
Dynamic Differential Data Protection for High Performance and Pervasive
Applications

Patrick Widener and Karsten Schwan
College of Computing, Georgia Institute of Technology

Atlanta, Georgia 30332, USA
{pmw,schwan}@cc.gatech.edu

Abstract

Modern distributed applications are long-lived, are ex-
pected to provide flexible and adaptive data services, and
must meet the functionality and scalability challenges posed
by dynamically changing user communities in heteroge-
neous execution environments. The practical implication
of these requirements is that static policy and mechanism
definitions are unsuitable for the design of modern software
systems. This paper addresses the protection mechanisms
of such systems, describing a novel approach to enabling
the protection of key applications components and sensitive
data in distributed applications. The approach, termed Dy-
namic Differential Data Protection (D3P), deploys context-
sensitive, application-specific protection functionality at
runtime to enforce restrictions in data access and manip-
ulation. D3P is suitable for use in zero/low-downtime en-
vironments, appropriate for high-performance computing
tasks and highly-scalable architectural patterns (such as
publish/subscribe), and is deployable across a wide vari-
ety of OS and machine platforms. We introduce the need for
D3P, using sample applications from the HPC and perva-
sive computing domains to illustrate the solutions it makes
possible, and describe how D3P has been integrated into
modern middleware. We demonstrate D3P’s ability to cap-
ture individual end-users’ or components’ needs for data
protection. Finally, we present experimental evaluations
which quantify the performance implications of using D3P
in data-intensive applications.

1. Introduction

Modern distributed applications serve an increasingly
connected world, providing services that adapt to chang-
ing execution environments and end user needs. Openness,
connectedness, and dynamic change create new challenges
for the protection of application components and sensitive

data:
• For businesses, how to share data with partners

or subcontractors, without divulging proprietary or
company-critical information? An example from the
airline industry is the need to share selected passenger
data with catering subcontractors, without compromis-
ing passengers’ privacy concerns [28]. In oil explo-
ration, reservoir simulation data produced in computer
centers must be shared with remote, on-site drilling
teams [30].

• For scientists, how to exchange data relevant to cur-
rent collaborations and/or coordinate access to shared
research equipment [9, 31], without divulging high-
resolution data critical to individual scientific pro-
cesses (e.g., the publication of new results or insights)?

• In sensor applications, how to distribute images cap-
tured by remote sensors [18] so as to meet the needs of
the diverse applications using this data, ranging from
simple monitoring or surveillance, to detailed tasks
like tracking (e.g., radar images) or face recognition?

The requirements imposed by dynamic, distributed ap-
plications have given rise to new technical approaches and
solutions, ranging from efficient group authentication in
grid computing [33], to distributed trust models and mech-
anisms in peer-to-peer systems [25, 4, 13], to new solutions
for access auditing [19]. In comparison to such research,
this paper focuses on issues in data protection. We pose
problems and devise solutions for:

1. Information access: typed data. How is access to
remote information governed? Stated more specifi-
cally, what access or protection model governs a re-
mote user’s ability to access some information items
and not others? Our solution approach uses the mid-
dleware’s type system, that is, its support for typed
data, in order to support stateful data inspection and
to differentiate across multiple agents’ accesses to the
same data items.

2. Authorization: capability-based model. Once remote
users have been authenticated and have established
their ability to access certain information, how to ex-
press and implement restrictions concerning informa-
tion access? Our solution uses a capability-based
model, where capabilities are associated with data
streams, the data types those streams carry, and user
code designed to customize them.

3. Extension and adaptation: runtime code generation
and deployment. What mechanisms enforce restric-
tions on data access? Our solution is to use dynam-
ically generated, safe code to implement the flexible
restrictions needed by today’s applications, and then
use capabilities to express permissions and enforce re-
strictions on dynamic code deployment.

4. Locus of control: middleware- vs. system-level sup-
port. Rather than relying on specialized operating sys-
tems, our approach uses a set of middleware abstrac-
tions to implement fine-grain restrictions on data ac-
cess. The outcome is improved flexibility and exten-
sibility compared to system-level solutions, examples
including the ability to incorporate application-level
requirements and security policies via runtime param-
eterization or the expression of utility functions. Limi-
tations in data security resulting from this approach are
discussed in Section 4.

The fundamental concept underlying (1)-(4) is that of
dynamic, differential data protection (D3P). D3P derives
its basic data access model from prior work on object-
and capability-based models of data protection [24], where
typed data is accessed and manipulated only by well-
defined operations. To accommodate modern distributed
applications, however, D3P permits the code fragments that
operate on data objects to be generated and deployed dy-
namically, thereby allowing applications to react dynami-
cally to changing end user needs or execution conditions,
constrained only by applications’ security policies. Further-
more, D3P provides differential support for protecting ap-
plication data and/or components. That is, based on meta-
data about the application-level information being accessed,
the granularity of access control provided by D3P can be
adjusted as needed by applications, again bounded only by
security policies.

D3P’s current middleware-level implementation uses
cryptographic techniques to protect capabilities, but it does
not encrypt the data being manipulated. As a result, D3P
does not address data integrity or privacy, which poses a
problem when network links are at risk for eavesdropping
and/or “sniffing”. On a single machine, such properties
could be provided by placing D3P middleware into a protec-
tion ring ‘below’ the application and by using TPM-based
data encryption, perhaps using platforms that implement
the requirements stated by the trusted platform architec-

ture [21]. Alternatively, stronger guarantees for D3P could
be implemented by dynamically extending operating sys-
tem kernels and requiring applications to make system calls
to access their data, representing the application-level codes
operating on data objects with safe code execution facilities
like software fault isolation [32] or the kernel plugins de-
scribed in [15], requiring applications to make system calls
to access their data, and using kernel-to-kernel communica-
tions to transport data across different machines. Further-
more, standard techniques for executing user-supplied code
are concerned with protecting the code, the system execut-
ing the code, or both. In contrast, D3P provides data rather
than code protection. Access to the data items manipulated
by the user-supplied code is controlled, but the safety of that
code is not guaranteed. If needed, standard mechanisms
like sandboxing can be incorporated into the D3P model
and its implementation. Innovative approaches that apply
hardware-based segmentation to user-supplied code [16] are
also compatible with D3P. Other standard tools leveraged
by D3P include X.509 certificate technology for identifi-
cation/authentication of principals. In this fashion, D3P is
compatible with existing large-scale security architectures
such as GSI[8]. Other authentication technologies such as
Kerberos are not directly embraced by D3P, although there
is in principle nothing preventing the extension of the sys-
tem in such directions.

The main contributions of this paper are its development
of the D3P concept and the application of the concept to
both high performance and pervasive distributed applica-
tions [35, 34, 6] (see Section 2), demonstrating its straight-
forward yet flexible approaches to data protection in rep-
resentative usage scenarios. Section 3 provides an abstract
definition of the protection and extension model defined by
D3P. Interesting implementation details are reported in Sec-
tion 4. Experimental results, presented in Section 5, demon-
strate that applications gaining advantages from the new
functionality provided by D3P do so with only small losses
in communication performance. This is due to the fact that
D3P’s implementation does not significantly affect the “fast
path” of data transfer, which means that D3P can be used
both with high performance, data-rich scientific or engi-
neering applications and with highly resource-constrained
pervasive systems.

2. A data protection perspective on applica-
tions

D3P is designed to address modern distributed applica-
tions, which are characterized by their long lives, dynamic
constraints and needs, and component-based nature.
Distributed systems and applications are becoming in-
creasingly long-lived. Sensor systems continuously col-
lect, stream, and analyze data. Global applications like

2

grid services must stay online around the clock to meet
the needs of international scientific or business processes.
Therefore, changes in data protection, or more generally,
any such application-level adaptations, cannot be accom-
modated with methods that require system downtime. For
dynamic data protection, this means that the methods that
implement them must use general solutions for in-place, on-
line system and application evolution, such as dynamic code
generation, extension, and specialization [10, 29].
User/device needs and environmental constraints are dy-
namic. As a result, applications are written to dynami-
cally accommodate new user- or domain-specific function-
ality, implemented by user- supplied or second party codes.
Dynamic data protection, therefore, must support runtime
changes in application structure and in the data applications
transport and manipulate.
Applications are component-based, and not all components
are statically known. Modern applications are neither de-
ployed nor maintained in a monolithic manner. They make
heavy use of dynamically loaded library codes. New appli-
cation paradigms like peer-to-peer [23] allow for an arbi-
trary or unknown set of users. Reflective/introspective de-
velopment frameworks [27, 20, 26] and open standards for
control transfer [3] and data description and exchange [1]
have made it difficult for application developers to know a
priori about all communication types or methods and the
range of execution environments used by applications.

The primary contribution of D3P is that it allows us to
deal with middleware systems along each of these three axes
differentially. That is, where previous systems have only al-
lowed their users or developers coarse-grain options to deal
with changing user populations (to either allow unknown
users or not), data definitions (preventing the use of low-
display-capability handheld devices in rich scientific visu-
alization settings), or restricting dynamic functionality to a
set of pre-loaded binary libraries, D3P systems can make
differential, decisions according to application security pol-
icy. For example, users who are not allowed by application
security designers to view particular fields in a data type can
be prevented from seeing only those fields, instead of their
being restricted from the type altogether. D3P provides a
method of avoiding such all-or-nothing decisions.

The following sections examine the need for and utility
of D3P in two representative applications: (1) a surveillance
system that uses remote cameras to capture and inspect im-
ages and (2) a high performance application used by scien-
tists to collaborate in real-time via meaningful remote data
visualizations.

2.1. Pervasive applications: surveillance

Consider the simple surveillance application depicted in
Figure 2, which shows the component architecture of the

Active Video Streams (AVS) utility developed by our group.
AVS [7] emulates the basic functionality of remote sensor-
based applications. AVS typifies such applications in that
it streams data captured by a remote sensor, exemplified
by a camera, and transmits them to interested consumers.
To enable rich image analyses, uncompressed data is trans-
ferred using the PPM industry-standard image format, as
640x480 PPM image frames, approximately of size 960Kb
each. In our simple demo application, these frames are con-
sumed and displayed by a Java image viewer that emulates
the control panel used in a surveillance application. In gen-
eralizations of applications like these, analysis functions are
applied to incoming image data before it is displayed, auto-
matically or as needed (e.g., initiated by surveillance per-
sonnel) [2].

A basic tradeoff in remote sensor processing, especially
across the wireless communication platforms for which
AVS is intended, is the delay in data transmission from sen-
sor to viewer vs. the quality of sensor data received and
analyzed. AVS provides multiple sensor-resident data fil-
ters that implement suitable tradeoffs. Specifically, AVS al-
lows each consumer to customize the image stream by dy-
namically introducing a data reduction (filter) function into
the data path. Among these actions are greyscale, where
the RGB color image is downsampled to a greymap; resize,
where the image capture size is reduced by 50 or 75 per-
cent in both dimensions; and crop, where a portion of the
image is selected by the user and the remainder discarded.
Each of these functions implements a different tradeoff in
the amount of data transferred across the wireless network
link and therefore, the delay in data transfer vs. the util-
ity of the data received by surveillance personnel. Whether
customized or not, image frames are represented and trans-
mitted as structured data packets as shown below.

#define AVSIMAGE1C 921600 /* 640 * 480 - color */

typedef struct {
 int tag;
 char ppm1;
 char ppm2;
 int size;
 int width;
 int height;
 int maxval;
 char buff[AVSIMAGE1C];
} Raw_data1C, *Raw_data1C_ptr;

Figure 1. C language structure representing a
PPM image used by the AVS application.

AVS provides a rich environment for defining security
policy, where usage semantics and access policies for users,
devices, customizations and streams must all be coordi-
nated. D3P addresses these needs as follows:

• The primary access control decision for AVS is
whether a user can view images on a particular stream.

3

Wireless Ethernet

int f1()

{

int i;

int j;

for (i=0;i < input.size; i = i + 1) {

 }

}

 for (j=0; j < input.size; j = j + 1) {

 do_something();

}

Image display & control GUI

Webcam
Webcam driver

Wireless Ethernet

installation of image filters

Figure 2. The AVS (Active Video Streams) application.

AVS has a type system that is used for selection of
streams — users choose to view a 640x480 color im-
age stream as opposed to a 320x240 greyscale stream,
for example, and these streams are implemented using
different data types. D3P permits policy to leverage
the type system. That is, D3P supports access control
decisions by restricting access to the type and thereby
the image data.

• D3P enforces access control decisions by issuing ca-
pabilities for data and types, thereby removing from
developers to make authentication and authorization
decisions. Instead, with D3P, one simply presents
the capabilities provided by the user to the middle-
ware. If the capabilities allow the requested access,
it is granted. This frees the AVS developer to concen-
trate on building the best image display and manipu-
lation application possible, instead of worrying about
access control.

• Concerns about the mechanics of installing user-
directed adaptations are also relieved by D3P. Using
the same capability model that governs access con-
trol, installing adaptations on image streams simply
involves presenting the appropriate capabilities to the
middleware. Integration with the type system is also
implicit, as the same capability access model is used.
A typical scenario is downsampling, where a user
wishes to improve frame rate by reducing the amount
of data transmitted. In AVS, the user can install an
adaptation on a color image stream which produces a
greyscale image stream. D3P reduces this operation
to the presentation of the appropriate capabilities for
the existing stream, the adaptation, and the data types
involved. Installation of the handler, retrieval of the
new type information, and construction of the new im-
age stream are all performed automatically. Note that
D3P does not rely on specific operating system sup-
port (as might be done with a set of protected types
in SELinux [22], for example). Standard identifica-

tion methods (X.509 certification) are used, decou-
pling applications such as AVS from a specific op-
erating system’s access control matrix. At the same
time, D3P’s flexible support for incorporating system-
and application-specific information into the capabil-
ity generation process allows the AVS developer to use
established policy databases.

This analysis shows how the D3P approach to middle-
ware can have direct and immediate benefits for application
developers in the pervasive domain. Similar advantages can
be enjoyed by high-performance computing applications, as
we discuss in the following section.

2.2. High performance computing: data-centric
collaboration

Consider the exchange of technical data between collab-
orating scientists or engineers. Application in which such
data exchanges take place are those built with the Smart-
Pointer framework for real-time scientific collaboration de-
veloped by our group [35]. Here, scientists can share visual
displays of output data generated by a high performance
simulation, they can view data across heterogeneous net-
work links and on different display devices, and they can
select, at runtime, the subsets they wish to view and/or an-
alyze of the large output data sets generated by the running
simulation.

Two concrete examples of desired data sharing are: (1)
a scientist viewing only the copper atoms (and their behav-
iors) simulated by a running molecular dynamics simula-
tion vs. (2) another scientist interested only in the chemi-
cal bond data computed from simulation output by running
certain analyses across that output. In both cases, middle-
ware represents simulation output as well as the products of
output analyses as structured data types. The data stream
produced by a simulation may be customized with dynam-
ically generated code in the same manner as AVS image
streams. Some of these customizations concern access re-
strictions. Such restrictions are particularly important in

4

large-scale collaborations like DOE’s ongoing Supernova
Initiative, where a multi-disciplinary team of scientists is
investigating the complex processes ongoing in a supernova
explosion. Here, conflicts arise between the necessity to
collaborate in order to make progress and the desire to pro-
tect “proprietary” data and/or methods. Controls over data
sharing and flexible access policies are vital in these cases.
Similar scenarios occur in industrial collaborations, where
subcontractors with technical expertise in particular areas
need carefully-specified and monitored access to valuable
engineering data.

As with the AVS example above, D3P makes possible
solutions that directly address these issues. In the specific
case of the SmartPointer application:

• The data exchanged by the components of Smart-
Pointer are represented as structured data types. These
structures may contain both simulation output and an-
alytical results. D3P uses the structure definitions pro-
vided by the users of the application to define fine-
grained access policies. Users are not required to think
about security restrictions, other than in terms of the
structure of the data they are generating and analyzing
(with which they are intimately familiar!). It should be
stressed here that the users of the application are not
primarily software developers and do not necessarily
have experience with the middleware used to imple-
ment SmartPointer. In effect, D3P leverages users’ ex-
perience with the structure of the data they are generat-
ing and analyzing. D3P provides the means to directly
leverage that experience when performing access con-
trol.

• SmartPointer and similar applications are used by di-
verse groups of researchers, separated by geography,
administrative structures, and research domains. Con-
trol over data access control and system customization
is made much more difficult when users belong to such
decentralized groups. Using D3P-capable middleware
moves the expression of control over data access (i.e.,
the definition of security policy) out of the applica-
tion and into more-easily-verified trusted policy mod-
ules. This is done in a decentralized fashion using D3P
capabilities, the latter being abstract, revocable, and
portable instruments.

• A key attribute of applications like SmartPointer is
that end users are the ones who express the ways in
which data streams should be customized. D3P di-
rectly supports user-driven ways to extend or adapt
applications, independent of geographical and organi-
zational considerations. The approach is to integrate
the type definitions provided by researchers, their cus-
tomization code, and security policy (likely defined by
non-researchers) into a single system. The mechan-
ics of system adaptation work identically for all users,

and security decisions are encapsulated into capabili-
ties. The efficiency of data transfer is preserved by the
use of dynamic code generation.

• The aim of D3P is to provide feature-complete mid-
dleware facilities for implementing applications of the
scale and scope of SmartPointer. Standard crypto-
graphic techniques provide a common security “vo-
cabulary”. Modular implementation of policy man-
agement allows flexibility in addressing requirements
from diverse user communities whose needs and con-
straints may not have much in common.

We have described how the D3P approach can benefit de-
signers, developers and users in both the high-performance
and pervasive application domains. In the next section, we
present the fundamental concepts of D3P that make these
benefits possible.

3. The D3P model

D3P is a model for a protection mechanism. By separat-
ing policy from mechanism, it preserves the “library”-like
nature of middleware implementing D3P principles. This
section relates the D3P concepts, the end goal being to build
middleware with properties that match the needs of future
applications while also providing suitable support for data
access protection.

3.1. Model objects

In the D3P model, computations are carried out at hosts.
These computations are encapsulated in tasks, an arbitrary
number of which may execute at any host. Tasks commu-
nicate with each other over links, which are unidirectional
and asynchronous. Information transmitted over each link
has a type, and each link carries information of exactly one
type. It is possible for a task to discover the structure of any
unknown type by contacting a type-server. Any task may
introduce a new type at any time.

Other computations can be associated with links; such
computations are called handlers. A handler is logically as-
sociated with a task at either endpoint of a link (i.e., at a
host) and is executed when a task sends or receives data.
Handlers accept input and may or may not produce out-
put. They have access to the type information of the link
with which they are associated, and can perform stateful,
content-aware actions based on the information in the link.
Handlers always accept an input type (the type of their link),
and always produce a boolean value. They may also pro-
duce an output type (potentially any type in the type uni-
verse). Handlers also may change their input data. We say
that handlers are themselves typed; this type is actually a
2-tuple (I,O), where I is the input type to the handler and O
is the output type (or nil if there is no output type).

5

Handlers can differ in the way they treat their input data
and produce output data. These differences are reflected in
the three classes of handlers: inspectors, adorners, and mor-
phers. Inspectors accept a specific data type as input and
produce only a boolean result. These handlers may perform
some type of reflection on the type or computation using
the data itself to determine the result value. For example,
the handler could be an expression of criteria that the input
type or data must satisfy. Or, an input type that contains an
array of floats might be vetted by a handler that computes
the arithmetic mean of the values in the array and compares
it against a given amount. Adorners produce an output type
— the same as the input type. However, Adorners are so
named because they may make changes in their input data.
Revisiting the Inspector example above, an Adorner could
not only compute the average of a subset of input data, but
also store it in the output data for transmission along the
link (assuming, of course, that the Adorner returns a true
value). Morphers add the ability to produce an output type
that is different from the input type. They provide the ability
to perform type specialization or narrowing based on input
type information, input data, or data computed by the han-
dler itself.

char y;
int data[921600];
}

Inspector

Adorner
{
int x;
char y;
int data[921600];
}

type "color image"

type "color image"

no type output

type "color image"

int x;

Morpher
{
int x;
char y;
int data[921600];
}

{
int x;
char y;
int data[307200];
}

type "color image" type "greyscale image"

{
int x;
char y;
int data[921600];
}

{

Figure 3. Inspectors, Adorners, and Morphers
take different actions on input and output
types.

If multiple handlers are associated with a link, they exe-
cute serially in the order of their time of installation. When
installing a second handler, the input type of the new han-
dler must be the output type of the existing handler. A set of
handlers at a link endpoint is called a handler chain. Han-
dler chains, as with single handlers, have a type which is
expressed as a tuple. A handler chain type tuple consists of
the input type of the first handler in the chain and the output
type (or nil) of the last handler in the chain. The boolean
result value of the chain is the value provided by the last
handler in the chain.

An important property of links with installed handlers is

that the data is only forwarded to the destination endpoint
of the link if the handler returns true. If the return value
is false, the data is discarded. For handler chains, their
default organization is a logical AND across the chain. In
this mode, the boolean return value from each handler in
the chain must be true in order for the remaining handlers
in the chain to execute. If each handler returns true, the
data is forwarded across the link. For purposes of determin-
ing whether or not data is forwarded, the chain is treated as
a “black box”. The boolean expression represented by the
“black box” of the handler chain can be modified by insert-
ing different boolean and grouping operators after the chain
is constructed.

Complex functionality can be encoded and manipulated
using chains of handlers. For example, any symmetric data
manipulation task (such as encryption/decryption) can be
modeled in D3P as the installation of matched pairs of han-
dler chains at appropriate link endpoints.

3.2. Referring to objects

All D3P objects are manipulated through a single mech-
anism: capabilities. Generally, a capability combines an
unforgeable reference to an object with an expression of the
set of permitted operations for that object. D3P capabilities
are created upon request by a trusted model object called
Authority. Authority encapsulates policy decisions and ma-
nipulation, handles the publication and updates of capabil-
ity revocation lists, and removes the necessity of distribut-
ing trusted components throughout the model. Capabilities
contain references both to the object they name and to the
owner of the capability; both references are necessary to
execute operations in the protection model. All model op-
erations require a capability with appropriate rights. Con-
struction of a link requires a special capability granted by
Authority; installing a handler on a link requires a capabil-
ity referencing the link that has “install-handler” rights, as
well as a capability for the handler that permits installation.

The “black box” view of a handler chain provided by
D3P allows chains to be manipulated and reasoned about in
the same manner as single handlers. A handler (or chain)
and the link to which it is attached can also be referred to
as a compound object, using a single capability. This prop-
erty of D3P objects prevents an explosion of capability ref-
erences. It also makes possible the advance definition and
packaging of interesting functionality.

As mentioned earlier, links are strongly typed. The type
system is also manipulated through the use of capabilities.
In order to install a handler that refers to a particular type, a
capability for that type must be presented. If a Morpher is
being used to perform type conversion, capabilities for both
the input and output types are necessary.

The ability to “prepackage” links and handlers provides

6

OUTPUT
?

Adorner Morpher Inspector

Figure 4. Handlers can be combined in chains to achieve a series of effects.

D3P with an important part of its usefulness. Links can
be predefined with handlers that implicitly convert types to
those authorized for particular users. Data access can be
provided on a differential, per-endpoint basis, where each
endpoint for a link is constructed with a customized Mor-
pher based on policy information obtained from Authority.

3.3. Degrees of freedom

One measure of the usability of middleware is the num-
ber and type of restrictions placed on application designers
and developers. We note that several degrees of freedom
are preserved by the D3P model. First, D3P requires only
a type system to support inspection of data or differentiate
between multiple accesses to a single type. D3P is indepen-
dent of knowledge of roles, principals, or other high-level
security modeling concepts. Second, the only constraints on
how handlers are expressed are the presence of a type sys-
tem and the requirement to produce a boolean output. This
allows a wide range of possible expressions for computa-
tions. Handlers can run the gamut from rule-checking en-
gines such as are used for network firewalls to architecture-
specific, dynamically-loaded binary code objects. Finally,
although handlers are logically associated with link end-
points (i.e., with sending or receiving tasks), D3P does not
prevent implementations from decoupling handler execu-
tion and application-level endpoints. This property can be
very useful in cases where specialized hardware is available
at remote hosts or when network conditions require alter-
nate data routing strategies.

4. Realizing D3P in publish/subscribe middle-
ware

The previous section described the abstract middleware
model of D3P. In order to evaluate these ideas, we have pro-
duced a concrete D3P implementation in a mature, high-
performance middleware library. We note, however, that
the concepts of D3P are suitable for a wide variety of mid-
dleware. The key requirements are the availability of a type
system (through either metadata or reflection) and the abil-
ity to dynamically associate functionality at a link endpoint.
We implement D3P for pub/sub middleware for two rea-
sons: (1) the classes of applications we target make heavy
use of publish/subscribe concepts, and (2) we have at hand a

mature publish/subscribe middleware package called ECho.
We next briefly describe its fundamentals.

4.1. ECho fundamentals

ECho [14] is data delivery middleware for the high per-
formance and pervasive domains, targeting interactive sci-
entific collaboration, remote instruments and visualization,
and similar large-data applications. Superficially, the se-
mantics and organization of structures in ECho are similar
to the Event Channels described by the CORBA Event Ser-
vices specification[17], implementing an anonymous group
communication mechanism. Data senders in anonymous
group communication are unaware of the number or iden-
tity of data receivers. Instead, data is delivered to receivers
according to the rules of the communication mechanism. In
this case, event channels provide the mechanism for match-
ing senders and receivers. Data messages (or events) are
sent via sources into channels which may have zero or more
subscribers (or sinks). The locations of the sinks, which
may be on the same machine or process as the sender, or
anywhere else in the network, are immaterial to the sender.
A program or system may create or use multiple event chan-
nels, and each subscriber receives only the messages sent to
the channel to which it is subscribed. The network traffic for
multiple channels is multiplexed over shared communica-
tions links, and channels themselves impose relatively low
overhead. Instead of doing explicit read() operations, sink
subscribers specify an upcall to be run whenever a message
arrives. In this sense, event delivery is asynchronous and
passive for the application.

Event channels are distributed entities, with bookkeep-
ing data in each process where they are referenced. Chan-
nels are created once by some process, and opened any-
where else they are used. The process that creates an event
channel is distinguished in that it is the contact point for
other processes wishing to use the channel. The channel
ID, which must be used to open the channel, contains con-
tact information for the creating process as well as informa-
tion identifying the specific channel. However, event dis-
tribution is not centralized and there are no distinguished
processes during event propagation. Event messages are al-
ways sent directly from an event source to all subscribers.

ECho channels can be either typed or untyped. The type
system for typed channels is managed by PBIO (Portable
Binary I/O) [5]. PBIO allows high-level description of data

7

Process A

Event
Channel

Channel
Event

Event
Channel

Process C

Process B

Figure 5. Processes using Event Channels for
communication.

to be efficiently represented and transmitted in binary form.
PBIO transparently handles binary translation issues such
as differing machine word sizes or word endian-ness, pro-
vides facilities for compile-time or run-time type definition,
and performs type reflection and conversion between com-
patible types.

4.2. ECho implementation

ECho provides a set of abstractions to the programmer
and an API that can be used to create, dispose of, and ma-
nipulate them. We implement D3P underneath those ab-
stractions and provide whatever additional interfaces might
be required. This choice is made for two reasons. First,
there are several mature applications already supported by
ECho; by maintaining a compatible interface, we gain ac-
cess to this body of code. Second, experiences in the high
performance domain demonstrate the propensity of appli-
cation developers to discard any extraneous software lay-
ers like those implementing security in favor of improved
performance. By operating ‘underneath’ the existing ECho
interface, D3P protection features are incorporated by de-
fault. By carefully integrating D3P ‘into’ the implementa-
tion of ECho, undue performance penalties (see Section 5)
are avoided.

The primary task necessary to implement D3P in ECho
was to provide capabilities for ECho objects. This is nec-
essary in order to enforce protection restrictions on those
objects. The canonical definition of a capability is a ref-
erence to an object combined with a set of rights relative

to that object. To make an ECho object into a capability,
two things are necessary: secure the object against forgery,
and add rights information. Cryptographic techniques are
used to secure each ECho object of interest. Specifically,
each object is signed by a Security Manager (a trusted mod-
ule) to indicate its validity. This signature is verified by the
middleware each time the object is used; malicious users
are thereby prevented from forging protected ECho objects.
The rights field for each object contains both universal and
type-specific rights. For this purpose, ECho capabilities
also include an object descriptor that identifies their type.

Note that this will not deter an attacker that is able to
scan all memory at will, as might happen if host adminis-
tration security is compromised. Such protection is beyond
the scope or ability of any middleware system. However,
it does prevent local forgery and copying of ECho objects.
Language-level opacity is used to prevent direct program-
matic manipulation of ECho objects. Finally, current re-
search efforts[12, 11] into language-level security provide
additional options for increased safety.

The “bootstrap” ECho object is the EControlCon-
text (ECC); all other ECho operations require its coop-
eration. The API for creating an ECC was modified to send
a list of attributes to the Security Manager, which returns a
protected ECC object. Protected ECC objects can be used to
create other protected ECho objects (which are themselves
modified to act as capabilities).

Each ECho object creation API verifies that the capabil-
ity provided for the ECC is valid and allows the creation of
the object in question. For example, the event channel ob-
ject in ECho is EChannel. The EChannel create()
call examines the provided ECC, verifying both the ob-
ject signature and that the ECC contains a “create-channel”
right. If so, a new protected EChannel is created and re-
turned to the caller.

Capabilities for PBIO types are also obtained via the Se-
curity Manager. PBIO defines a local dictionary of types
known as an IOContext; this object is cryptographically
secured in the same way as other capabilities.

Event submission in unprotected ECho requires an
EControlContextand a specification of the type of the
event. The analogous call in D3P-enabled ECho is to pro-
vide capabilities for both the EControlContextand the
IOContextcontaining the type in question. This call is in
the data transfer path; however, the only significant addi-
tional computation required is the signature verification for
both capabilities. Revocation of capabilities is currently not
handled, but could be implemented by embedding a revoca-
tion list in the EControlContextobject (to be updated
periodically or on demand).

ECho directly supports the D3P concept of handlers,
through what are called derived channels. A derived chan-
nel has had a handler installed on it; the handler executes

8

type "color image"
{
int x;
char y;
int data[921600];
}

type "greyscale image"
{
int x;
char y;
int data[307200];
}

IOContext

EControlContext

EChannel

Handler

Downsampling
(morpher)

D3P ECho

EChannel_derive()

EChannel

Security
Manager

3

1

2

4

5

7

6

Figure 6. Installing a handler in AVS requires the use of several D3P objects. An EControlContext
(1) is needed in order to create any other protected ECho objects. Capabilities for the original,
unmodified EChannel (2), the PBIO types involved (the type used in the original channel and the one
to be generated by the newly installed handler, in an PBIO IOContext) (3), and for the handler itself (4)
are required for the handler installation. Communication with the Security Manager (5) is necessary
to retrieve at least the handler capability. The result of the operation (6) is a new protected EChannel
object (7) which can then be used by AVS.

once for each event passing through the channel. In order
to create a protected derived channel, capabilities for the
EControlContext, the original EChannel, any types
involved, and the handler must be provided. The capability
for the handler is also obtained from the Security Manager;
the user specifies a list of attributes of the desired handler
(to execute locally or at a remote location, whether a DLL
version is necessary, and other characteristics) and the Se-
curity Manager acts as a broker to provide the correct han-
dler code. Also, the EChannelcapability must contain a
“can-derive” right, indicating that the holder of the capabil-
ity has the right to install a handler on it. The result of this
operation is another EChannelcapability which refers to
the newly derived channel.

4.3. Bootstrapping capabilities in ECho

Capability systems typically assume the presence of a
TCB or trusted module that has the power to create, mod-
ify, and dispose of them. As the creation or destruction of
a capability is a direct representation of an access control
decision, the presence of a security policy is also implied.
We have established a Security Manager (SM) (an instance
of Authority from the D3P model) to encapsulate capability
actions and any policy manipulation.

We did this for three reasons. First, we wish to remain
open to different authentication/authorization schemes, and
abstracting away these details to a remotely located entity
avoids dependencies. Note that this does not necessarily im-
ply a network round-trip, unlike our previous designs[34].
Our current implementation performs authentication and

authorization against /etc/passwd, and integrating with
other authentication systems such as Kerberos or Grid se-
curity infrastructures like GSI[8] is as simple as providing
an appropriate API. Secondly, it is best to keep trusted code
to a minimum, and to keep the size of trusted code mod-
ules as small as possible. Since any SM-like process would
obviously need to be trusted, it makes sense to separate it
from the rest of the middleware. Finally, we wish to provide
implementation tools and mechanisms, as opposed to tools
for defining, manipulating, and integrating security policies.
We view a modularized SM as a way to ensure that policy
questions remain “somebody else’s problem”.

5. Experimental evaluation

We first characterize the overhead of our D3P implemen-
tation in ECho by measuring time necessary to create basic
ECho objects with and without D3P. For each middleware
action, we record the percentage increase in time required
to complete the action. The following table presents some
representative results from these tests.

ECho operation percentage overhead
channel create 4.52

channel subscribe 3.32
handler install 8.55

handler uninstall 3.33

The primary attractiveness of our mechanism is that its
performance overheads are not in the critical path of data
transfer. Once access to the channel has been established

9

1 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

Number of subscribers

T
im

e
(s

)

ECho scalability as subscriber count increases

total send time
system CPU time
user CPU time

Figure 7. ECho scaleability with no D3P fea-
tures.

or a handler installed, data transfer proceeds at speeds lim-
ited only by the underlying middleware or network. Even
in those situations where the mechanism does have a per-
formance impact, that impact is minimal.

5.1. ECho scalability

In this series of experiments, we show that the addition
of D3P functionality does not impact the scalability of the
ECho middleware. Previous research [6] has demonstrated
the scalability of the unmodified ECho middleware. We re-
peated our previous experiment using the D3P version of
the ECho middleware. Results appear in Figure 8. As ex-
pected, absolute performance is worse than the unprotected
ECho case. However, performance still degrades linearly
with the number of clients on a channel. In particular, the
degradation is less noticeable (more fully amortized) as the
number of subscribers increases. This is attributable to the
fact that the added D3P protection operations (verification
of capability integrity and rights) have most of their impact
outside the “fast path” of data transfer (at channel subscrip-
tion time or handler installation time). In the data transfer
path, a small set of overheads are incurred and they become
less significant as the number of subscribers increases (more
and more time is spent in the network stack).

Figure 7 shows that ECho performance scales roughly
linearly as the number of clients per channel increases.

5.2. Application performance

This experiment shows that performance of a typical per-
vasive application does not suffer when using D3P. We mea-

1 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5
ECho/D3P scalability as subscriber count increases

Number of subscribers

T
im

e
(s

)

total send time
system CPU time
user CPU time

Figure 8. ECho scalability where increasing
numbers of clients use the D3P interfaces.

0

2

4

6

8
x 10

−4

Image sizes exchanged by AVS (57600, 230400, 921600 bytes)

T
im

e
(s

)

Event sending time as event size increases in AVS

without D3P
with D3P

Figure 9. ECho/D3P scalability as event sizes
increase.

sure time required to perform 10000 typical AVS image ex-
changes of 921600 bytes (640x480 color), 230400 bytes
(320x240 color), and 57600 bytes (160x120 color), with
and without D3P features enabled. Figure 9 shows that,
as the data size increases, the sending time increases in a
roughly linear manner. Also, the difference in sending time
is smallest with the largest event size, reinforcing our con-
tention that D3P costs are outside the critical data path and
therefore can be amortized across larger events.

10

6. Conclusion

Our primary contribution in this paper has been the pre-
sentation of the D3P approach to providing data protec-
tion in high performance and pervasive applications. We
have described the underlying conceptual model of D3P
and examined how it can address application requirements
for sample applications in both the high performance and
pervasive domains. We have described an implementation
of the D3P approach in a mature publish/subscribe middle-
ware package. We have demonstrated that the data protec-
tion benefits of D3P can be made available to developers
without serious performance penalties.

In the future, we intend to enhance both the D3P model
and its reference implementation. We are particularly inter-
ested in exploring ways to use D3P with innovative software
isolation/virtualization techniques. Integration with secu-
rity policy research and policy description languages also
remains a topic for future attention.

Acknowledgments

Greg Eisenhauer provided valuable insight into the de-
sign and architecture of the ECho middleware system.

This work was supported in part by an Intel Foundation
Graduate Fellowship Award.

References

[1] The extensible markup language (XML).
http://www.w3.org/TR/1998/REC-xml-19980210.

[2] The infopipe toolkit.
http://www.cc.gatech.edu/projects/infosphere/software/.

[3] Simple Object Access Protocol.
http://www.w3.org/TR/SOAP/.

[4] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The role of trust management in distributed systems secu-
rity. In Secure Internet Programming: Issues in Distributed
and Mobile Object Systems, Lecture Notes in Computer
Science State-of-the-Art series, pages 185–210. Springer-
Verlag, Berlin, 1999.

[5] F. Bustamante, G. Eisenhauer, K. Schwan, and P. Widener.
Efficient wire formats for high performance computing. In
Proceedings of Supercomputing 2000, November 2000.

[6] F. Bustamante, P. Widener, and K. Schwan. Scalable direc-
tory services using proactivity. In Proceedings of Supercom-
puting 2002, Baltimore, MD, November 2002.

[7] F. E. Bustamante. The Active Streams Approach To Adaptive
Distributed Applications and Services. PhD thesis, Georgia
Institute of Technology, November 2001.

[8] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke,
J. Volmer, and V. Welch. A national-scale authentication
infrastructure. IEEE Computer, 33(12):60–66, 2000.

[9] U. Catalyurek, M. Benyon, C. Chang, T. Kurc, A. Sussman,
and J. Saltz. The virtual microscope. IEEE Transactions
on Information Technology in Biomedicine, 7(4):230–248,
2003.

[10] C. Chambers, S. J. Eggers, J. Auslander, M. Philipose,
M. Mock, and P. Pardyak. Automatic dynamic compilation
support for event dispatching in extensible systems. In Pro-
ceedings of the Workshop on Compiler Support for Systems
Software (WCSSS’96). ACM, February 1996.

[11] M. Christodorescu and S. Jha. Static analysis of executa-
bles to detect malicious patterns. In Proceedings of the 12th
USENIX Security Symposium, pages 169–186, Washington,
DC, August 2003. USENIX.

[12] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard:
Protecting pointers from buffer overflow vulnerabilities. In
Proceedings of the 12th USENIX Security Symposium, pages
91–104, Washington, DC, August 2003. USENIX.

[13] D.Boneh, X. Ding, G. Tsudik, and B. Wong. Fast revocation
of security capabilities. In Proceedings of the 2001 USENIX
Security Symposium. USENIX, 2001.

[14] G. Eisenhauer, F. E. Bustamante, and K. Schwan. Event
services in high performance systems. Cluster Computing:
The Journal of Networks, Software Tools, and Applications,
4(3):243–252, July 2001.

[15] I. Ganev, G. Eisenhauer, and K. Schwan. Kernel plugins:
When a vm is too much. In Proceedings of the 3rd Virtual
Machine Research and Technology Symposium.

[16] I. Ganev, G. Eisenhauer, and K. Schwan. Kernel plugins:
When a vm is too much. In Proceedings of the Third Virtual
Machine Research and Technology Symposium, May 2004.

[17] O. M. Group. CORBAservices: Common Object Services
Specification, chapter 4. OMG, 1997. http://www.omg.org.

[18] T. He, B. M. Blum, J. A. Stankovic, and T. Abdelzaher.
Aida: Adaptive application-independent data aggregation in
wireless sensor networks. Trans. on Embedded Computing
Sys., 3(2):426–457, 2004.

[19] Y. Huang and W. Lee. A cooperative intrusion detection sys-
tem for ad hoc networks. In Proceedings of the ACM Work-
shop on Security of Ad Hoc and Sensor Networks (SASN
2003), Fairfax, VA, October 2003. ACM.

[20] IBM Corporation. Websphere.
http://www.ibm.com/websphere/.

[21] Intel Corporation. Lagrande technology (lt) for safer com-
puting. http://www.intel.com/technology/security/.

[22] T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity pro-
tection in the selinux example policy. In Proceedings of the
12th USENIX Security Symposium, pages 59–74, Washing-
ton, DC, August 2003. USENIX.

[23] W. K. Josephson, E. G. Sirer, and F. B. Schneider. Peer-to-
peer authentication with a distributed single sign-on service.
In Proceedings of the International Workshop on Peer-to-
Peer Systems, San Diego, CA, February 2004.

[24] R. Levin, E. Cohen, F. Pollack, W. Corwin, and W. Wulf.
Policy/mechanism separation in hydra. In Proceedings of the
5th Symposium on Operating Systems Principles, November
1975.

[25] N. Li, J. Mitchell, and W. Winsborough. Design of a role-
based trust-management framework. In Proceedings of the
2002 IEEE Symposium on Security and Privacy, Oakland,
VA, May 2002. IEEE.

11

[26] Microsoft Corporation. Microsoft .net framework.
http://msdn.microsoft.com/netframework/.

[27] S. Microsystems. The Jini[tm] distributed
event specification, version 1.0.1. Techni-
cal report, Sun Microsystems, November 1999.
http://www.sun.com/jini/specs/event101.html.

[28] V. Oleson, K. Schwan, G. Eisenhauer, B. Plale, C. Pu,
and D. Amin. Operational information systems - an exam-
ple from the airline industry. In Proceedings of the First
Workshop on Industrial Experiences with Systems Software
(WIESS’2000), San Diego, CA, October 2000. USENIX So-
ciety.

[29] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye,
L. Kethana, J. Walpole, and K. Zhang. Optimistic incre-
mental specialization: Streamlining a commercial operating
system. In Proceedings of the Fifteenth Symposium on Oper-
ating Systems Principles, Colorado, December 1995. ACM.

[30] Schlumberger Limited. http://www.schlumberger.com.
[31] US Department of Energy (SciDAC). The national fusion

collaboratory. http://www.fusiongrid.org/.
[32] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.

Efficient software-based fault isolation. ACM SIGOPS Op-
erating Systems Review, 27(5):203–216, December 1993.

[33] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Cza-
jkowski, J. Gawor, C. Kesselman, S. Meder, L. Pearlman,
and S. Tuecke. Security for grid services. In Proceedings of
the Twelfth International Symposium on High Performance
Distributed Computing (HPDC-12). IEEE, IEEE Press, June
2003.

[34] P. Widener, K. Schwan, and F. Bustamante. Differential data
protection in dynamic distributed applications. In Proceed-
ings of the 2003 Annual Computer Security Applications
Conference, Las Vegas, NV, December 2003.

[35] M. Wolf, Z. Cai, W. Huang, and K. Schwan. Smart point-
ers: Personalized scientific data portals in your hand. In
Proceedings of Supercomputing 2002, November 2002.

12

