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1 Overview

Due to their unique blend of distributed systems and netingrissues, wireless sensor networks (SN) have become
an active research area. Most current SN use an arrangefmeodes with limited capabilities. Given SN device
technology trends, we believe future SN nodes will have th@putational capability of today’s handhelds, and
communication capabilities well beyond today’s “motestisfying application demand for greater capabilities for
performing computations in-network on higher bit-rateatning data.

We focus on stream-based future SN applications, such amatgd surveillance, that perform in-network stream-
ing data fusionoperations, such as face detection, in a hierarchicaldagioi produce high-level inferences to guide
actuation decisions, forming@ontrol loop Such an application that performs stream-based in-n&thierarchical
computation is dusionapplication. Energy will continue to be a primary limitingctor for future SN, so performing
in-network fusion in an energy-conscious manner is key fiegtion longevity. There exists a need to study trade-
offs in terms of how much productivity an application caniagh during its lifetime, how application latency and
throughput requirements affect both lifetime and proditgtiand how various available middleware and device capa-
bilities for performing low-power communication and presing impact these performance metrics. In the following
we briefly introduce this problem and then outline the redeare are carrying through.

1.1 Problem Statement

For future SN to successfully support stream-based fugiphications, they will need to be constructed to achieve
application throughput and latency requirements whileimizing energy usage to increase application lifetime. We
anticipate dynamic, bursty fusion application behavioe thutheir interface with dynamic pervasive computing envi-
ronments. This thesis investigates some existing and neldlevare mechanisms for improving application lifetime
while achieving required latency and throughput, in theterinof a variety of SN topologies and scales, models of
potential fusion applications, and device radio, CPU, MA@Gd routing capabilities. We expect tradeoffs exposed by
this investigation to inform a model for how to construct a BNerms of node capabilities and tuning parameters
for the studied middleware mechanisms, given applicatlaracteristics and performance requirements, and given
network topology and scale.



1.2 Research Outline

We evaluate and extend a set of mechanisms used by our resehtniddlewareDFuse for application-directed
energy management of future SN fusion applications. Ouulkition-based evaluation enables modeling a variety of
applications, network scales, network layers, and dewapalbilities to determine how each middleware mechanism
impacts performance for a SN context. We extend the set sfisgimechanisms (dynamic fusion point migration and
optimistic data prefetching) to include local CPU scaling aredictive prefetching to better adapt to bursty wortka
while employing an emerging device power management chiyabi

2 Design Space
2.1 Future Sensor Networks

Due to their unique blend of distributed systems and netingrissues, wireless sensor networks (SN) have be-
come an active research area. SN also attract research doe possibility they offer for supporting applications
society cares about such as habitat monitoring and weathdigtion. Most current SN assume a homogeneous and
dedicated arrangement of nodes with limited capabilitteslf as Berkeley motes [34, 20, 17]). Such networks have
been successfully deployed for many low bit-rate applictj for example seabird habitat monitoring [27] and grape
plant monitoring in vineyards [8].

Given the pace of technology, it is conceivable to imagineitstthe near future wherein each node has the com-
putational capability of today’s handhelds (such as an iPAQd communication capabilities equivalent to Bluetgoth
802.11a/b/g, UWB, or even 802.15.3 (up to 55Mbps). Recevdraks in low-power microcontrollers, and increased
power-conscious radio technologies lend credence to tlisfb For example, next generation iMote prototypes [20]
and Telos motes [34] are available for research now. Althaugt as computationally powerful as a modern iPAQs,
iMotes provide 12MHz 32-bit ARM7TDMI processors and 64KB RA12KB FLASH, a significant increase in ca-
pability above Berkeley mote MICA2 [17] predecessors thmdy bad 8MHz 8-bit ATmegal28L microcontrollers with
640KB FLASH. Furthermore, the wireless bandwidth avagablth iMotes is Bluetooth based (up to over 600Kbps
application-level bandwidth), greatly exceeding Berletetes’ 38.4Kbps data rate. Similarly, Telos motes, dessign
for long lifetime with very low duty cycles, energy-efficieidle modes and faster, energy-efficient microcontrollers
and radios, provide increased computation and commuaitatpabilities over previous generation motes. We be-
lieve this trend will continue as SN applications demand gveater capabilities for performing computation on high
bit-rate data within the network. It is conceivable thatartchardware capabilities enabling CPU frequency and volt-
age scaling for power saving,gARM xScale packages, will be integrated into future SN desicAlready, such
technology is integrated into Stargate devices [18], mlong higher capability backbones for mote-based SN. Cou-
pled with this trend, high-bandwidth sensors such as casren@becoming ubiquitous, cheaper, and lighter (in this
case, possibly due to the large-scale demands of cell-phanefacturers for these cameras, currently on the order of
over 20 million annually for Nokia alone [43]).

Thus, we envision future SN to consist of deployments of lighdwidth sensor/actuator sources coupled with
powerful wireless ambient processing hardware. Such aarktwould enable a whole host of high bit-rate, com-
putationally intensive applications such as distribute@dsillance, emergency response, and homeland secuhty. T
main characteristic of such applications is a sense-psegesiatecontrol loopenabled by in-network processing of
streaming data. Latency from sensing to actuation, andifiimput are the two obvious figures of merit for such appli-
cations. In addition, an important figure of merit for suclplégations is networkifetime. By definition, SN operate



on battery power with minimal supervision. Therefore, Siplaations have a limited operational time before the
network becomes partitioned due to energy consumptionteldrast tradeoffs in terms of how much productivity an
application can achieve during this lifetime, how appliimatatency and throughput requirements affect both hfieti
and productivity, and how various available device cajitésl for performing low-power communication and pro-
cessing impact these performance metrics.

Energy isthe most critical resource in wireless sensor networks, angléven more critical when we target high
bit-rate fusion applications. Communication of one bill stbsts an order of magnitude higher than processing one
instruction. However, with large amounts of processinguoiing in-network, processing cost must be accounted for
when managing energy. Similarly, large memory footprings/imcur significant cost.

2.2 Application Domain

As a concrete motivating application, consider a campuewutomated surveillance application to provide safety
for people on campus. The deployed infrastructure consfsisvariety of sensors such as cameras and microphones
scattered throughout campus. Nodes of the wireless SNrailady scattered across the campus to provide redundant
connectivity and in-network processing resources. Actuabdes may be PDAs carried by security officers, or other
SN resources such as pan-tilt-zoom motors attached to eam&s data from sensors pass through the network, nodes
perform application-specifitusion functiongsuch as face detection, image correlation, and highef Ieferenc-
ing). This specific application is an instance of the genewalrol loopdescribed earlier, where both automated and
"human-in-the-loop” actuation decisions result from ietmork communication and computation. Energy will con-
tinue to be a primary limiting factor for such a deploymeiwtperforming in-network fusion in an energy-conscious
manner is key to application longevity.

Other fusion application examples include streaming mediage-based tracking, interactive vision, and feature
extraction for continuous queries used by applicationd scEventWeb [29]. These applications share a common
requirement of applying synthesis operations (fusion fions) upon multiple input streams in hierarchical manner.
Fusion functions can be used for efficiency (e.g. comprgsaminput stream), or can be part of the application be-
havior (e.g. feature extraction from an image).

Fusion applications are typically described as a task gnaplre nodes in the graph are of three types: satace
(data producer node$jnk (a node where a user presents requests)fasidn(a node which applies a fusion func-
tion). This graph is deployed as an overlay network us&lgy nodes to interconnect indirectly reachable nodes.
Relay nodes act as simple data forwarders. When bound tm@renode, a task graph data fusion node becomes a
fusion point.

Figure 1 shows a tiny example task graph of a surveillanckagtion. The filter function selects images with some
interesting propertiee(g.rapidly changing scene), and sends the compressed imag®dhe collage function. The
collage function decompresses the images coming from lpgstifferent locations, combines the images and sends
the composite image to the root (sink) for further procegsiive will return to both this tiny task graph and the
hypothetical campus surveillance application in moreitligtr in this proposal.

To support fusion applications, we need specific systenibties support for applying synthesis operations at
fusion points, support for migration of fusion points fromeodying or non-optimal network node to a more suitable
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Figure 1. An example surveillance application that uses in- network distributed data fusion.

Edge labels indicate relative (expected) transmission rat es of data sources and fusion points.

node, and support to handle time-stamped data items prddiara the data sources. Other middleware requirements
include memory and buffer management, programming supgiort

Our work so far in this design space has used the simplifyssyimption of a constant, predictable amount of

computation and communication to perform a particulardosiperation. We plan to relax this assumption to reflect
more realistic SN application workloads that exhibit byrahd self-similar characteristics, in terms of demand for
outputs at the task graph root (sink). Such behavior has tleserved in network traffic [25, 31], and has been useful
in understanding how to size IT infrastructure for suppaytiveb workloads, by estimation of thiurstexponent [28].
We will investigate reversal of this process (generation eforkload, given parameters including a Hurst exponent)
as a potential way of generating bursty and self-similaka@ds to assist our evaluations. An alternative method for
generating an easily parameterized dynamic workload whoelth employ a Poisson process model, though possibly
not as faithful to real workloads.

2.2.1 Network Layers

Our work so far assumes that any SN node is initially rea@hfitbm any other node, and assumes a routing layer that
exposes hop-count information between any two nodes inghgank. As energy is drained on nodes due to compu-
tation, communication and idling overheads, nodes may','@eentually causing network partition. Typically, these
assumptions can be satisfied by a separate layer that ssigpantiting protocol for ad hoc networks, like Dynamic
Source Routing (DSR) [19], and exposes an interface to gheryouting information.

However, these assumptions ignore the overhead in termsenfy and time used for maintaining routing infor-
mation. Similarly, our work so far assumes an ideal MAC laygmoring potentially significant energy and latency
overheads caused by collision, non-ideal MAC schedulind reise [12]. As will become clear during our evaluation
methodology and results presentations in subsequenbssgctive plan to leverage existing models for a variety of
available MAC and routing layers to investigate tradeo#iased by their overheads relative to application require-
ments, device capabilities and topology, and middlewarehzeisms.

2.3 Devices and Network Layers Considered

Where we have included device-level bandwidths and resammasumption in our exploration, we have used mod-
els based on ORINOCO 802.11b and Bluetoeit?21Kbps radio specifications. We do not anticipate greatigreding
the set of radio models we consider, as the design space&dglquite large. However, if there are models of other



radio devices coupled with the existing MAC and routing lay@dels we plan to leverage, we will potentially include
those additional radio device models.

Similarly, we have limited the scope of our exploration oflCPapabilities to a linear model of CPU speed and
consequent power consumption, based on published expasmieSA-1100 and SA-110 processor power consump-
tion at various frequencies and voltages. We present owifgpprocessor power model later in this proposal. Since
evaluation of a CPU-scaling middleware mechanism is a psirgaal of this work, we will incorporate appropriate
CPU models based on more recent studies as work progresses.

To constrain the search space, we have used a simple powe&l foodhemory in a SN node. Specifics of these
models are reviewed later in this proposal and are availakdar published results [44]. Again, power models appro-
priate to our proposed CPU scaling scheme will be explorgehaisof this work. For example, Pouwelseal. [35]
report that EDO-DRAM energy consumption per MB of data readrdases monotonically with increase in clock
frequency. In other words, clock frequency scaling has sjp@ffects on CPU and memory energy consumption.
Any potential dynamic CPU scaling decision needs to addresselationship.

2.4 Related Work

It is well-recognized that energy is critical in SN, driviagsignificant amount of recent research into mechanisms
for SN energy optimization. Most current SN research fosusecontemporary devices and device models for low-
bit rate communication and minimal in-network computati@iher than on mechanisms for supporting high-bit rate
communication with significant in-network computation. pkpaches for SN energy optimization range from hard-
ware [34, 20], MAC [45, 40], routing [41, 6], cross-layer apaches [21], and application-specific optimizations such
as energy-efficient target tracking [14]. Additionallyetl have been middleware approaches to bridge the gap be-
tween application and lower layers [16, 24].

Recent research in power-aware routing for mobile ad hosarés [41, 6] proposes power-aware metrics for de-
termining routes in wireless ad hoc networks. We use similatrics to formulate different cost functions for guiding
our fusion point migration mechanism. While designing a eeaware routing protocol is not the focus of this thesis,
routing protocol information may possibly be usable for dliefj more flexible cost functions or for informing our
proposed predictive prefetcher and CPU scaling mechanisms

Similarly, this thesis does not propose a cross-layer @hgarfor SN energy optimization, although recent analyti-
cal work [21] in this area may assist with characterizing@@nance bounds. In this particular approach, the lowileve
scheduling and power control problem that optimizes enasgge for application QoS is shown to be NP-Complete,
and the proposed algorithm is centralized, limiting its laggbility in distributed SN environments. However, the
observation of the intractability of optimal schedulingther motivates our proposed distributed heuristics.

Research into application-specific SN energy optimizatimmpose evaluation metrics suitable to the applications
being studied. An example metric @oSv[14], or “quality of surveillance”, determined by how far arget moves
before the sensor network detects it. Our research focusagegchanisms to support more general streaming fusion
applications, so we choose application figures of meritiapple and important to these applications, including la-
tency, throughput and lifetime.

Our approach focuses on middleware techniques for SN erggrgpization, to bridge the gap between stream-



based application requirements and low-level device atwlark layer capabilities. MiLAN [16] has the most similar
goals to our DFuse [24] work, providing a set of middlewarechamisms for adapting the SN to effect application
supplied performance policy. Our example campus surveidaSN fusion application could be accommodated to
some degree by MiLAN, however that middleware does not pi@e combination of general streaming data ab-
stractions for in-network computation along with approggfor optimizing the energy usage given application latenc
and throughput requirements.

Beyond our initial prototype implementation and evaluatiwe have built a simulation-based evaluation framework
for our middleware. Prowler [39], TOSSIM [26], and Etf13] simulators and emulator are specialized towards Berke
ley mote sensors and communication channels. Our studgéadirst on modeling energy usage and performance
of a variety of middleware mechanisms for a whole range afrfstic sensor node architectures, requiring a fairly
detailed implementation of the middleware inside the satarland a decoupling from a specific target device. As
we relax the ideal MAC and routing layer assumptions in omnutation-based evaluation of these middleware mech-
anisms, coupling our middleware simulator with an existivigeless network layer simulator will be an immediate
objective. Of the available simulator options, we will likgproceed with GloMoSim [3] rather than ns2-wireless [7],
as GloMoSim provides practical support for larger scalelgss deployments than ns2-wireless, critical to sucakssf
evaluation of our middleware model.

3 Approach

Our approach focuses upon evaluation of several adaptigdleware mechanisms for achieving application re-
quired performance while minimizing energy usage. In tH¥ang, we introduce our cor€usion Channemid-
dleware abstraction, followed by two application-direcperformance management mechanisms we have studied so
far: fusion point migration and “optimistic” prefetching hide latency. We then present our evaluation methodology,
details of implementation and results of experiments cotetiiso far.

3.1 Fusion Channel Abstraction

The Fusion Channemiddleware abstraction, introduced in our recently prego®Fuse middleware [24], aims
to simplify the application of programmer-supplied tramgfiations to correlated sets of input items from sequenced
input streams, producing a (possibly shared) output stifdfnsed items.” It does this by providing a high-level API
for creating, modifying, and manipulating fusion pointatttsubsumes certain recurring concerns (failure, latency,
buffer management, prefetching, mobility, sharing, cerency, etc.) common to fusion environments such as SN.
We have published a full description of the design, protetiypplementation and APl microbenchmark evaluation of
this abstraction [24].

3.2 Fusion Point Migration

Of specific note in this proposal, DFuse uses a distributedassignment algorithm for placing fusion points in
the network. Role assignment is a mapping from a fusion poiah application task graph to a network node. Given
an application task graph provided to a designated root ¢ atong with a parameterized cost function, distributed
role assignment outputs an overlay network that optimikesrole to be performed by each node of the network.
The “goodness” of the role assignment is with respect torpeaticost function. The distributed algorithm executes
periodically to reevaluate the mapping in a local fashida.lbcally “better” mapping of a fusion point is determined,
then the fusion point is migrated to the new host node.



Fusion point migration can be used to optimize a variety qfliaption figures of merit. Most importantly, we
hypothesize that it can be used to dynamically minimize thergy used by the task graph’s overlay network as
the network conditions and application behavior changed,cnsequently increase application lifetime. We have
considered three cost functions for directing fusion puoiigration:

1. MT2 “Minimize Tranmission Cost”: This cost function aims to dease the amount of data transmission re-
quired for running a fusion function. Input data needs torhegmitted from sources to the fusion point, and the
output data needs to be propagated to the consumer nodesh{p@sross hops). For a fusion functibwith
minput data sources (fan-in) ambutput data consumers (fan-out), the transmission cogtiéaingf on node
kis formulated as:

evra(k, f) = (power(k) < threshold)? (INFINITY : t(source;) x hopCount(input;, k)
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Here,t(x) represents the transmission rate of the data soyr@edhopCount(i, k) is the distance (in number
of hops) between nodeandk.

2. MPV “Minimize Power Variance”: This cost function tries to kettye power of network nodes at similar levels.
If power (k) is the remaining power at nodethe cost of placingnyfusion function on that node is:

cvpv (k) =1/ power(k)

3. MTP “Minimize the Ratio of Transmission cost to Power”: This thsction aims to decrease both the trans-
mission cost and lower the difference in the power levelfiefrtodes. The intuition here is that the cost reflects
how long a node can run the fusion function. The cost of plaeifusion functiorf on nodek can be formulated
as:

curp(k, f) = cur2(k, f) * cnpv (k)

3.3 “Optimistic” Prefetching

Fusion Channels, as implemented in our prototype, eachdraassociated output buffer, containing fused output
data not yet retrieved by all consumers. We accommodate Gpskts of input items that can be prefetched and
fused before the output buffers become full. As implemenkesion Channels will greedily attempt to keep their
output buffers full by requesting their next inputs whenytlee idle and observe free output space. With prefetch-
ing occurring at all task graph fusion points and the sink, ithhnetwork processing should become pipelined, with
latency approximating the slowest pipeline stage rathan th complete round trip through the pipeline. Although
this prefetching should benefit latency, it will also incsedhe local memory footprints and the state communicated
during fusion point migrations. Our prefetching mechanisitapplication-directed” in the sense that an application
can request it be enabled or disabled as part of the task gpagiification presented during startup.

4 Evaluation

Our evaluation goal is to investigate these middlewareufeatfor improving application lifetime while achieving
required latency and throughput, in the context of a vari#tgN topologies and scales, models of potential fusion
applications, and device radio, CPU, MAC, and routing céjiis.



4.1

Initial DFuse Implementation

Due to the complexity of interactions between middlewarema@isms, application workloads and device capabili-
ties, a purely analytical approach to evaluating our migdle mechanisms is not feasible. These mechanisms employ
local heuristics that operate without global knowledgetivating experimentation and simulation to determinerthei
effectiveness for various SN applications. There are tvasaas we limit the mechanisms to be local heuristics. Pri-
marily, gathering global context for performing dynami@gthtions incurs communication costs, potentially recigici
the performance of the SN. Second, even if we used a globaistieudetermining an optimal mapping of a fusion
application to the SN for comparative evaluation rapidlgdrees infeasible as the scales of application and SN in-
crease (this problem equates to the NP-hard general Stetegoroblem).

For confirming the utility of our core middleware fusion pbinigration feature, we have implemented the fusion
channel abstraction along with a simulator of the role assignt mechanism for evaluation on a small iPAQ farm with
a simple application by [24]:

1.

4.2

Implementing a multi-threaded architecture for the dasmodule that supports the basic Fusion Channel
API calls and the prefetching mechanism. This implementa¢éimploys a programming system called Stam-
pede [36, 1] to meet the fusion module’s infrastructurauieements for timestamping data produced from
different sensors, and a reliable transport layer for mgwdata through the network. Additional porting of
the Stampede system to the target ARM-Linux architecturedeane, including re-tuning a proprietary reliable
UDP cluster messaging layer to perform better on wirelesgqrims.

. Implementing the placement module that supports theasggnment tasks for cost-function directed dynamic

fusion point migration. For ease of evaluation, we have dptam the fusion and placement module imple-
mentations, interfacing them with a built-in communicatéhannel and a protocol that facilitates dynamic task
graph instantiation and adaptation using the DFuse APhsimassion rates exhibited by the application are
collected by this interface and communicated to the placemedule for use as cost function inputs.

DFuse Implementation Results

Using our initial DFuse middleware implementation on a D2l iPAQ wireless “farm”, with a simple tracking
fusion application containing two dynamically migrateghigation fusion points (similar to Figure 1), we have dis-
covered [24]:

1. Fusion point migration, directed by application costdiion, for a small application on a small SN deployment,

can definitely increase application lifetime while maintag constant (low) throughput, when the energy model
used to determine lifetime is driven purely by applicatlewel communication amounts. Figure 2A shows the
energy/time performance when migration is disabled aftemétial optimization period (using a cost func-
tion very similar toMT2 for this optimization). All ofMPV, MTP andMT2 (Figures 2B-D) realize greater
application lifetime, due to cost-function directed fusjaoint migration.

. A cost function aimed at minimizing transmission coM32) achieves close to an optimal minimum transmis-

sion cost once past a brief initial mapping stabilizatioig(iFe 2A).

. A cost function aimed at minimizing battery variance asr8N nodesMPV) reduces variance by a factor of

4 (Figure 3A), at the cost of many more fusion point migrasigrole transfers) and lower lifetime thafir2
(Figure 3B).
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4. A costfunction that attempts to minimize transmissiost @hile maximizing the time until the fusion point host
dies (MTP) achieves comparable lifetime T2 (Figure 3B) and comparable variancaw®V (Figure 3A).

5. Microbenchmarks of our fusion abstraction’s API (Figdjereveal as much as 74.5% latency overhead for
streaming item fetchinggetFCltem beyond that predicted by analysis of application-levetsages commu-
nicated along with measured maximum performance of the ar&tfayer. This latency overhead includes
computation, synchronization and network layer lateniciesrred during message handling, and varies consid-
erably across multiple trials. These observations areaix@dl by the potentially high latency cost of the wireless
channel, motivating both a prefetching mechanism and adoayfor energy usage for retransmissions to obtain
more accurate energy/performance tradeoff results.

4.3 Simulator Framework

To support further evaluation in the context of larger netnand application scales and a variety of device capa-
bilities, we have built a simulator of our DFuse middlewaté][ Our previous DFuse evaluations modeled cost solely
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as a function of application-level bytes transmitted andenloattery level. A primary design goal of our simulator is to
incorporate more representative sources of energy us&je devices beyond the radio, such as the CPU and memory
hardware. While still using simple models of applicatiornridoad and device power models, we can begin to under-
stand performance trends exposed by our middleware mesthar@nd application contexts. Existing simulators for
SN (TOSSIM [26], Em [13], Prowler [39] and GloMoSim [3]) or general wireless amumication (ns2-wireless [7])

do not incorporate the new middleware mechanisms we focuswaluation on, motivating the need for their exten-
sion or the construction of a new middleware simulator farsiudy. We have begun with building a middleware-only
simulator to evaluate the fusion point migration and opgiiniprefetching mechanisms under ideal MAC and routing
layer assumptions for a variety of device and applicationdetand scales.

Campus Surveillance Application Model

For generating a tunable application workload for our satar, we model the motivating surveillance application as
a general fusion application that performs hierarchicalétwork processing on streams produced initially by cam-
eras. To arrive at a realistic model of video-based in-ngtypoocessing and communication requirements, we use a
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Fusion Instr Cycles | Time | CPI | footprint (KB)
Function| Count (ms) (I/O/Runtime)
Collage | 309K | 803.4K | 3.9 | 2.59 112/112/-
EdgeD | 1844K | 2616.2K| 12.7 | 1.42 56/56/-
Select | 327K 721K 3.5 | 2.20 112/56/-
MotionD | N/A 1009K | 4.9 | N/A 56/56/94
FD/FR N/A 1959M | 9510 | N/A | 30/30/3.5MB

Table 1. Fusion Function Costs: Required number of cycles, m easured time, and memory
footprint.

representative set of fusion functions that an applicatem use as part of its deployed task graph. These functions
are imageCollage which simply concatenates two input images together taywe its outputEdgeDetectSelect
whose output is the brightest of the two input imagdstionDetectwhich is based on the calculation of a centroid
of inter-frame differences and their extent; and a CPUrisitee face detection and recognition functiGiD(FR).

Since active CPU energy consumption is related to how maaolesyare required to complete one function, and
memory and network energy consumption are related to thetiumis input and output data sizes, we report these
numbers for each of the functions in Table 1. FQ/FR, we use previously published time measurements [23] using
206MHz SA-1100 iPAQ H3600. We report measured results framb@nchmarks for the remainder of the fusion
functions. Our benchmarks are from a 206MHz iPAQ 3870 rughimux “familiar” distribution version 0.6.1. We
believe the architecture difference between H3600 and &8ir@ignificant in this context. To verify measured time,
we calculate instruction counts from assembly code geegray the gcc 2.95.2 ARM cross-compiler with “-c -g
-Wa,-a,-ad” options. Because the code size of each funiismall and the functions are iterative, SA-1110 with
16K-Icache and 8K-Dcache should obtain frequent cachehiddow CPI as shown in Table 1.

With this set of fusion functions, we model a communicatiotensive workload as an application which does not
employFD/FR, and we model a CPU-intensive workload with a task graphuitialg this heavyweight image process-
ing function. For these initial experiments, we assumettiatdemand at the sink is continuous, and that the various
fusion functions perform statically as shown in Table 1 eptavhen time-sharing a CPU or communication link with
another fusion point. Future experiments will employ moyeammic and bursty workloads.

CollageandSelecteach fuse two inputs into one output, whidegeDetegtMotionDetectandFD/FR each trans-
form a single input into one output. We compose these twosel®f functions into subgraphs and connect the
subgraphs to build the application task graph. Each subgrapsists of a two-into-one fusion function whose two
inputs come from two one-into-one fusion functions’ outputVe randomly choose functions from the appropriate
class to perform task graph construction. Figure 5a givesxpanded view of a composed task graph, showing how
these two classes of functions are built into subgraphgaiato form a task graph. Our model assumes the cameras
are on one side of campus, and fusion processing occurshiverieas data travels to the sink on the other side of
the campus. The number of fusion operations is a functioh@fumber of cameras in this model, enabling rapid
construction of generic surveillance applications ofefint scales.

To construct the initial overlay network, we map the trdeliask graph’s fusion points onto nodes closest to an

exact tree geography. Using lowest hop-count paths betfusgn points adjacent in the task graph, we build relay
node chains to connect the overlay network. We disguis®ffiugoint I/O mismatches by assigning the upstream
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Figure 5. Campus-Wide Surveillance Application Simulatio n:
a) Task Graph Portion b) Sample Topology

function’s output item size as the size of items transmittedugh the relay chain to the downstream function.

Figure 5b depicts a sample overlay network from our experigjgrior to any fusion point migrations and node
failures. 64 cameras are located along the left edge, ansirtkds located in the middle of the right edge. Many
nodes and links in the sensor network are idle (common rehmydn SN). In addition to the cameras and sink, 800
SN nodes are randomly placed within the campus and ensutsel fidly connected, initially. Darker lines indicate
actively mapped links (relay chains). Some nodes host niaire dne fusion point simultaneously.

Power Models

Processor Power Model

\oltage scaling is a popular technique for saving energpday’s CMOS microprocessors. Energy consumption in
CMOS circuits can be accurately represented as a simpldieqy8] that says clock frequency reduction linearly
decreases energy consumption, and voltage reductionig@sal quadratic decrease in energy consumption.

From SA-1100 specification, we find that the processor corsuahmost 230 mW at 133 MHz, and at most 330
mW at 206 MHz at 1.5 Volts [9]. Power measurement experimentSA-1100 microprocessor indicate that power
requirement increases monotonically with increase inkcfoequency [42, 35]. Earlier research on SA-110 confirms
the linear relationship too [30]. We use a linear model foergg consumption based on these two data points for
determining energy usage at clock speeds from 59-206 MHz.

Memory Power Model

Memory is also a major source of energy consumption, esihefiia memory-intensive workloads [42]. But, its im-
pact on overall energy consumption is difficult to predictdngse a change in clock frequency changes the available
memory bandwidth in a non-linear fashion, and it also aff¢ice energy consumption for memory access [35].

For our evaluation purpose, we use a simplified model for mgraocess energy breakdown. We assume that
memory works in three modes similar to the operation of DiR@mbus DRAM (RDRAM):active idle, andsleep
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Mode Power (mW) Power (mW)
802.11b @ 11Mbps Bluetooth @~721 Kbps

Transmi t 1600 102
Recei ve 950 165
Li sten 805 66

Sl eep 60 30

Table 2. Radio power model.

Power consumption in these modes is as cited bydtal. [11] (300 mWactive 20 mWidle, 3 mW sleep). We
assume that while the CPU is executing a fusion functionnwih@le memory is being accessed actively. In a realistic
scenario, CPU execution and memory activity will be intavied, and memory will keep switching between active and
standby modes during CPU execution. Our assumption acedonthe worst case energy consumption by memory
and it also simplifies simulation efforts.

Communication Power Model

Radio is the communication medium in SN we consider, andtliégsmost power hungry among CPU, memory, and
radio. Hence, saving communication energy is critical tobéasing application lifetimes. For our simulations, powe
consumption for different radio modes is shown in Table 2. W8 numbers corresponding to two different band-
widths: one with an ORINOCO network card [10], and anotheraddluetooth radio card [38]. Though the same
OriNoCo card can operate at multiple data rates, correspgmbwer results are not available in their specifications.
We use only one transmission rate for each of the two raditsn, Bluetooth numbers are valid only for shorter trans-
mission range~{66 ft for Class 2 devices) compared to the range of 802.2-B90 ft in open and-125ft in closed
space). We scale campus size with respect to radio rangeédie same initial topology across our experiments.

From our early experiments, we observe that energy draimleyniodes waiting idisten mode for long periods
of time dominates overall energy use by the network. One Viagducing this cost is to impose a duty cycle on the
network nodes, enabling enables them to incur losteepradio costs for much of the time they would have been in
listenmode otherwise. This is a common practice among today’ssndesigned for sleeping over 99% of the time.
We therefore include a variant of the radio power model tisatimes an optimal sleep duty cycle such that a radio
never usefistenmode, but usesleepmode instead. Having such a duty cycle incurs overhead dsding). Rather
than imposing an arbitrary overhead onto our general seretaork model, we choose to explore the lower bound of
radio cost inlisten mode by including this optimal sleep mode as an optionabradiver model. Previous research
shows that such a lower bound assumption is reasonable iy asiefficient radio to wake the main communication
radio when necessary [2].

Simulator

We present here the event-driven simulator we have builtatuate future sensor network deployments under varying
architectural, middleware, and workload characteristitsonsists of approximately 5700 lines of C++ code, and is
available for download at http://www.cc.gatech.edwblenetz/files/basene®! simdfuse.tar.gz.

The simulator includes a rich set of configuration options @rextensible to support additional simulated middle-
ware features. Currently, our simulator models a SN as &ditin of nodes and communication links, much as in
Figure 5. It supports simulation of in-network data fusionapplication generated items using application specified
fusion functions. It also supports fusion point migrati@nass nodes driven by an application specified cost function
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(we useMPYV in these experiments). The current implementation suppgmivards of 1000 simulated sensor network
nodes, far beyond our capability to actually deploy for +walld experiments. The limiting factor is recalculation
complexity of routing tables using the @) Floyd/WarshallAll Pairs Shortest Pattalgorithm, which happens every
time a node dies due to low energy.

The simulator models shared scheduling of CPU and radiaress by multiple concurrent resource requests. For
example, if a node hosts two fusion points that simultankydaegin fusion function execution, the simulator seriefiz
their access to the CPU in simulated time. We use an ideal M#&€rlthat incurs neither energy nor latency overhead
due to packet loss for these initial simulator experimeiiise simulator serializes, in simulated time, all access to
radio channels between nodes on a pairwise basis, modelieiy aimple lossless and collision-free MAC layer.

The bulk of the simulator is concerned with accurately mimggthe middleware with events ranging from message
delivery to migration completion. For example, if a node o @f a fusion point’s input relay chains is dying, the
simulator needs to correctly destroy and rebuild that implaty chain, rebuilding the routing tables during the pesce
Items in-transit on the relay chain need to be accountedfat the state of both the producer and consumer ends of
the relay chain needs to be updated to account for the chfigeation uses this basic relay chain rebuild mechanism
to implement the remapping of a fusion point to a neighboendtbwever, to prevent the need for the old fusion point
host to forward later communications to the new host, we eynfileak” migration, blocking and delaying until there
are no items in-transit along any of the migrating pointiguihand output relay chains, and then transferring buffer
function state associated with the fusion point to the tangele. Prefetching is implemented by giving each fusion
point a buffer to store fused results into, and by attachisgk directly to every fusion point. These special sinks
incur no energy or delay costs, but they drive the fusionfgdimrequest and fuse as fast as possible while they have
room in their local output buffers.

We assume that the routing layer provides notification ofdg® node battery failure piggybacked on top of
regular traffic, enabling route maintenance. We currentiyase no modeled overhead for local calculation of the cost
function, as these are relatively infrequent and only inoimimal communication with immediate neighbor nodes
(we do account for migration costs, though). We do not mduekbst of initial application deployment currently, as
this is highly dependent on many potential factors, pritpagnsor node OS and bootstrapping characteristics. We
also assume a simplified fusion channel API, wherein fus@ntp only request the immediate next set of input items,
performing “optimistic” prefetching by trying to keep theiutput buffer full.

4.4 Middleware Simulation Results

We have built this simulator for DFuse middleware with thdighto model over 1000 SN nodes, including power
models for SN radio, CPU and memory, and the ability to moaiejé applications (hundreds of fusion points), and
including some large complexity for handling the synchratipn and messaging necessary to perform migrations
even under simplifying API, MAC and routing layer assump$igsimilar to those employed in our initial DFuse im-
plementation). We have performed preliminary experimnghed light on the impact on application figures of merit
of using combinations of middleware fusion point migratand optimistic prefetching features with varying device
CPU speeds and radio characteristics: BluetoBtf)(vs ORINOCO 802, and normal.istencost vs idealSleep
listen cost, for both our compute-intensivéRU) and communication-intensiv€omn) application models [44]:

1. Inthe presence of optimistic prefetching, increasirgrddio bandwidth may not improve latency nor through-
put for compute-intensive workloads (Figure B/, T-*-CPU vs 802-*-CPU). Also, network productivity may
actually decrease if the change induces extra cost for mies For example, delivered items per lifetime de-
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Figure 8. Results with Prefetching and Migration Enabled

creases when not using the id&¢epmodel and changing to a more expensive radio model in terrtisten
cost (Figure 7B/T-Listen-CPWs 802-Listen-CPU).

. Cost function directed migration can significantly extapplication lifetime in sensor networks with topologies
and task graphs two orders of magnitude larger than pregimges: comparing Figure 8 to both Figures 6 and
7, lifetime is generally increased in all cases studied.

. Compared to experiments with only prefetching enabledjing on dynamic fusion point migration yields only

slightly lower latency and throughput in most cases we stuthjle extending lifetime and increasing delivered
items per lifetime (Figures 8 and 7). The exceptBA,-*-CPU, is encountered when frequently migrating larger
state across a lower bandwidth connection. Although aafitin lifetime is still extended, average latency
and throughput may suffer, potentially leading to a drophia total number of delivered items per lifetime.

Suggested potential solutions to this specific problem dmdorporate the latency cost of migration within the
cost function being evaluated or in the determination of &ursction evaluation frequency.

. Although an optimal radi@leepduty cycle is expected to improve application lifetime by masting energy
in listen mode for idle nodes, it does not result in a signiftazhange in lifetime in the presence of optimistic
prefetching, except when using expensive ORINOCO listégufie 7,*-Sleep-*vs *-Listen-*).

. More intuitively, prefetching results in increased tigbput compared to the baseline, while network lifetime
with prefetching is lower than the baseline since more weittding done per unit time. (Compare Figure 7 to
Figure 6.)

. With prefetching enabled and migration directed by adsgttariance minimizing cost functioMPV), we find
that compute-intensive workloads on high bandwidth radius high bandwidth CPUs may perform as well in
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terms of throughput, latency, lifetime and delivered itgues lifetime as communication-intensive workloads
on low bandwidth radios with no significant dependence on Gpeed (Figure 802-Sleep-CPlait 206 MHz
CPU Clock v&B/T-*-Comn). This result, while confirming the viability of our visior future SN for supporting
high bandwidth compute-intensive in-network processaigo indicates the potential for further studying the
tradeoff between device capabilities, middleware featumed application workload to help characterize the
device and middleware features necessary for a particaal 6f application performance.

4.5 Middleware Scalability Results

We are currently performing experiments to determine hoWeeeh DFuse cost function for directing fusion point
migration scales with respect to network topology and apitbn size. Scalability is key to utility in real, large f&a
SN deployments. We are using our simulator, extended tadiecbptimal cost “oracles” for each cost function, to
analyze this scalability under simplifying API, MAC and towg layer assumptions and ignoring CPU and memory
energy and delay costs as in our original DFuse evaluatioth Be migration and optimistic prefetching features are
enabled in these experiments. We have discovered the falir@sults so far:

1. As the network is scaled up to 1024 nodes for a single fystnt application, all three cost functions behave
similarly with respect to each other in terms of transmissiost relative to the current optimal transmission
cost:MT2 performs close to optimal, followed BTP andMPV performs worst.

2. For large topologies and small applications studied sava find that the energy of the neighbors of the fusion
application’s powered sources and sinks typically deteesithe lifetime of the application. In this case, there
are so many redundantin-network nodes that the lifetimimigdd by the fixed location of application endpoints
(sources and sinks are assumed to not migrate).

3. A better evaluation of cost function performance is hopeitforms relative to the oracle for that cost function,
not always the transmission cost oracle. For examplealniéisults indicate tha¥lPV also performs very
close to optimal in terms of distance from a mapping that Wadhieve minimum variance. Even this result
is misleading, as it is for the single fusion point on a 102den&N, whose lifetime is already limited by the
application endpoint’s neighbor nodes: for the life of tipplécation, there is always a completely unused node
1 hop away from the current mapping.

4. ForMTP however, initial results indicate that the heuristic ré&sin a mapping that is around 5 hops away from
an optimalMTP mapping, rather consistently for this setup. This is likéiye to the limitation of single-hop
migration, along with a cost function that is simultanegustempting to optimize for transmission cost as well
as for hosting on a node with maximum power remaining. Howetveemains to be seen whether usikgP
will indeed limit the lifetime of the application, relatiie MT2, and if it will not achieve as minimal battery
variance adPV for large scale applications not limited by application goitits’ neighbors.

5 Proposed Research
5.1 Completion of Current Middleware Scalability Evaluation

As we complete this current scalability study, for publicatin a journal, we plan to test our hypothesis that for
large topologies anldrge applications, we expect simulations to show similar ragkiim terms of lifetime and battery

variance as we find from our small scale DFuse implementatiadly. If this hypothesis does not hold true, there will
need to be further analysis of these scalability resultse @ossible route would be to implement approximating
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Steiner tree oracles to get a sense of how well the cost ambteuristics work for larger applications relative to an
approximate of optimum cost.

5.2 Accounting for Workload Dynamism and Non-ldeal Communtation Channels

Once our basic fusion point migration and optimistic prefiétg optimization mechanisms are evaluated under
ideal assumptions, we plan to extend our middleware simutat model a predictive prefetcher alternative to the
current “optimistic” prefetcher, along with a dynamic, 8#¢€PU scaling mechanism.

Modeling Application Dynamism

Evaluation of these new mechanisms requires building agfai® application models that incorporate periodic and
bursty behavior typical of distributed streaming applimas. Possible approaches include fractal-based and Pois-
son process based workloads, outlined in Section 2.2,imgusir campus surveillance model to enable comparative
analysis to existing results.

Leveraging an Existing Network Layer Simulator

We will then couple our middleware simulator to an existingaless MAC and routing layer simulator, and use their
combination to provide more realistic models of radio, MA@laouting layer overheads impacting the performance
of our predictive prefetching and CPU scaling mechanismesplah to use GloMoSim [3] as the preexisting MAC and
routing layer simulator for our work, as it affords largeakcnetwork topologies than ns2-wireless [7], and it incor-
porates more general MAC and routing layer models than repéeific models used for TOSSIM [26]/&fiL3]. We
anticipate some complexity in mapping our simulator’s entrmessaging onto a network layer simulator. Specifically,
some assumptions made in the current middleware simulaloveed addressing:

1. The messaging needed to evaluate cost functions amongopneeighbors is currently assumed to be free by
our simulator because it occurs infrequently relative tpligation workloads studied. The simulator currently
immediately evaluates the cost function, leveraging aetubfkits global knowledge of network state to keep
from doing any messaging. However, such messaging will teebd implemented to incur the proper associated
costs when collision or noise cause packet loss.

2. Similarly, the teardown and reconstruction of fusiompaiput and output relay chains is currently done instan-
taneously, once the simulated middleware is sure no apigiicevel messages are in flight on the chains. A
protocol for remapping these chains will need to cooperitetive routing layer provided by the network layer
simulator.

3. The middleware currently ignores the possibility of a@aging due to any reason other than being below an
energy threshold. However, a faithful network layer sinmlanay cause premature node failure due to link
characteristics. Effort may need to be expended to ensatéid middleware simulator can continue its current
assumption.

Modeling and Evaluating Predictive Prefetching

Current DFuse mechanisms and evaluations do not accouthtfatynamic nature of application streaming, nor the
lossiness of wireless communication channels in SN. SN fuspplications exhibit both bursty and periodic demands
on network devices and may desire to “skip” over stream itemachieve greater currency. For example, to save
energy and increase lifetime, a campus surveillance Sietitegdplication may perform minimal, infrequent anomaly
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“detection” operations. Once a situation needing attensaletected, information gathering and processing dietivi

will increase to achieve improved latency until the sitoatis resolved. Some portions of the distributed surveikan
application may only require the most recently availabpriils GetLates}, enabling dropping of intermediately pro-
duced inputs, while other portions may require every infariin sequence3etNex}. An example of the formeris a
latency-critical in-network display showing remote videclose to realtime as possible, and an example of the latter
is a stream decompressor that requires every input in sequé@oth of these application characteristics (burstiness
and differing input semantics for a fusion operation) matéthe need for a predictive prefetcher to dynamically adap
which data items are requested for a particular computatubile hiding latency. Furthermore, even in non-mobile
SN deployments we consider, wireless communication is/J@ssl prefetching behavior needs to adapt accordingly
to reduce misprediction latency and energy overheads.

There are many related approaches in distributed systesaaneh for performing energy-adaptive communication
management that will inform our predictive prefetcher dashighlights including: queuing data for future delivery
in an application-driven manner for saving energy in mobdenmunication [22], and integration of wireless card
sleep scheduling with CPU and network packet schedulingfiergy savings [33]. Also, integration with machine
learning approaches may yield performance benefits for seankloads. Finally, previous work in the domain of
distributed stream processing for application task grapimere the computations running at each task graph node
inform a distributed algorithm for identifying which inteediately processed items atead requiring no further
propagation nor computation [15], may be leveraged in ourc8iext for providing a lower bound for timestamps
we prefetch. We feel there is significant opportunity forlexation of energy savings via middleware managed fusion
application communication.

Leveraging Dynamic CPU Scaling

Our preliminary evaluations of DFuse include the assumngttbat the SN is homogeneous, and the device capabilities
remain constant for an application lifetime. As SN devicesdime more computationally capable and SN applications
perform greater amounts of computation to process highalét-data, there emerges a significant increase in energy
usage for computation relative to communication. For eXamgxpensive computations such as face detection and
recognition can now be done on sensor nodes. For such cotiomsteour iPAQ-based microbenchmarks and power
models [44] indicate that about 100ms of iPAQ processingisessary on a data size of 56KB. Single hop commu-
nication to fetch inputs would cost roughly 106 mJ using O8@0O 11Mbps, while computation would cost roughly
31 mJ on a 206MHz SA-1100 package. Although communicatiatscim this case still exceed processing costs,
there is a significant opportunity for reducing energy comgtion by reducing processing costs. Also, if the data
streams are compressed, then the proportional amount afyensed for processing increases. A benefit of a correct
prefetch prediction is the knowledgepriori of the time at which the result of computation will be demahtg the
application. Since power consumption of modern procesdecseases as processor frequency and voltage decrease
(see our simulator’'s power model), a middleware for suppgrusion applications would also include the ability to
dynamicallyscalethe CPU speed of individual SN nodes to reduce predictedagtioh computation energy usage.
We anticipate current technology trends enabling voltaw feequency scaling [35, 11, 32, 37] to be available in
future SN devices.

We therefore propose to design, implement in our simulagoméwork, and evaluate a dynamic, local CPU scaling
mechanism for fusion points that cooperates with a pradigirefetcher, informed by application seman@e{Next
vs GetLatest and behavior to reduce the costs associated with fetcmddusing data never used and to reduce the
costs associated with fusing data at a processor powerH@letr than necessary. This local CPU scaling mechanism
will need to interact with potentially multiple local fugigpoints to collectively optimize node energy usage. Our
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hypothesis is that this combination of additional mechasiwill indeed yield significantly greater energy savingd an
application lifetime, while still meeting application tughput and latency requirements. We will test this hypsithe
through further simulation based evaluation.

6 Summary of Expected Contribution from this Thesis

By performing the remaining proposed work, we hope to amiviae following insights:

1. We hope to understand how scalable our fusion point marahechanism is in terms of both topology and
application (task graph) size. An approximating Steinee oracle may be necessary to complete the current
scalability evaluation for non-trivial task graphs.

2. We hope to clarify if, and by how much, predictive prefétchalong with CPU scaling impact SN lifetime
for bursty fusion application workloads using lossy wisdeeommunication channels, and how this impact is
changed when cost-function directed fusion point migraigoenabled.

3. We hope to determine trends in terms of how common wirgiessork layers available in GloMoSim (link,
MAC and routing) impact SN lifetime for these fusion apptioa workloads and middleware mechanisms.

4. We hope to use these studies to be able to generate a modwelvioto provision a future SN in terms of
node radios, MAC, routing layer, initial battery energy a¥dU (memory has not proven to be critical to our
applications’ performance so far, and we do not anticipategifiner grained models as a result) for a particular
class of application workload, parameterized by applicaticale, “burstiness”, input semanti@dtLatestvs
GetNex}, required lifetime, required throughput, and requirgdiay. In further scalability studies, if we find
thatMT2 doesnotachieve maximum lifetime or minimum latency, we will furthreeed to adjust this model to
include which cost function the middleware should use foadipular workload characteristic. This model may
be partially incomplete. For example, we do not expect itutpat the number of nodes, nor their topology.
These will be assumed as inputs to the model. It will also inétdid to the devices, layers and mechanisms we
study in our simulator framework.

7 Broader Application

Our work is focused on future SN. However, it may be possibktapt our mechanisms to target lower-bandwidth,
lightweight computation capabilities of today’s motessélour research may well be applicable outside of SN. Con-
temporary laptops and handhelds are immediate siblinfpphas for applications and supporting middleware mecha-
nisms we study. General application-directed migrationarhputation may apply in grid computing and distributed
media processing, to better achieve latency and througkputrements, regardless of energy consumption. Further-
more, focused contributions, such as our expected conibmetta predictive prefetcher with a dynamic CPU scaling
mechanism, may well apply to more general distributed stieg contexts outside of SN.

8 Open Questions

As the design space for future SN devices, applications,naiddleware for optimizing energy (lifetime) while
meeting application latency and throughput requirementsast, we are aware of several open research questions
outside the scope of our proposed work:

1. We are not concerned with mechanisms for dynamically tauathe bandwidth, range and signal strength of
SN radios, although this route of research may provide exhdit benefits to applications in terms of latency,
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throughput and lifetime. It should be possible for later kvtir reuse our middleware simulator to characterize
the potential benefits of such mechanisms, coupled withaggate models of radio, MAC and routing layers.
There is currently much conflicting research on whether inlidp communication saves energy vs. “shouting
louder”, and varying application domains may have difféteends here.

2. We constrain our study to supporting a single fusion apgibbn with a static task graph (in terms of data flow
dependencies). In this work, we do not consider relaxatafrthis assumption including providing support
for multiple applications and for applications whose tasipips are dynamic. While our mechanisms rely on
virtualization of local device resources to manage timaasgaequired when multiple task graph fusion points
are mapped to the same device, virtualization support fdtipteiapplications is not our focus.

3. We do not propose new routing layers for power-aware, oeroorrectly, application-performance aware place-
ment of relay nodes used to connect our overlay network. Vildeverage available models for wireless ad
hoc routing in SN in our evaluations. In addition, we will &@age routing layer support where availateey(
energy characteristics of relay nodes) for fusion point@haent decisions.

4. There is a need for coordinated control in SN. Our appticatnodels and middleware implementations and
models do not focus on control. Rather, they are concernéd keieping up with demand by downstream
consumers. For stream based fusion applications we cansatedinated data streaming from multiple sources
is a needed contribution.

5. The design space greatly expands when mobility of soanm@sinks, and general mobility of SN nodes is intro-
duced. There are opportunities for leveraging such mghidit energy savings through radio power scaling and
message ferrying, recharging batteries, and for incrgagiplication throughput and latency by dynamically
positioning resources more optimally. We do not considebilitp-based approaches for optimization in this
work.

6. This proposal does not include plans to implement thegdlmivare mechanisms in libraries usable on real SN
devices. Although our initial DFuse prototype was evaldate iPAQs, the proposed extensions and evaluations
are based on a flexible set of device models and large scakedoWwot have the resources to support an actual
deployment of the existing and proposed mechanisms foe Iscgle applications. Our focus is instead on the
evaluation of performance tradeoffs for a promising setutfife SN devices, applications, and middleware
mechanisms.

7. We do not consider device failures other than for reasblahk of energy. One potential incremental approach
for addressing this is to create redundant fusion pointsémetwork, creating an energy vs availability tradeoff.
Other approaches in SN domain [4] have considered a simddeoff: energy vs accuracy. Our simulated
middleware assumes that delayed transmission is due pwissess channels, rather than a prematurely dead
node. Another approach would be to implempattial fusion the ability of a fusion operation to commence
with partial inputs after some timeout or exception.
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