
Characterizing Middleware Mechanisms for Future Sensor Networks

Matthew Wolenetz

Proposal for Thesis

Advisor : Prof. Umakishore Ramachandran

College of Computing

Georgia Institute of Technology,

Atlanta, GA 30332, USA

1 Overview

Due to their unique blend of distributed systems and networking issues, wireless sensor networks (SN) have become

an active research area. Most current SN use an arrangement of nodes with limited capabilities. Given SN device

technology trends, we believe future SN nodes will have the computational capability of today’s handhelds, and

communication capabilities well beyond today’s “motes”, satisfying application demand for greater capabilities for

performing computations in-network on higher bit-rate streaming data.

We focus on stream-based future SN applications, such as automated surveillance, that perform in-network stream-

ing data fusionoperations, such as face detection, in a hierarchical fashion to produce high-level inferences to guide

actuation decisions, forming acontrol loop. Such an application that performs stream-based in-network hierarchical

computation is afusionapplication. Energy will continue to be a primary limiting factor for future SN, so performing

in-network fusion in an energy-conscious manner is key to application longevity. There exists a need to study trade-

offs in terms of how much productivity an application can achieve during its lifetime, how application latency and

throughput requirements affect both lifetime and productivity, and how various available middleware and device capa-

bilities for performing low-power communication and processing impact these performance metrics. In the following

we briefly introduce this problem and then outline the research we are carrying through.

1.1 Problem Statement

For future SN to successfully support stream-based fusion applications, they will need to be constructed to achieve

application throughput and latency requirements while minimizing energy usage to increase application lifetime. We

anticipate dynamic, bursty fusion application behavior due to their interface with dynamic pervasive computing envi-

ronments. This thesis investigates some existing and new middleware mechanisms for improving application lifetime

while achieving required latency and throughput, in the context of a variety of SN topologies and scales, models of

potential fusion applications, and device radio, CPU, MAC,and routing capabilities. We expect tradeoffs exposed by

this investigation to inform a model for how to construct a SNin terms of node capabilities and tuning parameters

for the studied middleware mechanisms, given application characteristics and performance requirements, and given

network topology and scale.

1



1.2 Research Outline

We evaluate and extend a set of mechanisms used by our recent novel middleware,DFuse, for application-directed

energy management of future SN fusion applications. Our simulation-based evaluation enables modeling a variety of

applications, network scales, network layers, and device capabilities to determine how each middleware mechanism

impacts performance for a SN context. We extend the set of existing mechanisms (dynamic fusion point migration and

optimistic data prefetching) to include local CPU scaling and predictive prefetching to better adapt to bursty workloads

while employing an emerging device power management capability.

2 Design Space

2.1 Future Sensor Networks

Due to their unique blend of distributed systems and networking issues, wireless sensor networks (SN) have be-

come an active research area. SN also attract research due tothe possibility they offer for supporting applications

society cares about such as habitat monitoring and weather prediction. Most current SN assume a homogeneous and

dedicated arrangement of nodes with limited capabilities (such as Berkeley motes [34, 20, 17]). Such networks have

been successfully deployed for many low bit-rate applications, for example seabird habitat monitoring [27] and grape

plant monitoring in vineyards [8].

Given the pace of technology, it is conceivable to imagine SNin the near future wherein each node has the com-

putational capability of today’s handhelds (such as an iPAQ), and communication capabilities equivalent to Bluetooth,

802.11a/b/g, UWB, or even 802.15.3 (up to 55Mbps). Recent advances in low-power microcontrollers, and increased

power-conscious radio technologies lend credence to this belief. For example, next generation iMote prototypes [20]

and Telos motes [34] are available for research now. Although not as computationally powerful as a modern iPAQs,

iMotes provide 12MHz 32-bit ARM7TDMI processors and 64KB RAM/512KB FLASH, a significant increase in ca-

pability above Berkeley mote MICA2 [17] predecessors that only had 8MHz 8-bit ATmega128L microcontrollers with

640KB FLASH. Furthermore, the wireless bandwidth available with iMotes is Bluetooth based (up to over 600Kbps

application-level bandwidth), greatly exceeding Berkeley motes’ 38.4Kbps data rate. Similarly, Telos motes, designed

for long lifetime with very low duty cycles, energy-efficient idle modes and faster, energy-efficient microcontrollers

and radios, provide increased computation and communication capabilities over previous generation motes. We be-

lieve this trend will continue as SN applications demand ever greater capabilities for performing computation on high

bit-rate data within the network. It is conceivable that recent hardware capabilities enabling CPU frequency and volt-

age scaling for power saving,e.g.ARM xScale packages, will be integrated into future SN devices. Already, such

technology is integrated into Stargate devices [18], providing higher capability backbones for mote-based SN. Cou-

pled with this trend, high-bandwidth sensors such as cameras are becoming ubiquitous, cheaper, and lighter (in this

case, possibly due to the large-scale demands of cell-phonemanufacturers for these cameras, currently on the order of

over 20 million annually for Nokia alone [43]).

Thus, we envision future SN to consist of deployments of highbandwidth sensor/actuator sources coupled with

powerful wireless ambient processing hardware. Such a network would enable a whole host of high bit-rate, com-

putationally intensive applications such as distributed surveillance, emergency response, and homeland security. The

main characteristic of such applications is a sense-process-actuatecontrol loopenabled by in-network processing of

streaming data. Latency from sensing to actuation, and throughput are the two obvious figures of merit for such appli-

cations. In addition, an important figure of merit for such applications is networklifetime. By definition, SN operate

2



on battery power with minimal supervision. Therefore, SN applications have a limited operational time before the

network becomes partitioned due to energy consumption. There exist tradeoffs in terms of how much productivity an

application can achieve during this lifetime, how application latency and throughput requirements affect both lifetime

and productivity, and how various available device capabilities for performing low-power communication and pro-

cessing impact these performance metrics.

Energy isthemost critical resource in wireless sensor networks, and it is even more critical when we target high

bit-rate fusion applications. Communication of one bit still costs an order of magnitude higher than processing one

instruction. However, with large amounts of processing occurring in-network, processing cost must be accounted for

when managing energy. Similarly, large memory footprints may incur significant cost.

2.2 Application Domain

As a concrete motivating application, consider a campus-wide automated surveillance application to provide safety

for people on campus. The deployed infrastructure consistsof a variety of sensors such as cameras and microphones

scattered throughout campus. Nodes of the wireless SN are similarly scattered across the campus to provide redundant

connectivity and in-network processing resources. Actuator nodes may be PDAs carried by security officers, or other

SN resources such as pan-tilt-zoom motors attached to cameras. As data from sensors pass through the network, nodes

perform application-specificfusion functions(such as face detection, image correlation, and higher level inferenc-

ing). This specific application is an instance of the generalcontrol loopdescribed earlier, where both automated and

”human-in-the-loop” actuation decisions result from in-network communication and computation. Energy will con-

tinue to be a primary limiting factor for such a deployment, so performing in-network fusion in an energy-conscious

manner is key to application longevity.

Other fusion application examples include streaming media, image-based tracking, interactive vision, and feature

extraction for continuous queries used by applications such as EventWeb [29]. These applications share a common

requirement of applying synthesis operations (fusion functions) upon multiple input streams in hierarchical manner.

Fusion functions can be used for efficiency (e.g. compressing an input stream), or can be part of the application be-

havior (e.g. feature extraction from an image).

Fusion applications are typically described as a task graph, where nodes in the graph are of three types: datasource

(data producer node),sink (a node where a user presents requests), andfusion(a node which applies a fusion func-

tion). This graph is deployed as an overlay network usingrelay nodes to interconnect indirectly reachable nodes.

Relay nodes act as simple data forwarders. When bound to a network node, a task graph data fusion node becomes a
�fusion point.

Figure 1 shows a tiny example task graph of a surveillance application. The filter function selects images with some

interesting properties (e.g.rapidly changing scene), and sends the compressed image data to the collage function. The

collage function decompresses the images coming from possibly different locations, combines the images and sends

the composite image to the root (sink) for further processing. We will return to both this tiny task graph and the

hypothetical campus surveillance application in more detail later in this proposal.

To support fusion applications, we need specific systems facilities: support for applying synthesis operations at

fusion points, support for migration of fusion points from one dying or non-optimal network node to a more suitable

3



x


2x


2x


3x


x


Sink (Display)


Sources


(Camera)


Filter


Collage


Figure 1. An example surveillance application that uses in- network distributed data fusion.
Edge labels indicate relative (expected) transmission rat es of data sources and fusion points.

node, and support to handle time-stamped data items produced from the data sources. Other middleware requirements

include memory and buffer management, programming support, etc.

Our work so far in this design space has used the simplifying assumption of a constant, predictable amount of

computation and communication to perform a particular fusion operation. We plan to relax this assumption to reflect

more realistic SN application workloads that exhibit bursty and self-similar characteristics, in terms of demand for

outputs at the task graph root (sink). Such behavior has beenobserved in network traffic [25, 31], and has been useful

in understanding how to size IT infrastructure for supporting web workloads, by estimation of theHurstexponent [28].

We will investigate reversal of this process (generation ofa workload, given parameters including a Hurst exponent)

as a potential way of generating bursty and self-similar workloads to assist our evaluations. An alternative method for

generating an easily parameterized dynamic workload wouldbe to employ a Poisson process model, though possibly

not as faithful to real workloads.

2.2.1 Network Layers

Our work so far assumes that any SN node is initially reachable from any other node, and assumes a routing layer that

exposes hop-count information between any two nodes in the network. As energy is drained on nodes due to compu-

tation, communication and idling overheads, nodes may “die”, eventually causing network partition. Typically, these

assumptions can be satisfied by a separate layer that supports a routing protocol for ad hoc networks, like Dynamic

Source Routing (DSR) [19], and exposes an interface to querythe routing information.

However, these assumptions ignore the overhead in terms of energy and time used for maintaining routing infor-

mation. Similarly, our work so far assumes an ideal MAC layer, ignoring potentially significant energy and latency

overheads caused by collision, non-ideal MAC scheduling, and noise [12]. As will become clear during our evaluation

methodology and results presentations in subsequent sections, we plan to leverage existing models for a variety of

available MAC and routing layers to investigate tradeoffs caused by their overheads relative to application require-

ments, device capabilities and topology, and middleware mechanisms.

2.3 Devices and Network Layers Considered

Where we have included device-level bandwidths and resource consumption in our exploration, we have used mod-

els based on ORiNOCO 802.11b and Bluetooth∼721Kbps radio specifications. We do not anticipate greatly extending

the set of radio models we consider, as the design space is already quite large. However, if there are models of other

4



radio devices coupled with the existing MAC and routing layer models we plan to leverage, we will potentially include

those additional radio device models.

Similarly, we have limited the scope of our exploration of CPU capabilities to a linear model of CPU speed and

consequent power consumption, based on published experiments of SA-1100 and SA-110 processor power consump-

tion at various frequencies and voltages. We present our specific processor power model later in this proposal. Since

evaluation of a CPU-scaling middleware mechanism is a primary goal of this work, we will incorporate appropriate

CPU models based on more recent studies as work progresses.

To constrain the search space, we have used a simple power model for memory in a SN node. Specifics of these

models are reviewed later in this proposal and are availablein our published results [44]. Again, power models appro-

priate to our proposed CPU scaling scheme will be explored aspart of this work. For example, Pouwelseet al. [35]

report that EDO-DRAM energy consumption per MB of data read decreases monotonically with increase in clock

frequency. In other words, clock frequency scaling has opposite effects on CPU and memory energy consumption.

Any potential dynamic CPU scaling decision needs to addressthis relationship.

2.4 Related Work

It is well-recognized that energy is critical in SN, drivinga significant amount of recent research into mechanisms

for SN energy optimization. Most current SN research focuses on contemporary devices and device models for low-

bit rate communication and minimal in-network computation, rather than on mechanisms for supporting high-bit rate

communication with significant in-network computation. Approaches for SN energy optimization range from hard-

ware [34, 20], MAC [45, 40], routing [41, 6], cross-layer approaches [21], and application-specific optimizations such

as energy-efficient target tracking [14]. Additionally, there have been middleware approaches to bridge the gap be-

tween application and lower layers [16, 24].

Recent research in power-aware routing for mobile ad hoc networks [41, 6] proposes power-aware metrics for de-

termining routes in wireless ad hoc networks. We use similarmetrics to formulate different cost functions for guiding

our fusion point migration mechanism. While designing a power-aware routing protocol is not the focus of this thesis,

routing protocol information may possibly be usable for defining more flexible cost functions or for informing our

proposed predictive prefetcher and CPU scaling mechanisms.

Similarly, this thesis does not propose a cross-layer algorithm for SN energy optimization, although recent analyti-

cal work [21] in this area may assist with characterizing performance bounds. In this particular approach, the low-level

scheduling and power control problem that optimizes energyusage for application QoS is shown to be NP-Complete,

and the proposed algorithm is centralized, limiting its applicability in distributed SN environments. However, the

observation of the intractability of optimal scheduling further motivates our proposed distributed heuristics.

Research into application-specific SN energy optimizations propose evaluation metrics suitable to the applications

being studied. An example metric isQoSv[14], or “quality of surveillance”, determined by how far a target moves

before the sensor network detects it. Our research focuses on mechanisms to support more general streaming fusion

applications, so we choose application figures of merit applicable and important to these applications, including la-

tency, throughput and lifetime.

Our approach focuses on middleware techniques for SN energyoptimization, to bridge the gap between stream-

5



based application requirements and low-level device and network layer capabilities. MiLAN [16] has the most similar

goals to our DFuse [24] work, providing a set of middleware mechanisms for adapting the SN to effect application

supplied performance policy. Our example campus surveillance SN fusion application could be accommodated to

some degree by MiLAN, however that middleware does not provide the combination of general streaming data ab-

stractions for in-network computation along with approaches for optimizing the energy usage given application latency

and throughput requirements.

Beyond our initial prototype implementation and evaluation, we have built a simulation-based evaluation framework

for our middleware. Prowler [39], TOSSIM [26], and Em∗ [13] simulators and emulator are specialized towards Berke-

ley mote sensors and communication channels. Our study focuses first on modeling energy usage and performance

of a variety of middleware mechanisms for a whole range of futuristic sensor node architectures, requiring a fairly

detailed implementation of the middleware inside the simulator and a decoupling from a specific target device. As

we relax the ideal MAC and routing layer assumptions in our simulation-based evaluation of these middleware mech-

anisms, coupling our middleware simulator with an existingwireless network layer simulator will be an immediate

objective. Of the available simulator options, we will likely proceed with GloMoSim [3] rather than ns2-wireless [7],

as GloMoSim provides practical support for larger scale wireless deployments than ns2-wireless, critical to successful

evaluation of our middleware model.

3 Approach

Our approach focuses upon evaluation of several adaptive middleware mechanisms for achieving application re-

quired performance while minimizing energy usage. In the following, we introduce our coreFusion Channelmid-

dleware abstraction, followed by two application-directed performance management mechanisms we have studied so

far: fusion point migration and “optimistic” prefetching to hide latency. We then present our evaluation methodology,

details of implementation and results of experiments conducted so far.

3.1 Fusion Channel Abstraction

The Fusion Channelmiddleware abstraction, introduced in our recently proposed DFuse middleware [24], aims

to simplify the application of programmer-supplied transformations to correlated sets of input items from sequenced

input streams, producing a (possibly shared) output streamof “fused items.” It does this by providing a high-level API

for creating, modifying, and manipulating fusion points that subsumes certain recurring concerns (failure, latency,

buffer management, prefetching, mobility, sharing, concurrency, etc.) common to fusion environments such as SN.

We have published a full description of the design, prototype implementation and API microbenchmark evaluation of

this abstraction [24].

3.2 Fusion Point Migration

Of specific note in this proposal, DFuse uses a distributed role assignment algorithm for placing fusion points in

the network. Role assignment is a mapping from a fusion pointin an application task graph to a network node. Given

an application task graph provided to a designated root SN node along with a parameterized cost function, distributed

role assignment outputs an overlay network that optimizes the role to be performed by each node of the network.

The “goodness” of the role assignment is with respect to the input cost function. The distributed algorithm executes

periodically to reevaluate the mapping in a local fashion. If a locally “better” mapping of a fusion point is determined,

then the fusion point is migrated to the new host node.

6



Fusion point migration can be used to optimize a variety of application figures of merit. Most importantly, we

hypothesize that it can be used to dynamically minimize the energy used by the task graph’s overlay network as

the network conditions and application behavior changes, and consequently increase application lifetime. We have

considered three cost functions for directing fusion pointmigration:

1. MT2 “Minimize Tranmission Cost”: This cost function aims to decrease the amount of data transmission re-

quired for running a fusion function. Input data needs to be transmitted from sources to the fusion point, and the

output data needs to be propagated to the consumer nodes (possibly across hops). For a fusion functionf with

m input data sources (fan-in) andn output data consumers (fan-out), the transmission cost forplacingf on node

k is formulated as:

cMT2(k, f) = ( power(k) < threshold ) ? ( INFINITY :

m∑

i=1

t(sourcei) ∗ hopCount(inputi, k)

+

n∑

j=1

t(f) ∗ hopCount(k, outputj))

Here,t(x) represents the transmission rate of the data sourcex, andhopCount(i, k) is the distance (in number

of hops) between nodei andk.

2. MPV “Minimize Power Variance”: This cost function tries to keepthe power of network nodes at similar levels.

If power(k) is the remaining power at nodek, the cost of placinganyfusion function on that node is:

cMPV (k) = 1 / power(k)

3. MTP “Minimize the Ratio of Transmission cost to Power”: This cost function aims to decrease both the trans-

mission cost and lower the difference in the power levels of the nodes. The intuition here is that the cost reflects

how long a node can run the fusion function. The cost of placing a fusion functionf on nodek can be formulated

as:

cMTP (k, f) = cMT2(k, f) ∗ cMPV (k)

3.3 “Optimistic” Prefetching

Fusion Channels, as implemented in our prototype, each havean associated output buffer, containing fused output

data not yet retrieved by all consumers. We accommodate up to5 sets of input items that can be prefetched and

fused before the output buffers become full. As implemented, Fusion Channels will greedily attempt to keep their

output buffers full by requesting their next inputs when they are idle and observe free output space. With prefetch-

ing occurring at all task graph fusion points and the sink, the in-network processing should become pipelined, with

latency approximating the slowest pipeline stage rather than a complete round trip through the pipeline. Although

this prefetching should benefit latency, it will also increase the local memory footprints and the state communicated

during fusion point migrations. Our prefetching mechanismis “application-directed” in the sense that an application

can request it be enabled or disabled as part of the task graphspecification presented during startup.

4 Evaluation

Our evaluation goal is to investigate these middleware features for improving application lifetime while achieving

required latency and throughput, in the context of a varietyof SN topologies and scales, models of potential fusion

applications, and device radio, CPU, MAC, and routing capabilities.

7



4.1 Initial DFuse Implementation

Due to the complexity of interactions between middleware mechanisms, application workloads and device capabili-

ties, a purely analytical approach to evaluating our middleware mechanisms is not feasible. These mechanisms employ

local heuristics that operate without global knowledge, motivating experimentation and simulation to determine their

effectiveness for various SN applications. There are two reasons we limit the mechanisms to be local heuristics. Pri-

marily, gathering global context for performing dynamic adaptations incurs communication costs, potentially reducing

the performance of the SN. Second, even if we used a global heuristic, determining an optimal mapping of a fusion

application to the SN for comparative evaluation rapidly becomes infeasible as the scales of application and SN in-

crease (this problem equates to the NP-hard general Steinertree problem).

For confirming the utility of our core middleware fusion point migration feature, we have implemented the fusion

channel abstraction along with a simulator of the role assignment mechanism for evaluation on a small iPAQ farm with

a simple application by [24]:

1. Implementing a multi-threaded architecture for the fusion module that supports the basic Fusion Channel

API calls and the prefetching mechanism. This implementation employs a programming system called Stam-

pede [36, 1] to meet the fusion module’s infrastructural requirements for timestamping data produced from

different sensors, and a reliable transport layer for moving data through the network. Additional porting of

the Stampede system to the target ARM-Linux architecture was done, including re-tuning a proprietary reliable

UDP cluster messaging layer to perform better on wireless platforms.

2. Implementing the placement module that supports the roleassignment tasks for cost-function directed dynamic

fusion point migration. For ease of evaluation, we have decoupled the fusion and placement module imple-

mentations, interfacing them with a built-in communication channel and a protocol that facilitates dynamic task

graph instantiation and adaptation using the DFuse API. Transmission rates exhibited by the application are

collected by this interface and communicated to the placement module for use as cost function inputs.

4.2 DFuse Implementation Results

Using our initial DFuse middleware implementation on a 12-node iPAQ wireless “farm”, with a simple tracking

fusion application containing two dynamically migrated application fusion points (similar to Figure 1), we have dis-

covered [24]:

1. Fusion point migration, directed by application cost function, for a small application on a small SN deployment,

can definitely increase application lifetime while maintaining constant (low) throughput, when the energy model

used to determine lifetime is driven purely by application-level communication amounts. Figure 2A shows the

energy/time performance when migration is disabled after an initial optimization period (using a cost func-

tion very similar toMT2 for this optimization). All ofMPV , MTP andMT2 (Figures 2B-D) realize greater

application lifetime, due to cost-function directed fusion point migration.

2. A cost function aimed at minimizing transmission costs (MT2 ) achieves close to an optimal minimum transmis-

sion cost once past a brief initial mapping stabilization (Figure 2A).

3. A cost function aimed at minimizing battery variance across SN nodes (MPV ) reduces variance by a factor of

4 (Figure 3A), at the cost of many more fusion point migrations (role transfers) and lower lifetime thanMT2
(Figure 3B).

8



(A) MT1: Minimize Transmission Cost - 1

0

500

1000

1500

2000

2500

3000

3500
4.

2E
+0

2
1.

2E
+0

3
1.

0E
+0

5
4.

5E
+0

5
8.

0E
+0

5
1.

2E
+0

6
1.

5E
+0

6
1.

9E
+0

6
2.

2E
+0

6
2.

6E
+0

6
2.

9E
+0

6
3.

3E
+0

6
3.

6E
+0

6
4.

0E
+0

6

Time (ms)

N
et

w
or

k 
Tr

af
fic

 (
B

yt
es

/S
ec

on
d) Actual Placement Best Placement

(B) MPV: Minimize Power Variance

0

500

1000

1500

2000

2500

3000

3500

4.
2E

+0
2

1.
2E

+0
3

1.
0E

+0
5

4.
5E

+0
5

8.
0E

+0
5

1.
2E

+0
6

1.
5E

+0
6

1.
9E

+0
6

2.
2E

+0
6

2.
6E

+0
6

2.
9E

+0
6

3.
3E

+0
6

3.
6E

+0
6

4.
0E

+0
6

Time (ms)

N
et

w
or

k 
Tr

af
fic

 (
B

yt
es

/S
ec

on
d)

(C) MTP: Ratio of Transmission Cost to Available Power

0

500

1000

1500

2000

2500

3000

3500

4.
2E

+0
2

1.
2E

+0
3

1.
0E

+0
5

4.
5E

+0
5

8.
0E

+0
5

1.
2E

+0
6

1.
5E

+0
6

1.
9E

+0
6

2.
2E

+0
6

2.
6E

+0
6

2.
9E

+0
6

3.
3E

+0
6

3.
6E

+0
6

4.
0E

+0
6

Time (ms)

N
et

w
or

k 
Tr

af
fic

 (
B

yt
es

/S
ec

on
d)

(D) MT2: Minimize Transmission Cost - 2

0

500

1000

1500

2000

2500

3000

3500

4.
2E

+0
2

1.
2E

+0
3

1.
0E

+0
5

4.
5E

+0
5

8.
0E

+0
5

1.
2E

+0
6

1.
5E

+0
6

1.
9E

+0
6

2.
2E

+0
6

2.
6E

+0
6

2.
9E

+0
6

3.
3E

+0
6

3.
6E

+0
6

4.
0E

+0
6

Time (ms)

N
et

w
or

k 
Tr

af
fic

 (
B

yt
es

/S
ec

on
d)

Actual Placement Best Placement Actual Placement Best Placement

Actual Placement Best Placement

Figure 2. The network traffic timeline for different cost fun ctions. X axis shows the application
runtime and Y axis shows the total amount of data transmissio n per unit time.

4. A cost function that attempts to minimize transmission cost while maximizing the time until the fusion point host

dies (MTP ) achieves comparable lifetime toMT2 (Figure 3B) and comparable variance toMPV (Figure 3A).

5. Microbenchmarks of our fusion abstraction’s API (Figure4) reveal as much as 74.5% latency overhead for

streaming item fetching (getFCItem) beyond that predicted by analysis of application-level messages commu-

nicated along with measured maximum performance of the network layer. This latency overhead includes

computation, synchronization and network layer latenciesincurred during message handling, and varies consid-

erably across multiple trials. These observations are explained by the potentially high latency cost of the wireless

channel, motivating both a prefetching mechanism and accounting for energy usage for retransmissions to obtain

more accurate energy/performance tradeoff results.

4.3 Simulator Framework

To support further evaluation in the context of larger network and application scales and a variety of device capa-

bilities, we have built a simulator of our DFuse middleware [44]. Our previous DFuse evaluations modeled cost solely

9



0


10


20


30


40


50


60


70


80


90


100


Run Time


(normalized)


Remaining


Capacity (%)


Number of Role


Transfers


(absolute)


MT2


MPV


MTP


(B)
(A)


0.0E+00


5.0E+05


1.0E+06


1.5E+06


2.0E+06


2.5E+06


3.0E+06


3.5E+06


4.0E+06


4.5E+06


4
2
0



1
6
2
0



3
E

+
0
5



8
E

+
0
5



1
E

+
0
6



2
E

+
0
6



2
E

+
0
6



3
E

+
0
6



3
E

+
0
6



3
E

+
0
6



4
E

+
0
6



Time (ms)


P
o

w
e
r 

V
a
ri

a
n

c
e



MT2


MPV


MTP


Figure 3. Comparison of different cost functions. Applicat ion runtime is normalized to the best
case (MT2), and total remaining power is presented as the percentage o f the initial power.

0 20 40 60 80 100 120

consumeFCItem

getFCItem(1K) - 0 1 2

getFCItem(10) - 0 1 2

getFCItem(1K) - 0 0 1

getFCItem(10) - 0 0 1

getFCItem(1K) - 0 1 0

getFCItem(10) - 0 1 0

getFCItem(1K) - 0 1 1

getFCItem(10) - 0 1 1

putFCItem(1K)

putFCItem(10)

detachFC

attachFC

destroyFC

createFC

Time (ms)

Local
Ideal (Messaging Latency Only)
API Overhead for Remote

Number in () = Item Size

# # # - Configuration of Different

           Input,  Fusion Channel, and

           Consumer locations

           (example)

           0 1 1 - InpAS:0, ChanAS:1, 

                      ConsAS:1

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

Number of Items in Fusion Channel (Each item size = 1024 Bytes)

C
o

s
t 

(m
s
)

API Overhead

Ideal Cost(Messaging Latency Only)

R
2
R

R
2
L

L
2
R

L2R - Local to Remote moveFC

R2L - Remote to Local moveFC

R2R - Remote to Remote moveFC

(a) (b)

Figure 4. (a) Fusion Channel APIs’ cost (b) Fusion channel mi gration (moveFC) cost

as a function of application-level bytes transmitted and node battery level. A primary design goal of our simulator is to

incorporate more representative sources of energy usage inSN devices beyond the radio, such as the CPU and memory

hardware. While still using simple models of application workload and device power models, we can begin to under-

stand performance trends exposed by our middleware mechanisms and application contexts. Existing simulators for

SN (TOSSIM [26], Em∗ [13], Prowler [39] and GloMoSim [3]) or general wireless communication (ns2-wireless [7])

do not incorporate the new middleware mechanisms we focus our evaluation on, motivating the need for their exten-

sion or the construction of a new middleware simulator for our study. We have begun with building a middleware-only

simulator to evaluate the fusion point migration and optimistic prefetching mechanisms under ideal MAC and routing

layer assumptions for a variety of device and application models and scales.

Campus Surveillance Application Model

For generating a tunable application workload for our simulator, we model the motivating surveillance application as

a general fusion application that performs hierarchical in-network processing on streams produced initially by cam-

eras. To arrive at a realistic model of video-based in-network processing and communication requirements, we use a

10



Fusion Instr Cycles Time CPI footprint (KB)

Function Count (ms) (I/O/Runtime)

Collage 309K 803.4K 3.9 2.59 112/112/-

EdgeD 1844K 2616.2K 12.7 1.42 56/56/-

Select 327K 721K 3.5 2.20 112/56/-

MotionD N/A 1009K 4.9 N/A 56/56/94

FD/FR N/A 1959M 9510 N/A 30/30/3.5MB

Table 1. Fusion Function Costs: Required number of cycles, m easured time, and memory
footprint.

representative set of fusion functions that an applicationcan use as part of its deployed task graph. These functions

are imageCollage, which simply concatenates two input images together to produce its output;EdgeDetect; Select,

whose output is the brightest of the two input images;MotionDetect, which is based on the calculation of a centroid

of inter-frame differences and their extent; and a CPU-intensive face detection and recognition function (FD/FR).

Since active CPU energy consumption is related to how many cycles are required to complete one function, and

memory and network energy consumption are related to the function’s input and output data sizes, we report these

numbers for each of the functions in Table 1. ForFD/FR, we use previously published time measurements [23] using

206MHz SA-1100 iPAQ H3600. We report measured results from our benchmarks for the remainder of the fusion

functions. Our benchmarks are from a 206MHz iPAQ 3870 running Linux “familiar” distribution version 0.6.1. We

believe the architecture difference between H3600 and 3870is insignificant in this context. To verify measured time,

we calculate instruction counts from assembly code generated by the gcc 2.95.2 ARM cross-compiler with “-c -g

-Wa,-a,-ad” options. Because the code size of each functionis small and the functions are iterative, SA-1110 with

16K-Icache and 8K-Dcache should obtain frequent cache hitsand low CPI as shown in Table 1.

With this set of fusion functions, we model a communication-intensive workload as an application which does not

employFD/FR, and we model a CPU-intensive workload with a task graph including this heavyweight image process-

ing function. For these initial experiments, we assume thatthe demand at the sink is continuous, and that the various

fusion functions perform statically as shown in Table 1, except when time-sharing a CPU or communication link with

another fusion point. Future experiments will employ more dynamic and bursty workloads.

CollageandSelecteach fuse two inputs into one output, whileEdgeDetect, MotionDetect, andFD/FR each trans-

form a single input into one output. We compose these two classes of functions into subgraphs and connect the

subgraphs to build the application task graph. Each subgraph consists of a two-into-one fusion function whose two

inputs come from two one-into-one fusion functions’ outputs. We randomly choose functions from the appropriate

class to perform task graph construction. Figure 5a gives anexpanded view of a composed task graph, showing how

these two classes of functions are built into subgraphs thatjoin to form a task graph. Our model assumes the cameras

are on one side of campus, and fusion processing occurs in-network as data travels to the sink on the other side of

the campus. The number of fusion operations is a function of the number of cameras in this model, enabling rapid

construction of generic surveillance applications of different scales.

To construct the initial overlay network, we map the tree-like task graph’s fusion points onto nodes closest to an

exact tree geography. Using lowest hop-count paths betweenfusion points adjacent in the task graph, we build relay

node chains to connect the overlay network. We disguise fusion point I/O mismatches by assigning the upstream

11



idle
Collage
EdgeD
Relay
Sink
Source
Multiple
FD/FR
Selection
MotionD

Figure 5. Campus-Wide Surveillance Application Simulatio n:
a) Task Graph Portion b) Sample Topology

function’s output item size as the size of items transmittedthrough the relay chain to the downstream function.

Figure 5b depicts a sample overlay network from our experiments, prior to any fusion point migrations and node

failures. 64 cameras are located along the left edge, and thesink is located in the middle of the right edge. Many

nodes and links in the sensor network are idle (common redundancy in SN). In addition to the cameras and sink, 800

SN nodes are randomly placed within the campus and ensured tobe fully connected, initially. Darker lines indicate

actively mapped links (relay chains). Some nodes host more than one fusion point simultaneously.

Power Models

Processor Power Model

Voltage scaling is a popular technique for saving energy in today’s CMOS microprocessors. Energy consumption in

CMOS circuits can be accurately represented as a simple equation [5] that says clock frequency reduction linearly

decreases energy consumption, and voltage reduction results in a quadratic decrease in energy consumption.

From SA-1100 specification, we find that the processor consumes at most 230 mW at 133 MHz, and at most 330

mW at 206 MHz at 1.5 Volts [9]. Power measurement experimentson SA-1100 microprocessor indicate that power

requirement increases monotonically with increase in clock frequency [42, 35]. Earlier research on SA-110 confirms

the linear relationship too [30]. We use a linear model for energy consumption based on these two data points for

determining energy usage at clock speeds from 59-206MHz.

Memory Power Model

Memory is also a major source of energy consumption, especially for memory-intensive workloads [42]. But, its im-

pact on overall energy consumption is difficult to predict because a change in clock frequency changes the available

memory bandwidth in a non-linear fashion, and it also affects the energy consumption for memory access [35].

For our evaluation purpose, we use a simplified model for memory access energy breakdown. We assume that

memory works in three modes similar to the operation of Direct Rambus DRAM (RDRAM):active, idle, andsleep.

12



Mode Power (mW) Power (mW)

802.11b @ 11Mbps Bluetooth @∼721 Kbps

Transmit 1600 102

Receive 950 165

Listen 805 66

Sleep 60 30

Table 2. Radio power model.

Power consumption in these modes is as cited by Fanet al. [11] (300 mWactive, 20 mW idle, 3 mW sleep). We

assume that while the CPU is executing a fusion function, thewhole memory is being accessed actively. In a realistic

scenario, CPU execution and memory activity will be interleaved, and memory will keep switching between active and

standby modes during CPU execution. Our assumption accounts for the worst case energy consumption by memory

and it also simplifies simulation efforts.

Communication Power Model

Radio is the communication medium in SN we consider, and it isthe most power hungry among CPU, memory, and

radio. Hence, saving communication energy is critical to increasing application lifetimes. For our simulations, power

consumption for different radio modes is shown in Table 2. Weuse numbers corresponding to two different band-

widths: one with an ORiNOCO network card [10], and another for a Bluetooth radio card [38]. Though the same

OriNoCo card can operate at multiple data rates, corresponding power results are not available in their specifications.

We use only one transmission rate for each of the two radios. Also, Bluetooth numbers are valid only for shorter trans-

mission range (∼66 ft for Class 2 devices) compared to the range of 802.11b (∼500 ft in open and∼125ft in closed

space). We scale campus size with respect to radio range to have the same initial topology across our experiments.

From our early experiments, we observe that energy drain by idle nodes waiting inlisten mode for long periods

of time dominates overall energy use by the network. One way of reducing this cost is to impose a duty cycle on the

network nodes, enabling enables them to incur lowersleepradio costs for much of the time they would have been in

listenmode otherwise. This is a common practice among today’s motes, designed for sleeping over 99% of the time.

We therefore include a variant of the radio power model that assumes an optimal sleep duty cycle such that a radio

never useslistenmode, but usessleepmode instead. Having such a duty cycle incurs overhead (scheduling). Rather

than imposing an arbitrary overhead onto our general sensornetwork model, we choose to explore the lower bound of

radio cost inlistenmode by including this optimal sleep mode as an optional radio power model. Previous research

shows that such a lower bound assumption is reasonable by using an efficient radio to wake the main communication

radio when necessary [2].

Simulator

We present here the event-driven simulator we have built to evaluate future sensor network deployments under varying

architectural, middleware, and workload characteristics. It consists of approximately 5700 lines of C++ code, and is

available for download at http://www.cc.gatech.edu/∼wolenetz/files/basenets04 simdfuse.tar.gz.

The simulator includes a rich set of configuration options and is extensible to support additional simulated middle-

ware features. Currently, our simulator models a SN as a collection of nodes and communication links, much as in

Figure 5. It supports simulation of in-network data fusion on application generated items using application specified

fusion functions. It also supports fusion point migration across nodes driven by an application specified cost function

13



(we useMPV in these experiments). The current implementation supports upwards of 1000 simulated sensor network

nodes, far beyond our capability to actually deploy for real-world experiments. The limiting factor is recalculation

complexity of routing tables using the O(n3) Floyd/WarshallAll Pairs Shortest Pathalgorithm, which happens every

time a node dies due to low energy.

The simulator models shared scheduling of CPU and radio resources by multiple concurrent resource requests. For

example, if a node hosts two fusion points that simultaneously begin fusion function execution, the simulator serializes

their access to the CPU in simulated time. We use an ideal MAC layer that incurs neither energy nor latency overhead

due to packet loss for these initial simulator experiments.The simulator serializes, in simulated time, all access to

radio channels between nodes on a pairwise basis, modeling avery simple lossless and collision-free MAC layer.

The bulk of the simulator is concerned with accurately modeling the middleware with events ranging from message

delivery to migration completion. For example, if a node on one of a fusion point’s input relay chains is dying, the

simulator needs to correctly destroy and rebuild that inputrelay chain, rebuilding the routing tables during the process.

Items in-transit on the relay chain need to be accounted for,and the state of both the producer and consumer ends of

the relay chain needs to be updated to account for the change.Migration uses this basic relay chain rebuild mechanism

to implement the remapping of a fusion point to a neighbor node. However, to prevent the need for the old fusion point

host to forward later communications to the new host, we employ “weak” migration, blocking and delaying until there

are no items in-transit along any of the migrating point’s input and output relay chains, and then transferring buffer

function state associated with the fusion point to the target node. Prefetching is implemented by giving each fusion

point a buffer to store fused results into, and by attaching asink directly to every fusion point. These special sinks

incur no energy or delay costs, but they drive the fusion points to request and fuse as fast as possible while they have

room in their local output buffers.

We assume that the routing layer provides notification of pending node battery failure piggybacked on top of

regular traffic, enabling route maintenance. We currently impose no modeled overhead for local calculation of the cost

function, as these are relatively infrequent and only incurminimal communication with immediate neighbor nodes

(we do account for migration costs, though). We do not model the cost of initial application deployment currently, as

this is highly dependent on many potential factors, primarily sensor node OS and bootstrapping characteristics. We

also assume a simplified fusion channel API, wherein fusion points only request the immediate next set of input items,

performing “optimistic” prefetching by trying to keep their output buffer full.

4.4 Middleware Simulation Results

We have built this simulator for DFuse middleware with the ability to model over 1000 SN nodes, including power

models for SN radio, CPU and memory, and the ability to model large applications (hundreds of fusion points), and

including some large complexity for handling the synchronization and messaging necessary to perform migrations

even under simplifying API, MAC and routing layer assumptions (similar to those employed in our initial DFuse im-

plementation). We have performed preliminary experimentsto shed light on the impact on application figures of merit

of using combinations of middleware fusion point migrationand optimistic prefetching features with varying device

CPU speeds and radio characteristics: Bluetooth (B/T) vs ORiNOCO (802), and normalListencost vs idealSleep

listen cost, for both our compute-intensive (CPU) and communication-intensive (Comm) application models [44]:

1. In the presence of optimistic prefetching, increasing the radio bandwidth may not improve latency nor through-

put for compute-intensive workloads (Figure 7,B/T-*-CPU vs 802-*-CPU). Also, network productivity may

actually decrease if the change induces extra cost for idle nodes. For example, delivered items per lifetime de-

14



50 100 150 200

50

100

150

CPU Clock(MHz)

La
te

nc
y(

se
co

nd
s)

B/T−Listen−CPU
B/T−Sleep−CPU
802−Listen−CPU
802−Sleep−CPU
B/T−Listen−Comm.
B/T−Sleep−Comm.
802−Listen−Comm.
802−Sleep−Comm.

50 100 150 200

10
−2

10
−1

CPU Clock(MHz)

T
hr

ou
gh

pu
t(

N
um

be
r 

of
 It

em
s/

se
co

nd
s)

50 100 150 200

0.5

1

1.5

2

x 10
4

CPU Clock(MHz)

Li
fe

 T
im

e(
se

co
nd

s)

50 100 150 200

10
2

10
3

CPU Clock(MHz)

D
el

iv
er

ed
 It

em
s/

Li
fe

T
im

e

Figure 6. Baseline results: Migration and Prefetching Disa bled

50 100 150 200

20

40

60

80

100

CPU Clock(MHz)

La
te

nc
y(

se
co

nd
s)

802−Listen−CPU
802−Sleep−CPU
B/T−Listen−CPU
B/T−Sleep−CPU
B/T−Listen−Comm.
B/T−Sleep−Comm.
802−Listen−Comm.
802−Sleep−Comm.

50 100 150 200
10

−2

10
−1

10
0

CPU Clock(MHz)

T
hr

ou
gh

pu
t(

N
um

be
r 

of
 It

em
s/

se
co

nd
s)

50 100 150 200
2000

4000

6000

8000

10000

12000

14000

CPU Clock(MHz)

Li
fe

 T
im

e(
se

co
nd

s)

50 100 150 200

10
2

10
3

CPU Clock(MHz)

D
el

iv
er

ed
 It

em
s/

Li
fe

T
im

e

Figure 7. Results with Prefetching Enabled

15



50 100 150 200

50

100

150

200

250

CPU Clock(MHz)

La
te

nc
y(

se
co

nd
s)

B/T−Listen−CPU
B/T−Sleep−CPU
802−Listen−CPU
802−Sleep−CPU
B/T−Sleep−Comm.
B/T−Listen−Comm.
802−Sleep−Comm.
802−Listen−Comm.

50 100 150 200

10
−2

10
−1

10
0

CPU Clock(MHz)

T
hr

ou
gh

pu
t(

N
um

be
r 

of
 It

em
s/

se
co

nd
s)

50 100 150 200

0.5

1

1.5

2

2.5

3

3.5

x 10
4

CPU Clock(MHz)

Li
fe

 T
im

e(
se

co
nd

s)

50 100 150 200

10
2

10
3

CPU Clock(MHz)

D
el

iv
er

ed
 It

em
s/

Li
fe

T
im

e

Figure 8. Results with Prefetching and Migration Enabled

creases when not using the idealSleepmodel and changing to a more expensive radio model in terms oflisten

cost (Figure 7,B/T-Listen-CPUvs802-Listen-CPU).

2. Cost function directed migration can significantly extend application lifetime in sensor networks with topologies

and task graphs two orders of magnitude larger than previousstudies: comparing Figure 8 to both Figures 6 and

7, lifetime is generally increased in all cases studied.

3. Compared to experiments with only prefetching enabled, turning on dynamic fusion point migration yields only

slightly lower latency and throughput in most cases we study, while extending lifetime and increasing delivered

items per lifetime (Figures 8 and 7). The exception,B/T-*-CPU, is encountered when frequently migrating larger

state across a lower bandwidth connection. Although application lifetime is still extended, average latency

and throughput may suffer, potentially leading to a drop in the total number of delivered items per lifetime.

Suggested potential solutions to this specific problem would incorporate the latency cost of migration within the

cost function being evaluated or in the determination of cost function evaluation frequency.

4. Although an optimal radioSleepduty cycle is expected to improve application lifetime by not wasting energy

in listen mode for idle nodes, it does not result in a significant change in lifetime in the presence of optimistic

prefetching, except when using expensive ORiNOCO listen (Figure 7,*-Sleep-*vs *-Listen-*).

5. More intuitively, prefetching results in increased throughput compared to the baseline, while network lifetime

with prefetching is lower than the baseline since more work is being done per unit time. (Compare Figure 7 to

Figure 6.)

6. With prefetching enabled and migration directed by a battery variance minimizing cost function (MPV ), we find

that compute-intensive workloads on high bandwidth radiosand high bandwidth CPUs may perform as well in

16



terms of throughput, latency, lifetime and delivered itemsper lifetime as communication-intensive workloads

on low bandwidth radios with no significant dependence on CPUspeed (Figure 8,802-Sleep-CPUat 206 MHz

CPU Clock vsB/T-*-Comm). This result, while confirming the viability of our vision of future SN for supporting

high bandwidth compute-intensive in-network processing,also indicates the potential for further studying the

tradeoff between device capabilities, middleware features and application workload to help characterize the

device and middleware features necessary for a particular level of application performance.

4.5 Middleware Scalability Results

We are currently performing experiments to determine how well each DFuse cost function for directing fusion point

migration scales with respect to network topology and application size. Scalability is key to utility in real, large scale

SN deployments. We are using our simulator, extended to include optimal cost “oracles” for each cost function, to

analyze this scalability under simplifying API, MAC and routing layer assumptions and ignoring CPU and memory

energy and delay costs as in our original DFuse evaluation. Both the migration and optimistic prefetching features are

enabled in these experiments. We have discovered the following results so far:

1. As the network is scaled up to 1024 nodes for a single fusionpoint application, all three cost functions behave

similarly with respect to each other in terms of transmission cost relative to the current optimal transmission

cost:MT2 performs close to optimal, followed byMTP andMPV performs worst.

2. For large topologies and small applications studied so far, we find that the energy of the neighbors of the fusion

application’s powered sources and sinks typically determines the lifetime of the application. In this case, there

are so many redundant in-network nodes that the lifetime is limited by the fixed location of application endpoints

(sources and sinks are assumed to not migrate).

3. A better evaluation of cost function performance is how itperforms relative to the oracle for that cost function,

not always the transmission cost oracle. For example, initial results indicate thatMPV also performs very

close to optimal in terms of distance from a mapping that would achieve minimum variance. Even this result

is misleading, as it is for the single fusion point on a 1024 node SN, whose lifetime is already limited by the

application endpoint’s neighbor nodes: for the life of the application, there is always a completely unused node

1 hop away from the current mapping.

4. ForMTP however, initial results indicate that the heuristic results in a mapping that is around 5 hops away from

an optimalMTP mapping, rather consistently for this setup. This is likelydue to the limitation of single-hop

migration, along with a cost function that is simultaneously attempting to optimize for transmission cost as well

as for hosting on a node with maximum power remaining. However, it remains to be seen whether usingMTP
will indeed limit the lifetime of the application, relativeto MT2 , and if it will not achieve as minimal battery

variance asMPV for large scale applications not limited by application endpoints’ neighbors.

5 Proposed Research

5.1 Completion of Current Middleware Scalability Evaluation

As we complete this current scalability study, for publication in a journal, we plan to test our hypothesis that for

large topologies andlargeapplications, we expect simulations to show similar rankings in terms of lifetime and battery

variance as we find from our small scale DFuse implementationstudy. If this hypothesis does not hold true, there will

need to be further analysis of these scalability results. One possible route would be to implement approximating

17



Steiner tree oracles to get a sense of how well the cost function heuristics work for larger applications relative to an

approximate of optimum cost.

5.2 Accounting for Workload Dynamism and Non-Ideal Communication Channels

Once our basic fusion point migration and optimistic prefetching optimization mechanisms are evaluated under

ideal assumptions, we plan to extend our middleware simulator to model a predictive prefetcher alternative to the

current “optimistic” prefetcher, along with a dynamic, local CPU scaling mechanism.

Modeling Application Dynamism

Evaluation of these new mechanisms requires building appropriate application models that incorporate periodic and

bursty behavior typical of distributed streaming applications. Possible approaches include fractal-based and Pois-

son process based workloads, outlined in Section 2.2, reusing our campus surveillance model to enable comparative

analysis to existing results.

Leveraging an Existing Network Layer Simulator

We will then couple our middleware simulator to an existing wireless MAC and routing layer simulator, and use their

combination to provide more realistic models of radio, MAC and routing layer overheads impacting the performance

of our predictive prefetching and CPU scaling mechanisms. We plan to use GloMoSim [3] as the preexisting MAC and

routing layer simulator for our work, as it affords larger scale network topologies than ns2-wireless [7], and it incor-

porates more general MAC and routing layer models than mote-specific models used for TOSSIM [26]/Em∗ [13]. We

anticipate some complexity in mapping our simulator’s current messaging onto a network layer simulator. Specifically,

some assumptions made in the current middleware simulator will need addressing:

1. The messaging needed to evaluate cost functions among onehop neighbors is currently assumed to be free by

our simulator because it occurs infrequently relative to application workloads studied. The simulator currently

immediately evaluates the cost function, leveraging a subset of its global knowledge of network state to keep

from doing any messaging. However, such messaging will needto be implemented to incur the proper associated

costs when collision or noise cause packet loss.

2. Similarly, the teardown and reconstruction of fusion point input and output relay chains is currently done instan-

taneously, once the simulated middleware is sure no application level messages are in flight on the chains. A

protocol for remapping these chains will need to cooperate with the routing layer provided by the network layer

simulator.

3. The middleware currently ignores the possibility of a node dying due to any reason other than being below an

energy threshold. However, a faithful network layer simulator may cause premature node failure due to link

characteristics. Effort may need to be expended to ensure that the middleware simulator can continue its current

assumption.

Modeling and Evaluating Predictive Prefetching

Current DFuse mechanisms and evaluations do not account forthe dynamic nature of application streaming, nor the

lossiness of wireless communication channels in SN. SN fusion applications exhibit both bursty and periodic demands

on network devices and may desire to “skip” over stream itemsto achieve greater currency. For example, to save

energy and increase lifetime, a campus surveillance SN fusion application may perform minimal, infrequent anomaly

18



“detection” operations. Once a situation needing attention is detected, information gathering and processing activities

will increase to achieve improved latency until the situation is resolved. Some portions of the distributed surveillance

application may only require the most recently available inputs (GetLatest), enabling dropping of intermediately pro-

duced inputs, while other portions may require every input item in sequence (GetNext). An example of the former is a

latency-critical in-network display showing remote videoas close to realtime as possible, and an example of the latter

is a stream decompressor that requires every input in sequence. Both of these application characteristics (burstiness

and differing input semantics for a fusion operation) motivate the need for a predictive prefetcher to dynamically adapt

which data items are requested for a particular computation, while hiding latency. Furthermore, even in non-mobile

SN deployments we consider, wireless communication is lossy, and prefetching behavior needs to adapt accordingly

to reduce misprediction latency and energy overheads.

There are many related approaches in distributed systems research for performing energy-adaptive communication

management that will inform our predictive prefetcher design, highlights including: queuing data for future delivery

in an application-driven manner for saving energy in mobilecommunication [22], and integration of wireless card

sleep scheduling with CPU and network packet scheduling forenergy savings [33]. Also, integration with machine

learning approaches may yield performance benefits for someworkloads. Finally, previous work in the domain of

distributed stream processing for application task graphs, where the computations running at each task graph node

inform a distributed algorithm for identifying which intermediately processed items aredead, requiring no further

propagation nor computation [15], may be leveraged in our SNcontext for providing a lower bound for timestamps

we prefetch. We feel there is significant opportunity for exploration of energy savings via middleware managed fusion

application communication.

Leveraging Dynamic CPU Scaling

Our preliminary evaluations of DFuse include the assumptions that the SN is homogeneous, and the device capabilities

remain constant for an application lifetime. As SN devices become more computationally capable and SN applications

perform greater amounts of computation to process high bit-rate data, there emerges a significant increase in energy

usage for computation relative to communication. For example, expensive computations such as face detection and

recognition can now be done on sensor nodes. For such computations, our iPAQ-based microbenchmarks and power

models [44] indicate that about 100ms of iPAQ processing is necessary on a data size of 56KB. Single hop commu-

nication to fetch inputs would cost roughly 106 mJ using ORiNOCO 11Mbps, while computation would cost roughly

31 mJ on a 206MHz SA-1100 package. Although communication costs in this case still exceed processing costs,

there is a significant opportunity for reducing energy consumption by reducing processing costs. Also, if the data

streams are compressed, then the proportional amount of energy used for processing increases. A benefit of a correct

prefetch prediction is the knowledgea priori of the time at which the result of computation will be demanded by the

application. Since power consumption of modern processorsdecreases as processor frequency and voltage decrease

(see our simulator’s power model), a middleware for supporting fusion applications would also include the ability to

dynamicallyscalethe CPU speed of individual SN nodes to reduce predicted application computation energy usage.

We anticipate current technology trends enabling voltage and frequency scaling [35, 11, 32, 37] to be available in

future SN devices.

We therefore propose to design, implement in our simulator framework, and evaluate a dynamic, local CPU scaling

mechanism for fusion points that cooperates with a predictive prefetcher, informed by application semantic (GetNext

vs GetLatest) and behavior to reduce the costs associated with fetching and fusing data never used and to reduce the

costs associated with fusing data at a processor power levelhigher than necessary. This local CPU scaling mechanism

will need to interact with potentially multiple local fusion points to collectively optimize node energy usage. Our

19



hypothesis is that this combination of additional mechanisms will indeed yield significantly greater energy savings and

application lifetime, while still meeting application throughput and latency requirements. We will test this hypothesis

through further simulation based evaluation.

6 Summary of Expected Contribution from this Thesis

By performing the remaining proposed work, we hope to arriveat the following insights:

1. We hope to understand how scalable our fusion point migration mechanism is in terms of both topology and

application (task graph) size. An approximating Steiner tree oracle may be necessary to complete the current

scalability evaluation for non-trivial task graphs.

2. We hope to clarify if, and by how much, predictive prefetching along with CPU scaling impact SN lifetime

for bursty fusion application workloads using lossy wireless communication channels, and how this impact is

changed when cost-function directed fusion point migration is enabled.

3. We hope to determine trends in terms of how common wirelessnetwork layers available in GloMoSim (link,

MAC and routing) impact SN lifetime for these fusion application workloads and middleware mechanisms.

4. We hope to use these studies to be able to generate a model for how to provision a future SN in terms of

node radios, MAC, routing layer, initial battery energy andCPU (memory has not proven to be critical to our

applications’ performance so far, and we do not anticipate doing finer grained models as a result) for a particular

class of application workload, parameterized by application scale, “burstiness”, input semantic (GetLatestvs

GetNext), required lifetime, required throughput, and required latency. In further scalability studies, if we find

thatMT2 doesnot achieve maximum lifetime or minimum latency, we will further need to adjust this model to

include which cost function the middleware should use for a particular workload characteristic. This model may

be partially incomplete. For example, we do not expect it to output the number of nodes, nor their topology.

These will be assumed as inputs to the model. It will also be limited to the devices, layers and mechanisms we

study in our simulator framework.

7 Broader Application

Our work is focused on future SN. However, it may be possible to adapt our mechanisms to target lower-bandwidth,

lightweight computation capabilities of today’s motes. Also, our research may well be applicable outside of SN. Con-

temporary laptops and handhelds are immediate sibling platforms for applications and supporting middleware mecha-

nisms we study. General application-directed migration ofcomputation may apply in grid computing and distributed

media processing, to better achieve latency and throughputrequirements, regardless of energy consumption. Further-

more, focused contributions, such as our expected combination of a predictive prefetcher with a dynamic CPU scaling

mechanism, may well apply to more general distributed streaming contexts outside of SN.

8 Open Questions

As the design space for future SN devices, applications, andmiddleware for optimizing energy (lifetime) while

meeting application latency and throughput requirements is vast, we are aware of several open research questions

outside the scope of our proposed work:

1. We are not concerned with mechanisms for dynamically adapting the bandwidth, range and signal strength of

SN radios, although this route of research may provide additional benefits to applications in terms of latency,

20



throughput and lifetime. It should be possible for later work to reuse our middleware simulator to characterize

the potential benefits of such mechanisms, coupled with appropriate models of radio, MAC and routing layers.

There is currently much conflicting research on whether multi-hop communication saves energy vs. “shouting

louder”, and varying application domains may have different trends here.

2. We constrain our study to supporting a single fusion application with a static task graph (in terms of data flow

dependencies). In this work, we do not consider relaxationsof this assumption including providing support

for multiple applications and for applications whose task graphs are dynamic. While our mechanisms rely on

virtualization of local device resources to manage timesharing required when multiple task graph fusion points

are mapped to the same device, virtualization support for multiple applications is not our focus.

3. We do not propose new routing layers for power-aware, or more correctly, application-performance aware place-

ment of relay nodes used to connect our overlay network. We will leverage available models for wireless ad

hoc routing in SN in our evaluations. In addition, we will leverage routing layer support where available (e.g.

energy characteristics of relay nodes) for fusion point placement decisions.

4. There is a need for coordinated control in SN. Our application models and middleware implementations and

models do not focus on control. Rather, they are concerned with keeping up with demand by downstream

consumers. For stream based fusion applications we consider, coordinated data streaming from multiple sources

is a needed contribution.

5. The design space greatly expands when mobility of sourcesand sinks, and general mobility of SN nodes is intro-

duced. There are opportunities for leveraging such mobility for energy savings through radio power scaling and

message ferrying, recharging batteries, and for increasing application throughput and latency by dynamically

positioning resources more optimally. We do not consider mobility-based approaches for optimization in this

work.

6. This proposal does not include plans to implement these middleware mechanisms in libraries usable on real SN

devices. Although our initial DFuse prototype was evaluated on iPAQs, the proposed extensions and evaluations

are based on a flexible set of device models and large scales. We do not have the resources to support an actual

deployment of the existing and proposed mechanisms for large scale applications. Our focus is instead on the

evaluation of performance tradeoffs for a promising set of future SN devices, applications, and middleware

mechanisms.

7. We do not consider device failures other than for reasons of lack of energy. One potential incremental approach

for addressing this is to create redundant fusion points in the network, creating an energy vs availability tradeoff.

Other approaches in SN domain [4] have considered a similar tradeoff: energy vs accuracy. Our simulated

middleware assumes that delayed transmission is due to lossy wireless channels, rather than a prematurely dead

node. Another approach would be to implementpartial fusion, the ability of a fusion operation to commence

with partial inputs after some timeout or exception.

References

[1] Sameer Adhikari, Arnab Paul, and Umakishore Ramachandran. D-Stampede: distributed programming sys-

tem for ubiquitous computing. InProceedings of the 22nd International Conference on Distributed Computing

Systems (ICDCS), Vienna, July 2002.

[2] Yuvraj Agarwal and Rajesh K. Gupta. On Demand Paging Using Bluetooth Radios on 802.11 Based Networks.

Technical Report 03-22, Center for Embedded Computer Systems, UC Irvine, UC San Diego, July 2003.

21



[3] Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Ken Tang, RajiveBagrodia, and Mario Gerla. GloMoSim: a scalable

network simulation environment. UCLA Computer Science Department Technical Report 990027, May 1999.

[4] Athanassios Boulis, Chih-Chieh Han, and Mani B. Srivastava. Design and implementation of a framework for

programmable and efficient sensor networks. InProceedings of the First International Conference on Mobile

Systems, Applications, and Services (MobiSys), San Francisco, CA, May 2003.

[5] Thomas D. Burd and Robert W. Brodersen. Processor designfor portable systems.Journal of VLSI Signal

Processing, 13(2-3):203–222, August 1996.

[6] Jae-Hwan Chang and Leandros Tassiulas. Energy conserving routing in wireless ad-hoc networks. InIEEE

INFOCOM, pages 22–31, 2000.

[7] CMU Monarch Project. Wireless and mobility extensions to ns-2. Available November 2004 athttp://www.

monarch.cs.cmu.edu/cmu-ns.html, 1999.

[8] Intel Corp. New computing frontiers - the wireless vineyard. Available November 2004 athttp://www.intel.com/

labs/features/rs01031.htm.

[9] Intel Corp. Intel StrongARM SA-1100 Developer’s Manual. Document no. 278088-04, 1999.

[10] Proxim Corp. ORiNOCO PC Card Specification. 2003 available athttp://www.hyperlinktech.com/web/orinoco/

orinoco pc card spec.html, similar spec available November 2004 athttp://www.proxim.com/learn/library/

datasheets/11bpccard.pdf.

[11] Xiaobo Fan, Carla Ellis, and Alvin Lebeck. Memory controller policies for dram power management. InPro-

ceedings of the 2001 international symposium on Low power electronics and design, pages 129–134, Huntington

Beach, California, United States, 2001. ACM Press.

[12] Deepak Ganesan, Bhaskar Krishnamachari, Alec Woo, David Culler, Deborah Estrin, and Stephen Wicker. Com-

plex behavior at scale: An experimental study of low-power wireless sensor networks. Technical Report CSD-

TR 02-0013, UCLA, February 2002. Available November 2004 athttp://www.cs.umass.edu/˜dganesan/PAPERS/

empirical.pdf.

[13] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos, Nithya Ramanathan, and Deborah Estrin. Em*:

a software environment for developing and deploying wireless sensor networks. InProceedings of USENIX 04,

Los Angeles, California, USA, 2004.

[14] Chao Gui and Prasant Mohapatra. Sensor networks: Powerconservation and quality of surveillance in target

tracking sensor networks. InProceedings of the 10th annual international conference onMobile computing and

networking, September 2004.

[15] Nissim Harel, Hasnain A. Mandviwala, Kath Knobe, and Umakishore Ramachandran. Dead timestamp iden-

tification in stampede. InProceedings of the International Conference on Parallel Processing (ICPP), pages

101–108, 2002.

[16] Wendi B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho, and Mark A. Perillo. Middleware to support

sensor network applications.IEEE Network Mag., 18(1):6–14, 2004.

[17] Crossbow Technology Inc. MICA2 datasheet. Available November 2004 athttp://www.xbow.com/Products/

Productpdf files/Wirelesspdf/6020-0042-06A MICA2.pdf.

22



[18] Crossbow Technology Inc. Stargate gateway (SPB400) datasheet. Available November 2004 athttp://www.xbow.

com/Products/Productpdf files/Wirelesspdf/6020-0049-01C Stargate.pdf.

[19] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless networks. In Imielinski and

Korth, editors,Mobile Computing, volume 353. Kluwer Academic Publishers, 1996.

[20] Ralph M. Kling. Intel mote: An enhanced sensor network node. InProceedings of the International Workshop

on Advanced Sensors, Structural Health Monitoring, and Smart Structures, 2003.

[21] Ulas C. Kozat, Iordanis Koutsopoulos, and Leandros Tassiulas. A framework for cross-layer design of energy-

efficient communication with qos provisioning in multi-hopwireless networks. InProceedings of IEEE/Infocom,

2004.

[22] Robin Kravets and P. Krishnan. Application-driven power management for mobile communication.Wireless

Networks, 6(4):263–277, 2000.

[23] Ulrich Kremer, Jamey Hicks, and James M. Rehg. A compilation framework for power and energy management

on mobile computers. InProceedings of the International Workshop on Languages andCompilers for Parallel

Computing (LCPC), August 2001.

[24] Rajnish Kumar, Matthew Wolenetz, Bikash Agarwalla, JunSuk Shin, Phillip Hutto, Arnab Paul, and Umakishore

Ramachandran. DFuse: a framework for distributed data fusion. In Proceedings of the first international con-

ference on embedded networked sensor systems, pages 114–125, Los Angeles, California, USA, 2003. ACM

Press.

[25] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the self-similar nature of ethernet

traffic. InConference proceedings on communications architectures,protocols and applications, pages 183–193,

San Francisco, California, USA, September 1993.

[26] Philip Levis, Nelson Lee, Matt Welsh, and David Culler.TOSSIM: accurate and scalable simulation of entire

TinyOS applications. InProceedings of the First ACM Conference on Embedded Networked Sensor Systems

(SenSys), 2003.

[27] Alan Mainwaring, Joseph Polastre, Robsert Szewczyk, David Culler, and John Anderson. Wireless sensor net-

works for habitat monitoring. InACM International Workshop on Wireless Sensor Networks andApplications,

2002. Also Intel Research, IRB-TR-02-006, June 2002.

[28] Daniel A. Menasce, Bruno D. Abrah ao, Daniel Barbara, Virgilio A. F. Almeida, and Flavia P. Ribeiro. Frac-

tal characterization of web workloads. InProceedings of the 11th International World Wide Web Conference

(www2002), Honolulu, Hawaii, USA, 2002.

[29] Martin Modahl, Ilya Bagrak, Matthew Wolenetz, Ramesh Jain, and Umakishore Ramachandran. EventWeb:

Distributed media correlation, analysis and distributionframework. InProceedings of 10th IEEE Workshop on

the Future Trends of Distributed Computing Systems (FTDCS-04), Suzhou, China, May 2004.

[30] James Montanaro, Richard T. Witek, Krishna Anne, Andrew J. Black, Elizabeth M. Cooper, Daniel W. Dob-

berpuhl, Paul M. Donahue, Jim Eno, Gregory W. Hoeppner, David Kruckemyer, Thomas H. Lee, Peter C. M.

Lin, Liam Madden, Daniel Murray, Mark H. Pearce, Sribalan Santhanam, Kathryn J. Snyder, Ray Stephany, and

Stephen C. Thierauf. A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor.Digital Tech. J., 9(1):49–62, 1997.

[31] Kihong Park. On the effect and control of self-similar network traffic: a simulation perspective. InProceedings

of the 29th conference on Winter simulation, Atlanta, Georgia, USA, 1997.

23



[32] Padmanabhan Pillai and Kang G. Shin. Real-time dynamicvoltage scaling for low-power embedded operating

systems. InACM Symposium on Operating Systems Principles, pages 89–102, 2001.

[33] Christian Poellabauer and Karsten Schwan. Energy-aware traffic shaping for wireless real-time applications. In

Proceedings of the 10th Real-Time and Embedded Technology and Applications Symposium (RTAS), May 2004.

[34] Joseph Polastre, Robert Szewczyk, Cory Sharp, and David Culler. The mote revolution: Low power wireless

sensor network devices. InProceedings of Hot Chips 16: A Symposium on High PerformanceChips, 2004.

Presentation available November 2004 athttp://webs.cs.berkeley.edu/papers/hotchips-2004-motes.ppt.

[35] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-power microprocessor. In7th ACM

Int. Conf. on Mobile Computing and Networking (Mobicom), pages 251–259, Rome, Italy, July 2001.

[36] Umakishore Ramachandran, Rishiyur S. Nikhil, Nissim Harel, James M. Rehg, and Kathleen Knobe. Space-time

memory: A parallel programming abstraction for interactive multimedia applications. InPrinciples Practice of

Parallel Programming, pages 183–192, 1999.

[37] Greg Semeraro, David H. Albonesi, Steven G. Dropsho, Grigorios Magklis, Sandhya Dwarkadas, and Michael L.

Scott. Dynamic frequency and voltage control for a multipleclock domain microarchitecture. InProceedings

of the 35th annual ACM/IEEE international symposium on Microarchitecture, pages 356–367, Istanbul, Turkey,

2002. IEEE Computer Society Press.

[38] OKI Semiconductor. ML7050LA Specification. AvailableNovember 2004 athttp://www.oki.com/semi/english/t-

blue.htm, June 2001.

[39] Gyula Simon, Peter Volgyesi, Miklos Maroti, and Akos Ledeczi. Simulation-based optimization of commu-

nication protocols for large-scale wireless sensor networks. In Proceedings of IEEE Aerospace Conference,

Nashville, Tennessee, USA, March 2003.

[40] Suresh Singh and C. S. Raghavendra. PAMAS: power aware multi-access protocol with signalling for ad hoc

networks.ACM SIGCOMM Computer Communication Review, 28(3):5–26, July 1998.

[41] Suresh Singh, Mike Woo, and C. S. Raghavendra. Power-aware routing in mobile ad hoc networks. InMobile

Computing and Networking, pages 181–190, 1998.

[42] Marc A. Viredaz and Deborah A. Wallach. Power evaluation of a handheld computer.IEEE Micro, 2003.

[43] Max Wang. Nokia sees strong demand for smartphones and camera phones in 2005. Available November 2004

at http://www.digitimes.com/news/a20041104A6035.html.

[44] Matthew Wolenetz, Rajnish Kumar, Junsuk Shin, and Umakishore Ramachandran. Middleware Guidelines for

Future Sensor Networks. InProceedings of the First Workshop on Broadband Advanced Sensor Networks, San

Jose, California, USA, October 2004.

[45] Wei Ye, John Heidemann, and Deborah Estrin. An Energy-Efficient MAC protocol for Wireless Sensor Networks.

In Proceedings of INFOCOM 2002, New York, New York, June 2002.

24


