
e-SAFE: An Extensible, Secure and Fault Tolerant Storage System

Arnab Paul Sandip Agarwala Umakishore Ramachandran
College of Computing

Georgia Tech
Atlanta, GA 30332, USA

{arnab, sandip, rama}@cc.gatech.edu

Abstract

With the rapidly falling price of hardware, and increas-
ingly available bandwidth, the storage technology is seeing
a paradigm shift from centralized and managed mode to dis-
tributed and un-managed configurations. The key issues in de-
signing such system include scalability, extensibility and robust-
ness to name a few.

This paper describes e-SAFE , a scalable distributed storage
system that deploys a pastiche of theoretical and practical tech-
niques, providing tolerance of malicious faults, reduced man-
agement overhead such as periodic repairs, and very high avail-
ability at an archival scale. e-SAFE is designed to provide a
storage utility for environments such as large-scale data centers
in enterprise networks where the servers experience high loads
and thus show temporary unavailability (as opposed to P2P sys-
tems, where servers disappear over the long run). Consequently,
the design goals of e-SAFE is to provide high load resilience in a
seamlessly extensible way. e-SAFE is based on the simple prin-
ciple: efficiently sprinkle data all over a distributed storage and
robustly reconstruct even when many of them are unavailable
under high loads.

The performance gears used in e-SAFE are: (i) Task paral-
lelization over multiple file segments that can take advantage of
an SMP architecture, (ii) Erasure codes with very fast encod-
ing and decoding algorithms as opposed to naive replications
and (iii) A back-ground replication mechanism hiding the cost
of replication and dissemination from the user, yet guaranteeing
high durability.

1 Introduction

In the context of a large scale distributed storage, we ask
the question - How to design a storage architecture that is
robust, scalable, extensible, highly available and that de-
livers high performance? The main motivation behind our
query is storage technology’s perceivable shift from cen-
trally managed data servers to distributed units. Consider
an organization such as a corporate house or a university
that has a large set of machines; the collected capacity
of their local disk-spaces far exceeds those of the typical
file servers dedicated to host data for them. Moreover, it
has become evident, that for storage, cost of management

will strictly dominate that of the hardware. Thus the new
paradigm is geared toward reducing cost of ownership of
data [12]. While the immediate benefit is robustness, an
economic impact is reduced management overhead; since
information would be efficiently replicated and scattered
into many packets, one need not worry about a few (or
possibly many) packets that may be lost due to hardware
or software malfunctions.

In this paper, we describe e-SAFE , a robust, storage
system that is tailored to the requirements of this upcom-
ing paradigm. In the process of developing e-SAFE ,
we borrowed from a spectrum of design principles, both
theoretical and engineering, and deployed them coher-
ently into a single system architecture. We focus on a
very large scale storage system that is quite common in
large organizations. Such hardware infrastructures typi-
cally grow very fast in size, are bound to work under very
high loads and are required to provide high availability to
the data that is stored within. Consequently our design
goals differ substantially from a P2P like file sharing sys-
tem. However, our design principles borrow from the in-
sights gained through research in the space of distributed
and P2P computing.

Enabling Technologies

For quite a few years now, researchers have been investi-
gating the design of massively large scale storage systems
that can potentially span the internet. Paradigms such as
Peer-to-Peer systems and the Grid computing are bringing
diverse computing domains within cooperative environ-
ments in order to harness and utilize computing resources
more effectively. While traditional P2P systems have been
explored to carve out storage-utilities [39, 22, 36], a sig-
nificant research has been done in enabling storage-area-
networks(SAN) that can truly span large geographical dis-
tributions [44, 45]. Thus traditional storage systems have
been evolving to become internet-wide with IP based un-
derlying communication subsystems (IPSAN [32]).

1

Key Issues

Irrespective of the organizational specifics, the design of
any large distributed storage encompasses a few key is-
sues: Scalability, Availability, Integrity and Security. As
systems scale up, component failures become more of a
norm than an isolated event. Thus scaling up demands ro-
bustness. Our specific goals for the design of a robust stor-
age system include reducing management overhead that
manifests itself in two forms: (i) Repair overhead - In the
face of failures a monitoring unit has to keep track of any
data loss and follow up with appropriate recovery as well
as create regular back-ups, and (ii) Handling Extensibility
- because of the rapidly falling price of disks, it is easy
to conceive that storage system of an organization will
see rapid growth with time, enabling further reduction in
cost of ownership for individual storage units. So, from a
management point of view, while it is lucrative to further
reduce the cost of ownership by creating additional redun-
dancy over the extension units, it is also essential that such
readjustment be seamless and fast. Traditionally, replica-
tion or erasure codes are used for these purposes. While
the former is extremely space inefficient, the latter, i.e.,
the traditional erasure codes are limited in a number of
ways to incorporate scaling up; explicit parameter tunings
are necessary. Added to that are algorithmic performance
penalties.

e-SAFE

e-SAFE provides seamless extensibility, tolerance of ma-
licious faults, reduced management overhead such as pe-
riodic repairs, and very high availability at an archival
scale. The design of e-SAFE rests upon a few key princi-
ples: (i) Use of a specific class of erasure codes called the
Fountain Codes for seamless extensibility and fast encod-
ing/decoding, and (ii) Efficiently replicating (by Fountain
codes) and sprinkling data all over, so that high availabil-
ity and load resilience can be guaranteed. To support the
design, e-SAFE also has optimization gears that enhance
its performance: (i) Task parallelization over multiple file
segments that can take advantage of an parallel processing
hardwares such as an SMP, (ii) A background dissemina-
tion mechanism, that exploits lazy intervals between I/O
bursts to disburse replicated information, hiding the cost
of replication and dissemination from the user.

The rest of the paper is organized as follows. In section
2, we present the motivation behind our work and the chal-
lenges we face. The next section presents the overview of
e-SAFE and the rationale behind its design. In section 4
we describe the main architectural components of e-SAFE
followed by a short discussion on its implementation in
section 5. Section 6 presents the evaluation of e-SAFE .
We discuss the related work in section 7 and finally con-
clude in section 8.

2 Motivation and Challenges

Traditional Load
Balancing

S1 S2

F1 F2

Redundancy +
Load Distribution

S1 S2

F1 F2

Traditional Load
Balancing

S1 S2

F1 F2

S1 S2

F1F1 F2F2

Redundancy +
Load Distribution

S1 S2

F1 F2

Redundancy +
Load Distribution

S1 S2

F1F1 F2F2

Figure 1: Load balancing vs. Distribution: S1 and S2 are set
of servers. When most servers in S1 go down, file 1 becomes
completely unavailable. However, if both files are split across S1
and S2, absence of no single set can make the files unavailable.

Load, Availability and Distribution

Large scale data servers typically serve hundreds of
clients simultaneously; thus, although such systems en-
joy abundance of disk-space, the units have to serve under
very heavy work-loads at recurring intervals, which calls
for revisiting availability of data under high load condi-
tions. The higher the load on a server, longer is the re-
sponse time. For a client issuing a read request therefore,
data becomes practically unavailable if it is not retrieved
within a threshold latency period. Thus, a high work-load
condition, which is often the case in data intensive ap-
plication domains, resembles a low availability scenario.
Standard load balancing strategies, when applied to data
storage would skew the data distribution in an unfavor-
able way. Figure 1 shows how load balancing can skew
the data distribution. Hence intuitively stretching the files
across servers seem to be a better alternative. If the de-
gree of distribution is high with a high stretch factor 1,
then even at the face of a very high work-load that ren-
ders most of the servers unavailable, a client can read data
with a reasonably low latency. In section 3, we shall dis-
cuss quantitatively the effect of redundancy on the load
balancing.

Hazards of Fragmentation

It is well understood that fragmenting data over a multi-
tude of servers provide higher availability [43, 5, 7]. Un-
der a given error rate it can be shown that the lifetime of
data (the time after which retrieval becomes impossible
with high probability due to errors creeping in the storage

1stretch factor s is defined as the factor of redundancy, i.e., , a file of
size f , after adding redundancy bytes s.f bytes long.

2

1

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6

Fraction of Faulty Servers

S
p

a
c
e
 B

lo
w

-u
p

 F
a
c
to

r
n=10

n=100

n=1000

Figure 2: Space blow-up of a document fragmented over n

units as a function of fraction of faulty servers. The Y-axis is
plotted on a logarithmic scale. Space blow-up for an optimal
error correcting code is n

n−2t+1
, for tolerating up to t possible

malicious alterations.

systems) increases rapidly with the number of encoded
fragments. However, modern systems are constantly beset
with security threats from agents that not only cause fail-
stop behavior, but can maliciously alter the information
which may go undetected unless otherwise safeguarded.
Corruption of documents can also be the result of soft-
ware faults; for example when the hardware or operating
systems are upgraded in massively distributed systems,
small patches of invisible incompatibility factors (such as
a deprecated driver) may introduce wrong reads or writes
resulting in malicious like faults. Such experiences have
been reported in recent literature such as the Google File
System [15].

A standard way to safeguard against such malicious
failures is to attach a fingerprint vector [34, 21, 20]. Alon
et al. observed how such schemes can result into pro-
hibitive space blow up under a very high failure rate [2].
Intuitively, as the fragmentation increases, for a given file,
the fragments become shorter while the fingerprint-vector
grows larger, and thus verification information starts dom-
inating over the actual information. Figure 2 shows how
the blow-up factor grows at a high fault rate. The space-
blow-up factor is plotted on Y-axis in a logarithmic scale.
As the number of fragments n increases the blow up in-
creases drastically; similarly the blow up sharply jumps
up as the failure rate increases for any given n. For ex-
ample, if a file of size 100 KB is split across 100 servers
designed to tolerate t = 50 faults using some standard op-
timal erasure handling techniques such as Reed-Solomon
codes, one can derive that for every 2 KB of original in-
formation, there will be 2KB of additional verification in-
formation [2]. These numbers get unfavorably biased to-
wards this overhead as n grows larger. It may be argued
that this blow up is only limited to the fingerprints, which

is independent of the file size. However, it is often not
possible to process an entire file in memory. Thus a file
need to be treated in multiple segments large enough to
fit in the main memory resulting in similar overhead for
every segment of the file.

The designer of a large scale storage system thus con-
fronts the following tension: On one hand, the continuous
growth of hardware infrastructures, the understanding of
the probability of availability and the possibility of paral-
lelizing data processing and dissemination, all hint at frag-
menting data over as many servers. On the other hand, the
associated performance cost of reaching out for too many
pieces and the resulting growth in verification information
hint at limiting the number of encoded pieces. e-SAFE is
designed to strike a balance; while e-SAFE can efficiently
take advantage of as many storage units as possible in a
seamless manner by the use of modern rate-less erasure
codes, at the same time, the overhead of verification in-
formation is limited to a logarithmic blow-up factor by
novel use of a data-structure known as the Merkle-Tree.

3 System Overview

3.1 Design Overview

To the user e-SAFE offers a file system interface just like
NFS. Underneath is a distributed storage system. Figure
3 depicts the broad design of e-SAFE . A small set of di-
rectory server serves as the meta-data server for the doc-
uments. We assume this set is highly secure and reliable
and data stored in here is modifiable only by authorized
access. Since this is a very small set, we believe these
assumptions are not very restrictive from security man-
agement point of view. Underneath the directory server,
a host of machines constitute the distributed block store.
These machines can be distributed, from the span of a sin-
gle building to the scale of geographically scattred. They
are potentially fault prone. While locating a file, a file-
system user locates the path of teh file from the directory
server, which provides with the file-metada (viz., Inode)
that contains information about the distribution of the ac-
tual data blocks over the block-store.

Documents are encoded using a class of rate-less era-
sure codes (called the Fountain codes). The output of the
encoding, a sequence of small blocks, is sprinkled across
multiple storage units. We discuss in section 3.2 why it is
important for us to have a large and flexible stretch factor.
The idea is that even if some of the pieces are corrupted,
there is no need to spend any maintenance effort for re-
covery purposes.

Documents stored in e-SAFE are not immutable, how-
ever, it is optimized for a class of access that mostly ap-
pends blocks to files. It is possible to edit a document

3

Distributed Block Store

Fountain
Encoding

Sprinkle Data Over a large Storage

Gather just
enough
number of blocks

Write
 In

ode

Directory Server

Client
(write)

Client
(read)

Distributed Block Store

Fountain
Encoding

Sprinkle Data Over a large Storage

Gather just
enough
number of blocks

Distributed Block Store

Fountain
Encoding

Sprinkle Data Over a large Storage

Gather just
enough
number of blocks

Write
 In

ode

Directory Server

Client
(write)

Client
(read)

Figure 3: Overview of e-SAFE

from the middle as well. We assume that the meta-data in-
formation for every document (such as an Inode) is stored
in a machine that is highly secure, i.e., unauthorized mod-
ifications are not possible. We kept document encryption
and key management outside e-SAFE . However, any tra-
ditional encryption mechanism can be integrated within
the structure of e-SAFE without any compatibility issues.
While we decided to keep the confidentiality issue outside
our design goal, checks for data integrity are quite strin-
gent.

3.2 Design Rationale

We investigate the question: What does a host availabil-
ity mean in the context of a distributed set of servers? In
a P2P setting, availability may simply mean the percent-
age of time a server is up. However, in a non-transient
context, this definition is not appropriate. A good way to
express the availability of a server is through the load. The
availability index can be expressed as:

Availability Index =
real response time

optimal response time

Once the above index is less than a threshold Avmin
the system may be considered unavailable from a client’s
point view. Thus the availability (µ) can also be expressed
as the probability :

µ = Prob(Availability Index < Avmin)

e-SAFE is targeted for very large files for which redun-
dancy using replication becomes very expensive. As al-
ready discussed in section 1, we used Fountain codes. The
great property that such codes offer is a complete flexibil-
ity of how much a file can be stretched. Suppose a file

segment is coded in the n : k ratio, i.e., k blocks are en-
coded into n blocks, then, ideally one could reconstruct
the original segment from any k blocks. Thus, given an
average availability µ for each block, the net probability
that the segment can be retrieved is equal to the proba-
bility that any k or more blocks be available. Thus the
expression is straightforward:

P (av) =

n
∑

j=k+1

(

n

j

)

µj(1− µ)
(n−j)

Simplifying the above equation, Bhagwan et al. derived
a direct expression for the stretch factor c = n

k
[6],

c =

λ
√

µ(1−µ)
k

+
√

λ2µ(1−µ)
k

+ 4µ

2µ

2

0

5

10

15

20

25

30

0 50 100 150 200 250 300

#Blocks

St
re

tc
h

Fa
ct

or

Availability = 0.1

Availability = 0.2

Figure 4: Stretch Factor as a function of number of initial
blocks (k)

Figure 4 shows how the required stretch factor varies as
a function of k, the number of pre-encoding blocks, keep-
ing the availability (µ) constant. We show two cases for

4

µ = 0.1 and µ = 0.2. It turns out that there is a sharp de-
crease in required c, as k goes beyond a particular thresh-
old. And after the sharp fall, the curves flatten out, as if
increasing pre-encoding fragments does not entail further
stretching. In this paper, we consider high load situations;
we aren’t particularly interested in high host probability.
Thus we consider cases with µ ≤ 0.1, which means that
on the average each server (or storage unit) is so loaded as
to respond at most one out of 10 times, within the accept-
able latency period (specified by AVmin).

So we have two points to explore in the design space.
First, use a high k and use a smaller stretch factor. The
advantage is space-efficiency, while the drawback is high
fragmentation with additional meta data overhead. Sec-
ond, use a smaller number of pre-encoding blocks (k) and
stretch further so as to cover low-availability cases. This
approach is less space-efficient, but has the following ad-
vantages: (i) Since during a read operation data must be
constructed from at least k fragments, it is usually more
efficient to keep this number low and (ii) System can han-
dle write operations in a more time-distributed fashion;
first it writes a small number of blocks just enough to re-
construct data, and then when the write burst gets over,
lazily disseminate other redundancy blocks onto the per-
sistent storage. Thus the user programs do not see high
write-latency.

Keeping in mind the two factors, we designed e-SAFE
to automatically decide the most suitable strategy within
a set of constraints. Three key variables play critical roles
in the choice of parameters: Length of a segment (Ls), the
number of post-encoding blocks (nb) and the size of meta-
data (Lmeta data) that needs to be appended to each data
block. e-SAFE tries to find the best parameters within a
given set of constraints, such as the maximum number of
servers allowed, maximum meta-data overhead allowed
and so on. For a single segment that is disseminated with
a stretch factor c (resulting size c.Ls) and over nb blocks,
e-SAFE chooses the variable parameters so the meta-data
overhead is less than a given threshold foverhead:

nb.Lmeta data

c.Ls
≤ foverhead

subject to the constraints: (i) Nmax ≥ nb ≥ Nmin and
(ii) c ≤ cmax.

4 Architecture

Figure 5 gives a high level view of e-SAFE architecture.
The top layer is a file-system client that provides read,
write interfaces to the user. The next layer, FTM (Fault
Tolerance Module) gathers/sends data stream to and from
the FS-Client. FTM performs erasure encoding and de-
coding operation on the data streams. The key idea that

FS-client

FTM

Verification(VM)

Dissemination

FS server FS server

FS-client

FTM

Verification(VM)

Dissemination

FS-client

FTM

Verification(VM)

Dissemination

FS server FS server

Figure 5: Broad Architecture of e-SAFE

FTM uses is that of a Fountain Code. We describe it
shortly in section 4.1. The output of FTM is a series of
data blocks. The next stage, viz., the Verification layer,
prepares fingerprint information for the data blocks that it
receives as input. The fingerprint is generated by one way
cryptographic hash function such as SHA-1. To survive
malicious faults, i.e., , alteration of data, or forging of
identity of storage units, fingerprint of individual blocks
are also then linked together into a data structure called
the Merkle Tree. This is describe in section 4.2. Finally,
once the data blocks are appended with appropriate fin-
gerprint information, they are handed down to the data
dissemination/aggregation layer. This stage of the soft-
ware decides where to locate the server (or the storage
unit) for storing or retrieving data. Presently, the search is
done by computing the hash of the block-content and then
indexing into a distributed hash-table. Once this decision
is taken, a request followed by the payload is sent to the
respective File-system servers. The FS servers is a simpler
structure. On one hand it implements an RPC-based mes-
saging protocol with the dissemination layer in the client.
On the other hand this layer maintain a database of blocks
indexed by their hash-values. Thus it can store or retrieve
a block for the client as requested.

File
segment

FS-client

FTM

Verification(VM)

Dissemination

FTM

Verification(VM)

Dissemination

FTM

Verification(VM)

Dissemination

Inode

File
segment

FS-client

FTM

Verification(VM)

Dissemination

FTM

Verification(VM)

Dissemination

FTM

Verification(VM)

Dissemination

FTM

Verification(VM)

Dissemination

FTM

Verification(VM)

Dissemination

FTM

Verification(VM)

Dissemination

Inode

Figure 6: Parallel processing of File-Segment in e-SAFE

5

Figure 6 shows the optimization gear inherent in e-
SAFE architecture. A large file is divided into multi-
ple segments. Each segment is passed asynchronously
to the FS-client. FS-client in terms calls the subsequent
modules. The process is parallelized over different seg-
ments. Concurrent invocation of modules overlap compu-
tation/communication of multiple blocks.

0 1 K-1

File Segment

0 1 N-1

Block-1Block-0 Block-n

Merge fragments into blocks

Encode k fragments into n fragments

0 1 K-1

File Segment

0 1 N-1

Block-1Block-0 Block-n

Merge fragments into blocks

Encode k fragments into n fragments

Figure 7: Preparing blocks for a File Segment e-SAFE

Meta-information

Inode S2

Inode S0

Inode S1

Segment-0

H(Block 2)

H(Block 0)
H(Block 1)

Segment-1

H(Block 2)

H(Block 0)
H(Block 1)

File Inode
Meta-information

Inode S2

Inode S0

Inode S1

Segment-0

H(Block 2)

H(Block 0)
H(Block 1)

Segment-1

H(Block 2)

H(Block 0)
H(Block 1)

Meta-information

Inode S2

Inode S0

Inode S1

Meta-information

Inode S2

Inode S0

Inode S1

Segment-0

H(Block 2)

H(Block 0)
H(Block 1)

Segment-0

H(Block 2)

H(Block 0)
H(Block 1)

Segment-1

H(Block 2)

H(Block 0)
H(Block 1)

Segment-1

H(Block 2)

H(Block 0)
H(Block 1)

File Inode

Figure 8: Structure of Inode for a multi-segment file in
e-SAFE

Figure 7shows the flow of events on a file segment. The
file segment is divided into K blocks and then expanded
into N blocks using erasure codes. The ratio N/K is the
stretch factor of this code. Usually it is more efficient
(and guarantees higher accuracy for probabilistic codes)
to choose large K and N . Out of the N small fragments,
we coalesce N/n of fragments together to obtain n new
blocks that are independently handed down to the block-
stores underneath. Note that coalescing does not change
the fault tolerance limits of the system, i.e., if the encod-
ing can tolerate f.N failures out of N (f < 1), then after
coalescing at most f.n can get faulty out of n blocks. The
scaling property inherent in the erasure codes help us ad-
just the scale of the system quite easily.

To support such parallel dissemination of segments, we
have to maintain separate meta-data structures for each
segment. Figure 8 shows how this is organized. Each
file has one master Inode. The master maintains pointers
to the indirect Inodes corresponding to each file segment.

A segment Inode contains the content-address (typically
the hash) of the various blocks within this segment, and
other other information such as number of blocks, few key
encoding parameters and so on. Retrieval of Data blocks
is simple - the content hash is obtained from the inode
and then the main block is restored from the block-store
underneath. However, if the block-store underneath is not
content-addressable, then an explicitly mapping needs to
be maintained.

When the number of blocks (n) is large, it becomes in-
efficient to keep the user waiting in a blocking mode till
all the blocks are stored. Thus the control returns to the
user only after a subset of blocks are stored (a subset just
large enough to reconstruct the segment). The write oc-
curs in burst. Thus, the client maintains a queue of blocks
in the machine’s \temp directory and in the gap between
write operations, unobtrusively and asynchronously dis-
seminate rest of the blocks. This way one can provision
for very high stretch factors and thus for very high load
factors.

e-SAFE provides two modes of file store privilege to
the user: Permanent store with versions and modifieable.
For the former, files are never removed, rather each ver-
sion is maintained, with a version number. Typically the
most recent version is returned, however, any previous
version can also be retrieved. Maintaining consistency is
trivial. In the latter case, a client, with appropriate per-
mission, can modify existing files. In this case, the mod-
ification is done at the segment level. First, the directory
server maintains consistency by serializing all write oper-
ations on a file, i.e., , when a file is being modified by one
user, no other user can modify it. A file modification es-
sentially means generating new segments and deleting the
old ones. The inodes at the directory servers are updated
with the pointers for the new segments and similarly the
segment inodes with the address of the new blocks. For
the old blocks, requests are sent to the appropriate nodes,
so that they can reclaim the disk-space occupied by the or-
phaned blocks. However, complete reclamation of these
disk blocks cannot be guaranteed by e-SAFE , since we
don’t assume the nodes to be non-malicious all the time;
rather accept that faults (including malicious ones) are a
fact of life.

4.1 Erasure Coding

An erasure code works in the following way: A docu-
ment is partitioned into k blocks. These are called the
message blocks. Next n new blocks (n > k) are gener-
ated from them by adding some redundancy mechanisms,
such as addition of extra parity bits and so on. The new
blocks are called encoded blocks. Later on, the original
document can be constructed from any k out of n en-
coded blocks. There are many ways erasure codes can

6

be generated. A very standard way is the use of the Reed-
Solomon codes [33]. However, these codes are inflexible
in the sense that the parameters n and k are static and
cannot be changed on the fly. The decoding time for such
codes are O(n2), which means for large n they become
impractically slow. Moreover, these codes operate over fi-
nite field. Once a field size (q) is chosen, it is not possible
to change it around. The maximum length of one symbol
that can be considered as one unit of encoding is limited to
log q. Which puts a limit on the width of the stripes nec-
essary to distribute data blocks amongst multiple storage
units.

To overcome all of the above problems we used a mod-
ern class of erasure code called the Fountain Codes [9].
The specific version that we used is known as the LT
(Luby Transform) codes [25]. LT codes are rate-less, in
the sense that the stretch factor n/k can be varied on-
the-fly. Plus there is no limit on the symbol size - thus
no restriction is imposed on the striping. And finally,
these codes are inexpensive to implement and very fast in
encoding (linear) and decoding times (O(n log n)). The
category-name fountain is suggestive - when one needs to
fill up a cup of water from a fountain, there is no need to
bother about which particular droplets are being collected,
rather just enough number of drops to fill in the glass
would be sufficient. Rate-less codes can produce a foun-
tain of encoded blocks from k original message blocks.
For a pre-decided small number ε, only (1+ ε) number of
data blocks out of this fountain will suffice to reconstruct
the original document. Our idea is to collect the blocks
and sprinkle them over to as many storage units as neces-
sary and thereby secure a very high durability guarantee.

4.2 Verification

We mentioned in the introduction that as data gets frag-
mented over more and more servers there is an impractical
space overhead incurred by the verification information;
especially in the face of high fraction of failure. To over
come this problem we took help of a data structure called
the Merkle Tree (MT). An MT is simply a tree (assume
binary tree for the time being) while each node j contains
a hash value V (j). The value is obtained from the child
nodes; suppose Lj and Rj are the left and right children
of the node j, then V (j) = H(Lj .Rj), where H() stands
for a one-way cryptographic hash such as SHA-1 and the
dot denotes concatenation operation.

We use the MT structure in our system in the follow-
ing way. Suppose a file (or one segment of a file) is be-
ing disseminated amongst n storage units. Let’s assume
that n = 2l for some integer l. Now consider an MT of
depth log n and n leaf nodes such that each server can be
mapped to one leaf node. The hash value associated with
the leaf node is the hash of the data block being sent to

Figure 9: Construction of Verification Information from
Merkle Tree: Each server is located at a leaf node. Con-
sider server Si, T0, T1 . . . represent the nodes on the path
from the root to the i-th server. At any internal node
of the tree the hash value V is prepared as V (j) =
Hash(V (left chid).V (right chid)). The final verifica-
tion information sent to Si is the collection of hash values
stored at the siblings of the vertices on this path.

the corresponding server. Once the leaf hash-values are
directly obtained from the corresponding data blocks, the
intermediate levels of hashes are easily computed all the
way up to the root. Figure 9 depicts this MT. Now, con-
sider the i-th server (alternatively, the i-th leaf node), and
the unique path from the root to this node. The vertices on
this path are T0, T1 and so on. We collect the hash values
associated with the vertices that are siblings of T1 . . . T5.
Since T0 has no sibling and we keep this value separately
as the Root-Hash. In the figure all the siblings are marked
by a ’square’; their values are collected and packed into
the verification information sent to the i-th server. While
retrieving a block, one needs to re-compute the hash and
then successively recompute the hashes up its path to the
root (with the help of the sibling hash-values stored) and
then finally verify if it is matching with the root-hash. If
this test is passed, the data block’s integrity can be con-
sidered intact with very high probability.

5 Implementation

e-SAFE is currently implemented as a user level library
written in C++ and has been tested to run on Linux.
We used SHA-1 for hashing purposes, for verifying data
blocks as well as creating block identifiers. The data dis-
semination layer currently has two implementations. The
first one uses DHash [?]. DHash is built on top of a scal-
able P2P look-up system called Chord [39]. In our DHash
based implementation of e-SAFE , each inode maintains
a list of its block identifiers. During a store or fetch op-

7

eration, lookup is initiated into the Chord network. Once
a machine with appropriate nodeID is obtained, the data
block is directly exchanged with it. The Inode server does
not need to exclusively maintain the mapping between the
blocks of a file and the servers they are stored in; that
is left to DHash. Although Chord was designed to cater
to P2P like systems, it has been later used to build wider
area file system. Moreover, DHash performance has been
enhanced (by a factor of two) by use of a new transport
scheme called the Striped Transport Protocol(STP). Thus
we chose to use the STP based DHash implementation for
our purpose.

We also implemented another version of the block store
that does not depend on DHash. In this implementation,
the Inode server maintains the mapping between blocks
and the servers they are stored in. We shall refer to this
implementation as the Simple Block Store (SBS) version.
Currently, the blocks are randomly assigned to servers
from a list of server hosts, and this information has to
be explicitly maintained at the Inode server. This way
of choosing servers runs the risk of skewed load distri-
bution (which is one of the reasons why we first chose
DHash as our implementation vehicle). For SBS, once the
client obtains location information for a block, it contacts
the respective server through an RPC interface. The end-
to-end performance of this implementation is better than
DHash, because the chord-based lookups are replaced by
a direct client-server contact. SBS has two versions, syn-
chronous and asynchronous. The former is based com-
pletely upon the synchronous RPC implementation avail-
able on Linux. The latter is an extension to it. In the
asynchronous version, the RPC client maintains an ex-
tra thread receiving any incoming packets from the server
asynchronously. Similarly, on the server side, an asyn-
chronous service thread is maintained, along with a re-
quest queue. The standard RPC request handler enqueues
requests which are asynchronously serviced by the service
thread.

6 Evaluation

we evaluated e-SAFE both on a series of microbench-
marks and as well as under workloads. The objective of
the microbenchmarking was two fold: (i) quantify at a mi-
cro level how much the read and write operation costs over
different implementations the block store, and (ii) tease
out the total times taken to inspect how different layers
contribute to the total cost of opearations.

All our experiments were performed on a set of four-
teen dual processor SMP machines, 2.8 GHz Intel Xeon
processor, with 2 GB SDRAM and 512 KB L2 cache.
They are connected by a switched Gigabit Ethernet. In
all the following experiments, the machines were parti-

tioned into two physical sets - servers, hosting the block-
store (acting as e-SAFE FS-server, ref. Figure 5), and
the clients that are outside the ring of servers, and only
generate store and fetch operation for the servers. The
client machines do not store anything. This division was
effected partly because we wanted to separate the per-
formance interferences of clients and servers and also to
mimic the structure of a separate storage subsystem cater-
ing to its clients.

6.1 Microbenchmarks

We primarily study the latency taken by e-SAFE for stor-
ing and fetching files of different sizes. The latency in-
creases as we split files across more and more servers, i.e.,
split files into more and more blocks. e-SAFE is limited in
performance by the bandwidth offered by the block-store
underneath. Thus we examined e-SAFE under two differ-
ent implementations of the block-store that we described
in section 5.

Performance of e-SAFE on DHT

End-to-end Latency

The first experiment that we performed is the following.
An e-SAFE client writes a file of size s onto the store, split
into b blocks. The latency is recorded. To compare with
the above operation, the same file, split into equal number
of blocks, is handed over to the raw DHash layer for stor-
age. Since e-SAFE performs additional operations, such
as stretching up the files by encoding operation, process-
ing and adding verification information, and appending
meta-data that is needed to support subsequent decode and
verify operations, the expectation is that e-SAFE would
perform worse compared to the raw DHash layer. Figure
10 shows the comparisons for different file sizes. On X-
axis, we measured the number of blocks (essentially the
number of different servers the file was distributed to) and
Y-axis measure the latency. We show the comparative la-
tencies across various file sizes. From the latency values
we see that e-SAFE follows quite closely the performance
of DHash . These numbers show that the top three layers
of e-SAFE do not add significantly to the overall latency.

Figure 11 describes the results of similar experiments
for the read operations. In this case, e-SAFE latency fol-
low the baseline DHash latency, however, as the data size
increases, we see that this gap widens. e-SAFE still per-
forms quite well though; for example splitting a 10MB
file onto approximately 300 blocks, yields a latency of
less than 3 seconds and thus yielding a throughput of over
3MB/s.

Writes are more expensive than reads. During a write
operation, the scheme produces many more blocks than

8

 0

 100

 200

 300

 400

 500

 600

 4 8 16 32 64 128

La
te

nc
y

(m
s)

No. of blocks

esafe
dhash

(a) 10KB

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 4 8 16 32 64 128

La
te

nc
y

(m
s)

No. of blocks

esafe
dhash

(b) 100KB

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 32 64 128 256

La
te

nc
y

(m
s)

No. of blocks

esafe
dhash

(c) 1MB

 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 256 512 1024 2048 4096

La
te

nc
y

(m
s)

No. of blocks

esafe
dhash

(d) 10MB

Figure 10: Performance of e-SAFE over Raw DHash delivery

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 4 8 16 32 64 128

La
te

nc
y

(m
s)

No. of blocks

esafe
dhash

(a) 10KB

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 4 8 16 32 64 128

La
te

nc
y

(m
s)

No. of blocks

esafe
dhash

(b) 100KB

 200

 300

 400

 500

 600

 700

 800

 900

 32 64 128 256

La
te

nc
y

(m
s)

No. of blocks

esafe
dhash

(c) 1MB

 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500

 256 512 1024 2048 4096

La
te

nc
y

(m
s)

No. of blocks

esafe
dhash

(d) 100KB

Figure 11: Performance of e-SAFE over Raw DHash delivery

the original document has. This is decided by the stretch
factor. In above experiments, we used a stretch factor
of 2.0. However, higher latencies are expected (and ob-
served) as we increase this factor. Reads however are
somewhat independent of the stretch factor. A read suc-
ceeds as soon as enough number of blocks are gathered.
Plus, caching in the DHash layer facilitates the reads by
reducing the look-ups.

Dissection of Cost

Figure 12 gives a split of the latency (write operation) into
two parts: the time spent in the top three layers, and time
spent in the dissemination layer. The numbers clearly in-
dicate that additional computations done by e-SAFE is
quite minimal compared to the time spent in networking.

We repeat the similar set of experiments for file reads.
Figure shows these performance figures. Again the read
latencies for e-SAFE and DHash match quite closely. Fig-
ure 13 tease out the time for read operations. Here we
see that network times are substantially reduced compared
to the computation. This has happened for two reasons.
First, as we already pointed out, it is not necessary to
collect all the data blocks that were written. In addition,
the computational overhead for a read is much more than
a write. This is because the decoding operation is al-
most twice as expensive as encoding, verifying a block
is slightly faster than generating verification for the entire
file.

Performance of the SBS version

We performed similar experiments on the other version of
data dissemination, viz., the SBS implementation. Since
this version explicitly maintains a mapping between block
ids and servers, no look-up is necessary. Figure 14
presents the numbers for the write operations (in a simi-
lar experimental setting as before). As before, the X-axis
denotes the number of blocks and the Y-axis denotes the
latency. We observe that SBS writes are much faster com-
pared to DHash. As we already pointed out, SBS does not
need any lookup to find out an appropriate server, since
the block to server mapping is readily available in the In-
ode server. We see this across all the data sizes (only a
small representative set is presented here). The perfor-
mance of the SBS version is quite encouraging; a file of
size of 10MB is written in roughly 2 seconds yielding a
bandwidth of 5MB/s.

Figure 15 shows the performance of read operation.
And we see extremely fast reads happening in this setting.
This supports our belief that e-SAFE has a suitable archi-
tecture for high performance operations.

6.2 Performance under Workload

Next we tested e-SAFE under workload. Unfortunately
we did not have real I/O traces for such a system available
to us. One choice would be to run few realistic applica-
tions. Again, since such a storage environment could be

9

 0.001

 0.01

 0.1

 1

12864321684

La
te

nc
y

(s
ec

s)

No. of blocks

Encoding
network

(a) 10KB

 0.001

 0.01

 0.1

 1

12864321684

La
te

nc
y

(s
ec

s)

No. of blocks

Encoding
network

(b) 100KB

 0.01

 0.1

 1

 10

2561601286432

La
te

nc
y

(s
ec

s)

No. of blocks

Encoding
network

(c) 1MB

 0.1

 1

 10

 100

23041280640320

La
te

nc
y

(s
ec

s)

No. of blocks

Encoding
network

(d) 10MB

Figure 12: Split of time in Computation and Networking(Write)

 0.01

 0.1

 1

12864321684

La
te

nc
y

(s
ec

s)

No. of blocks

Encoding
network

(a) 10KB

 0.01

 0.1

 1

12864321684

La
te

nc
y

(s
ec

s)

No. of blocks

Encoding
network

(b) 100KB

 0.1

 1

2561601286432

La
te

nc
y

(s
ec

s)

No. of blocks

Encoding
network

(c) 1MB

 0.1

 1

2561601286432

La
te

nc
y

(s
ec

s)

No. of blocks

Encoding
network

(d) 10MB

Figure 13: Split of time in Computation and Networking (Read)

catering needs of diverse situation, it is more important
that we test it on work-loads of very generic nature. Our
purpose therefore, is to generate synthetic workloads that
approximates the characteristic of many different work-
loads.

I/O workload characterization has received wide atten-
tion in the past, and experiences reveal that typical read
write requests that occur over various domains and scales
(such as disks, network, web) follow some well defined
patterns [17, 24, 13, 42]. First, I/O is bursty - both read
and write requests appear in short bursts with interme-
diate lean periods. Second, I/O traffic bears strong self-
similarity, i.e., if one zooms into smaller and smaller inter-
vals of an extended I/O trace, the patterns over smaller in-
tervals resemble those over longer intervals. Third, there
is a strong resemblance to these traces with the 80-20 rule
often observed in Database systems [19] This rule roughly
says approximately 80% of query traffic experienced by a
machine queries 20% of data. To model such behaviors,
we used a trace generation model called the bmodel [42].
It has been shown that this model accurately approximates
I/O behaviors of various different systems. The model is
dependent on a parameter b, called the bias. A bias of 0.8
corresponds to the factor 80% in the 80/20 law. bmodel
also generates self-similar traffic. Self similarity in traces
is usually measured by an index H , known as the Hurst
Exponent [17]. The Hurst exponent of a trace generated
by a bias b is given by: H ≈ 1

2 −
1
2 (b2 + (1− b)2). Thus

using bmodel allowed us to vary the characteristic of the

traces to create family of work-loads that are fairly generic
and representative in nature.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

L
a
te

n
cy

 (
m

s)

workload

parallel store
parallel with background transfer

Figure 16: Latency distribution over a workload

We carried out the following simple experiments with
the workloads. Synthetic I/O traces were generated for
both reads and writes for a given time interval. Next we
initiated a client to write/read by following those traces.
Figure 16 presents a scenario of this workload for write
operation. A total of 100 MB of data was distributed to
be written over a period of 200 seconds. The distribution
(into different chunk sizes as produced by the bmodel, is
spaced evenly over the 200 sec interval. In Figure 16, X-
axis denotes the entries of the workload (for various data

10

 0

 100

 200

 300

 400

 500

 600

 4 8 16 32 64 128

La
te

nc
y

(m
s)

No. of blocks

SBS
DHT

(a) 10KB

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 4 8 16 32 64 128

La
te

nc
y

(m
s)

No. of blocks

SBS
DHT

(b) 100KB

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 32 64 128 256

La
te

nc
y

(m
s)

No. of blocks

SBS
DHT

(c) 1MB

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 256 512 1024 2048 4096

La
te

nc
y

(m
s)

No. of blocks

SBS
DHT

(d) 10MB

Figure 14: Write latencies of DHash and SBS implementations of e-SAFE

 40

 60

 80

 100

 120

 140

 160

 180

 200

 4 8 16 32 64 128

La
te

nc
y

(m
s)

No. of blocks

SBS
DHT

(a) 10KB

 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 4 8 16 32 64 128

La
te

nc
y

(m
s)

No. of blocks

SBS
DHT

(b) 100KB

 200

 300

 400

 500

 600

 700

 800

 900

 32 64 128 256

La
te

nc
y

(m
s)

No. of blocks

SBS
DHT

(c) 1MB

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 256 512 1024 2048 4096

La
te

nc
y

(m
s)

No. of blocks

SBS
DHT

(d) 10MB

Figure 15: Read latencies of DHash and SBS implementations of e-SAFE

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 5e+08

 0 20 40 60 80 100 120 140

tim
e
 (

m
s)

workload

parallel store
parallel with background transfer

workload arrival

Figure 17: Back-logs generated by the workload

sizes), in the order they were generated, and on Y axis,
we measure the latency they encountered for the write to
finish. Since they arrive in that order in time, the X-axis
can be also be treated as a time axis (for arrival of write
requests). We latencies for two different modes of storing;
background dissemination on and off. The stretch factor
in these experiments were kept at 2.0. As expected, lat-
ter mode results into higher latency. However, as the I/O
burst continue, the write requests would queue up and thus
building on a backlog. The system cleans up this backlog
during the lean phases of I/O, which comes immediately
following this burst.

In Figure, 17, we show how the backlog builds up. The
X-axis denotes the requests arriving in that order. The Y
axis measures time. Thus, the first line represents the pre-
cise arrival time of requests relative to work-load window.
The next line shows the time these request calls returned
with minimal storing, i.e., , storing just enough for recon-
struction, and leaving the rest for the background dissem-
ination. The third line in this figure describe the service
time of the requests if data dissemination happened all in
foreground. Clearly, the background process does reduce
the backlog, however, it does introduce partial backlogs,
i.e., parts of incomplete writes. For reads that happen long
time after the writes, the background dissemination would
clear up this partial backlog. The large size of local disks
help us contain these backlogs. However, for reads that
are too closely spaced with the write, it is fair to assume
that the nodes on which data (just enough for reconstruc-
tion) got written, are still available and thus should be able
to supply the necessary blocks.

Finally, we wanted to demonstrate the effect of higher
stretch factor that we outlined in earlier section. For this
experiment, we use the asynchronous version of the SBS.
For the experiments reported here, we used a file of size
240 KB. We stored this file using stretch factor 2 and 4.
In the former case, we split the file into 16 blocks, and
in the latter 64 blocks of the same size as in the former
case. Now we performed fetch operation on the file as-
suming the servers are highly loaded. We simulated a
loaded server in the following way; for returning every

11

Comparing Fetch Latency for various stretch factors

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000
Load (Delay in miliseconds)

 L
at

en
cy

 (
 m

s)

Scale factor = 4

Scale factor = 2

Figure 18: Back-logs generated by the workload

block a random delay was inserted between 0 and δ time
units. A higher value of δ would emulate higher load on
the servers. The two results are plotted in Figure 18. δ was
varied from 10ms to 10 seconds. As we have reasoned be-
fore, the response for the case of stretch factor 4 is much
better than the case of stretch factor 2; it is literally ten to
hundred times better, which makes the case for using high
stretch factor and thus getting high availability.

7 Related Work

Distributed Storage is an age-old concept that has received
wide attention in multiple contexts. Thus, a long list of
related literature predates our work.

Distributed Storage Systems

Distributed storage hardware such as RAID [11] existed
and continue to be improved in the current practice. Sys-
tems such as Petal [23] exported through virtualization a
distributed set of disks seamlessly to clients. For large
scale organizations, having a multitude of storage units,
the natural evolution was to have systems such as a Stor-
age Area Network (SAN) or network attached storage
(NAS) [31]. Modern systems are emerging out to the scale
of the internet such as the Internet Protocol Storage Area
Network (IPSAN) [32]. Clearly, such growth in scale,
and the fall in price of storage hardware complements our
work.

Close to our work is the area of distributed file systems.
Significant research has been done in this space since the
Andrew File system [?]. A few more recent examples are
xFS [4], Frangipani (on top of Petal) [40], and so on. With
the growth of the internet, the focus shifted on to realiz-
ing file systems over wider areas. Security became one
of the most critical issues. SFS is file system based on
separation of key management from file system so that it

can span the internet with heterogeneous key management
policies. The key idea in SFS is the use of self-certifying
path name. FARSITE system [1] enables a peer to peer
like environment of mutually distrusting desktops to pro-
vide a highly available and secure file system; it takes care
of making copies of replicas and metadata when desktops
leave systems. Security involves two aspects, viz., , con-
fidentiality and integrity. While, confidentiality is not a
big problem in systems that are centrally maintained (re-
gardless of being distributed), data integrity is critical, be-
cause faults, both in the form of fail-stop and data corrup-
tion creeps in for various reasons. Wide area file systems,
such as CFS, [14] make sure that integrity and availabil-
ity are maintained with effective replication caching. The
Google file system(GFS) deploys a distributed file system
spanning literally thousands of servers that deliver high
bandwidth and availability [15]. GFS provides availabil-
ity by splitting files into blocks and then replicating each
block along with additional checksums, very much along
the line of CFS.

P2P File systems and look-ups

In recent years P2P systems received very wide atten-
tion. While the span for P2P systems is the internet,
the scale is also overwhelmingly large, i.e., literally mil-
lions of servers and their dynamics need to be considered.
P2P systems opened up a plethora of new possibilities, of
which file sharing became popular even at a commercial
level. Oceanstore [22, 35] system first attempted to har-
ness the astronomically high amount of storage that might
be reached through the internet to create an archival level
persistent storage capable of enduring very long time.
One of the key ingredients in its design is the use of
erasure codes. Erasure codes have been shown to pro-
vide higher durability guarantee than naive replication at
a much lower space cost [43]. Very recently, Bhagwan
et al. reported TotalRecall (TR), a P2P based file system
that is designed to handle the dynamic behavior of P2P
systems. TR is based on the observation that in a P2P sys-
tem, nodes join and disappear in a diurnal patter over a
short run, and in the long run many of the nodes leave the
system permanently. To handle such scale of dynamics,
TR deploys an availability monitoring unit, that checks
for the availability of files in a periodic basis and repairs
a file back to the desired availability whenever this fac-
tor falls below a threshold. Understanding the dynamics
of P2P systems has been an important ingredient of the
understanding of the availability [5, 6, 8]. In has been
sometimes argued that in a P2P like environment, only a
very small fraction of the nodes cooperate meaningfully
and on a permanent basis, while the rest disappear mostly
after a short period. However, we do not assume an en-
vironment such as P2P. Our setting resembles more to a

12

server farm that grew out of many inexpensive local disks
available individually. In our design we decided to use a
high stretch factor to replace periodic repairs. However,
this will not work in a P2P context, because irrespective
of the stretch factor, data, will be permanently lost in the
face of the constant decay [6].

Fault tolerance

There are two approaches to handle faults: (i) Pure repli-
cation and (ii) Erasure coding. Early on, Quorum sys-
tems [3] have been used to provide coordination in dis-
tributed systems. Quorum approach is pure replication
based. Early works on quorum system considered how
to handle benign failures [16, 41]. Byzantine failures,
where the servers maliciously corrupt data, and collude
among themselves, were studied later on [26, 30, 27]. The
replication techniques studied in these investigations were
adopted in the design of persistent object stores, such as
Phalanx [28] and Fleet [29]. Another alternative to handle
byzantine faults in a distributed environment is replicated
state machine approach [37]. Castro and Liskov [10] pre-
sented a practical implementation based on this approach;
they built a file system that can handle byzantine faults.

Erasure Coding approaches are more space optimal.
In a seminal paper, Rabin presented the first Information
Dispersal Algorithm (IDA) that can be used for fault toler-
ance in parallel and distributed systems. IDA is essentially
a kind of erasure coding. Krawczyk [20] extended the
IDA scheme to handle Byzantine faults, by appending fin-
gerprints of each data piece along with the fingerprint of
the entire content. However, the distributed fingerprinting
can be combined with secret sharing [38] in a clever way
that uses symmetric key encryption; the resulting scheme
is shown to be secure with short secret sizes [21]. This ap-
proach, known as SecureIDA was exploited in the design
of e-Vault, an electronic storage system developed at IBM
[18].

8 Conclusions and Future Work

We discussed the design of e-SAFE , a distributed storage
service targeted for very large scale decentralized stor-
age. In the design of e-SAFE we made a quantitative
observation, that of equating high load with low availabil-
ity. Based at the heart of e-SAFE ’s design, is a special
class of code, called the Fountain codes, that makes e-
SAFE seamlessly adaptable to unlimited stretching and
thus to hardware extensions of any degree. By the virtue
of the same codes, e-SAFE can sprinkle data around to
any stretch factor, and thus can reduce management over-
head to a great extent. As part of the ongoing and fu-
ture work, we are investigating the dynamics of workloads

more closely and the resulting performance of e-SAFE .
Diverse loads and complicated asynchronous behaviors of
various components leave open a plethora of questions
that can only be answered by combining more analyti-
cal studies such as random processes and queueing theory
techniques with our experimental methods. Such a study
is underway.

References
[1] A. Adya and et al. Farsite: Federated, available, and reli-

able storage for an incompletely trusted environment. In
Proceedings of 5th Symposium on Operating Systems De-
sign and Implementation(OSDI), 2002.

[2] N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. P.
Stern. Scalable secure storage when half the system is
faulty. In Automata, Languages and Programming, pages
576–587, 2000.

[3] Y. Amir and A. Wool. Optimal availability quorum sys-
tems: Theory and practice. Information Processing Let-
ters, 65(5):223–228, 1998.

[4] T. Anderson, M. Dahlin, J. Neefe, D. Pat-terson,
D. Roselli, and R. Wang. Serverless network file systems.
In In Proceedings of the 15th Symposium on Operating
System Principles. ACM, pages 109–126, Copper Moun-
tain Resort, Colorado, December 1995.

[5] R. Bhagwan, S. Savage, and G. Voelker. Understanding
availability. In Proceedings of 2nd International Workshop
on Peer-to-Peer Systems (IPTPS ’03), 2003.

[6] R. Bhagwan, S. Savage, and G. M. Voelker. Replica-
tion strategies for highly available peer-to-peer storage sys-
tems. Technical Report CS2002-0726, University of Cali-
fornia, San Diego, 2002.

[7] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker.
Total recall: System support for automated availability
management. In Proceedings of the First ACM/Usenix
Symposium on Networked Systems Design and Implemen-
tation (NSDI), 2004.

[8] C. Blake and R. Rodrigues. High availability, scalable stor-
age, dynamic peer networks: Pick two.

[9] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A
digital fountain approach to reliable distribution of bulk
data. In Proceedings of ACM SIGCOMM, pages 56–67,
1998.

[10] Castro and Liskov. Practical byzantine fault tolerance.
In OSDI: Symposium on Operating Systems Design and
Implementation. USENIX Association, Co-sponsored by
IEEE TCOS and ACM SIGOPS, 1999.

[11] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High-performance, reliable secondary
storage. ACM Computing Surveys, 26(2):145–185, 1994.

[12] A. Chien. Computing elements. In I. Foster and C. Kessel-
man, editors, The Grid: Blueprint for a New Computing
Infrastructure, pages 567–592. Morgan Kaufmann, 2004.

13

[13] M. Crovella and A. Bestavros. Self-Similarity in World
Wide Web Traffic: Evidence and Possible Causes. In
Proceedings of SIGMETRICS’96: The ACM International
Conference on Measurement and Modeling of Computer
Systems., Philadelphia, Pennsylvania, May 1996. Also, in
Performance evaluation review, May 1996, 24(1):160-169.

[14] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Pro-
ceedings of the 18th ACM Symposium on Operating Sys-
tems Principles (SOSP ’01), Chateau Lake Louise, Banff,
Canada, Oct. 2001.

[15] S. Ghemawat, H. Gobioff, and S.-T. leung. The google file
system. In Proceedings of SOSP, October 2004.

[16] D. Gifford. Weighted voting for replicated data. 1979.

[17] W. W. Hsu and A. Smith. Characteristics of i/o traffic in
personal computer and workload servers. IBM SYSTEMS
JOURNAL, 42(2), 2002.

[18] A. Iyengar, R. Cahn, J. Garay, and C. Jutla. Design and im-
plementation of a secure distributed data repository. 1998.

[19] Jim Gray et al. . Quickly generating billion-record sys-
nthetic databases. In Proceedings of SIGMOD, 1994.

[20] H. Krawczyk. Distributed fingerprints and secure informa-
tion dispersal. In Proc. 13th ACM Symp. on Principles of
Distributed Computating, pages 207–218, 1993.

[21] H. Krawczyk. Secret sharing made short. Advances in
Cryptology (CRYPTO), 773:136–146, 1994.

[22] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture for
global-scale persistent storage. In Proceedings of ACM
ASPLOS. ACM, November 2000.

[23] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. In Proceedings of the Seventh International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 84–92, Cambridge,
MA, 1996.

[24] W. E. Leland, M. S. Taqq, W. Willinger, and D. V. Wil-
son. On the self-similar nature of Ethernet traffic. In D. P.
Sidhu, editor, ACM SIGCOMM, pages 183–193, San Fran-
cisco, California, 1993.

[25] M. Luby. Lt codes. In Proceedings of 43rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS),
2002.

[26] D. Malkhi and M. Reiter. Byzantine quorum systems.
pages 569–578, 1997.

[27] D. Malkhi, M. Reiter, and A. Wool. Optimal byzantine
quorum systems. Technical Report 97-10, 17, 1997.

[28] D. Malkhi and M. K. Reiter. Secure and scalable repli-
cation in phalanx. In Symposium on Reliable Distributed
Systems, pages 51–58, 1998.

[29] D. Malkhi, M. K. Reiter, D. Tulone, and E. Ziskind. Per-
sistent objects in the fleet system. In The 2nd DARPA In-
formation Survivability Conference and Exposition.

[30] D. Malkhi, M. K. Reiter, and A. Wool. The load and
availability of byzantine quorum systems. In Symposium
on Principles of Distributed Computing, pages 249–257,
1997.

[31] R. J. Morris and B. J. Truskowski. Evolution of storage
area networks. IBM SYSTEMS JOURNAL, 42(2), 2002.

[32] Prasenjit Sarkar et al. Internet protocol storage area net-
works. IBM SYSTEMS JOURNAL, 42(2), 2002.

[33] O. Pretzel. Error Correcting Codes and Finite Fields.
Clarendon Press, Oxford, 1992.

[34] M. Rabin. The efficient dispersal of information for secu-
rity, load balancing, and fault tolerance. JACM, 36(5):335–
348, April 1989.

[35] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz. Pond: The oceanstore prototype. In
Proceedings of the Conference on File and Storage Tech-
nologies. USENIX, 2003.

[36] A. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-
to-peer systems. Lecture Notes in Computer Science,
2218:329–350, 2001.

[37] F. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 22(4), December 1990.

[38] A. Shamir. How to share a secret. Communications of the
ACM, 22(11), 1979.

[39] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable Peer-To-Peer lookup service
for internet applications. In Proceedings ACM SIGCOMM,
Aug 2001.

[40] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A
scalable distributed file system. In Symposium on Operat-
ing Systems Principles, pages 224–237, 1997.

[41] R. H. Thomas. A majority consensus approach to concur-
rency control for multiple copy databases. In Database
Systems, volume 4, pages 180–209, 1979.

[42] M. Wang, T. M. Madhyastha, N. H. Chan, S. Papadim-
itriou, and C. Faloutsos. Data mining meets performance
evaluation: Fast algorithms for modeling bursty traffic. In
ICDE, 2002.

[43] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs.
replication: A quantitative comparison. In Peer-to-Peer
Systems: First International Workshop (IPTPS), 2002.

[44] Wee Teck Ng and Bruce Hillyer. Obtaining high perfor-
mance for storage outsourcing. In Proceedings SIGMET-
RICS/Performance, pages 322–323, 2001.

[45] Wee Teck Ng et al. Obtaining high performance for storage
outsourcing. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), 2002.

14

