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ABSTRACT

We present an adaptive load shedding approach for windowed
stream joins. In contrast to the conventional approach of
dropping tuples from the input streams, we explore the con-
cept of selective processing for load shedding, focusing on
costly stream joins such as those over set-valued or weighted
set-valued attributes. The main idea of our adaptive load
shedding approach is two-fold. First, we allow stream tuples
to be stored in the windows and shed excessive CPU load by
performing the stream join operations, not on the entire set
of tuples within the windows, but on a dynamically changing
subset of tuples that are highly beneficial. Second, we sup-
port such dynamic selective processing through three forms of
runtime adaptations: By adaptation to input stream rates, we
perform partial processing based load shedding and dynami-
cally determine the fraction of the windows to be processed
by comparing the tuple consumption rate of join operation
to the incoming stream rates. By adaptation to time cor-
relation between the streams, we dynamically determine the
number of basic windows to be used and prioritize the tuples
for selective processing, encouraging CPU-limited execution
of stream joins in high priority basic windows. By adaptation
to join directions, we dynamically determine the most ben-
eficial direction to perform stream joins in order to process
more useful tuples under heavy load conditions and boost the
utility or number of output tuples produced. Our load shed-
ding framework not only enables us to integrate utility-based
load shedding with time correlation-based load shedding, but
more importantly, it also allows load shedding to be adaptive
to various dynamic stream properties. Inverted indexes are
used to further speed up the execution of stream joins based
on set-valued attributes. Experiments are conducted to eval-
uate the effectiveness of our adaptive load shedding approach
in terms of output rate and utility.

1. INTRODUCTION

With the ever increasing rate of digital information avail-
able from on-line sources and networked sensing devices [17],
the management of bursty and unpredictable data streams
has become a challenging problem. It requires solutions that
will enable applications to effectively access and extract in-
formation from such data streams. A promising solution for
this problem is to use declarative query processing engines
specialized for handling data streams, such as data stream
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management systems (DSMS), exemplified by Aurora [5],
STREAM [1], and TelegraphCQ [7].

Joins are key operations in any type of query processing
engine. Below we list some real-life application examples of
stream joins. We return to these examples when we discuss
assumptions about the characteristics of the joined streams
in later sections.

o [inding similar news items from two different sources:
Assuming that news items from two different sources
(such as CNN, Reuters) are represented by weighted
keywords (join attribute) in their respective streams, we
can perform a windowed inner product join on them to
find similar news items.

e Finding correlated attacks from two different alert streams
Assuming that alerts from two different sources are rep-
resented by tuples in the form (source, target, {attack
descriptors}, time) in their respective streams, we can
perform a windowed overlap join on attack descriptors
to find correlated attacks.

e [inding correlation between phone calls and stock trading
Assuming that phone call streams are represented as
{...,(Pa, Py, t1),...} where (P, Py,t1) means P, calls
P, at time t1, and stock trading streams are repre-
sented as {..., (P, Sz,t2),...} where (P, Sy, t2) means
P, trades S, at time t2; we can perform a windowed
equi-join on person attribute to find hints, such as: P,
hints S; to P, in the phone call.

As a result, joins on unbounded data streams have re-
cently enjoyed strong interest in data stream management
research [11, 14, 12]. This is mainly due to the fact that
most of the traditional join algorithms are blocking opera-
tions. They need to perform a scan on one of the inputs to
produce all result tuples that match with a given tuple from
the other input. However, data streams are unbounded, thus
blocking is not an option.

Several proposals have been put forth to address the prob-
lem of blocking joins, and they vary depending on the concrete
applications at hand. One natural way of handling joins on in-
finite streams is to use sliding windows. In a windowed stream
join, a tuple from one stream is joined with only the tuples
currently available in the window of another stream. A sliding
window can be defined as a time-based or count-based window.
An example of a time-based window is “last 10 seconds’ tu-
ples” and an example of a count-based window is “last 100
tuples.” Windows can be either user defined, in which case
we have fized windows, or system-defined and thus flexible,
in which case the system uses the available memory to maxi-
mize the output size of the join. Another way of handling the
problem of blocking joins is to use punctuated streams [24],



in which punctuations that give hints about the rest of the
stream are used to prevent blocking. The two-way stream
joins with user defined time-based windows constitute one of
the most common join types in the data stream management
research to date [2, 11, 14].

In order to keep up with the incoming rates of streams,
load shedding is usually needed in stream processing systems.
Several factors may contribute to the demand for load shed-
ding, including (a) bursty and unpredictable rates of the in-
coming streams; (b) large window sizes; and (c) costly join
conditions. Data streams can be unpredictable in nature [15]
and incoming stream rates tend to soar during peak times. A
high stream rate requires more resources for performing a win-
dowed join, due to both increased number of tuples received
per unit time and the increased number of tuples within a
fixed-sized time window. Similarly, large window sizes im-
ply that more tuples are needed for processing a windowed
join. Costly join conditions typically require more CPU time,
such as join conditions defined on set-valued and weighted
set-valued attributes.

A set-valued attribute naturally occurs when an attribute
takes more than one value from a domain. For instance, an
attribute flagColor can take the value {white, red, green}.
Mostly used join conditions on set-valued attributes include
subset (C), equality(=), superset (D), and overlap (6x). Over-
lap join, 60, finds the pair of tuples with set-valued at-
tributes that share at least k items. For instance, an attribute
requiredSkills can possibly take the values {Java, Oracle,
C++4, XML} and {C, Java, BSc, Oracle}, where the overlap
of these two set values has 2 items {Java, Oracle}.

A weighted set value provides a stronger model to represent
different objects. Any sparse point from a large vector space
can be compactly represented as a set of weighted items. For
instance, a document can be represented as a vector where di-
mensions represent words and coordinates represent weights
of words (ex. assigned by tf-idf weighting [16]). This vector
can be converted into a weighted set, where each item-weight
pair in the set corresponds to a non-zero weighted word. Sim-
ilarly a multimedia object can be represented as a feature
vector and then converted into a weighted set. A typical
join condition for weighted set-valued attributes can be inner
product of their vector representations. An inner product join
with threshold value d, tries to find pairs of attributes whose
inner product is larger than or equal to d.

In this paper we propose an adaptive load shedding frame-
work for costly windowed stream joins. The main idea is
to reduce the amount of CPU load by judiciously perform-
ing joins on a selective subset of high-valued tuples from the
windows and making the selection decision through dynamic
adaptations to incoming stream rates, time-based correlation
between streams, and join directions. Given that the output
of a windowed stream join with load shedding is only a subset
of the output of an off-line join, the goal of our load shedding,
in the context of windowed stream joins, is to shed load in such
a way that the number of output tuples produced or the utility
gained by the produced tuples is maximized. Maximizing the
utility of the output tuples produced is especially important
when certain tuples are more valuable than others.

Summary of Contributions

In the rest of paper we present an adaptive load shedding
framework for windowed stream joins, aiming at maximizing
both the output rate and the output utility of stream joins.
We focus on costly stream joins such as those over set-valued

or weighted set-valued attributes. Our approach has several
unique characteristics. First, instead of dropping tuples from
the input streams as proposed in many existing approaches,
our adaptive load shedding framework follows a selective pro-
cessing methodology by keeping tuples within the windows,
but processing only a subset of them, when they are more
useful, based on time-based correlation between the streams.
Second, our approach achieves load shedding by performing
adaptation in three dimensions. Through rate adaptation, our
stream join approach adapts to the incoming stream rates to
shed load by adjusting the amount of selective processing.
Through time correlation adaptation, the selective processing
of stream joins adapts to the time-based correlation between
the streams through the use of basic windows, prioritized
based on the match probability density function learned from
the analysis of streams. The learning is done by performing
full processing instead of selective processing for a sampled
part of the stream. Through join direction adaptation, our
approach dynamically determines the most beneficial join di-
rection by moving from symmetric-join to partial symmetric
and partial asymmetric join as dictated by the load on the
system. Third but not the least, our selective processing with
three levels of adaptations enables a coherent integration with
the utility-based load shedding, in order to maximize utility
of the output tuples without resorting to dropping tuples in
input streams. We employ inverted indexes, commonly used
in set based join processing [18, 20], to our windowed stream
joins to speed up the selective processing of joins. We include
a set of experiments conducted to evaluate the effectiveness of
our adaptive load shedding approach. Our experimental re-
sults show that the three levels of adaptations can effectively
shed the load in the presence of bursty and unpredictable
rates of the incoming streams, the large window sizes, and the
costly join conditions, such as those on set-valued attributes.

2. ALTERNATIVE APPROACHES AND RE-
LATED WORK

We can broadly divide the related work on load shedding
in windowed stream joins into two categories, based on the
metric being optimized.

The work in the first category aims at maximizing the util-
ity of the output produced. Different tuples may have differ-
ent importance values based on the application. For instance,
in the news join example, certain type of news, e.g., secu-
rity news, may be of higher value, and similarly in the stock
trading example, phone calls from insiders may be of higher
interest when compared to calls from regulars. In this case,
an output from the join operator that contains highly-valued
tuples is more preferable to a higher rate output generated
from lesser-valued tuples. The work presented in [23] uses
user-specified utility specifications to drop tuples from the in-
put streams with low utility values. We refer to this type of
load shedding as wutility based load shedding, also referred to
as semantic load shedding in the literature.

The work in the second category aims at maximizing the
number of output tuples produced [9, 14, 22]. This can
be achieved through rate reduction on the source streams,
i.e., dropping tuples from the input streams, as suggested
in [6, 14]. The work presented in [14] investigates algorithms
for evaluating moving window joins over pairs of unbounded
streams. Although the main focus of [14] is not on load shed-
ding, scenarios where system resources are insufficient to keep
up with the input streams are also considered.



There are several other works related with load shedding in
DSMSs in general, including memory allocation among query
operators [3] or inter-operator queues [19], load shedding for
aggregation queries [4], and overload-sensitive management of
archived streams [8].

In summary, most of the existing techniques used for shed-
ding load are tuple dropping for CPU-limited scenarios and
memory allocation among windows for memory-limited sce-
narios. However, dropping tuples from the input streams
without paying attention to the selectivity of such tuples may
result in a suboptimal solution. Based on this observation,
heuristics that take into account selectivity of the tuples are
proposed in [9].

A different ap-
proach, called age-
based load shedding,
3 is proposed recently
in [22] for perform-
ing memory-limited
stream joins.  This
work is based on
the observation that
there exists a time-
based correlation
between the streams. Concretely, the probability of having
a match between a tuple just received from one stream and
a tuple residing in the window of the opposite stream, may
change based on the difference between the timestamps of
the tuples (assuming timestamps are assigned based on the
arrival times of the tuples at the query engine). Under this
observation, memory is conserved by keeping a tuple in the
window since its reception until the average rate of output
tuples generated using this tuple reaches its maximum value.
For instance, in Figure 1 case I, the tuples can be kept in
the window until they reach the vertical line marked. This
effectively cuts down the memory needed to store the tuples
within the window and yet produces an output close to the
actual output without window reduction.

Obviously, knowing the distribution of the incoming
streams has its peak at the beginning of the window, the age-
based window reduction can be effective for shedding memory
load. A natural question to ask is: “Can the age-based win-
dow reduction approach of [22] be used to shed CPU load?”
This is a valid question, because reducing the window size also
decreases the number of comparisons that have to be made in
order to evaluate the join. However, as illustrated in Figure 1
case II, this technique cannot directly extend to the CPU-
limited case where the memory is not the constraint. When
the distribution does not have its peak close to the beginning
of the window, the window reduction approach has to keep tu-
ples until they are close to the end of the window. As a result,
tuples that are close to the beginning of the window and thus
are not contributing much to the output will be processed un-
til the peak is reached close to the end of the window. This
observation points out two important facts. First, time-based
correlation between the windowed streams can play an im-
portant role in load shedding. Second, the window reduction
technique that is effective for utilizing time-based correlation
to shed memory load is not suitable for CPU load shedding,
especially when the distribution of the incoming streams is
unknown or unpredictable.

With the above analysis in mind, we propose an adaptive
load shedding framework that is capable of performing selec-
tive processing of tuples in the stream windows by dynamic

tuple drop time tuple drop time

pdf

0 time in window W

case II

0 time in window W

case [

Figure 1: Examples of match
probability density functions

adaptation to input stream rates, time-based correlations be-
tween the streams, and profitability of different join direc-
tions. To our knowledge, our load shedding approach is the
only one that can handle arbitrary time correlations and at
the same time can support maximization of output utility.

3. OVERVIEW

Unlike the conventional load shedding approach of dropping
tuples from the input streams, our adaptive load shedding
framework encourages stream tuples to be kept in the win-
dows and sheds the CPU load by performing the stream joins
on a dynamically changing subset of tuples that are highly
beneficial, instead of on the entire set of tuples stored within
the windows. This allows us to exploit the characteristics of
stream applications that exhibit time based correlation be-
tween the streams. Concretely, we assume that there exists a
non-flat distribution of probability of match between a newly-
received tuple and the other tuples in the opposite window,
depending on the difference between the timestamps of the
tuples. There are several reasons behind this assumption.
First, variable delays can exist between the streams as a re-
sult of differences between the communication overhead of
receiving tuples from different sources [21]. Second and more
importantly, there may exist variable delays between related
events from different sources. For instance, in the news join
example, different news agencies are expected to have differ-
ent reaction times due to differences in their news collection
and publishing processes. In the stock trading example, there
will be a time delay between the phone call containing the
hint and the action of buying the hinted stock. In the cor-
related attacks example, different parts of the network may
have been attacked at different times. Note that, the effects
of time correlation on the data stream joins are to some ex-
tent analogous to the effects of the time of data creation in
data warehouses, which are exploited by join algorithms such
as Drag-Join [13].

Although our load shedding framework is based on the as-
sumption that the memory resource is sufficient, we want to
point out two important observations. First, with increasing
input stream rates and larger stream window sizes, it is quite
common that the processing resources (CPU) become limited
before memory does. Second, it is interesting to note that,
even under limited memory, our adaptive load shedding ap-
proach can be used to effectively shed the excessive CPU load
after window reduction is performed for handling the memory
constraints.

3.1 Technical Highlights

Our load shedding approach is best understood through
its two core mechanisms, each answers a fundamental ques-
tion on adaptive load shedding without tuple dropping. The
first mechanism is called partial processing and it answers the
question of “how much we can process’ given a window of
stream tuples. The factors to be considered in answering this
question include the performance of the stream join operation
under current system load and the current incoming stream
rates. In particular, partial processing dynamically adjusts
the amount of load shedding to be performed through rate
adaptation. The second mechanism is called selective process-
ing and it answers the question of “what should we process’
given the constraint on the amount of processing, defined at
the partial processing phase. The factors that influence the
answer to this question include the characteristics of stream



window segments, the profitability of join directions, and the
utility of different stream tuples. Selective processing extends
partial processing to intelligently select the tuples to be used
during join processing under heavy system load, with the goal
of maximizing the output rate or the output utility of the
stream join.

Notation | Meaning |

t tuple
T(t) timestamp of the tuple ¢
S input stream 1
W; window over S;
w; window size of W; in seconds
i rate of S; in tuples per second
B basic window j in W;
basic window size in seconds

n; number of basic windows in W;
r fraction parameter
O fraction boost factor
T fraction parameter for W;
Tz fraction parameter for W; for a tuple of type z
fi(®) match probability density function for W;
Dij probability of match for B; ;
05 expected output from comparing

"I a tuple t with a tuple in B; ;

j k, where o; 1 is the jth item
i in the sorted list {0; |l € [1..n;]}
w expected utility from comparing

h2 a tuple t of type z with a tuple in W;
Z tuple type domain
Z(t) type of a tuple
V(z) utility of a tuple of type z
Wiz frequency of a tuple of type z in S;
T rate adaptation period
Te time correlation adaptation period
oY sampling probability

Table 1: Notations used throughout the paper
Before describing the details of partial processing and se-
lective processing, we first briefly review the basic concepts
involved in processing windowed stream joins, and establish
the notations that will be used throughout the paper.
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Figure 2: Stream Join Example

3.2 Basic Conceptsand Notations

A two-way windowed stream join operation takes two input
streams denoted as S1 and Sz, performs the stream join and
generates the output. For notational convenience, we denote
the opposite stream of stream i (i = 1,2) as stream i. The
sliding window defined over stream S; is denoted as W;, and
has size w; in terms of seconds. We denote a tuple as t and its
arrival timestamp as T'(t). Other notations will be introduced
in the rest of the paper as needed. Table 1 summarizes the
notations used throughout the paper.

A windowed stream join is performed by fetching tuples
from the input streams and processing them against tuples
in the opposite window. Figure 2 illustrates the process of
windowed stream joins. For a newly fetched tuple ¢ from
stream S;, the join is performed in the following three steps.
First, tuple ¢ is inserted into the beginning of window Wi;.
Second, tuples at the end of window W, are checked in order
and removed if they have expired. A tuple t, expires from
window W; iff T'—T'(¢,) > w;, where T represents the current
time. The expiration check stops when an unexpired tuple
is encountered. The tuples in window W, are sorted in the
order of their arrival timestamps by default and the window
is managed as a doubly linked list for efficiently performing
insertion and expiration operations. In the third and last
step, tuple t is processed against tuples in the window W5,
and matching tuples are generated as output.

Figure 3 summarizes the Join ProcessiNg()

join processing steps. To fori=1to 2
handle joins defined on set if no tuple in S;
continue

or weighted set valued at-
tributes, the following addi-
tional details are attached
to the processing steps, as-
suming a tuple is a set
of items (possibly with as-
signed weights). First, the
items in tuple ¢t are sorted
as it is fetched from S;.
The tuples in W5 are ex-
pected to be sorted, since
they have gone through the
same step when they were fetched from S;. Then, for each
tuple to in W7, t and t, are compared by performing a simple
merge of their sorted items. Equality, subset, superset, over-
lap and inner product joins all can be processed in a similar
manner. For indexed joins, an inverted index is used to effi-
ciently perform the join without going through all the tuples
in W;. We discuss the details of indexed join in Section 4.2.

t < fetch tuple from S;
Insert ¢ in front of W;
repeat

to < last tuple in W;

if T —T(to) > w;

Remove t, from W;

until 7' — T'(to) < w;
Sort items in ¢
foreach t, € W5

Merge compare t, tq

Figure 3: Join Processing

4. PARTIAL PROCESSING -
HOW MUCH WE CAN PROCESS?

The first step in our approach to shedding CPU load with-
out dropping tuples is to determine how much we can pro-
cess given the windows of stream tuples that participate in
the join. We call this step the partial processing based load
shedding. For instance, consider a scenario in which the limi-
tation in processing power requires to drop half of the tuples,
i.e. decreasing the input rate of the streams by half. A par-
tial processing approach is to allow every tuple to enter into
the windows, but to decrease the cost of join processing by
comparing a newly-fetched tuple with only a fraction of the
window defined on the opposite stream. Partial processing,
by itself, does not significantly increase the number of output
tuples produced by the join operator, when compared to tu-
ple dropping or window reduction approaches. However, as
we will describe later in the paper, it forms a basis to perform
selective processing, which exploits the time-based correlation
between the streams, and makes it possible to accommodate
utility-based load shedding, in order to maximize the output
rate or the utility of the output tuples produced. Two im-
portant factors are considered in determining the amount of
partial processing: (1) the current incoming stream rates, and
(2) the performance of the stream join operation under cur-



Algorithm 1: Rate Adaptation

RATEADAPT()
(1) Initially: r <1

2) every T, seconds

3 «ay < # of tuples fetched from S; since last adapt.
4 ag «— # of tuples fetched from Ss since last adapt.
5

6 Ao < average rate of Sg since last adaptation

)
)
)
) A1 < average rate of S since last adaptation
)
) BemboiE

) if 3<1thenr«— @Bx*r

) else r — min(1,6r * 1)

rent system load. Partial processing employs rate adaptation
to adjust the amount of processing performed dynamically.
The performance of the stream join under the current system
load is a critical factor and it is influenced by the concrete
join algorithm and optimizations used for performing join op-
erations.

In the rest of this section, we first describe rate adaptation,
then discuss the details of utilizing inverted indexes for effi-
cient join processing. Finally we describe how to employ rate
adaptation in conjunction with indexed join processing.

4.1 Rate Adaptation

The partial processing-based load shedding is performed by
adapting to the rates of the input streams. This is done by ob-
serving the tuple consumption rate of the join operation and
comparing it to the input rates of the streams to determine
the fraction of the windows to be processed. This adaptation
is performed periodically, at every T, seconds. T, is called
the adaptation period. We denote the fraction parameter as
r, which defines the ratio of the windows to be processed.
In other words, the setting of r answers the question of how
much load we should shed.

Algorithm 1 gives a sketch of the rate adaptation process.
Initially, the fraction parameter r is set to 1. Every 75 sec-
onds, the average rates of the input streams S; and Sy are
determined as A1 and A2. Similarly, the number of tuples
fetched from streams S1 and Ss since the last adaptation step
are determined as a; and az. Tuples from the input streams
may not be fetched at the rate they arrive due to an inap-
propriate initial value of the parameter r or due to a change
in the stream rates since the last adaptation step. As a re-
sult, 8 = (/\f’i/\% determines the percentage of the input
tuples fetched by the join algorithm. Based on the value of
B, the fraction parameter r is readjusted at the end of each
adaptation step. If 3 is smaller than 1, r is multiplied by 3,
with the assumption that comparing a tuple with the other
tuples in the opposite window has the dominating cost in join
processing. Otherwise, the join is able to process all the in-
coming tuples with the current value of . In this case, the r
value is set to min(1,d, * r), where ¢, is called the fraction
boost factor. This is aimed at increasing the fraction of the
windows processed, optimistically assuming that additional
processing power is available. If not, the parameter r will be
decreased during the next adaptation step. Higher values of
the fraction boost factor result in being more aggressive at
increasing the parameter r. The adaptation period 7’ should
be small enough to adapt to the bursty nature of the streams,
but large enough not to cause overhead and undermine the
join processing.

4.2 Indexed Join and Partial Processing

Stream indexing [10, 25] can be used to cope up with
the high processing cost of the join operation, reducing the

amount of load shedding performed. However, there are two
important points to be resolved before indexing can be em-
ployed together with partial processing and thus with other
algorithms we introduce in the following sections. The first
issue is that, in a streaming scenario the index has to be main-
tained dynamically (through insertions and removals) as the
tuples enter and leave the window. This means that the as-
sumption made in Section 4.1 about finding matching tuples
within a window (index search cost) being the dominant cost
in the join processing, no more holds. Second, the index does
not naturally allow to process only a certain portion of the
window. We resolve these issues in the context of inverted
indexes, that are predominantly used for joins based on set
or weighted set-valued attributes. Here, we first give a brief
overview of inverted indexes and then describe the modifi-
cations required to use them in conjunction with our load
shedding algorithms.

421 |Inverted Indexes

An inverted index consists of a collection of sorted iden-
tifier lists. In order to insert a set into the index, for each
item in the set, the unique identifier of the set is inserted into
the identifier list associated with that particular item. Sim-
ilar to insertion, removal of a set from the index requires to
find the identifier lists associated with the items in the set.
The removal is performed by removing the identifier of the set
from these identifier lists. In our context, the inverted index
is maintained as an in-memory data structure. The collection
of identifier lists are managed in a hashtable. The hashtable
is used to efficiently find the identifier list associated with an
item. The identifier lists are internally organized as sorted
(based on unique set identifiers) balanced binary trees to fa-
cilitate both fast insertion and removal. The set identifiers
are in fact pointers to the tuples they represent.

Query processing on an inverted index follows a multi-way
merging process, which is usually accelerated through the use
of a heap. Same type of processing is used for all different
types of queries we have mentioned so far. Specifically, given
a query set, the identifier lists corresponding to items in the
query set are retrieved using the hashtable. These sorted
identifier lists are then merged. This is done by inserting the
frontiers of the lists into a min heap and iteratively removing
the topmost set identifier from the heap and replacing it with
the next set identifier (new frontier) in its list. During this
process, the identifier of an indexed set, sharing k items with
the query set, will be picked from the heap k consecutive
times, making it possible to process relatively complex overlap
and inner product® queries efficiently [18].

4.2.2 TimeOrdered Identifier Lists

Although the usage of inverted indexes speeds up the pro-
cessing of joins based on set-valued attributes, it also intro-
duces significant insertion and deletion costs. This problem
can be alleviated by exploiting the timestamps of the tuples
that are being indexed and the fact that these tuples are re-
ceived in timestamp order from the input streams. In partic-
ular, instead of maintaining identifier lists as balanced trees
sorted on identifiers, we can maintain them as linked lists
sorted on timestamps of the tuples (sets). This does not effect
the merging phase of the indexed search, since a timestamp
uniquely identifies a tuple in a stream unless different tuples

'For weighted sets, the weights should also be stored within
the identifier lists, in order to answer inner product queries.



with equal timestamps are allowed. In order to handle the
latter, the identifier lists can be sorted based on (timestamp,
identifier) pairs. This requires very small reordering, as the
event of receiving different tuples with equal timestamps is
expected to happen very infrequently, if it happens at all. Us-
ing timestamp ordered identifier lists has the following three
advantages:

1. It allows to insert a set identifier into an identifier list
in constant time, as opposed to logarithmic time with
identifier sorted lists.

2. It facilitates piggybacking of removal operations on in-
sertion and search operations, by checking for expired
tuples at the end of identifier lists at insertion and search
time. Thus, the removal operation is performed in amor-
tized constant time as opposed to logarithmic time with
identifier sorted lists.

3. Timestamp sorted identifier lists make it possible to end
the merging process, used for search operations, at a
specified time within the window, thus enabling time
based partial processing.

This concludes our discussion of indexed join details.

5. SELECTIVE PROCESSING -
WHAT SHOULD WE PROCESS?

Selective processing extends partial processing to intelli-
gently select the tuples to be used during join processing un-
der heavy system load. Given the constraint on the amount
of processing defined at the partial processing phase, the se-
lective processing aims at maximizing the output rate or the
output utility of the stream joins. Three important factors are
used to determine what we should select for join processing:
(1) the characteristics of stream window segments, (2) the
profitability of join directions, and (3) the utility of different
stream tuples. We first describe time correlation adaptation
and join direction adaptation, which form the core of our se-
lective processing approach. Then we discuss utility-based
load shedding. The main ideas behind time correlation adap-
tation and join direction adaptation are to prioritize segments
of the windows in order to process parts that will yield higher
output (time correlation adaptation) and to start load shed-
ding from one of the windows if one direction of the join is
producing more output than the other (join direction adap-
tation).

5.1 TimeCorrelation Adaptation

For the purpose of time correlation adaptation, we divide
the windows of the join into basic windows. Concretely, win-
dow W; is divided into n; basic windows of size b seconds each,
where n; = 1+ [w;/b]. B;,; denotes the jth basic window in
Wi, 7 € [1..n;]. Tuples do not move from one basic window
to another. As a result, tuples leave the join operator one
basic window at a time and the basic windows slide discretely
b seconds at a time. The newly fetched tuples are inserted
into the first basic window. When the first basic window is
full, meaning that the newly fetched tuple has a timestamp
that is at least b seconds larger than the oldest tuple in the
first basic window, the last basic window is emptied and all
the basic windows are shifted, last basic window becoming
the first. The newly fetched tuples can now flow into the new
first basic window, which is empty. The basic windows are
managed in a circular buffer, so that the shift of windows is a

Algorithm 2: Time Correlation Adaptation

TIMECORRELATIONADAPT()
(1) every T. seconds

(2) for i =1 to 2

(3) sort in desc. order {6; ;|7 € [1..n;]} into array O
(4) for j =1ton;

®) 0 = FrrbeAS AT

(6) s] — k, where O[j] = 6; 1

(7 for j =1ton;

(8) 0ij <0

Algorithm 3: Tuple Processing and Time Correlation
PROCESSTUPLE()

(1) when processing tuple ¢t against window W;

) if rand <rx*~y

) process t against all tuples in B; ;,Vj € [1..n,]
) foreach match in B; ;,Vj € [1..n;]
) 0i,j < 0ij +1
) else

) a —rx| Wil

) for j=1ton;

) a—a-|B, 4l

0 if a>0

1 process t against all tuples in Bi,si
2 else

3

re — 1+ M—W
'i,s?

)
)
)
)

14) process t againét re fraction of tuples in Bi o
5
15) break

constant time operation. The basic windows themselves can
be organized as either linked lists (if no indexing is used) or
as inverted indexes (if indexing is used).

Time correlation adaptation is periodically performed at
every T, seconds. T is called the time correlation adaptation
period. During the time between two consecutive adaptation
steps, the join operation performs two types of processing. For
a newly fetched tuple, it either performs selective processing or
full processing. Selective processing is carried out by looking
for matches with tuples in high priority basic windows of the
opposite window, where the number of basic windows used
depends on the amount of load shedding to be performed.
Full processing is done by comparing the newly fetched tuple
against all the tuples from the opposite window. The aim of
full processing is to collect statistics about the usefulness of
the basic windows for the join operation.

The details of the adaptation step and full processing are
given in Algorithm 2 and in lines 1-5 of Algorithm 3. Full
processing is only done for a sampled subset of the stream,
based on a parameter called sampling probability, denoted as
7. A newly fetched tuple goes through selective processing
with probability 1 — 7 x . In other words, it goes through
full processing with probability r . The fraction parameter
r is used to scale the sampling probability, so that the full
processing does not consume all processing resources when
the load on the system is high. The goal of full processing is
to calculate for each basic window B;,j, the expected number
of output tuples produced from comparing a newly fetched
tuple ¢ with a tuple in B; ;j, denoted as 0; ;. These values are
used later during the adaptation step to prioritize windows.
In particular, o;; values are used to calculate s} values. We
have sz = k, where 0 is the jth item in the sorted list
{o0i,1|l € [1..n;]}. This means that B, .1 is the highest priority
basic window in W, B, .2 is the next: and so on.

Lines 7-14 in Algorithlm 3 give a sketch of selective pro-
cessing. During selective processing, s] values are used to



guide the load shedding. Concretely, in order to process a
newly fetched tuple ¢ against window W, first the number of
tuples from window W;, that are going to be considered for
processing, is determined by calculating r * |W;|, where |W;|
denotes the number of tuples in the window. The fraction
parameter r is determined by rate adaptation as described in
Section 4.1. Then, tuple ¢ is processed against basic windows,
starting from the highest priority one, i.e. Bi,S%, going in de-

creasing order of priority. A basic window B, _; is searched for
matches completely, if adding |Bi st| number of tuples to the

number of tuples used so far from window Wi to process tuple
t does not exceeds r*|W;|. Otherwise an appropriate fraction
of the basic window is used and the processing is completed
for tuple t.

5.1.1 Impact of Basic Window Sze

The setting of basic window size parameter b involves trade-
offs. Smaller values are better to capture the peak of the
match probability distribution, while they also introduce over-
head in processing. For instance, recalling Section 4.2.1, in an
indexed join operation, the identifier lists have to be looked
up for each basic window. Although the lists themselves are
shorter and the total merging cost does not increase with
smaller basic windows, the cost of looking up the identifier
lists from the hashtables increases with increasing number of
basic windows, n;.

Here we analyze how well the match probability distribu-
tion, which is dependent on the time correlation between the
streams, is utilized for a given value of the basic window size
parameter b, under a given load condition. We use r’ to de-
note the fraction of tuples in join windows that can be used
for processing tuples. Thus, 7’ is used to model the current
load of the system. We assume that r’ can go over 1, in which
case abundant processing power is available.

We use fi(t) to denote the match probability distribution
function for window W;. Note that, due to discrete movement
of basic windows, a basic window covers a time varying area
under the match probability distribution function. This area,
denoted as p;,; for basic window B; j, can be calculated by
observing that the basic window B; ; covers the area over the
interval [max(0,z*b+ (j — 2) *b), min(w;, zxb+ (j — 1) xb)]
on the time axis ([0, w;]), when only z € [0, 1] fraction of the
first basic window is full. Then, we have:

1 min(w;,xxb+(5—1)xb)
bij = / fi(t) dt dx
z=0 Jt=maz(0,zxb+(j—2)*b)

For the following discussion, we overload the notation sg,
such that sz = k, where p; ; is the jth item in the sorted list
{pi;|l € [1..n;]}. The number of basic windows whose tuples
are all considered for processing is denoted as c.. The fraction
of tuples in the last basic window used, that are considered
for processing, is denoted as cp. ¢, is zero if the last used
basic window is completely processed. We have:

ce = min(ng, |’ *wi/b])
r/*wq;b—ce*b Ce < My

cp = .
0 otherwise

Then the area under f; that represents the portion of win-
dow W; processed, denoted as p., can be calculated as:

Ce
~ % + .
Pu R Cp Pt Py
i 7

j=1

Let us define g(fi, a) as the maximum area under the func-
tion f; with a total extent of a on the time axis. Then we can
calculate the optimality of p,, denoted as ¢, as follows:

b = Du
T g(fi,wi xmin(1,77))

When ¢ = 1, the join processing is optimal with respect to
output rate (ignoring the overhead of small basic windows).
Otherwise, the expected output rate is ¢ times the optimal
value, under current load conditions (r’) and basic window
size setting (b). Figure 4 plots ¢ (on z-axis) as a function of
b/w; (on z-axis) and ' (on y-axis) for two different match
probability distributions, the bottom one being more skewed.
We make the following three observations from the figure:

e Decreasing availability of computational resources neg-
atively influences the optimality of the join for a fixed
basic window size.

e The increasing skewness in the match probability dis-
tribution decreases the optimality of the join for a fixed
basic window size.

e Smaller basic windows sizes provide better join optimal-
ity, when the available computational resources are low
or the match probability distribution is skewed.
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Figure 4: Optimality of the join for different loads and
basic window sizes under two different match proba-
bility distribution functions

As a result, small basic window sizes are favorable for
skewed probability match distributions and heavy load con-
ditions. We report our experimental study on the effect of
overhead, stemming from managing large number of basic
windows, on the output rate of the join operation in Section 6.

5.2 Join Direction Adaptation

Due to time based correlation between the streams, a newly
fetched tuple from stream S7 may match with a tuple from
stream So that has already made its way into the middle por-
tions of window W>. This means that, most of the time, a
newly fetched tuple from stream S3 has to stay within the
window W5 for some time, before it can be matched with a
tuple from stream S;. This implies that, one direction of the
join processing may be of lesser value, in terms of the number
of output tuples produced, than the other direction. For in-
stance, in the running example, processing a newly fetched tu-
ple t from stream S» against window Wi will produce smaller
number of output tuples when compared to the other way



around, as the tuples to match ¢ has not yet arrived at win-
dow Wi. In this case, symmetry of the join operation can
be broken during load shedding, in order to achieve a higher
output rate. This can be achieved by decreasing the fraction
of tuples processed from window W5 first, and from W3 later
(if needed). We call this join direction adaptation.

Join direction adaptation is performed immediately after
rate adaptation. Specifically, two different fraction param-
eters are defined, denoted as r; for window Wi, ¢ € {1,2}.
During join processing, r; fraction of the tuples in window
W; are considered, making it possible to adjust join direction
by changing r1 and r2. This requires to replace r with r; in
line 7 of Algorithm 3 and line 5 of Algorithm 2.

The constraint in setting of r; values is that, the num-
ber of tuple comparisons performed per time unit should
stay the same when compared to the case where there
is a single r value as computed by Algorithm 1. The
number of tuple comparisons performed per time unit is
given by 07 (ri % A\;* (A * w;)), since the number of tu-
ples in window W; is A; * w;. Thus, we should have

Z?:l (rx Xz (N xw;)) = Zle (ri % Az % (i xw;)), Le.:

Tk (w1 +w2) = Tk wi T2 % w2

The valuable direction of the join can be determined by
comparing the expected number of output tuples produced
from comparing a newly fetched tuple with a tuple in W,
denoted as o;, for i = 1 and 2. This can be computed as 0; =
n%- * 371 0i,5. Assuming o1 > 02, without loss of generality,
we can set r1 = min(1,r * . This maximizes r1, while
respecting the above constraint. The generic procedure to set
r1 and r2 is given in Algorithm 4.

Join direction adaptation, as it is described in this section,
assumes that any portion of one of the windows is more valu-
able than all portions of the other window. This may not be
the case for applications where both match probability distri-
bution functions, fi(t) and f2(t), are non-flat. For instance, in
a traffic application scenario, a two way traffic flow between
two points implies both directions of the join are valuable.
We introduce a more advanced join direction adaptation al-
gorithm, that can handle such cases, in the next subsection
as part of utility-based load shedding.

5.3 Utility-based L oad Shedding

So far, we have targeted our load shedding algorithms to-
ward maximizing the number of tuples produced by the join
operation, a commonly used metric in the literature [9, 22].
Utility-based load shedding, also called semantic load shed-
ding [23], is another metric employed for guiding load shed-
ding. It has the benefit of being able to distinguish high util-
ity output from output containing large number of tuples.
In the context of join operations, utility-based load shed-
ding promotes output that results from matching tuples of
higher importance/utility. In this section, we describe how
Algorithm 4: Join Direction Adaptation

JOINDIRECTIONADAPT()
(1) Imitially: rq «— 1,79 <1

+
wlwlwz )

(2) upon completion of RATEADAPT() call
(3) o1 ;- * 271 01
1
(4) 03— - x3 02 005
(5) if 01 > 02 then r1 « min(1,r %1“’2)
(6) else r1 «— max(0,r * %{“"2 — %)
(7) rgﬁr*%—rl*%

utility-based load shedding is integrated into the mechanism
described until now.

We assume that each tuple has an associated importance
level, defined by the type of the tuple, and specified by the
utility value attached to that type. We denote the tuple type
domain as Z, type of a tuple t as Z(t), and utility of a tu-
ple ¢, where Z(t) = z € Z, as V(z). Type domains and
their associated utility values can be set based on applica-
tion needs. In the rest of the paper, the utility value of an
output tuple of the the join operation that is obtained by
matching tuples t, and tp, is assumed to contribute a utility
value of max (V(Z(t.)),V(Z(ts))) to the output. Our ap-
proach can also accommodate other functions, like average
(0.5« V(Z(ta)) + V(Z(ts)))). We denote the frequency of
appearance of a tuple of type z in stream S; as w;, ., where
ZZGZ Wi,z = L

The main idea behind utility-based load shedding is to use
a different fraction parameter for each different type of tuple
fetched from a different stream, denoted as r; ., where z € Z
and i € {1,2}. The motivation behind this is to do less load
shedding for tuples that provide higher output utility. The
extra work done for such tuples is compensated by doing more
load shedding for tuples that provide lower output utility. The
expected output utility obtained from comparing a tuple ¢ of
type z with a tuple in window W; is denoted as u;, ., and is
used to determine ;. values.

In order to formalize this problem, we extend some of the
notation from Section 5.1.1. The number of basic windows
from W; whose tuples are all considered for processing against
a tuple of type z, is denoted as ce(i, z). The fraction of tuples
in the last basic window used from W;, that are considered
for processing, is denoted as ¢y (i, 2). ¢p(4, 2) is zero if the last
used basic window is completely processed. Thus, we have:

Lni * rivzj

NG * T2 —

ce(i,z) =
Cp (7” Z) =
Then, the area under f; that represents the portion of window

W processed for a tuple of type z, denoted as p. (i, z), can be
calculated as follows:

ce(i, 2)

ce(i,2)

p(i, 2) = cp(i, 2) *D; geelitt + Z P
K ]:1

i,s{
With these definitions, the maximization of the output util-
ity can be defined formally as

maxz ()\Z- x (g * w;) * Z (%,z * w2 * p(i, z)))

=1 z€Z

subject to the processing constraint:

r* (w2 +w1) = Z (wi * Z (Wg,z * Ti,z))

=1 zZEZ

The r value used here is computed by Algorithm 1, as part
of rate adaptation. Although the formulation is complex, this
is indeed a fractional knapsack problem and has a greedy
optimal solution. This problem can be reformulated? as fol-
lows: Consider Z; ;. as an item that represents processing
of a tuple of type z against basic window B; ;. Item Z; ;.
has a volume of A1 * A * Wy, * b units (which is the num-
ber of comparisons made per time unit to process incom-
ing tuples of type z against tuples in B; ;) and a value of

2assuming that some buffering is performed outside the join



Algorithm 5: Join Direction Adapt, Utility-based Shedding

VJOINDIRECTIONADAPT()
(1) upon completion of RATEADAPT() call

(2) heap: H

(3) for i =1to 2

(4) foreach z € Z

(5) Tiz 0 v

(6) Ui,s%,z = Uj oy KNG K Oi,s%/zrkl;1 0 k
(7 Initialize H with {'Ui,s},z‘i €l.2],z€ Z}
(8) a < A1 * Ao x 7 (w1 + w2)

9) while H is not empty

(10) use 4, j, z s.t. v; j, . = topmost item in H
(11) pop the first item from H

(12) @ a—w; kA1 ¥ A2%b

(13) ifa>0

(14) Tiz < Tiz + o

(15) else

(16) re = 14 xes w6

(17) Tiz < Tiz+ 35

(18) return

(19) if j <n; ]
(20) Ui gd 1t T Uiz KK Oi,s{“/ Dkl Ok
(21) insert Ui od into H

ALk Ao kwy *boxu s ¥ Py 9 * M units (which is the utility
gained per time unit, from C(;mparing incoming tuples of type
z with tuples in B; ;). The aim is to pick maximum number
of items, where fractional items are acceptable, so that the
total value is maximized and the total volume of the picked
items is at most A1 x A2 7% (w2 +w1). 7i 4. € [0, 1] is used to
denote how much of item I; ; . is picked. Note that the num-
ber of unknown variables here (r; ; .’s) is (n1 +n2) * | Z|, and
the solution of the original problem can be calculated from
these variables as, r; . = Z;Zl Tijz-

The values of the fraction variables are determined dur-
ing join direction adaptation. A simple way to do this, is
to sort the items based on their value over volume ratios,
Vijz = Uiz %P, g KN (note that o5/ Y L, 0 can be used
as an estimate 01f pi,si)7 and to pick as much as possible of

the item that is most valuable per unit volume. However,
since the number of items is large, the sort step is costly, es-
pecially for large number of basic windows and large sized
domains. A more efficient solution, with worst case complex-
ity O(|Z] + (n1 + n2) * log|Z]), is described in Algorithm 5,
which replaces Algorithm 4. Algorithm 5 makes use of the s’
values that define an order between value over volume ratios of
items for a fixed type z and window W;. The algorithm keeps
the items representing different streams and types with the
highest value over volume ratios (2 * |Z| of them), in a heap.
It iteratively picks an item from the heap and replaces it with
the item having the next highest value over volume ratio with
the same stream and type subscript index. This process con-
tinues until the capacity constraint is reached. During this
process 71;, values are calculated progressively. If the item
picked represents window W; and type z, then r; . is incre-
mented by 1/n; unless the item is picked fractionally, in which
case the increment on r; , is adjusted accordingly.

6. EXPERIMENTS

We report four sets of experimental results to demonstrate
effectiveness of the algorithms introduced in this paper. The
first set illustrates the need for shedding CPU load for both
indexed (using inverted indexes) and non-indexed joins. The
second set demonstrates the performance provided by the

partial processing-based load shedding step — keeping tuples
within windows and shedding excessive load by partially pro-
cessing the join through rate adaptation. The third set shows
the performance gain in terms of output rate for selective
processing, which incorporates time correlation adaptation
and join direction adaptation. The effect of basic window
size on the performance is also investigated experimentally.
The fourth set of experiments presents results on the utility-
based load shedding mechanisms introduced and their ability
to maximize output utility under different workloads.

6.1 Experimental Setup

The join operation is implemented as a Java package,
named ssjoin.*, and is customizable with respect to sup-
ported features, such as rate adaptation, time correlation
adaptation, join direction adaptation, and utility-based load
shedding, as well as various parameters associated with these
features. Streams used in the experiments reported in this
section are timestamp ordered tuples, where each tuple in-
cludes a single attribute, that can either be a set, or weighted
set. The sets are composed of variable number of items,
where each item is an integer in the range [1..L]. L is
taken as 100 in the experiments. Number of items con-
tained in sets follow a normal distribution with mean p and
standard deviation o. In the experiments, u is taken as 5
and o is taken as 1. The popularity of items in terms of
how frequent they occur in a set, follows a Zipf distribu-
tion with parameter x. The time based correlation between
streams is modeled using two parameters, time shift param-
eter denoted as 7 and cycle period parameter denoted as .
Cycle period is used to change 04
the popularity ranks of items as
a function of time. Initially at
time 0, the most popular item is 0z
1, the next 2, and so on. Later at o
time T, the most popular item is oo H H
a:1+|‘L*%J7theneXt T‘mmmmme‘fﬁem
a+ 1, and so on. Time shift
is used to introduce a delay be-
tween matching items from dif- 0s
ferent streams. Applying a time 0z
shift of 7 to one of the streams
means that the most popular o

itemisa:lJrLL*(T*T)imOMJ . H H
<
at time T, for that stream. Fig- T’T"T’T"T‘U R -

ure 5 shows the resulting prob- Figure 5: Probability
ability of match distribution fi, match distributions,
when a time delay of 7 = % *G is k=06 and k=08
applied to stream S3 and ¢ = 2 *w, where w1 = w2 = w. The
two histograms represent two different scenarios, in which
is taken as 0.6 and 0.8, respectively. These settings for 7 and
¢ parameters are also used in the rest of the experiments, un-
less otherwise stated. We change the value of parameter
to model varying amounts of skewness in match probability
distributions. Experiments are performed using time varying
stream rates and various window sizes. The default settings of
some of the system parameters are as follows: T;- = 5 seconds,
T. = 5 seconds, §, = 1.2 ;v = 0.1. We report results from
overlap join operations. Other types of joins show similar re-
sults. The experiments are performed on an IBM PC with
512MB main memory and 2.4Ghz Intel Pentium 4 processor,
using Sun JDK 1.4.2.

6.2 Processing Power Limitation




We first validate that the processing power happens
to be the limiting resource, for both indexed and non-

indexed join operations. Graphs in Figure 6 plot
tuple drop rates (sum of o norvindexed join

the drop rates of the two _ aool| o e 250 persee] »
streams) for non-indexed %o el =200 or sec) e
(left) and indexed joins 4 600 <

(right), as a function of %igg ’

window size for different  Eap s “
stream rates. The join  £20 o o
operation performed is an mg - ]

5sec 25sec 2min 5sec  10min 25sec

window size

overlap join with thresh-
old value of 3. It is

observed from the figure 900 - indexed join
. _ ——rate =50 (per sec)

that, for a mnon-indexed g 800 o--rate = 100 (por sec)
L. § 700 -4~ rate =200 (per sec)
join, even a low stream 8 oo |22l =400 (per sec X
rate of 50 tuples per sec- 8500 ;

. . X
ond results in dropping § 400 ’

. 300

approximately half of the §200 A
tuples, when the window 100 o
. . X .-
size is set to 125 sec- _— P prom .

2min 5sec
window size

onds. This corresponds
to a rather small window
size of around 150 KBytes,
when compared to the to-
tal memory available. Al-
though indexed join im-
proves performance by de-
creasing tuple drop rates, it is only effective for moderate win-
dow sizes and low stream rates. A stream rate of 100 tuples
per second results in dropping approximately one quarter of
the tuples for a 625 seconds window (approx. 10 minutes).
This corresponds to a window size of around 1.5 MBytes. As
a result, CPU load shedding is a must for costly stream joins.

6.3 Rate Adaptation

We study the impact of rate adaptation on output rate of
the join operation. For the purpose of the experiments in this
subsection, time shift parameter is set to zero, i.e. 7 =0, so
that there is no time shift between the streams and the match
probability decreases going from the beginning of the windows
to the end. A non-indexed overlap join, with threshold value
of 3 and 20 seconds window on one of the streams, is used.
Figure 7 shows the stream rates used (on the left y-axis) as a
function of time. The rate of the streams stay at 100 tuples
per second for around 60 seconds, then jump to 500 tuples
per seconds for around 15 seconds and drop to 300 tuples
per second for around 30 seconds before going back to its
initial value. Figure 7 also shows (on the right y-axis) how
fraction parameter r adapts to the changing stream rates. The
graph in Figure 8 shows the resulting stream output rate as
a function of time with and without rate adaptation. No rate
adaptation represents random tuple dropping. It is observed
that rate adaptation improves output rate when the stream
rates increase. That is the time when tuple dropping starts
for the non-adaptive case. The improvement is around 100%
when stream rates are 500 tuples per second and around 50%
when 300 tuples per second. The ability of rate adaptation to
keep output rate high is mainly due to the time aligned nature
of the streams. In this scenario, only the tuples that are
closer to the beginning of the window are useful for generating
matches and the partial processing uses the beginning part of
the window, as dictated by the fraction parameter 7.

The graph in Figure 9 plots the average output rate of the

Figure 6: Tuple drop rates
for non-indexed and in-
dexed join operations, as
a function of window size,
with varying stream rates

join over the period shown in Figure 8 as a function of skew-
ness parameter x, for different window sizes. It shows that the
improvement in output rate, provided by rate adaptation, in-
creases not only with increasing skewness of the match prob-
ability distribution, but also with increasing window sizes.
This is because, larger windows imply that more load shed-
ding has to be performed.

6.4 Selective Processing

We study the impact of time correlation adaptation and
join direction adaptation on output rate of the join opera-
tion. For the purpose of the experiments in this subsection,
time shift parameter is taken as 7 = % * ¢. A non-indexed
overlap join, with threshold value of 3 and 20 seconds win-
dows on both of the streams, is used. Basic window sizes on
both windows are set to 1 second for time correlation adap-
tation. Figure 10 shows the stream rates used (on the left
y-axis) as a function of time. Figure 10 also shows (on the
right y-axis) how fraction parameters r1 and r2 adapt to the
changing stream rates with join direction adaptation. Note
that the reduction in fraction parameter values start with the
one (72 in this case) corresponding to the window that is less
useful in terms of generating output tuples when processed
against a newly fetched tuple from the other stream. The
graph in Figure 11 shows the resulting stream output rate
as a function of time with three different join settings. It is
observed that, when the stream rates increase, the time cor-
relation adaptation combined with rate adaptation provides
improvement on output rate (around 50%), when compared
to rate adaptation only case. Moreover, applying join direc-
tion adaptation on top of time correlation adaptation provides
additional improvement in output rate (around 40%).

The graph in Figure 12 plots the average output rate of the
join as a function of skewness parameter «, for different join
settings. This time, the overlap threshold is set to 4, which re-
sults in lower number of matching tuples. It is observed that
the improvement in output rate, provided by time correla-
tion and join direction adaptation, increases with increasing
skewness in match probability distribution. The increasing
skewness does not improve the performance of rate adaptive
only case, due to its lack of time correlation adaptation which
in turn makes it unable to locate the productive portion of
the window for processing, especially when the time lag 7 is
large and the fraction parameter r is small.

6.4.1 Basic Window Sze

We study the impact of basic window size on output rate of
the join operation. The graphs in Figure 13 plot average join
output rate as a function of basic window size, for different
K values. The graph on the left represents a non-indexed
overlap join, with threshold value of 3 and 20 seconds windows
on both of the streams. The graph on the right represents
an indexed overlap join, with threshold value of 3 and 200
seconds windows on both of the streams. For the indexed
case, both identifier sorted and time sorted inverted indexes
are used. “none” value on the z-axis of the graphs represent
the case where basic windows are not used (note that this
is not same as using a basic window equal in size to join
window). For both experiments, a stream rate of 500 tuples
per second is used.

As expected, small basic windows provide higher join out-
put rate. However, there are two interesting observations for
the indexed join case. First, for very small basic window
sizes, we observe a drop in the output rate. This is due to the
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join, for various basic window sizes

overhead of processing large number of basic windows with in-
dexed join. In particular, the cost of looking up identifier lists
for each basic window that is used for join processing, creates
an overhead. Further decreasing basic window size does not
help in better capturing the peak of the match probability
distribution. Second, identifier sorted inverted indexes show
significantly lower output rate, especially when the basic win-
dow sizes are high. This is because identifier sorted inverted
indexes do not allow partial processing based on time.

6.5 Utility-based L oad Shedding

We study the effectiveness of utility-based load shedding in
improving output utility of the join operation. We consider
three different scenarios in terms of setting type frequencies;
(i) uniform, (ii) inversely proportional to utility values, and
(iii) directly proportional to utility values. For the experi-
ments in this subsection, we use a non-indexed overlap join,
with threshold value of 3 and 20 seconds windows on both of
the streams. 500 tuples per second is used as the stream rate.
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Figure 14: Improvement in out-
put utility for different type fre-
quency models
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The graph in Figure 14 plots the improvement in output util-
ity of the join, compared to the case where no utility-based
load shedding is used, as a function of skewness in utility val-
ues. Both joins are rate, time correlation, and join direction
adaptive. In this experiment, there are three different tuple



types, i.e. |Z| =3 . For a skewness value of k, the utility val-
ues of the types are {1,1/2%,1/3%}. Tt is observed from the
figure that, the improvement in output utility increases with
increasing skewness for uniform and inversely proportional
type frequencies, where it stays almost stable for directly pro-
portional type frequencies. Moreover, the best improvement
is provided when item frequencies are inversely proportional
to utility values. Note that this is the most natural case, as
in most applications, rare items are of higher interest.

The graph in Figure 15 studies the effect of domain size on
the improvement in output utility. It plots the improvement
in output utility as a function of type domain size, for different
value difference factors. A value difference factor of x means
the highest utility value is z times the lowest utility value
and the utility values follow a Zipf distribution (with param-
eter log, z| x). The type frequencies are selected as inversely
proportional to utility values. It is observed from the figure
that, there is an initial decrease in output utility improve-
ment with increasing type domain size. But the improvement
values stabilize quickly as the type domain size gets larger.
Same observation holds for different amounts of skewness in
utility values.

7. CONCLUSION

We have presented an adaptive load shedding approach for
costly stream join operations over tuples with set-valued or
weighted set-valued attributes. A stream join over these types
of tuples tends to be CPU-intensive. In particular, we showed
how rate adaptation, combined with time based correlation
adaptation and join direction adaptation, can increase the
number of output tuples produced by a join operation. Our
load shedding algorithms employed a selective processing ap-
proach, as opposed to commonly used tuple dropping. This
enabled our algorithms to nicely integrate utility-based load
shedding with time correlation based load shedding in order
to improve output utility of the join for the applications where
some tuples are evidently more valued than others. Our ex-
perimental results illustrated the effectiveness of our adaptive
load shedding algorithms under varying input stream rates,
varying CPU load conditions, and varying time correlations
between the streams.
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