data working set.

Our existing SoftCache design focuses on small embedded pro-
cessors and ignores issues that arise with multiple cache levels. There
is potential for treating both L1 and L2 as SoftCaches, or construct-
ing a SoftCache/hardware hybrid for performance reasons, such as
a hardware L1 and SoftCache L2.

2.2 Static Analysis by the Server
As previously mentioned, the server loads an arbitrary ELF im-

age. Our implementations require the image to be statically1 linked.
The server constructs, as per the ELF header information, a virtual
memory space and seeds the bss and data segments to appropri-
ate values. As the program is loaded, extensive static analysis is
performed to isolate blocks of code (e.g., into basic blocks or func-
tions), beginning with the ELF-specified entry vector. Each block is

�
It can be easily extended to support dynamically linked images.

1

Patch

Interface
Command

Server

Interface
Command

SoftCacheChunk

Dirty
Data

Shadow
Memory
Map

Segment

Instruction

Segment
Data

Client

Memory

Virtual
(e.g. patch_memory)

Commnd

Command
(e.g. exception_address)

Figure 1: Execution Model of a SoftCache System.

annotated to support fast rewriting for the target client. To facilitate
this, the server also maintains a shadow copy of the client’s local
memory. As blocks are rewritten on demand, they are stuffed into
the shadow copy and then patches are sent from the server to the
client to update the client memory as needed.

2.3 Dynamic Execution
When an application is running on the client, the client and server

communicate via five major SoftCache interface commands as listed
in Table 1. As illustrated in Figure 1, the client begins by activating
its interface block, which will connect to a remote server and request
the first chunk of code and data by sending an initial start command.
The server in turn translates the first block of main() and returns it
to the client with a patch memory command. This is immediately
followed by a resume execution command. Once the initial block
is loaded, execution begins.

The command patch memory is the key technique to support
and enable an effective SoftCache system. We use Figure 2 to demon-
strate the patch memory operation based on instruction chunks trans-
ferred at basic-block granularity. Figure 2(a) shows the control flow
graph of our example code. The server translates one basic block
at a time and sends it back to the client for execution. Each branch
at the end of a basic block will be replaced with exception traps.
For example, the exit of a conditional branch with two possible exit
conditions, taken or not-taken, will be guarded by two exception
trap instructions as shown in Figure 2(b). As the client reaches the
end of the block (i.e. a trap execution), one path is resolved. This
invokes the interface wrapper to again query the server for the miss-
ing chunks of code or data, with the client passing back the address
that generated the fault with the exception address command.

The server checks the shadow memory map tables which main-
tain a copy of the client memory allocation map to determine which
block to load for the given exception address. The server then trans-
lates, shadow-updates, and patches the remote client with the new
chunks using the patch memory command followed by a new re-
sume execution command. Figure 2(c) shows that the new code
on the client side with a newly patched basic block followed by the
taken path. The taken-path guard trap instruction of its predecessor
basic block is now replaced with a translated branch instruction.

For unconditional branches, the server performs optimization by
eliminating the branch instruction during patching, a technique sim-
ilar to trace construction using the fill unit in high performance pro-
cessors [4]. This optimization is illustrated in the transition from
Figure 2(c) to Figure 2(d). The whole process continues iteratively
until the hot-state of the program is resident in the client memory,
at which point begins a full-speed execution. This execution may
be even faster than in a hardware cache model, given the faster ac-
cess times SRAMs can sustain when the cache overhead (e.g. tag
look-up and compare) is removed.

Given sufficient time and a large application, the server will re-
alize that insufficient space is remaining in the SoftCache to load

(c) Exception Address 2

b .L4

.L0:

cmp $3,$0
ble .L1

.L4:

cmp $8,100
ble .L0

.L0:

cmp $3,$0

(!le) trap
(le) trap

(!le) trap (le) trap

.L0:

cmp $3,$0

(!le) trap
ble .L1

.L1:

b .L4

(a) Original Program

(!le) trap

.L0:

cmp $3,$0

(!le) trap

(!le) trap

ble .L1

.L1:

.L4:

cmp $8,100

(!le) trap
ble .L0

.L1:

trap

 (before Server sends)

(b) Exception Address 1 (Client Code)

 (To the Client)(d) After Optimization

Figure 2: Dynamic Execution of a Client in SoftCache.

new chunks. In this case, the system performs memory invalida-
tion eagerly2 to free up sufficient memory to continue execution.
For dirty data that must be extracted, the server sends the command
return memory with a starting address and a size. Multiple com-
mands are used to return non-contiguous information, such as func-
tions, stack data, etc. Also note that for those instruction chunks
that are evicted, trap instructions need to be patched back into all
predecessor basic blocks.

One immediate benefit of the SoftCache strategy is the fully-
associative nature of the SoftCache system. Under explicit software
management, truly variable chunk sizes (basic block, hyperblock,
function, etc.) can be employed for optimizing performance dy-
namically. The result is a highly flexible virtualized caching system.

2.4 Handling Data in SoftCache
The difficulty to safely handling data caching in such a scheme is

that data addresses are not necessarily known a priori by the server.
Two basic categories of data operations exist – those with static tar-
gets and those with dynamic targets. Static targets are those loca-
tions which never change, regardless of how they are accessed, such
as global variables. Dynamic targets may be pointers used to tra-
verse arrays, or heap-based memory objects.

By careful analysis the server can identify static targets. Similar
to how chunks are loaded and resolved on demand, load/store op-
erations in the original program are replaced with trap instructions.
When the client executes the trap, the server looks up the actual tar-
get of the load/store. If the target is resident on the client, only a
patch is sent to replace the generating trap instruction with a correct
load/store operation. If the target is missing, it is first loaded into
the client and then the patch follows.

Dynamic targets come in two flavors, stable and unstable. Stable
dynamic targets are not known in advance, but the analysis of pro-
gram data and control flow may indicate that the load/store target
is unchanging over windows of computation. The server replaces a
stable dynamic load/store operation with a trap. Unlike static data
references, these traps are not replaced with an updated load/store
instruction once the server discovers where the instruction is point-
ing in memory. Instead, a test is inserted to determine if the target
matches the expected value. If the comparison is true, the load/store
proceeds as expected. If the comparison fails, however, a trap is ex-
ecuted which eventually reports to the server that the instruction is

�

Our current implementation employs a random invalidator. Other
history-based algorithms can be used to further improve locality.

2

Command Sent by Client Function Server Function
initial start Client Request the first data chunk Translate the first block of main()

patch memory Server Receive data chunks Allocate code and data chunks
resume execution Server Continue the instruction execution Wake up the client to continue execution
exception address Client Request missing data chunks Translates address and updates the shadow map table

return memory Server Return dirty data Send data address and size for update in server

Table 1: SoftCache Interface Commands

transitioning from one stable address to another. Therefore, the orig-
inal program load/store instruction is replaced with three instruc-
tions: compare; trap on not-equal; and load/store.

Unstable dynamic targets can only be handled in a high overhead
manner. Since it is not possible to exploit temporary stability, the
server must instrument every load/store instruction with 15-20 in-
structions that emulate the load/store operation. The end of the em-
ulation resolves the target of the target of the memory operation, and
local tables may be consulted to determine if the target is present. If
it is, the calculated address is modified to match the real location,
and the load/store proceeds. If the target is missing, a trap is trig-
gered and the server once again helps the client resolve the problem.

In addition, dynamic memory allocation (i.e., malloc) is also
translated into a trap operation. In brief, the server is fully respon-
sible for managing all aspects of memory on the client to keep the
entire system working correctly.

2.5 Motivating Applications
In the embedded space, there are two primary classes of applica-

tions that motivate this work: ubiquitous sensor networks and 3G
cellular phone services. Although we propose the SoftCache as an
enabling technique for embedded devices, the concept could be ap-
plied to other domains. We therefore describe several scenarios for
application.

Ubiquitous sensor network. For such systems, the price point
of each sensor node must be minimal. The ability to dynamically
load new code into motes is critical to support changing needs in the
environment. SoftCache provides a virtual workstation to the pro-
grammer, speeding development processes, and transparently runs
the virtual application on the restricted sensor device.

Cellular phones. New features and service enhancements are
constantly rolled out for cell phones. Rather than requiring re-flashing
of entire applications — an inherently risky process — the Soft-
Cache allows a micro-bootloader to be resident and load any appli-
cation on demand. This not only allows for security patches, new
applications, and similar features – it also provides a vehicle for
pay-per-service on non-standard activities.

Network processors. When large corporations like Cisco write
their switch software for a blade with 16 ports, they would like that
same software to run seamlessly on 4 ports or 8 ports. Rather than
spend precious developer hours revising applications and debugging
one-offs, replete with the maintenance headaches, systems like the
SoftCache can seamlessly handle the change in underlying hardware
if coupled with domain specific knowledge.

Chip Multiprocessors. One emerging architecture for high per-
formance systems is Chip Multiprocessors (CMPs). Processor pow-
erhouses such as Intel, IBM, Broadcom, and AMD have unveiled
their respective multi-core products. With 32, 64, or even 128 cores
on a die, instruction sets become less relevant. Edge cores of a CMP
can run SoftCache-like systems, and dynamically translate IA64,
x86-64, ARM, MIPS, and SPARC all at the same time. This will
enable a new generation of incredibly flexible systems, able to run
any program from any platform with such dynamic translation sys-
tems. In the CMP model, the extremely high-speed on-board inter-
connect at a fraction of the power for network links makes an imme-
diate advantage for SoftCache when compared to traditional caches.
Internal cores are fed from edge cores, with specialized interrupt
mechanisms passing chunks of code and data around as necessary.

3. EXPERIMENTAL RESULTS

 1

 10

 100

 1000

 10000

 100000

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

S
iz

e
(b

yt
es

)

Time (100K instructions)

Cumulative
Non-cumulative

(a) sha cumulative vs. windowed

 1000

 10000

 100000

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

S
iz

e
(b

yt
es

)

Time (100K instructions)

Sum
Data

Instructions

(b) tiff2bw cumulative

 1000

 10000

 100000

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

S
iz

e
(b

yt
es

)

Time (100K instructions)

(c) basicmath instr. footprint

 1

 10

 100

 1000

 10000

 100000

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

S
iz

e
(b

yt
es

)

Time (100K instructions)

(d) bitcount instr. footprint

Figure 3: Instruction and Data Profiles.

With the motivation of industrial need for systems like the Soft-
Cache, we now fully work out the power and delay issues associated
with this design to determine the practicality of the system. There
will be substantial impact from the additional instructions, delays
and power due to network traffic, etc., that must be examined to
validate the feasibility of SoftCaches.

We now systematically address each of the components in argu-
ments raised against the SoftCache model by using a variety of tech-
niques. Recent studies of network interface devices and DRAM op-
tions in energy-delay performance [3] provide insight into the issue
of local v. remote storage with the SoftCache. The issue of cache
overhead is addressed by comparing common hardware cache sys-
tems to our working implementation of a SoftCache described in
section 2. To address the issue of energy consumption, we have
constructed simulations of both typical hardware caches and a Soft-
Cache. Using the results from these methods of analysis, we de-
rive key energy delay results for the embedded system as a whole.
Our analysis of these results show the SoftCache may be more ef-
fective than traditional cache designs for power consumption, while
facilitating a variety of dynamic optimization and feedback mecha-
nisms. Our SoftCache techniques currently run reliably only on in-
struction caches, and this analysis considers just instruction caches.
Data caching is an ongoing effort.

3.1 Instruction and Data Profiles
The SoftCache is targeted for a size of approximately 64KB –

the size required to replace the on-die caches of processors such as
the SA-110 or XScale series, with combined I+D caches of approx-
imately 64KB. By running with only 64KB of total on-die SRAM
under the SoftCache, we can determine whether the working set of
“real” applications can fit within this space constraint.

While an application may require more memory than is available
in the SoftCache over its dynamic lifetime, for a given window of
instructions, it only touches a small subset. Figure 3a illustrates this
for the sha benchmark from MiBench. Even though the applica-
tion quickly ramps up to a working set of about 40KB, for any dy-

3

namic 100K instruction window size, the application only accesses
between 800 and 2400 bytes.

We observe that data accesses also exhibit this locality over a dy-
namic window of instructions. Figure 3b demonstrates that for the
tiff2bw benchmark of MiBench, for any dynamic window of 100K
instructions 12KB is sufficient to hold both instructions and data.
The entirety of the instruction working set in tiff2bw is contained
in 1.5-2.5KB of storage. The data used for the benchmark is con-
tained in approximately 7.5KB, although reading input from large
files may not be typical of real embedded applications. The trailing
spike on this benchmark is the reporting of results at the end of the
application.

Returning to instruction caching, Figure 3c and 3d show typical
dynamic instruction activity patterns. For part (c), the benchmark
basicmath of MiBench is clearly oscillating between 8KB and 30KB
of storage. This is an artifact of the window size being 100K in-
structions. Larger window sizes reduce this oscillation, where the
working set size settles to nearly 30KB. The key point of part (c)
is that even aggressive code can be captured in as little as half of
our SoftCache space, leaving the remaining for data. Part (d), the
benchmark bitcount from MiBench, shows an unusual working set
footprint. This application varies between a few bytes worth of in-
structions and 20KB, depending on the phase of the application. The
bulk of execution, however, is dominated by very small instruction
working sets.

These results suggest that having large external memories, such as
low-power DRAM, may be wasteful with respect to power budgets
and manufacturing costs. The SoftCache will dynamically maintain
just the working set in on-die SRAM, avoiding this budget burden.

3.2 Power Analysis of SoftCache
Area savings also come from removal of other logic, such as

the MMU (primarily TLBs), write buffers, cache control logic, and
similar circuits. According to the publicly available data on the
DEC/Intel SA-110 [8], the MMUs and write buffer occupy approx-
imately 11% of the total die area. In addition, the cache tag ar-
ray in the SA-110 was implemented using fully associative CAMs,
which contain higher transistor counts (9/10/11T) than conventional
SRAM implementations (6T). Using these transistors as local Soft-
Cache memory would be more efficient.

In addition to the area reduction, the SoftCache system also has
the advantage of lower power dissipation due to the removal of
these hardware components. First, to understand how the SoftCache
model alters the energy used within the cache, we consider the hard-
ware cache structure and a corresponding SRAM used in both tradi-
tional processors and a SoftCache equivalent.

CACTI 3.2 [12], the de facto standard for cache models, gener-
ates energy and timing information for all components in a cache
structure. The SRAM power generated by CACTI is based on just
those components needed for SRAM operation: address decoding,
wordline and bitline driving, senseamp output, and output driver.
The CACTI cache structure report also includes the tag CAM cell
matching and resolution logic. Typically, the SoftCache could oper-
ate faster without the additional hardware of tags, which slows down
the timing.

With CACTI, we model varying cache sizes with 32-byte line
sizes and 32-way associativity in 180nm, which is the XScale cache
structure. Figure 4 presents our results. It clearly demonstrates the
energy advantage of SoftCache due to the removal of the tag ar-
rays and control bits in a conventional cache. The trend in this fig-
ure is that for small caches, approximately 5% of the power can be
saved by removing tag logic. As the caches increase to 256KB, up
to 8% energy is saved. For 64KB, the combined instruction and data
caches of the XScale, the savings are approximately 6%.

For the MMU and write buffers, it is more difficult to measure
without a real processor implementation, thus we use the published
power data of SA-110 as a reference. As shown in [8], these units
consume 19% of the total die power when running a computation-
ally intensive program such as Dhrystone. In other words, by re-

Cache Size (KB)

8 16 32 64 12
8

25
6

E
ne

rg
y

(n
J)

4.5

5

5.5

6

6.5

7 Cache Energy SRAM Energy

Figure 4: Power Comparison of SoftCache vs. Conventional
Cache

moving these components and simplifying cache structure in a Soft-
Cache system, a total of approximately 20% in energy savings can
be achieved.

3.3 Local vs. Remote Storage
The SoftCache model seems counterintuitive since it suggests the

reduction (or removal) of local storage (e.g. DRAM, NV space) and
utilization of the network link for remote storage. The underlying
issue is how the energy consumption of local storage compares to
that of using a network. Intuitively local DRAMs are expected to be
more energy efficient than any network.

Fryman et al. [3] demonstrated that this is not the case from a
purely energy-delay standpoint. They compared low-power DRAM
parts against a variety of network interfaces including Bluetooth,
802.11, etc. based on best-case DRAM parts compared to worst-
case network parts. Network links are 10 to 100 times more power-
consuming than accessing local memories. However, as the study
indicated, keeping DRAMs active without accesses are 10 to 100
times more expensive in power than idling or sleeping network in-
terfaces. We use their analytical model, and incorporate additional
terms to track extra instructions executed in time and energy, as well
as model the payload transfers during chunk loading/rewriting.

One of the key principles behind the SoftCache design is that
there are several modes of operation, and changing modes is an in-
frequent event. Hence, if the time between mode switching is suffi-
ciently long, the aggregate energy consumption of active- and sleep-
mode by DRAM will exceed the active- and sleep-mode energy con-
sumed by the network link. Finding the amount of time that must be
spent in computation (hence leaving the DRAM or network link in
sleep mode) before switching modes is an exercise in analyzing the
energy-delay benefit, with the answer given in section 3.5. Before
this answer can be determined, we explore additional aspects of the
problem.

3.4 SoftCache Overheads
Here we continue the comparison of a best-case DRAM solution

against a worst-case network link solution. Consideration of the
additional instruction overhead involved in SoftCache is ignored,
as is the overhead of a hardware cache (tags, state bits, etc.). The
two models being compared are (a) processor with hardware cache
and local DRAM storage, and (b) processor with SoftCache and a
network link.

The SoftCache needs to execute additional instructions to effect
a hardware cache equivalent. These instructions come in two fla-
vors: miss handlers, and penalty branches. We can compare these
overheads to the actual work being done during any given mode of
computation to understand the penalty that each model incurs.

The total amount of time spent in a given computational mode is
the arbitrary amount of time doing actual work, as opposed to mov-
ing data around in order to perform work. The time for the compu-
tation itself is denoted

���
. Assuming the worst-case scenario, the

client executes roughly 100 instructions in a miss handler (in our

4

 0.1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 1 2 4 8 16 32 64 128 256 512

T
c

tim
e

(s
)

Data Transferred (KBytes)

0.25 hr

0.5 hr

1 hr

2 hrs

4 hrs

Ts = 1s
Ts = 100ms

Ts = 10ms
Ts = 1ms

Figure 5: Duration of computation
� �

that must pass for the
network link to be more energy efficient, where

���
and

���
vary.

UltraSPARC implementation) every time it needs to fetch another
basic block.

Hardware caches use integrated controllers that fetch cache lines
from memory at high speed. Since the SoftCache uses the basic
block size for transfer, it transfers instructions in 6-instruction blocks
on average. This requires accessing the network to send a request to
the server, waiting for the server to process the request, and then the
time and network energy required to receive the correct response.
However, the transfer rate for the network is substantially slower
than for DRAM. The additional time when the CPU is “idle” and
waiting for the network activity to change must be factored in a well.

Using the SA-110 as the hardware baseline model, idle-mode re-
duces power during these times to 20mW [8]. The time spent in
different states of transfer can be represented as a function of the
network link rate. The SA-110 core consumes 0.5W during CPU
intensive programs that run primarily from on-chip cache, such as
Dhrystone. The same core in a SoftCache model – where MMU
and write buffers have been discarded – would consume 0.4W. After
factoring in the energy consumption in the cache banks, this num-
ber will be in the range of 0.25-0.35W. For our analysis we use the
worst-case value of 0.35W.

The “penalty” branch instructions occur when a basic block is
brought into the client, and one branch path is resolved. At a later
point, the alternate branch path may be resolved as well, but the
target address for the hot path may not be the sequentially next in-
struction as it was in the original program. Therefore, some form
of extra branch is required to move to the correct location. In an
extreme case, we would have to execute every penalty branch in-
struction, which would cause the CPU to consume extra energy. In
the following section, we combine all of these issues for penalties
and power to demonstrate the viability of our SoftCache system.

3.5 Energy and Delay Implication
While prior discussion explains instruction overheads and net-

work link usage, they do not portray the energy trade-offs with re-
spect to overall performance. Instead we introduce a set of equations
to show how energy is impacted by the primary variables network
link speed, ��� , time for the server to process a request (not count-
ing TX/RX times),

���
, and total bits transferred for a mode change,���

. A complete derivation and analysis of this network model is
in [3].

With respect to the network link and the power savings in the
SoftCache model shown in section 3.2, we can derive equations to
represent the total energy spent as well as the total time for a typical
mode. These are dependent on which model is being used – DRAM
or link. The total energy for DRAM, ��	 , and total time for DRAM,� 	 , corresponds to the total energy and time for the link version, � �

 0.1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 1 2 4 8 16 32 64 128 256 512

T
c

tim
e

(s
)

Data Transferred (KBytes)

0.25 hr

0.5 hr

1 hr

2 hrs

4 hrs

Ts = 1s
Ts = 100ms
Ts = 10ms
Ts = 1ms

Figure 6: Duration of computation
� �

that must pass for the
network link to be more energy efficient, where

���
and

���
vary

and branch penalty is removed.

and
� � . Note that prefetching, mispredictions, and other pressures

that increase memory traffic are not considered – that is, we con-
sider a perfect access model to memory for best-case performance
of memory, with perfect CPU utilization.

We find the equilibrium point for the total computation time,
� �

,
by equating the energy of DRAM and network link. This equilib-
rium point is the minimum time span that

� �
must encompass for

the two models (local DRAM and hardware cache vs. SoftCache
and network link) to be equivalent. Beyond this equilibrium point,
the SoftCache is more energy efficient due to the differences in idle
and sleep energy. That is, solving the equation � 	�
 ��� (with

� �

used to compute the total energy consumed during the mode) gives
the average amount of time that must be spent in any given mode
before changing.

Evaluating this result for various values of bits required for the
mode change,

���
, we obtain a plot of

���
vs.

� �
as shown in Fig-

ure 5. The result is sensitive to variances of
���

, the server process-
ing time. While the server can be made powerful enough to keep the���

response time low, it will be non-zero. With one server control-
ling multiple clients, it can also be expected that some contention
may exist for the server attention. This figure indicates how the
penalty changes with increasing contention. Moreover, this equilib-
rium equation includes the worst-case branch penalty behavior (ev-
ery penalty instruction executed). The same graph with the branch
penalty removed can be seen in Figure 6.

The surprising result is not that the SoftCache does become an
energy win given sufficient time, but that it can do so in seconds! In
reality, the �	�	 supply for the network link could be passed through
a cutoff-transistor to completely disconnect the link device, thereby
reducing sleep current to 0A [13]. This is possible only if the client
initiates connections to the server, i.e., the server cannot spuriously
send commands to the client. This restriction would make the link
power model more quickly a win in net energy.

Given that the network link can be more energy effective in sec-
onds, the rationale for mode changes being infrequent (on the order
of tens of minutes) does not initially seem correct. Closer exam-
ination reveals why finding the equilibrium point is not sufficient
to understand the problem. Ideally, the additional time spent in the
slow network link to switch modes should not adversely affect ap-
plication performance. The goal is to fix the application slowdown
due to network traffic to a maximum of 1% penalty.

Factoring in the rate of the network link, � � , to create an energy-
delay equation, we realize that the relatively slow speed of the net-
work can force a tremendous impact on application performance.
Figure 7 shows the effect of these additional considerations. This
figure includes the original equilibrium values, marked as ”EQ”, and

5

 0.1

 0.5
 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096
 8192

 16384
 32768
 65536

 131072
 262144
 524288

 1 2 4 8 16 32 64 128 256 512

T
c

tim
e

(s
)

Data Transferred (KBytes)

0.25 hr

0.5 hr
1 hr
2 hrs
4 hrs
8 hrs
16 hrs
32 hrs
64 hrs

76.5 hrs

EQ: Ts = 10ms
APP: Ts = 10ms

Figure 7: Comparison of time for equilibrium energy win
(”EQ”) and energy-delay product win (”APP”) on application
performance.

���
= 10ms.

the consideration for slowdown in the network affecting application
run-time versus the original equilibrium point, marked ”APP”.

As Figure 7 illustrates, over slow network links applications can
transfer 32KB every minute, and be more efficient than traditional
designs. The high power and slow speeds of the network are the lim-
iting factors in this analysis. For the proposed application of massive
CMP-binary translation, both of these terms would improve signifi-
cantly. For the embedded cell phone system, this suggests that load-
ing a “new application” remotely, such as Mario Bros (� 128KB), is
a better solution than loading it from local memory as long as the
average time the game is played exceeds two minutes. On a smaller
scale, transfer of 16KB pages from the network are more energy
efficient than local DRAM after four seconds of use, and are more
energy-delay efficient after 16 seconds.

4. RELATED WORK
Dynamic compilation can generate optimal instruction traces, yet

requires sophisticated code cache management schemes [5]. Based
on input that cannot be predicted statically, further dead-code path
elimination becomes possible as done in Dynamo [1], as well as
pointer disambiguation. Our techniques are equally applicable to
both data and code, offering additional flexibility.

The Hot Pages system uses sophisticated pointer analysis with a
compiler that supports transformations [9]. Shasta is a shared mem-
ory system that uses static binary rewriting to share variables among
multiprocessors [14]. While the SoftCache could yield similar re-
sults, it offers more potential by exploiting dynamic program be-
havior.

Just-In-Time compilers with a distributed model of a JVM also
have some shared ideas with SoftCache. These systems generate un-
optimized byte-code for programs, and when a “hot” trace is found,
it is highly optimized and rewritten into native platform instructions.
Other efforts have focused on tuning the Java garbage collector sys-
tems to increase memory efficiency [2].

Other techniques being pursued for reducing cache energy usage
lie in putting regions of the cache storage in “sleep” mode or using
subdividing techniques. Some of the recent work in this area [7]
concentrates on reorganizing the layout of cache regions either into
sub-blocks for lower access energy, or for placing data banks into
sleep mode while keeping tags fully powered.

The Span Cache [16] explores a model of direct-addressing re-
gions of the cache. It exposes the cache as directly addressable
through additional registers. One benefit is that it allows variable
line sizes with a minor penalty. The SoftCache also provides vari-
able line sizes but involves a hardware reduction rather than addi-
tion. The ScratchPad [10, 11, 15] proposed a series of optimizations

for data accesses, by adding a small on-chip RAM in addition to the
hardware cache. To manage this on-chip memory, profiling compil-
ers were used to determine the most-executed code and data, and
then generating the necessary load-to-scratchpad and evict-from-
scratchpad instructions. While relevant in one sense for the usage
of on-chip memory, the SoftCache employs a truly dynamic method
for using the on-chip SRAM and eliminates hardware caches.

5. CONCLUSION
We explored the goals and assumptions behind the explicitly soft-

ware managed cache systems. Evaluating the SoftCache on the cri-
teria of overhead storage cost, link vs. DRAM energy and speed
costs, space, and total energy consumption, we find the SoftCache
is a viable solution. A natural application class of such a system
is an embedded device within an ubiquitous computing framework,
but we have shown that the SoftCache may be a more generally ap-
plicable mechanism.

We demonstrated that the SoftCache system is energy efficient
when compared to local storage options, and after considering the
delays associated with network transfers, is still an energy-delay
product winning solution for some applications. We reduce die
power by approximately 20%, while cutting die area by approxi-
mately 10%. Transfer of 16KB pages from the network are more
energy efficient than local DRAM after four seconds of use, and
are more energy-delay efficient after 16 seconds. Modern embed-
ded devices tend to use faster network links and more DRAM parts
than analyzed here, which makes the SoftCache even more energy
efficient.

6. REFERENCES
[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent

Dynamic Optimization System. In PLDI, 2000.
[2] G. Chen, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, and

M. Wolczko. Adaptive Garbage Collection for Battery-Operated
Environments. In USENIX JVM02 Symposium, August 2002.

[3] J.B. Fryman et al. Energy Efficient Network Memory for Ubiquitous
Devices. In IEEE MICRO, Sep/Oct 2003.

[4] D. H. Friendly, S. J. Patel, and Y. N. Patt. Putting the Fill Unit to
Work: Dynamic Optimizations for Trace Cache Microprocessors. In
MICRO-31, 1998.

[5] K. Hazelwood and M.D. Smith. Code Cache Management Schemes
for Dynamic Optimizers. In Sixth Annual Workshop on Interaction
between Compilers and Computer Architectures, 2002.

[6] NTT Japan. BLUEBIRD Project. 2003.
http://www.ntts.co.jp/java/bluegrid/en/.

[7] S. Kim, N. Vijaykrishnan, M. Kandermir, A. Sivasubramaniam, and
M.J. Irwin. Partitioned Instruction Cache Architecture for Energy
Efficiency. In ACM Transactions on Embedded Computing Systems,
June 2002.

[8] J. Montanaro and et al. A 160-MHz, 32-b, 0.5-W CMOS RISC
Microprocessor. In IEEE JSSC, volume 31, No. 11, pages 1703–1714,
November 1996.

[9] C. A. Moritz, M. Frank, W. Lee, and S. Amarasinghe. Hot Pages:
Software Caching for Raw Microprocessors. Technical Report
MIT-LCS-TM-599, Massachusetts Institute of Technology, 1999.

[10] P.R. Panda and N.D. Dutt. Memory Architectures for Embedded
Systems-On-Chip. In High Performance Computing, December 2002.

[11] P.R. Panda, N.D. Dutt, and A. Nicolau. Efficient Utilization of
Scratch-Pad Memory in Embedded Processor Applications. In
European Design and Test Conference, March 1997.

[12] P.Shivakumar and N.P. Jouppi. CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model. Technical report, Compaq WRL,
August 2001.

[13] K. Roy and S. Prasad. Low-Power CMOS VLSI Circuit Design.
Wiley-Interscience, USA, 2000.

[14] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A Low
Overhead, Software-Only Approach for Supporting Fine-grain Shared
Memory. In ASPLOS-7, pages 174–185, 1996.

[15] M. Verma, S. Steinke, and P. Marwedel. Data Partitioning for
Maximal Scratchpad Usage. In ASP-DAC, 2003.

[16] E. Witchel, S. Larsen, C.S. Ananian, and K. Asanovic̀. Direct
Addressed Caches for Reduced Power Consumption. In MICRO-34,
2001.

6

