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Abstract— With the advent of overlay and peer-to-peer net-
works, Grid computing, and CDNs, network performance predic-
tion becomes an essential task. Predicting the throughput of large
TCP transfers, in particular, has attracted much attention. In this
work, we focus on the design, empirical evaluation, and analysis
of TCP throughput predictors for a broad class of applications.
We first classify TCP throughput prediction techniques into two
categories: Formula-Based (FB) and History-Based (HB). Within
each class, we develop representative prediction algorithms,
which we then evaluate empirically over the RON testbed. FB
prediction relies on mathematical models that express the TCP
throughput as a function of the characteristics of the network
path (e.g., RTT, loss rate, available bandwidth). FB prediction
does not rely on previous TCP transfers in the given path, and it
can be performed with non-intrusive network measurements. We
show, however, that the FB method is accurate only if the TCP
transfer is window-limited to the point that it does not saturate
the underlying path, and explain the main causes of the prediction
errors. HB techniques predict the throughput of TCP flows from
a time series of previous TCP throughput measurements on the
same path, when such a history is available. We show that even
simple HB predictors, such as Moving Average and Holt-Winters,
using a history of limited and sporadic samples, can be quite
accurate. On the negative side, HB predictors are highly path-
dependent. Using simple queueing models, we explain the cause
of such path dependencies based on two key factors: the load on
the path, and the degree of statistical multiplexing.
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I. INTRODUCTION

With the advent of overlay and peer-to-peer networks [4],
[10], Grid computing [12], and CDNs [19], performance
prediction of network paths becomes an essential task. To
name just a few of their applications, such predictions are
used in route selection schemes for overlay and multihomed
networks [2], [3], [5], [21], dynamic server selection [25], [26],
[38], and peer-to-peer parallel downloads [9].

Arguably, the most important performance metric of a path
is the average throughput of TCP transfers. The reason is that
most data-transfer applications, and about 90% of the Internet
traffic, use the TCP protocol. When it comes to performance
prediction, the focus is typically on bulk TCP transfers, lasting
more than a few seconds. Short TCP flows are often limited
by slow-start, and their performance is much more sensitive to
the randomness in the background traffic [13]. In this work, we
focus on predicting the throughput of a bulk TCP transfer in a
particular network path, prior to actually starting the flow. For
many applications, such as server selection and overlay route
selection, a throughput prediction is needed before the flow
starts. The reason is that rerouting an established TCP connec-
tion to a different network path or server can cause problems
such as migration delays, packet reordering, re-initialization of

the congestion window. Note that TCP throughput prediction
is different than TCP throughput estimation. The latter is
performed while the flow is in progress with the objective
to estimate the TCP throughput or the TCP-Friendly rate of
the flow. An example of a TCP throughput estimation scheme
is TCP-Friendly Rate Control (TFRC) [11].

Unlike the prediction of RTT and loss rate, which can be
based on direct and low-overhead measurements, predicting
TCP throughput is significantly harder. First, TCP throughput
depends on a large number of factors, including the transfer
size, maximum sender/receiver windows, various path char-
acteristics (RTT, loss rate, available bandwidth, the nature of
cross traffic, reordering, router/switch buffering, and others)
and the exact implementation of TCP at the end-hosts. Second,
direct measurement of TCP throughput using large “probing”
transfers can be highly intrusive because the latter can saturate
the underlying paths for significant time periods. What is
really desired is a low-overhead TCP throughput prediction
technique that either avoids probing transfers altogether, or
requires only a limited amount of probing traffic.

In this paper, we focus on the design, empirical evaluation,
and analysis of TCP throughput predictors for a broad class
of applications. The common requirement of such applica-
tions is that they rely on an accurate throughput prediction
prior to the start of the TCP transfer. We first classify TCP
throughput prediction techniques into two categories: Formula-
Based (FB) and History-Based (HB). Within each class we
develop representative prediction algorithms, which we then
evaluate empirically over the RON testbed [1]. Note that our
objective is not to compare FB and HB predictors. In fact,
the two schemes are complementary, as they require different
types of measurements and previous information about the
underlying path. Instead, our objective is to examine the key
issues in each prediction scheme, evaluate their accuracy under
different conditions, explain the major causes of prediction
errors, and provide insight regarding the factors that affect the
predictability of large transfer TCP throughput in a given path.

More specifically, FB prediction relies on mathematical
models that express the TCP throughput as a function of
the characteristics of the underlying network path (e.g., RTT,
loss rate). For instance, the throughput-optimizing routing
component of RON follows the FB approach [4], predicting
TCP throughput based on the simple “square-root” formula
of [20]. That formula expresses the average throughput of a
congestion-limited bulk transfer as a function of the RTT and
the loss rate that the connection experiences on a given path.
Several similar models have been proposed in the literature
[6], [8], [14], [22], [30], differing in terms of complexity and
accuracy, modeling assumptions, and TCP flavor. In this paper,



we prefer to use the main result of [22], referred to as the
PFTK formula, because it is both simple and quite accurate.

The main advantage of FB prediction is that it does not
require any history of previous TCP transfers. In addition, FB
prediction can be performed with relatively lightweight, non-
intrusive network measurements of parameters such as RTT
and loss rate. Unfortunately, however, our measurements show
that FB schemes can lead to large prediction errors. The main
reason is that throughput models require knowledge of the path
characteristics during the TCP flow, whereas FB predictions
measure the corresponding a priori characteristics before the
flow starts. If the flow itself causes significant changes in
those characteristics, the resulting prediction errors can be
unacceptably large. Another reason is that the delays or losses
that a TCP flow experiences are not necessarily the same as
those observed by a periodic probing stream, such as ping [15].
On the positive side, we do observe that the prediction errors
are much lower, and probably acceptable for most applications,
if the TCP transfer is limited by the receiver’s advertised
window to the point that the transfer does not saturate its path.

On the other hand, HB approaches use standard time series
forecasting techniques to predict TCP throughput based on a
history of throughput measurements from previous TCP trans-
fers on the same path. Obviously, HB prediction is applicable
only when large TCP transfers are performed repeatedly on
the same path. This is the case with several applications of
TCP throughput prediction, including overlay network routing,
parallel downloading and Grid computing.

Our measurements over the RON testbed show that even
simple linear HB predictors, such as Moving Average and
non-seasonal Holt-Winters, are quite accurate. Furthermore,
in agreement with previous work on HB prediction [34], [39],
we found no major differences among a few candidate HB
predictors. We do find, however, that two simple heuristics
can noticeably improve the accuracy of HB predictors. The
first is to detect and ignore outliers, and the second is to
detect level shifts and restart the HB predictors. We next show,
perhaps surprisingly, that even with a short history of a few
previous transfers performed sporadically in intervals up to
30-40 minutes, prediction errors are still fairly low. On the
negative side, our measurements show that HB predictors are
highly path-dependent, which begs for answers to the follow-
ing two questions. What makes TCP throughput much more
predictable on some paths than on others, and which are the
fundamental factors that affect the throughput predictability
on a path? Using simple queueing models, we focus on two
factors that we believe are the most important: the load on the
path, and the degree of statistical multiplexing. Specifically, we
show that the prediction error increases with the load on the
bottleneck link, and decreases with the number of competing
flows under constant load. Consequently, paths that are heavily
loaded with just a few big flows are expected to be most
difficult to predict.

The structure of the paper is as follows. We summarize the
related work in Section 2. In Section 3, we develop a rep-
resentative FB predictor and highlight some important issues
in that type of prediction. Section 4 presents measurement
results for the accuracy of FB prediction. Section 5 introduces

several existing HB predictors, and describes two simple
techniques that can improve such predictors significantly.
Section 6 presents measurement results for the accuracy of
HB prediction. Section 7 focuses on two major factors that
affect the throughput predictability: the load of the network
path, and the degree of statistical multiplexing. We conclude
in Section 8.

II. RELATED WORK

One motivation for some of the previous work on TCP
throughput modeling has been to predict the throughput of a
transfer as a function of the underlying network characteristics
[11], [20], [22]. However, the accuracy of FB prediction
depends on the accuracy with which these characteristics can
be estimated or measured. Recently, Goyal et al. have shown
that the end-to-end packet loss rate p on a path can be quite
different from the “congestion event probability” p’ required
by the well-known PFTK model by Padhye et al. [22], and
they have proposed a way to estimate p' from p [15]. Note
that that work does not address the problem of estimating the
required path characteristics during a flow from those observed
prior to the flow.

HB TCP throughput prediction has been previously studied,
mostly in the context of Grid computing [32], [34], [35],
[36]. One operational system is the Network Weather Service
(NWS) project [37]. In NWS, throughput prediction is based
on small (64KB) TCP transfer probes with a limited socket
buffer size (32KB). Vazhkudai et al. use bulk TCP transfers
(IMB-1GB) and a large socket buffer (1MB), performed spo-
radically (1 minute-1 hour) [34]. They show that various linear
predictors (including ARIMA models) perform similarly, and
that the average prediction error on two paths ranges from 10%
to 25%. Zhang et al. examine TCP throughput predictability
based on a large set of paths and transfers [39]. Their TCP
throughput measurements use 1MB transfers performed every
minute, with 200KB socket buffers. Their main results are
that 1) with several simple linear predictors, about 95%
of the prediction errors are below 40%, and 2) predictions
using a very long history (e.g., Moving Average with 128
samples) perform rather poorly. A study by Qiao et al. has
shown that the predictability of network traffic is highly path
dependent [24]. Also, mathematical models (such as MMPP)
that have been previously used to analyze the predictability
of aggregate network traffic [29] are not directly applicable to
the predictability of TCP throughput.

Even though the previous work on HB prediction is sub-
stantial, it left three important open issues that we attempt to
address with this work. First, it did not distinguish between
congestion-limited and window-limited flows; typically, the
latter have a small socket buffer at the receiver or sender
compared to the path’s bandwidth-delay product, and so they
do not impose a heavy load on the network. Second, the
previous work did not examine the effect of the TCP transfer
frequency on the HB prediction accuracy; this frequency is
a crucial parameter for HB prediction. Third, previous work
has not investigated the underlying path characteristics that
determine the predictability of TCP throughput. Instead, the



underlying network path has been viewed as a “black box”,
and so it was not possible to relate its characteristics (such
as load and degree of statistical multiplexing) to the resulting
TCP throughput predictability.

III. FORMULA-BASED PREDICTION

The central component of an FB predictor is a mathematical
formula that expresses the average TCP throughput as a
function of the underlying path characteristics. Probably the
most well-known such model is the “square-root” formula of

[20]:
M
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where E[R] is the expected TCP throughput (as opposed to R
which denotes the actual or measured throughput and R which
denotes the predicted throughput). In the previous formula,
M is the flow’s Maximum Segment Size, b is the number of
TCP segments per new ACK, while T" and p are the RTT and
loss rate, respectively, as experienced by the TCP flow!. This
model is fairly accurate for bulk TCP transfers in which packet
losses are recovered with Fast-Retransmit. Analytical results
such as (1) have been very useful in understanding the relation
between TCP throughput and certain key path characteristics,
such as loss rate and RTT.

Another motivation for the research that led to these TCP
models was the ability to predict the throughput of a TCP flow
given estimates of the relevant path characteristics [8], [15],
[22]. In this section, we first present a more complete TCP
throughput formula, as well as the corresponding FB predictor.
Although several similar models exist in the literature (see [30]
and the references therein), we emphasize that our remarks
regarding the accuracy and limitations of FB prediction are
not specific to the particular formula we use.

E[R] = (1)

A. A formula-based TCP throughput predictor

The TCP throughput formula that we use is the PFTK result
of [22], which improves on the square-root formula especially
in the presence of retransmission timeouts and/or a limited
maximum window:

E[R] = min M , g
T % + T, min(l,\/%)p(1+32p2)
(2)

where T, is the TCP retransmission timeout period, and W is
the maximum window size (limited by the socket buffer size
at the sender or receiver). We emphasize that p and 7, in the
previous equation, are the average loss rate and RTT that the
target flow (i.e., the TCP flow whose throughput we try to
predict) experiences. Notice that the loss rate p may be zero,
in which case the flow is lossless and E[R] is given by the
term W/T.

Suppose now that we want to apply (2) to TCP throughput
prediction. The main problem is that we do not know, when

IThe main mathematical symbols we use are summarized in the Appendix
at the end of the paper.

predicting, the loss rate and RTT that the flow will experience
during its lifetime. The obvious approach, which has been
previously followed in practice (e.g., in overlay routing [4]),
is to measure the loss rate and RTT before the transfer with a
utility such as ping, and then apply those estimates of p and
T in (2). Suppose that p and T are the loss rate and RTT
estimates based on measurements prior to the flow. Then, if
p~pand T ~ T, the prediction accuracy will be only limited
by the accuracy of these approximations and the accuracy of
the mathematical model that was used to derive (2). We can
expect that p =~ p and T ~ T when the TCP flow imposes a
minor load on the path’s bottleneck, and so it does not affect
significantly the RTT and loss rate of the path.

A limitation of the previous approach is that it does not
apply to lossless paths, i.e., when p=0. In that case, W/ T
can be totally unrelated to the realized throughput, especially
if W is much larger than the bandwidth-delay product of the
underlying path. One approach to deal with lossless paths is to
predict the TCP throughput based on the available bandwidth
A of the path prior to the TCP flow, when A< w/ T. The
available bandwidth is the non-utilized part of the bottleneck
link’s capacity, and it can be measured non-intrusively with
end-to-end probing techniques [16], [18], [27], [31]. Although
the available bandwidth and TCP throughput are not expected
to be exactly equal, A can be used as a first-order approxima-
tion of R when the flow is not limited by its maximum window
size W [16]. On the other hand, if W/ T < A, the flow cannot
obtain all the available bandwidth due to its limited maximum
window, so W/ T is a more reasonable predictor; we refer to
such flows as window-limited.

To summarize, the FB predictor that we consider in the rest
of this paper is given by the following equation:

in Mo W\ if 550
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where R is the predicted throughput, while T, p, and A, are
the measured RTT, loss rate, and available bandwidth prior to
the TCP flow. We estimate the retransmission timeout period
as

A

T, = max(1sec, 2SRTT) G
where SRTT is set to the measured RTT 7' prior to the target
flow. Note the differences between (2) and (3): the latter relies
on the estimates T, D, To, rather than on the actual values T', p,
T,, and it also has a component that depends on the available
bandwidth estimate A.

In the following, we explain three important limitations

of the above predictor using basic insight and simple ns2
simulation scenarios.

B. Effect of the extra load due to the target flow

Basic queueing theory tells us that an increase in the
utilization of a queue (with non-periodic arrivals) increases
the average queueing delay. Similarly, in a queue with a
limited buffer, an increase in the utilization can cause a higher
loss probability. The increase in the queueing delays and/or



the loss probability tends to be more significant when the
utilization becomes significantly higher, or when the utilization
was already high even before the additional load.

These basic facts can cause major errors in FB prediction.
The reason is that the RTT 7' measured prior to the target
flow will not reflect the queueing delay during that transfer.
So, T' can be lower than the RTT T that the target flow
experiences. Similarly for the loss rate, it can be that p < p.
The net result of either effect is that the FB predictor can
overestimate the TCP throughput, especially when the target
flow increases the utilization of the bottleneck significantly or
when the latter is already very high. Note that the experimental
validation of the PFTK result, reported in [22], was based on
the “posthumous” estimation of p and T, i.e., from tcpdump
packet traces collected at the sender/receiver while the target
flow was in progress. Of course the same approach is not
possible in the prediction context.

Simulation C' (Mbps) B (pkts) T (ms) T (ms) R R
1 20 200 16.7 234 13.3 9.2
2 50 200 20.1 20.1 10.6 10.6

(A
Simulation C (Mbps) | B (pkts) P (%) D (%) R R
1 10 50 0.14 0.46 9.2 4.6
2 100 300 0.2 0.22 6.2 6.1

B

TABLE I

(A) INCREASED RTT (B) INCREASED LOSS RATE.

We use simple ns2 simulations to demonstrate how such
prediction errors could take place. The simulations use a
simple dumbbell topology with the bottleneck link (capacity
C, buffer space B) in the center, and the TCP flows (both the
cross traffic and the target flow) traversing that link. Table I-
(A) gives an example of the discrepancy between the path’s
RTT T prior to the target flow and the RTT T during the target
flow. The target flow as well as a single cross traffic TCP flow
are window-limited (W=30KB) so that the bottleneck does
not experience any packet losses (p=0). Note that the capacity
C in Simulation-1 is lower than in Simulation-2, causing a
higher utilization in the former. Specifically, the utilization in
Simulation-1 increases from 72% to 98.5% after the target flow
starts; the corresponding utilization increase in Simulation-2 is
from 24% to 48%. As a result, T is significantly different than
T' in Simulation-1, causing a substantial prediction error. The
prediction is very accurate, on the other hand, in Simulation-2
because the utilization remained relatively low even after the
target flow started.

Similarly, Table I-(B) exemplifies the discrepancy between
the loss rate during the target flow p and the loss rate prior
to the target flow p. The cross traffic is a single TCP flow
in Simulation-1, and 15 TCP flows in Simulation-2. None of
the flows, including the target flow, are window-limited. Here,
we see a large loss rate increase in Simulation-1 after the
target flow starts. The loss rate increase is much smaller in
Simulation-2 because the buffer size B is significantly larger
in that case. As a result, the prediction error is substantial in
Simulation-1 but minor in Simulation-2.

C. Errors due to the TCP sampling behavior

Even when the target flow does not affect significantly the
path’s RTT and loss rate, it is still hard to estimate the RTT and
loss rate that the TCP target flow experiences. TCP reduces
its packet transmission rate when it experiences losses, which
means that it tends to “sample” the RTT and packet loss
processes less frequently when the path is congested. This is
a very different sampling behavior than that of a utility such
as ping, which typically sends periodic probing packets. Also,
TCP tends to send bursts of data packets when self-clocking
fails (e.g., due to ACK compression), which also leads to a
different sampling behavior than periodic probing.

To make things more complex, a mathematical model for
the TCP throughput may be based on certain assumptions that
affect the interpretation of parameters such as 7' or p. For
instance, the PFTK model assumes that 7' is constant, and
that when a packet is dropped all the remaining packets in
that “flight” are also dropped (referred to as a “congestion
event”). As a result, the parameter p in (2) should not be the
unconditional loss probability among all packets of the target
flow, but the congestion event probability. The discrepancy
between these two parameters was one of the main focus
points in [15].

Table II shows three different “loss rates”, all obtained from
the same simulation as in Table I-(B). In this Table, p is a ping-
based estimate of the loss rate measured with periodic probing
packets (40 bytes every 100ms) during the target flow, p is the
(unconditional) loss rate that the target flow experienced, and
p' is the congestion event probability estimated from a detailed
analysis of the ns2 packet trace. Notice the striking difference,
more than an order of magnitude, between p and the other
two metrics. Ping estimates a larger loss rate, due to its non-
adaptive sampling behavior that we mentioned earlier. The
difference between p and p' is also noticeable, although not
major. Unfortunately, it is not known how to measure p' or p
prior to the start of the target flow. For this reason, existing FB
prediction schemes use ping-based loss rate estimates, which
are also much simpler to obtain.

Simulation P P P
1 0.04 | 0.0046 | 0.0028
2 0.03 | 0.0022 | 0.0015
TABLE 11

DIFFERENT LOSS RATE ESTIMATES DURING A TCP FLOW.

D. Errors due to the difference between available bandwidth
and TCP throughput

As previously mentioned, when p=0 and A < W/T, we
predict the throughput of the target flow based on the path’s
available bandwidth A prior to that flow. These two metrics,
however, can be significantly different in certain cases [18].

First, whether a TCP flow can saturate the available band-
width of a path depends on the buffer space B at the bottle-
neck. If B is not sufficiently large, packet losses can cause
significant underutilization and the resulting TCP throughput



can be lower than A. Second, if the competing cross traffic at
the bottleneck is made of elastic flows (e.g., persistent TCP
flows), the target flow can capture more than A, by receiving
some of the bandwidth previously occupied by cross traffic
flows. The actual difference between available bandwidth and
TCP throughput in that case depends on the number and the
RTTs of the competing TCP flows.

Consequently, the available bandwidth A prior to the target
flow can cause either overestimation or underestimation of the
flow’s throughput, depending on the amount of buffering and
the “elasticity” of the cross traffic in the path. Given that it
is hard to infer network buffering and cross traffic elasticity
in practice, it is unclear whether we can design a better FB
predictor than A in the case of lossless paths.

IV. FB PREDICTION ACCURACY

The previous section argued that FB prediction can be
inaccurate under certain network conditions. In this section,
we show measurement results from several Internet paths that
quantify the inaccuracy of FB prediction, and further analyze
these prediction errors. First, we describe the measurement
methodology and the dataset we use throughout this paper.

A. Overview of measurement methodology

Our measurements were collected on 35 Internet paths that
interconnect nodes of the RON testbed [1]2. The RON nodes
that we used are located mostly in US universities, but there
are also two nodes in Europe and one in Korea. Out of the
35 paths, five are transatlantic paths, one between Korea and
New York-NY, and the rest within the US. Most paths can
deliver at least 10Mbps, but seven of the paths had a DSL or
T-1 bottleneck.

We collected seven measurement “traces’ on each path, with
a total of 245 traces across all paths. Each trace consists of
150 back-to-back measurement “epochs”. An epoch starts with
an available bandwidth measurement using pathload, followed
by a 60-sec measurement of p and T using a homespun ping
utility that generates a 41-byte probing packet every 100ms,
followed by a 50-sec TCP transfer (target flow) generated by
IPerf [17] (see Figure 1). RTT and loss rate estimates are also
measured during the TCP transfer. A 50-second transfer on
these paths is long enough to ensure that the flow spends a
negligible fraction of its lifetime in the initial slow-start. A
total of 36750 TCP transfers (in the same number of epochs)
were performed. The duration of each epoch (and also the
time interval between successive TCP transfers) was about 2-
3 minutes, while the duration of each trace was about 6 hours.
The measurements were collected during a week in May 2004.

[Perf allows us to directly control the maximum TCP win-
dow size W by limiting the receiver socket buffer size. Unless
otherwise noted, we used W=1MB, which is large enough
to saturate all the paths we experimented with and cause
congestion. To examine the effect of W, we also performed the
same measurements with W=20KB, which, as will be shown

2We prefer RON instead of PlanetLab, because the latter is often too heavily
loaded for accurate network measurement.
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Fig. 1. A measurement epoch. 150 such epochs were recorded during each
trace, with 7 traces collected per path.

later, limits the transfer to only a fraction of the available
bandwidth on most paths.

Each epoch provides the following measurements: the pre-
transfer estimates p, T, /l, the actual TCP throughput R,
and the estimates of the loss rate p and RTT T during the
transfer. The first three estimates are used in (3) to predict the
TCP throughput R, which is then compared with the actual
throughput R. We collected p and T in order to evaluate
how the corresponding metrics change due to the target flow,
and also to quantify the prediction error if it was possible to
estimate  and 7' before the target flow.

We define the relative prediction error E of an individual
measurement epoch as

g- R-R )
min(R, R)
Notice that the denominator min(R, R) gives E the property
that overestimation or underestimation by the same factor w >
1,ie., R=wR for the former and R=R Jw for the latter, yields
the same relative error w — 1 (in absolute value).

To report a single figure for n measurements in a time series
(specifically, for all the 150 epochs of a trace), we use the Root
Mean Square Relative Error (RMSRE) statistic, defined as

(6)

where FE; is the relative error of measurement 4.

B. Results
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Fig. 2. CDF of E for all predictions, for predictions in lossy paths, and for

predictions in lossless paths.

Prediction error in lossy and lossless paths: Figure 2
shows the CDF of E for all measurements, across all traces



and paths. It also shows separately the CDFs of E for the
subset of lossy path predictions (based on the PFTK model)
and for the subset of lossless path predictions (based on the
available bandwidth estimate /1)3. Let us first focus on the
“all predictions” curve. Notice that for roughly 40% of all
measurements, the prediction is an overestimation by more
than a factor of two (E > 1). In fact, the overestimation errors
are larger than an order of magnitude (£ > 9) for almost 10%
of the measurements. The underestimation errors are much less
dramatic and common, with only 10% of the measurements
suffering from an underestimation by more than a factor of
two (B < —1).

In the case of lossless paths, underestimation errors occur
very rarely, while the overestimation errors are considerably
lower and less common than in lossy paths. The reason is
that in lossless paths, our FB predictor does not rely on the
erroneous RTT and loss rate estimates prior to the target
flow. The remaining errors can be attributed to the differences
between TCP throughput and available bandwidth, discussed
in § II-D. The fact that, in lossless paths, overestimation is
the only major type of prediction error implies that either
pathload overestimates the path’s available bandwidth, or that
TCP cannot saturate the available bandwidth in its path due to
random losses or insufficient buffering at the bottleneck link.

Loss Rate Increase
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100 T T : : :
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Fig. 3. CDF of RTT and loss rate increase due to target flow.

RTT and loss rate increases due to target flow: Returning
to the case of lossy paths, the fact that overestimation is much
more dramatic than underestimation illustrates the dominance
of the issue discussed in § III-B, namely T < T and p < p.
Figure 3 shows the distributions of the increases in RTT and
in loss rate after the start of the target flow. The increases were
measured as 7' — 1" and P — p respectively (recall that T’ and
p are estimates of 7' and p during the target flow). Notice that
in about 50% of the measurements, the RTT did not increase
significantly. In 40% of the measurements, however, the target
flow caused an RTT increase between Sms and 60ms. In 10%
of the measurements the RTT increase was higher than 100ms,
probably due to congested low-capacity links (DSL or T-1).
The loss rate, on the other hand, increased by 0.1% to 2% in
almost all measurements. Even though this loss rate increase
may appear small in magnitude, recall that TCP throughput is

3For W=IMB, we have A < W/T in all paths.

inversely proportional to the square-root of the loss rate (see
(1)). For example, an increase of the loss rate from 0.1% to
1% can cause a throughput overestimation by a factor of about
3.2.

100 T T T

RTT/loss rate during TCP flow ——
RTT/loss rate prior to TCP flow -

CDF (%)

Relative Error E

Fig. 4. Prediction errors using T and P (RTT and loss-rate during the target
flow) and using 7" and p (RTT and loss-rate prior to the target flow).

Errors due to periodic RTT and loss rate sampling:
An interesting hypothetical question is the following: how
accurate would FB prediction be, if we had the estimates of
the path’s RTT T and of the loss rate p during the target
flow? In theory, it may be possible to estimate T and p,
given T and P, based on a model that captures the impact of
the target flow on the queue of the bottleneck link. Figure 4
shows the CDF of the FB prediction error when we feed in
(3) the ping-based RTT T and loss-rate during the target
flow. The CDF refers only to lossy paths. Note that using T
and p makes the relative error significantly lower than using T
and p (—3 < E < 3 for about 80% of the predictions). Also,
overestimation and underestimation become equally likely (the
CDF of E is practically symmetric). Despite the benefits of
knowing T and p, the prediction errors are still significant:
more than half of the prediction errors are still larger than a
factor of two. These prediction errors can be attributed to the
fact that TCP samples the RTT and loss rate processes in an
adaptive way, rather than periodically. In terms of our notation,
the remaining prediction errors are due to the differences
between 7' and T', and between p and p.
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Fig. 5. Variation of the prediction error across different paths.
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Variation of prediction error across different paths and
traces: Figure 5 shows the median, as well as the 10/90-
th percentiles, of the relative prediction error on a per path
basis (recall that we have 7x150 measurements from each
path). There are three paths that we did not include in this
graph because they have excessive prediction errors. With the
exception of 4-5 paths that mostly give small underestimation
errors, most paths give only overestimation errors. Another
interesting point is that different paths exhibit widely different
predictability. About 10 out of the 35 paths have much larger
ranges of prediction error than the rest, extending up to E=10
or larger. This implies that, not only is it hard to predict TCP
throughput with an FB method, but also it is hard to bound the
prediction error that should be anticipated. We will return to
the reasons behind this large variation of the prediction error
across different paths in § VIL

Figure 6 shows the distribution of the per-trace RMSRE.
Recall that we calculate a single RMSRE value for each
trace (with 150 successive epochs per trace). The important
observation here is that about 70% of the traces have an
RMSRE that is larger than 1.0. This is a rather disappointing
accuracy for a predictor, as it implies that in most cases, the
prediction error will be more than a factor of two.
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Fig. 7. Prediction accuracy for window-limited vs. congestion-limited flows.

Predictability of window-limited flows: Another interesting
question is whether the FB predictor would be more accurate
for window-limited flows (i.e., W/T < A), given that those

flows do not attempt to saturate the network path. To answer
this question, we extended each epoch with another IPerf TCP
transfer with W=20KB, and performed one experiment on
each path. We verified that this transfer was window-limited
on 18 of the 35 paths, and the ratio W/(T'A) varied between
0.02 to 0.81. Figure 7 compares the RMSRE between the
transfers with a large maximum window (W=1MB) and a
small maximum window (/W=20KB). Note the log-scale of
the Y-axis. In all paths, the prediction error of window-limited
flows was lower, often by a large factor. In particular, 14 out of
the 18 paths have an RMSRE that is less than 1.0 for window-
limited flows. We anticipate that for many applications a TCP
throughput prediction that is accurate within a factor of two
would be adequate. For such applications, an FB predictor
may be appropriate as long as the transfer does not attempt to
saturate the underlying available bandwidth.

C. Summary

The results of this section showed that FB prediction can
be inaccurate, mostly in lossy paths and when the target flow
saturates the underlying path. The major cause of prediction
errors is that the RTT and/or loss rate before the transfer are
significantly different than while the transfer is in progress. We
note again that this cause of prediction errors is not specific to
the PFTK formula. This implies that it is unlikely that other
TCP throughput models would have produced more accurate
FB predictions. Other important causes of prediction errors
are the difference between periodic and TCP sampling of the
RTT and loss rate processes, and the difference between TCP
throughput and available bandwidth.

Our results also suggest that more sophisticated techniques
that estimate the RTT and loss rate to be experienced by
the target flow can significantly improve FB prediction. Such
techniques, however, should take into account the load that
will be exerted by the target flow, and the impact of that
load on the queueing delays and losses in the path. More
information about the underlying path, such as the capacity,
available bandwidth, buffer size, number of competing flows,
etc, may help achieving this goal.

V. HISTORY-BASED PREDICTION

A fundamentally different approach to predicting the
throughput of a large TCP transfer is to use throughput
measurements of previous transfers in the same path. This
History-Based (HB) prediction method is similar to traditional
time series forecasting, where past samples of an unknown
random process are used to predict the value of the process in
the future. The HB approach is possible in applications where
large TCP transfers are performed repeatedly over the same
path.

In this section, we first introduce three families of sim-
ple linear predictors (Moving Average, Exponential Weighted
Moving Average, and non-seasonal Holt-Winters). We do not
examine more complex linear predictors such as ARMA or
ARIMA because the selections of both their order and of their
linear coefficients require a large number of past measurements
[7]; instead, we expect that applications will have to perform



TCP throughput HB prediction based on a limited number of
past transfers (say 10-20). We then show that two distinct time
series “pathologies”, namely outliers and level shifts, can have
a major impact on the prediction error, and propose simple
heuristics that can deal with these pathologies effectively.

A. Linear Predictors

e Moving Average (MA). Given a time series X, the one-step
n-order MA (n-MA) predictor is

SN)
A

|

| =
I\
e

where X’i is the predicted value and X; is the actual
(observed) value at time ¢. If n is too small, the predictor
cannot smooth out the noise in the underlying measure-
ments. On the other hand, if n is too large the predictor
cannot aptly adapt to non-stationarities (e.g., level shifts
due to load variations or routing changes).

o Exponentially Weighted Moving Average (EWMA). The
one-step EWMA predictor is

XH—I = OéXi + (1 - a)Xi
where a is the weight of the last measurement (0<
a <1). Similar to the MA predictor, a higher a cannot
smooth out the measurement noise, while a lower « is
slow in adapting to changes in the underlying time series.

e Holt-Winters (HW). The non-seasonal Holt-Winters pre-
dictor is a variation of EWMA that attempts to capture the
trend in the underlying time series, if such a trend exists®.
This predictor is more appropriate than EWMA for non-
stationary processes, especially if the latter exhibit a
linear trend. A non-seasonal HW predictor maintains a
separate smoothing component X J and a trend compo-
nent X f, and it depends on two parameters « and /3, both
in (0,1). Specifically, the predicted value at time % is

X[ =X%p+ X1,

where . .
X2y =aX; +(1-a)X/,

Xf+1 = /B(Xzs - Xis—1) +(1- B)Xf—r

The initial values of X* and X? are Xo and X1 — X,
respectively, assuming that the time series starts at ¢=0.

B. Detection of Level Shifts and Outliers

While experimenting with various predictors, we found out
that the largest prediction errors are often caused by level
shifts and outliers in the observed time series. Furthermore, if
we manage to somehow avoid these two characteristics in the
throughput time series, then the exact choice of the predictor,
or of its parameters, does not make a significant difference.

A level shift is a type of non-stationarity, and it causes a
significant and typically sudden change in the mean of the

4The forecasting literature sometimes refers to this non-seasonal version of
the HW predictor as Holt’s predictor.

observed time series. An outlier is a measurement that is
significantly different, beyond the typical level of statistical
variations, relative to nearby measurements. Both outliers and
level shifts have been studied extensively in the theory of
forecasting [28]. In Figures 8(a), 8(b) and 8(c) we show
examples of traces that exhibit both outliers and level shifts,
observed in our TCP throughput measurements. One way to
deal with level shifts, after they are detected, is to restart the
predictor, ignoring all previous history. Outliers, on the other
hand, can be just ignored.

We next describe simple heuristics to detect level shifts
and outliers. Suppose that {X;,...X,} is the sequence of
past measurements, ignoring outliers, where X; is the first
measurement after the last detected level shift. We determine
that the measurement X}, is an increasing (decreasing) level
shift if it satisfies the following three conditions:

1) The measurements {X1,...X 1} are all lower (higher)

than the measurements { Xy, ...X, },

2) The median of {Xi,...X;_1} is lower (higher) than
the median of {Xj,...X,} by more than a relative
difference , and

3) k+2<n.

The last condition aims to avoid misinterpreting an outlier as
a level shift. Upon the detection of a level shift, we ignore
all measurements prior to X}, and restart the predictor from
Xk. On the other hand, a measurement X (with k& < n)
is considered an outlier if it differs from the median of
the measurements in {Xi,...X,} by more than a relative
difference of . Outliers are discarded from the history of
previous measurements.

Figures 8(d), 8(e) and 8(f) show the RMSRE for the three
sample traces with five different predictors: MA, MA-LSO,
EWMA, HW, and HW-LSO. The LSO acronym is used when
we use the previous heuristics for the detection of Level Shifts
and Outliers. For the MA and MA-LSO predictors, we show
results for four different values of n (see the figure’s legend).
For the EWMA and HW predictors, we show results for three
values of a. We observed that, at least for our datasets, the
RMSRE does not strongly depend on 3, x and ¢. We found
empirically that the following values perform reasonably well,
in terms of minimizing the RMSRE, at least in our datasets:
B=0.2, x=0.3, and ¥=0.4. On the other hand, the parameters n
and « play a major role in the prediction accuracy when the
LSO heuristic is not used. The LSO heuristic decreases the
prediction error significantly, and makes the predictors more
robust to the choice of n or a. The difference between the
accuracy of MA-LSO and HW-LSO is not major, although
the latter tends to perform slightly better. More results for
the accuracy of these two predictors will be given in the next
section.

VI. HB PREDICTION ACCURACY

In this section, we apply the HB predictors of the previous
section to the measurements described in § IV. Our objective
is to compare the most promising HB predictors that we
experimented with, and to examine how the HB prediction
accuracy varies in different paths, with window-limited flows,
and with different transfer frequencies.
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Fig. 8. Examples of TCP throughput traces and the prediction errors (RMSRE) with various predictors.

A. Results 100 ‘ o
Comparison of HB predictors: Figures 9 and 10 summarize ?g

the prediction error (in terms of RMSRE) of several MA and 80 | 1
HW predictors, respectively. The EWMA predictor performs

similarly to HW. Without LSO, the n-MA predictors perform @ 80y ]
very similarly when n <20 (we do not show all of them), g—

except the trivial case of n=1 that performs slightly worse. © 40y 10-MALSO = ]
With LSO, there is a significant reduction in the RMSRE of T-MA e
MA predictors. For HW predictors, a=0.8 (0.8-HW) performs 20r 1
visibly better than a=0.4. Further experimentation showed

that a=0.8 is close to the optimal for our dataset, and we %ot o1 04 p 5

use this value for HW predictor hereafter unless otherwise
noted. HW predictor is also significantly improved with LSO.
A comparison of MA-LSO (with n=10) and HW-LSO shows
that the accuracy of the latter is only slightly better. This is an
indication that not many of our traces exhibit linear trends.

Comparison of FB and HB predictors: Even though these
two classes of predictors are complementary, in some cases it
may be possible to use either FB or HB predictor. Comparing
the RMSRE of the FB predictor (see Figure 6) with that of
the HB predictors, we can see that the accuracy of the latter is
dramatically better. Specifically, HB predictors give RMSRE
less than 0.4 for about 90% of the traces. The same RMSRE
percentile for the FB predictor is 20, while the median RMSRE
is about 2. One may argue that this comparison is not fair for
FB, since FB is applicable without any knowledge of previous
TCP transfer throughput measurements. If it is possible to
collect and use such historical data, however, this comparison
shows that HB prediction should be preferred to FB prediction.
RMSRE vs. CoV of throughput measurements: We are

RMSRE (log scale)

Fig. 9. Exponential Weighted Moving Average prediction error.

100 T

80

CDF (%)

40

e 4

0.8-HW-LSO
0.8-HW

20

0.1 0.4 1 5
RMSRE (log scale)

Fig. 10. Holt-Winters prediction error.



interested in the relation between the prediction RMSRE for
a given trace and the Coefficient of Variation (CoV) of the
corresponding TCP throughput time series>. The reason for
this comparison will become clear in the following section,
where we use the CoV as an indication of the TCP throughput
predictability in a path. To calculate the CoV of a trace, we
isolate stationary periods based on the detected level shifts
and exclude outliers. We then calculate the weighted average
of the CoVs for different periods (with the weight of each
period being the number of corresponding measurements). In
the RMSRE calculations, we also exclude measurements that
were identified as outliers. Figure 11 shows the correlation of
the CoV and RMSRE for each collected trace, using the HW-
LSO predictor. Note the strong correlation between the two
metrics. The correlation coefficient between them is 0.91. We
can thus assume, at least as a first-order approximation, that
the RMSRE prediction error with HW-LSO is equal to the
CoV of the corresponding time series, at least in the datasets
we experimented with.
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Fig. 11. Prediction error versus CoV.

Variations in path predictability: Figure 12 provides close-
up views of the accuracy of several predictors in 12 sample
paths. We classify these paths into four representative classes
(described in the figure’s caption), based on the average
prediction error as well as the variation of the error across
different traces in the same path. Each subfigure represents
a specific path, with the X-axis numbers indicating different
traces. For each trace, successive bars show the RMSRE with
1-MA, 10-MA, HW, and HW-LSO, from left to right. As
previously noted, the HW-LSO predictor is almost always the
best in terms of RMSRE. A more important observation from
these graphs, however, is that there are major differences in
the prediction error between different paths. Some paths have
quite low RMSRE and they are fairly predictable, others have
larger RMSRE but the RMSRE is quite stable (predictable
errors), while others have either large RMSRE variations (un-
predictable errors), or high RMSRE (unpredictable through-
put). What causes different paths to behave so differently in
terms of their TCP throughput predictability? We focus on this
important question in the next section.

Predictability of window-limited flows: When the target

SRecall that the CoV is the ratio of the standard deviation to the mean.

10

flow is window-limited, it would probably not be subject
to the dynamic variations of the available bandwidth, and
so we can expect higher predictability. Figure 13 compares
the prediction error for window-limited flows (W=20KB)
and for congestion-limited flows (W=1MB), using the same
traces as in Figure 7. Notice that window-limited flows have
a lower RMSRE, confirming the insight that the throughput
is more predictable when the target flow does not attempt
to saturate the path. The RMSRE difference is not always
major, however, especially when the RMSRE for congestion-
limited flows is already low (around 0.1). These remaining
errors are probably due to short-term load variations in the
underlying path, or random packet losses that the target flow
experiences, causing unavoidable variations in the resulting
TCP throughput, independent of W.
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Fig. 13. Prediction error for window-limited vs. congestion-limited flows.

The effect of the target flow frequency: All previous results
are based on periodic TCP transfers, performed approximately
every 3 minutes. We expect the prediction accuracy to depend
on this “TCP transfer period”. A time series with a larger
period spans a wider history horizon, and so route changes or
major load variations become more likely.
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Fig. 14. Prediction error with different TCP transfer periods.

To see how the measurement period affects the predic-
tion error, we down-sample the original traces at different
frequencies. We then apply the HW-LSO predictor to the
down-sampled traces, producing RMSRE of predictions for
transfer periods of 6, 24, and 45 minutes. Figure 14 shows the
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results. As we would expect, the prediction accuracy degrades
as we increase the measurement period. Fortunately, though,
the prediction errors remain reasonable even with the largest
measurement period. Specifically, with the 45-min period,
65% of the traces have an RMSRE below 0.4. At the 90-th
percentile of the traces the RMSRE is less than 0.4 with the
3-min period, and less than 1.0 with the 45-min period. This
is an encouraging result, as it implies that HB prediction is
fairly accurate even if it relies only on sporadic previous TCP
transfers, every few minutes, on the given paths. Of course we
emphasize once more that this conclusion is based only on
our dataset, and it is possible that other Internet paths behave
differently.

B. Summary

This section has evaluated the accuracy of HB prediction
with respect to several factors, some of which have not been
examined before. Specifically, we have shown that:

1) Even a limited history of sporadic previous TCP trans-
fers is often sufficient to achieve a fairly good prediction
accuracy.

2) Simple heuristics to detect outliers and level shifts
can significantly reduce the number of large prediction
errors.

3) If HB prediction is feasible, i.e., if there is a history
of previous TCP transfers in the same path, then HB
prediction is more accurate than FB prediction.

4) Different paths can exhibit distinct patterns of prediction
accuracy. Consequently, even with the same prediction
algorithm and available history, the resulting accuracy
can be significantly different from path to path.

5) The predictability of an HB predictor is higher when the
transfer is window-limited. Consequently, if predictabil-
ity is more important than throughput maximization,
then the TCP flow should have a limited advertised
window such that it does not saturate the underlying
path.

VII. TWO PREDICTABILITY FACTORS

The empirical results in the previous section raise the
following question: what makes TCP throughput much less
predictable in some network paths than in others? In this
section, we focus on this question and identify two major
factors that affect the accuracy of HB prediction in a path: load
and the degree of multiplexing. Specifically, we rely on simple
queueing models that provide a framework for reasoning about
the relationship between TCP throughput predictability and the
previous two factors.

First, we focus on the connection between the relative
prediction error and the Coefficient of Variation (CoV) of
a given time series. Consider a second-order stationary time
series X with mean px, variance 0%, and covariance vx (k).
According to the Yule-Walker forecasting model [23], an
autoregressive one-step predictor based on the n most recent
samples of X has the following prediction error variance:

Varlen] = Var[X;11 — Xn+1] =0o% - Z ax,n(k)vx (k)
k=1

where X; and X, are the actual and predicted values of X,
respectively, at time 4, and {ax(i),i = 1,...n} are the
autoregressive coefficients of X that minimize the mean square
prediction error. The corresponding relative prediction error, in
terms of the Normalized Root Mean Square Error (NRMSE) 6
is given by:

\/ Varle,,] _
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_ Zzzl aX,n(k)'YX (k)
G
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y

(7
where CoVx=0x /ux. The key point here is that the relative
prediction error increases with the CoV of the underlying time
series. Also, if the time series has a weak correlation structure

VEE] _
mx

Notice that although NRMSE is not exactly the same as RMSRE, they
are reasonably close as long as pg does not vary significantly, say spanning
an order of magnitude, in a time series. This is true for most of the paths we
measured.



then the relative prediction error is approximately equal to the
time series CoV,

, VE[e]]

if yx (k) =~ 0, then NRMSE = NT ~CoVx (8)
Also recall the observation from Figure 11: the RMSRE with
the HW-LSO predictor and the CoV of the corresponding
time series are approximately equal. Consequently, in the
following we are interested in the effects of load and degree of
multiplexing on the CoV of the TCP throughput time series,
rather than examining directly the effect of these factors on
the RMSRE or on the NRMSE.

A. Effect of Load

Consider a link of capacity C, modeling the bottleneck
of a path. We next examine the effect of that link’s load
conditions through two different models: first, an Independent
and Identically Distributed (IID) process for the aggregate
traffic at a bufferless server, and second, a Poisson process
of IID session arrivals at a Processor Sharing server.
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Fig. 16. Poisson process.

1) IID arrival process at bufferless server: Suppose that the
arriving traffic rate at a given time scale 7' can be modeled as
an IID process Y. Without loss of generality, T=1 time unit.
Let Z be the observed traffic rate at the output of the link at
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Fig. 17. Processor Sharing model.

the same time scale. For a bufferless link, the observed rate
process is given by

7 Y ?fY<C ©)
c ify>cC

and so the probability distribution function of Z can be
obtained from that of Y. The available bandwidth is given
by A=C' — Z, and its CoV is

Cov(4) = Y ValZ]
C — E[Z]
If we assume that the TCP throughput is, as a first-order
approximation, equal to the available bandwidth, then the
previous expression also gives the TCP throughput CoV.

We used Mathematica to derive CoV(A) for two offered
load processes Y: a Gaussian process and a Poisson process.
The resulting CoV(A), as well as the std-deviation of A, are
shown in Figures 15 and 16, respectively, as a function of
the link utilization p=(C' — A)/C. The key observation is that
the CoV of the available bandwidth increases with the link
utilization. If the TCP throughput follows the variations of the
available bandwidth, then based on (8) we should expect a
higher relative prediction error under heavier load conditions.

As an interesting side-note, note that the standard deviation
reaches a maximum as p increases, and then it drops. The
reason for that drop is that, in heavy-load conditions, the link
is almost always utilized and so there is little absolute variation
in the available bandwidth. This point has been studied in more
depth by Tian et al. in [33]. In relative terms, however, the
variability of A increases monotonically with p, as shown by
the CoV curve.

2) Processor Sharing model with Poisson session arrivals:
The previous model does not capture what happens at a
congested link, in which the available bandwidth is zero. In
this paragraph, we model the traffic as a stream of IID sessions
arriving at a link, based on a Poisson process with average rate
A. The mean size of the sessions is 6. The normalized offered
load is p = (AF)/C. Furthermore, we model the link as a
Processor Sharing server, meaning that if there are IV sessions
in the link then their instantaneous service rate is r(IN)=C/N.
Since the available bandwidth is zero when the link is not idle,
this a more appropriate model for a congested link [13]. An



arriving session, modeling the target flow, will obtain the same
throughput () as any other active flow. So, in this model,
we are not interested in the CoV of the available bandwidth,
but in the CoV of the per-flow throughput r(NV).

The probability distribution for the number of active flows
N in the above Processor Sharing model is given by

m(N) =pN(1-p)

We again use Mathematica to derive the CoV of the target
flow’s throughput r(N):

(1 = p)log(1 = p)*> +p- L(2,p)
(p — D)log(1 — p)?

where L(n,z) = Y 70, i—: Figure 17 shows the standard
deviation and CoV of r(NN) as a function of the offered load
p- The main observation is the same as in the IID traffic model:
the CoV of a flow’s throughput increases with the offered load
p, implying that we should expect a higher relative prediction
error under heavier load conditions.

CoV[r(N)] =

B. Effect of Degree of Multiplexing

The conventional wisdom is that network traffic is
“smoother” in links with a higher degree of multiplexing, i.e.,
with a larger number of simultaneously active flows. Using
a simple queuing model, we aim to better understand this
insight, and the conditions under which it is valid.

Consider again a model of Poisson session arrivals. Instead
of the Processor Sharing model (which leaves no available
bandwidth), suppose that sessions are rate limited, and for
simplicity, the rate for each session is constant and equal
to r. The number of sessions N on the link follows a
Poisson distribution with mean and variance E[N] = Var[N]
= (A)/r [13].

The utilized link capacity at any point in time is Y=Nr,
with mean E[Y] = rE[N] = M = pC, and variance Var[Y] =
r2Var[N]. So, the CoV of the available bandwidth is

1 pC
VE[N]C(1-p)

Suppose that we keep the utilization p constant, but decrease
the session service rate r so that the average number of
sessions E[N] increases. Equation (10) shows that the CoV
of A decreases with the square root of E[N]. This confirms
that we should expect a lower relative prediction error as the
number of competing flows on the link increases, but only when
the utilization remains constant.

CoV[A] = CoV[C —Y] = (10)

C. Summary

This section used some simple queueing models to confirm
the following insights:

« the relative prediction error increases with the CoV of
the underlying time series,

o the CoV of the available bandwidth process in a non-
congested link, or the CoV of a flow’s throughput in a
congested link, increases with the offered load on that
link,
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o the CoV of the available bandwidth process decreases
with the number of competing flows on the link, if the
utilization remains constant.

Obviously, our models are based on quite restrictive as-
sumptions and they do not consider the many idiosyncrasies of
TCP. In particular, the previous analysis assumed that the TCP
throughput follows the variability of the available bandwidth
at the bottleneck link of its path. This assumption is obviously
not true in short time scales (less than a few RTTs), and so
the previous insights may not be true for short TCP flows. We
note that we have also validated the previous conclusions in
the case of long TCP transfers with simulations of both TCP
and non-TCP cross traffic.

VIII. CONCLUSIONS

This paper investigated two classes of throughput predictors
for large TCP transfers. FB prediction is an attractive option,
given that it does not require intrusive measurements or any
history of prior TCP transfers. We demonstrated however that
it can be inaccurate, especially when the transfer attempts to
saturate the path, and we explained the reasons for these errors.
HB prediction, on the other hand, is quite accurate but it is
feasible only when there is a history of previous TCP transfers
in the same path. Although the accuracy of HB prediction does
not depend so much on the actual predictor, it does depend on
the transfer’s maximum congestion window size and on the
underlying path. We explained the path dependency based on
two factors: the load and the degree of multiplexing on the
bottleneck link of the path.

In future work, it would be interesting to examine hybrid
predictors, which rely on TCP models as well as on recent
history. Another direction would be to develop TCP throughput
models that are specifically designed for prediction, and that
take as inputs various estimates of the path load, buffering, and
cross traffic nature. In terms of HB prediction, more complex
predictors (such as ARIMA models) can be also evaluated,
even though our measurements indicate that the prediction
error is already quite low, probably for any practical purposes,
in most paths.
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APPENDIX: MAIN SYMBOLS
T RTT experienced by target flow
T RTT measured with periodic probing prior to target flow
T RTT measured with periodic probing during target flow
P loss rate experienced by target flow
P loss rate measured with periodic probing prior to target flow
p loss rate measured with periodic probing during target flow
p congestion event probability experienced by target flow
R actual throughput of target flow
R predicted throughput of target flow
R expected throughput of target flow based on T and p
A available bandwidth measured prior to target flow
W | maximum window of target flow




