
Countering Targeted File Attacks Using Location Keys

Mudhakar Srivatsa and Ling Liu
College of Computing, Georgia Institute of Technology

{mudhakar, lingliu}@cc.gatech.edu

Abstract
Serverless distributed computing has received significant
attention from both the industry and research community.
One of its typical applications is wide area network file
systems like CFS [4], Farsite [2] and OceanStore [9]. A
unique feature of these file systems is that they are server-
less. They store files on a large collection of untrusted
nodes that form an overlay network. They use cryptographic
techniques to secure files from malicious nodes. However,
most of these distributed file systems are vulnerable to tar-
geted file attacks, wherein an adversary attempts to attack
a small (chosen) set of files in the system. This paper
presents location keys as a technique for countering tar-
geted file attacks. Location keys can be used to not only
provide traditional cryptographic guarantees like file con-
fidentiality and integrity, but also (i) mitigate Denial-of-
Service (DoS) and host compromise attacks, (ii) construct
an efficient file access control mechanism, and (iii) add al-
most zero performance overhead and very minimal storage
overhead to the system. We also study several potential in-
ference attacks on location keys and present solutions that
guard the file system from such attacks.

1 Introduction
A new breed of serverless file storage services have re-
cently emerged like CFS [4], Farsite [2] and OceanStore
[9]. In contrast to traditional file systems, they harness the
resources available at desktop workstations that are dis-
tributed over a wide-area network. As the hardware re-
sources become cheaper and cheaper, these desktop per-
sonal computers are turning out to be more and more pow-
erful. The collective resources available at these desktop
workstations amount to several peta-flops of computing power
and several hundred peta-bytes of storage space [2].

These emerging trends have motivated serverless file stor-
age as one of the major applications on an overlay network.
An overlay network is a virtual network formed by nodes
(desktop workstations) on top of an existing IP-network.
Overlay networks typically support a lookup protocol. A
lookup operation identifies the location of a file (say, the
IP-address of a node that hosts the file) given its filename.
There are four important issues to be addressed by server-

less file systems.

Efficiency of the lookup protocol. There are two kinds of
lookup protocol that have been popularly deployed, namely,
Gnutella-like broadcast based lookup protocol ([6]) and dis-
tributed hash table (DHT) based lookup protocols ([19],
[16], [17]). File systems like CFS, Farsite and OceanStore
use DHT-based lookup protocols because of their ability to
locate the destination node in a small and bounded number
of hops.

Malicious and unreliable nodes. Serverless file storage ser-
vices are faced with the challenge of having to harness
the collective resources of loosely coupled, insecure, and
unreliable machines to provide a secure, and reliable file-
storage service. To complicate matters further, some of the
nodes in the overlay network could be malicious. Hence,
wide-area file storage services must be capable of handling
malicious behavior by a small fraction of nodes in the sys-
tem. CFS employs cryptographic techniques to maintain
file data confidentiality and integrity. Farsite permits file
write and update operations by using a Byzantine fault-
tolerant group of meta-data servers (directory service). Both
CFS and Farsite use replication as a technique to provide
higher fault-tolerance and availability.

Targeted Attacks (DoS and Host compromise attacks). A
major drawback with serverless file systems like CFS, Far-
site and OceanStore is that they are vulnerable to targeted
attacks on files. In a targeted attack, an adversary is in-
terested in compromising a small set of files (target files).
The fundamental problem with these systems is that: (i) the
number of replicas (R) maintained by the system is usually
much smaller than the number of malicious nodes (B), and
(ii) the replicas of a file are stored at publicly known lo-
cations. Hence, malicious nodes can easily attack the set
of R replica holders of a target file (R � B). A denial-
of-service attack would render the target file unavailable; a
host compromise attack could corrupt all the replicas of a
file thereby effectively wiping out the target file from the
file system.

Efficient Access Control. Access control in large scale dis-
tributed systems has long been a very critical problem. A
read-only file system like CFS can exercise access control
by simply encrypting the files. Farsite, a read-write file

1

system, exercises access control using access control list
(ACL) that are maintained using a Byzantine-fault-tolerant
protocol. Users are required to be authenticated and au-
thorized by a directory-group before their write requests
are executed. However, access control is not truly dis-
tributed in Farsite because all users need to be authenti-
cated by a small collection of directory-group servers. Fur-
ther, PKI (public-key Infrastructure) based authentication
and Byzantine-fault-tolerance based authorization can be
very expensive.

In this paper we present location keys as a technique that
not only provides traditional cryptographic guarantees like
data confidentiality and integrity, but also (i) mitigates DoS
and host compromise attacks, (ii) provides a capability-
based file access control mechanism, and (iii) incurs almost
zero performance overhead and minimal storage overhead.
The fundamental idea is to hide the very location of the file
replicas such that, a legal user who possesses a file’s lo-
cation key can easily locate it; without knowing the file’s
location key, an adversary would not be able to even lo-
cate the file, let alone access it or attempt to attack it. We
implement an efficient capability-based file access control
mechanism [3] using location keys. A location key acts
as a capability (handle or token) to access a file’s replicas.
We study several inference attacks on location keys, and
present techniques to guard the file system from such at-
tacks.

2 Background
In this section we briefly overview the vital properties of
DHT-based overlay networks and their lookup protocols
(Chord [19], CAN [16], Pastry [17]). All these systems
are fundamentally based on distributed hash tables, but dif-
fer in algorithmic and implementation details. All of them
store the mapping between a particular key and it’s associ-
ated data in a distributed manner across the network, rather
than storing them at a single location like a conventional
hash table. This is achieved by maintaining a small routing
table at each node. Given a key, these techniques guar-
antee the location of it’s associated data in a small and
bounded number of hops within the overlay network. To
achieve this, each node is given an identifier and is made
responsible for a certain set of keys. This assignment is typ-
ically done by normalizing the key and the node identifier
to a common space (like hashing them using the same hash
function) and having policies like numerical closeness or
contiguous regions between two node identifiers, to iden-
tify the regions which each node will be responsible for.

For example, in the context of a file system, the key can
be a filename and the identifier can be the IP address of
a node. All the available node’s IP addresses are hashed
using a hash function and each of them store a small routing

table (for example, Chord’s routing table has only m entries
for an m-bit hash function and typically m = 128) to locate
other nodes. Now, to locate a particular file, its filename is
hashed using the same hash function and depending upon
the policy, the node responsible for that file is obtained.
This operation of locating the appropriate node is called a
lookup.

File system like CFS, Farsite and OceanStore are lay-
ered atop of DHT-based protocols. These file systems typ-
ically provide the following guarantees:

• A lookup operation for any file is guaranteed to suc-
ceed if and only if the file is present in the system.

• A lookup operation is guaranteed to terminate within
a small and bounded number of hops.

• The files are uniformly (statistically) divided among
all currently active nodes.

• The system is capable of handling dynamic node joins
and leaves.

In the following sections of this paper, we use Chord [19]
as the overlay network’s lookup protocol. However, the
results obtained in this paper are applicable for most DHT-
based lookup protocols.

3 Threat Model
Adversary refers to a logical entity that controls and coordi-
nates all actions by malicious nodes in the system. A node
is said to be malicious if the node either intentionally or
unintentionally fails to follow the system’s protocols cor-
rectly. For example, a malicious node may corrupt the files
assigned to them and incorrectly (maliciously) implement
file read/write operations. By the very definition of our ad-
versary, we permit collusions among malicious nodes.

We assume that the underlying IP-network layer is se-
cure. Hence, (i) A malicious node has access only to the
packets that have been addressed to it, (ii) All packets that
can be accessed by a malicious node can be potentially
modified (corrupted) by the malicious node. More specif-
ically, if the packet is not encrypted (or does not include
a message authentication code (MAC)) then the malicious
node may modify the packet in its own interest, and (iii)
The underlying domain name service (DNS), the network
routers, and the related networking infrastructure are as-
sumed to be completely secure, and hence cannot be com-
promised by an adversary.

An adversary is capable of performing two types of at-
tacks on the file system, namely, the denial-of-service at-
tack, and the host compromise attack. When a node is un-
der denial-of-service attack, the files stored at that node are
unavailable. When a node is compromised, the files stored

2

at that node could be either unavailable or corrupted. We
model the malicious nodes as having a large but bounded
amount of physical resources at their disposal. More specif-
ically, we assume that a malicious node may be able to per-
form a denial-of-service attack only on a finite and bounded
number of good nodes, denoted by α. We limit the rate at
which malicious nodes may compromise good nodes. We
use λ to denote the mean rate per malicious node at which
a good node can be compromised. Hence, when there are
B malicious nodes in the system, the net rate at which good
nodes are compromised is λ∗B node compromises per unit
time. Every compromised node behaves maliciously. For
instance, a compromised node may attempt to compromise
other good nodes. Every good node that is compromised
would independently recover at rate µ; hence, if C denotes
the number of compromised nodes then the net rate of re-
covery is µ ∗ C node recoveries per unit time. Note that
recovery of a compromised node is analogous to cleaning
up a virus or a worm from an infected node. When the re-
covery process ends, the node stops behaving maliciously.
Unless and otherwise specified we assume that the rates λ
and µ follow an exponential distribution.

Files on an overlay network have two primary attributes:
(i) content and (ii) location. File content could be protected
from an adversary using cryptographic techniques. How-
ever, if the location of a file on the overlay network is pub-
licly known, then the file holder is susceptible to DoS and
host compromise attacks. Location keys attempt to hide
files in an overlay network such that only a legal user who
possesses a file’s location key can easily locate it. Thus,
any previously known attacks on file contents would be ap-
plicable only after the adversary is successful in locating
the file. Location keys are oblivious to whether or not file
contents are encrypted. Hence, location keys can be used
to protect files whose contents cannot be encrypted (say, to
permit arbitrary keyword search on file contents).

4 Securing Files on the Overlay Net-
work

In this section, we study targeted attacks on file storage ap-
plications on wide-area overlay networks. We present lo-
cation keys based technique to secure the file system from
targeted attacks by hiding the location of a file’s replicas.
We then present an extensive analysis of our proposed so-
lution and study several inference attacks on the proposed
solution.

4.1 Targeted File Attacks

Targeted file attack refers to an attack wherein an adver-
sary attempts to attack a small (chosen) set of files in the
system. An attack on a file is successful if the target file
is either rendered unavailable or corrupted. A file is un-

available (or corrupted) if at least a threshold number of its
replicas are unavailable (or corrupted). We use corruption
threshold (cr) to denote the minimum number of replicas
if attacked would make it impossible to operate on the file.
For example, for read/write files maintained by a Byzantine
quorum [2], cr = dR/3e. For encrypted and authenticated
files, the corruption threshold cr = R, since any file can be
successfully recovered as long as at least one of the avail-
able replicas is uncorrupted [4]. A P2P trust management
systems such as [1, 22] uses a simple majority vote on the
replicas to compute the actual trust value (cr = dR/2e).

Distributed file systems like CFS and Farsite are highly
vulnerable to target file attacks since the target file can be
rendered unavailable (or corrupted) by attacking a very small
set of nodes in the system. The key problem arises from the
fact that these systems store the replicas of a file f at pub-
licly known locations [8]. For instance, CFS stores a file f
at locations identified by the public-key of its owner. An
adversary can attack any set of cr replica holders of file f ,
to render file f unavailable (or corrupted). Farsite utilizes
a small collection of publicly known nodes for implement-
ing a Byzantine fault-tolerant directory service. On com-
promising the directory service, an adversary could obtain
the locations of a target file’s replicas. Note that the direc-
tory service can be compromised by simply compromising
one-third of the nodes participating in the directory service.

Yet another important challenge in building a distributed
file systems, is how to perform efficient access control. A
read-only file system like CFS can implement access con-
trol by simply encrypting the file contents, and distribut-
ing the keys only to legal users of that file. Farsite per-
mits read/write operations by implementing access control
through a small collection of directory servers. The crucial
draw back with CFS is that it does not permit file write op-
eration; and that with Farsite is that it performs access con-
trol using a Byzantine-fault-tolerant protocol on a small set
of publicly known directory servers, and that it requires the
end user to be authenticated to the file system, say using
PKI based digital certificates.

4.2 Location Keys

One way to mitigate target file attacks is to hide the location
of the replicas of a file from an adversary. If the location
of a file were perfectly hidden then an adversary would not
be able to isolate any small subset of good nodes, attacking
whom guarantees that the target file is under attack. In the
following portions of this section we define location keys
and demonstrate the role of location keys in guarding a file
system from targeted file attacks.

Definition Lookup Algorithm: Lookup algorithm A : f →
loc maps a file f to its location loc on an overlay network.

3

Definition Location Key: A location key lk is a relatively
small amount (m-bit binary string, typically m = 128) of
information that is used by a Lookup algorithm A : (f, lk) →
loc to customize the transformation of a file into its location
such that,

1. Given the location key of a file, it is very easy to
locate the replicas of that file, that is, the lookup al-
gorithm A is inexpensive.

2. Without knowing the location key of a file, it is very
hard for an adversary to locate its replicas. Any ad-
versarial lookup algorithm B : f → {locs} such that
A(f, lk) ∈ B(f) is prohibitively expensive unless
|locs| is O(G), where G denotes the total number of
good nodes in the system.

Informally, location keys are keys with location hiding
property. Each file in the system is associated with a loca-
tion key that is kept secret by the users of that file. A loca-
tion key for a file f determines the locations of its replicas
in the overlay network. Analogous to traditional crypto-
graphic keys which make a file’s contents unintelligible, lo-
cation keys make the location of a file unintelligible. Prop-
erty 1 ensures that valid users can easily access a file f ; and
Property 2 ensures that illegal users would not even able to
locate the file on the overlay network, let alone access it.

We denote the cost of an adversarial lookup algorithm
as the minimum value of g such that Adv(g) ≥ thr, where
Adv(g) denotes the probability that cr or more replicas of
the target file are under attack when the adversary actually
launches attacks on g chosen good nodes and 0 < thr < 1
is a system wide security parameter. Note that larger the
value of threshold thr lower is the system’s security level.
When the location of the target file is known, Adv(g) =
1 for g ≥ cr. On the other hand, with a good location
hiding algorithm, one can ensure that Adv(g) ≥ thr if and
only if g is O(G). Informally, the cost of an attack when
file locations are publicly known is O(1); while that using
location keys scales linearly with G (O(G).

In the following portions of this paper, we address the
following issues. (i) How to choose a location key lk? (ii)
How to map a file f using its location key lk to its replica
holders? (iii) How to lookup the location of a file with-
out revealing its true identifier to the overlay network? (iv)
How to use location keys to perform efficient access con-
trol?

4.3 Designing Location Keys

Let user u be the owner of a file f . User u chooses a long
random bit string (128-bits) lk as the location key for file
f . The location key lk should be hard to guess; the key lk
should not be semantically attached (or derived) from the

file name (f) or the owner name (u). Owner u securely
distributes the location key lk only to those users who may
access the file f . We assume that the file name f , its owner
u and the valid users of file f are known to the adversary.
We discuss key security, key distribution and key manage-
ment issues in Section 6. The rest of this section focuses
on the definition and usage of location keys.

In order to hide file f , the user u derives the identifiers
of the replicas of file f as a pseudo-random function of
the filename f and the location key lk. Note that a DHT-
based system is capable of mapping identifiers to nodes that
participate in the overlay network. We propose that these
replica’s locations be identified by {Elk(f ‖ 0), Elk(f ‖
1), · · · , Elk(f ‖ R − 1)}, where Elk(x) denotes a keyed
pseudo-random function with input x and a secret key lk;
and ‖ denotes string concatenation. We require that the
function E satisfies the following properties:

1a. Given (f ‖ i) and lk it is very easy to compute
Elk(f ‖ i).

2a. Given (f ‖ i) it is very hard to obtain the identifier
Elk(f ‖ i) without knowing the location key lk.

2b. Given Elk(f ‖ i) it is very hard to obtain the identity
of file f .

2c. Given Elk(f ‖ i) and f it is very hard to obtain the
location key lk.

Note that the hardness in breaking a pseudo-random func-
tion is expressed in terms of its computational complexity.
Property 1a ensures that it is very easy for a valid user to
locate a file f as long as it is aware of the file’s location
key lk. From Property 2a, it is very hard for an adversary
to guess the location of a target file f without knowing its
location key. Property 2b ensures that even if an adversary
obtains an identifier Elk(f ‖ i), he/she cannot deduce the
identity of file f . Property 2c ensures that even if an adver-
sary obtains the identifiers of one or more replicas of file
f , he/she would not be able to derive the location key lk
from them. Hence, the adversary would still have no clue
about the remaining replicas of the target file f (Property
2a). Properties 2b and 2c play an important role because
some of the replicas of any file could be stored at malicious
nodes in the system; and hence, an adversary indeed could
be aware of some of the replica identifiers. Finally, observe
that Property 1a and Properties {2a, 2b, 2c} map to prop-
erties 1 and 2 respectively in Section 4.2.

There are a number of cryptographic tools that satis-
fies our requirements specified in properties 1a, 2a, 2b and
2c. Some possible candidates for the function E are (i) a
keyed-hash function like HMAC [7] 1, (ii) a symmetric key

1A keyed-hash function is a keyed one-way pseudo-random function
wherein the output of the function depends on the input and a secret key

4

encryption algorithm like DES [5] or AES [12], and (iii) a
PKI based encryption algorithm like RSA [10]. We chose
to use a keyed-hash function like HMAC because it can be
computed very efficiently (HMAC hashes can be computed
about 40 times faster than an AES encryption and about
1000 times faster than RSA encryption using the standard
OpenSSL library [13]). Note that the reversible mappings
(decryption algorithms) made possible by symmetric and
PKI based algorithms are not required for location hiding.
Keyed-hash functions are in some sense a minimal cover
of the properties warranted by our design. In the following
portions of this paper, we use khash to denote a keyed-
hash function that is used to derive a file’s replica identifiers
from its name and its secret location key.

4.4 Location Keys based File Access Control

In this section we show that one can use location keys to
design an efficient access control mechanism that permits
file read and write operations. Location key based access
control system does not directly authenticate the user at-
tempting to access a file. Instead, an user who presents
the correct token (a capability or a handle in Hydra [3]) is
permitted to access the file. We use the replica identifier
khashlk(f ‖ i) as the token for the ith replica of file f .
The file identifier perturbation technique (Section 4.5) per-
mits the users to perform lookups without revealing the file
capability/token to other nodes to the adversary.

Let us suppose a node r is responsible for storing the
ith replica of a file f . Internally, node r stores this file data
under a file name tk = khashlk(f ‖ i). Note that node r
does not have to know the actual file name (f) of a locally
stored file tk. Indeed, given the internal file name tk, node
r cannot guess its actual file name (from Property 2b of a
keyed-hash function).

When a good node r receives a read/write request on a
file tk it does the following. First, it checks if a file named
tk is present locally. If so, it blindly performs the requested
operation on the local file tk. Access control follows from
the fact that it is very hard for an adversary to guess correct
file tokens or infer them by observing the lookup traffic
on the overlay network (Section 4.5). If node r were bad,
then its response to a file read/write request is undefined.
Recall that we have always assumed that the replicas stored
at malicious nodes are under attack; hence, the fact that
the adversary is aware of the tokens of those file replicas
stored at malicious nodes or that a bad node’s action on file
read/write requests is undefined does not significantly harm
the system.

On the other hand, an adversary cannot access any replica
of file f stored at a good node simply because it cannot
guess the token khashlk(f ‖ i) (from Property 2a of the
keyed-hash function). However, when a good node is com-

promised an adversary would be able to directly obtain the
tokens for all files stored at that node. In general, an ad-
versary could compile a list of tokens as it compromises
more and more good nodes; and corrupt the file replicas
corresponding to these tokens at any later point in time.
We condone compromised file tokens based attacks using a
location re-keying technique described in Section 5.3.

4.5 Lookup Using File Identifier Perturba-
tion

We have so far presented techniques to derive a file’s replica
identifiers from its location key. In this section, we present
the lookup algorithm, namely A(f, lk), used by a loca-
tion keys based file system. We cannot use the unmodi-
fied Chord lookup algorithm because the lookup operation
proceeds through a sequence of hops which might include
malicious nodes; and revealing the file capabilities to these
malicious nodes is a serious security breach because we use
them to perform access control (see Section 4.4). Note that
capability-based access control in Operating Systems (like
Hydra [3]) relies either on a trusted hardware or a trusted
OS kernel to perform a lookup, that is, retrieve the object
that is associated with the capability. This section develops
techniques to locate a replica on the overlay network with-
out revealing its actual identifier (its capability) to other
nodes on the overlay network.

When an user intends to query for some identifier id =
khashlk(f ‖ i) (for some 1 ≤ i ≤ R), the user actually
performs a lookup on a perturbed identifier id′ = id −4,
where 4 denotes a random perturbation added to the iden-
tifier id. The probability distribution for the random vari-
able 4 is chosen such that: (i) with high probability if the
result of a lookup on identifier id is node r, then the result
of a lookup on the identifier id′ is also node r, and (ii) given
a perturbed identifier id′ it is very hard for an adversary to
guess the actual identifier id. Recall that the mean size of
the identifier space assigned to any node is approximately
2128/N ≈ 2108 for N = 1 million nodes (see Chord [19]).
This makes it possible for a query identifier to be perturbed
and yet yield the same result. Now, the user would present
the actual identifier id only to node r and not to any inter-
mediary node along the lookup path to node r. If node r
were malicious then it already aware of the file identifier id
and hence it does not obtain any more information. If node
r were good then it becomes almost impossible for an ad-
versary to collect file tokens by observing lookup queries
on the overlay network.

Now, we focus our attention on the following issues. (i)
What is a safe range from which the perturbation parameter
4 is chosen? (ii) What happens if a perturbation is unsafe?
(iii) Given a safe range, how to choose 4 each time a node
wishes to perturb an identifier? We use theorem 4.1 to an-

5

swer the first issue.

Theorem 4.1 Let node r be the node that is the imme-
diate predecessor for an identifier id on the Chord ring.
Let dist(x, y) denote the distance between two identifiers
x and y on a Chord’s unit circle. Let ID(r) denote the
identifier of the node r. Let N denote the total number of
nodes in the system. Then, the probability that the distance
between identifiers id and ID(r) exceeds thr

N
is given by

Pr(dist(k, ID(r)) > thr
N

) = e−thr.

Proof Let Z be a random variable that denotes the distance
between a key k and node r be the immediate predecessor
of the identifier id. Let fZ(x) denote the probability distri-
bution function (pdf) that the node r is at a distance of x (on
Chord’s unit circle, 0 ≤ x ≤ 1) from the identifier id, i.e.,
dist(ID(r), id) = x. Then fZ(x) is given by Equation 1.

fZ(x) = N ∗ (1 − x)N−1 (1)

By the uniform and random distribution properties of the
hash function the identifier of a node will be uniformly and
randomly distributed between (0, 1). Hence, the probability
that the identifier of any node falls in a segment of length
x is equal to x. Equation 1 follows from the fact that the
probability that there exists a node between distance x and
x+dx from identifier id is N ∗dx, and the probability that
there is no other node within a distance x from identifier
id is (1 − x)N−1. Using the probability density function
in Equation 1 one can derive the cumulative distribution
function (cdf), Pr(Z > thr

N
) = e−thr.

We use Theorem 4.1 to choose an appropriate thresh-
old thr that bounds the perturbation 4. Let sq be a sys-
tem defined parameter which denotes the minimum prob-
ability that a lookup on the actual identifier and the per-
turbed identifier results in the same physical node. Given
sq, one could compute a sq-safe threshold thrsafe from
e−thrsafe = sq, i.e., thrsafe = − loge(sq). The thresh-
old thrsafe is said to be sq-safe since with a probability sq

a perturbation 4 =
thrsafe

N
results in a perturbed identi-

fier that is assigned to the same physical node as the actual
identifier. Therefore, a safe range for file identifier pertur-
bation would be (0,

thrsafe

N
). For instance, when we set

sq = 1 − 2−20 and N = 1 million nodes (thrsafe =
2−20), 4 could be chosen from a range of size rg = 2128 ∗
thrsafe

N
= 2128 ∗ 2

−20

220 = 288.

Now we address the second issue, namely, handling un-
safe perturbations. Note that there is small (yet, non-zero)
probability that perturbed identifier is not safe. If the user
were not careful, the file identifier (token) might be ex-
posed to some other node r′ 6= r (where r′ is the result of a
lookup operation on an unsafe perturbed identifier id′). In

rr’

idid’1

id’2

Figure 1: Lookup Using File Identifier Perturbation: Let id be
the actual file identifier and the result of a lookup on identifier id

results in node r (lookup(id) = r). Identifier id′1 is a safe
perturbation of identifier id because,

lookup(id′

1) = lookup(id) = r. Identifier id′2 is an unsafe
perturbation of identifier id because, lookup(id′2) = r′ 6= r.

However, perturbed identifier id′2 can be detected to be unsafe
because ID(r′) < id.

particular, if r′ were malicious, then it could misuse this in-
formation to corrupt the file replica stored at node r. How-
ever, one can verify whether a perturbed identifier is safe or
not using the following check: A perturbed identifier id′ is
safe if and only if id ≤ ID(r′). Since id′ ≤ id ≤ ID(r′),
node r′ should be the immediate successor of identifier id
and thus be responsible for it. If id > ID(r′) then node
r′ is definitely not a successor of identifier id and can be
flagged as an unsafe perturbation. If a perturbed identi-
fier turns out to be unsafe, the user might have to retry the
lookup operation with a new perturbed identifier. Since, the
probability of an unsafe perturbation is extremely small, we
found from our experiments that the number of retries re-
quired is almost always zero and seldom exceeds one. Fig-
ure 1 summarizes our errorless probabilistic algorithm for
file identifier perturbation.

Now, we address the third issue. Given a safe range
(0, rg) (rg = 288 in the example discussed above) 4 is
chosen as follows. In general one could use any probabil-
ity density function over the range to pick 4 each time a
node wishes to perturb a file identifier. We propose that
4 be picked using a uniform and random distribution over
the range rg. In fact, if one uses uniform and random dis-
tribution, given a perturbed identifier id′ the adversary can
infer nothing more than the fact that the actual file identi-
fier lies in the range (id′, id′ + rg). Using any other dis-
tribution would permit an adversary to statistically identify
sub-ranges in (id′, id′ + rg) that are more likely to contain
the actual file identifier. For instance, if one used an Geo-
metric distribution to draw 4 from (0, rg) then, the prob-
ability that the actual file identifier equals x monotonically
decreases as x varies from id′ to id′ + rg.

In summary, by choosing 4 uniformly and randomly
over a huge safe range, we make it practically infeasible for
an adversary to guess the actual identifier from a perturbed
identifier. In the next section, we analytically show the
hardness of breaking our file identifier perturbation tech-
nique.

6

4.6 Range Sieving Attack

In this section, we present a range sieving attack on per-
turbed file identifiers. The aim of this attack is to deduce
the target file identifier (or a small range within which the
target file identifier lies) from the perturbed identifiers. We
use the range sieving attack to formally quantify the hard-
ness of breaking our perturbation technique.

When an adversary obtains a perturbed identifier id′, the
adversary knows that the actual capability id is definitely
within the range RG = (id′, id′ + rg), where rg denotes
the maximum perturbation that could be sq−safely added
to a query identifier (rg = 288 in the example discussed in
Section 4.5). In fact, given a perturbed identifier id′, the
adversary knows nothing more than the fact that the actual
identifier id could be uniformly and distributed over the
range RG = (id′, id′ + rg). However, when the adversary
obtains multiple perturbed identifiers that belong to a target
file, the adversary can sieve the identifier space as follows.
Let RG1, RG2, · · · , RGnid denote the ranges correspond-
ing to nid random perturbations on the identifier id. Then
the capability of the target file is guaranteed to lie in the
sieved range RGs = ∩nid

j=1RGj . Intuitively, if the num-
ber of identifiers nid increases, the size of the sieved range
RGs decreases. Theorem 4.2 shows the relationship be-
tween the sieved range RGs and the number of perturbed
identifiers nid.

Theorem 4.2 Let nid denote the number of perturbed iden-
tifiers that correspond to a target file. Let RGs denote the
sieved range using the range sieving attack. Let rg denote
the maximum perturbation that could be sq−safely added
to a file identifier. Then, the expected size of range RGs is
given by E[|RGs|] = rg

nid
.

Proof Let id′

max = id −4max and id′

min = id −4min

denote the minimum and the maximum value of a perturbed
identifier that has been obtained by an adversary. Then,
the sieved range RGs = (id′

min, id′

max + rg), namely,
from the highest lower bound to the lowest upper bound.
The sieved range RGs can be partitioned into two ranges
RGmin and RGmax, where RGmin = (id′

min, id) and
RGmax = (id, id′

max + rg).

The size of the range RGmin is |RGmin| = id−id′

min =
4min. The cumulative distribution function of 4min is
given by Equation 2.

Pr(4min > x) =

(

1 −
x

rg

)nid

(2)

Since a perturbation 4 is chosen uniformly and randomly
over a range (0, rg), the probability any perturbation 4 is
greater than x is Pr(4 > x) = 1 − x

rg
. Hence, the prob-

ability that 4min = min{41,42, · · · ,4nid} is greater

1 − sq 2−10 2−15 2−20 2−25 2−30

rg 298 293 288 283 278

hardness (years) 238 233 228 223 218

Table 1: Hardness of breaking the perturbation scheme with
N = 1 million nodes, sq = 1 − 2−20 safety and nid = 225

perturbed identifiers

than x is Pr(4min > x) = Pr((41 > x) ∧ (42 >

x)∧ · · · ∧ (4nid > x)) =
∏nid

j=1
Pr(4j > x). Now, using

standard techniques from probability theory, the expected
value of 4min is E[|RGmin|] = E[4min] ≈ rg

nid
. Sym-

metrically, one can show that the expected size of range
RGmax is E[|RGmax|] ≈

rg
nid

. Hence the expected size of
sieved range is E[RGs] = E[RGmin]+E[RGmax] ≈ rg

nid
.

The range sieving attack makes it easier for an adversary
to obtain the file identifier, when compared to a brute force
attack on the entire range of size rg. Note that in a brute
force attack, if an adversary obtains nid perturbed identi-
fiers then the expected size of range left to be attacked is
|RGs| = rg − nid. However, even with range sieving at-
tack it is practically infeasible for an adversary to obtain
the file capability. Let the maximum perturbation rg = 288

(using the same settings for the probability of a safe query
(sq) and the number of nodes (N) in Section 4.5). Let us
suppose that the target file is accessed once a second for
one year; this results in 225 file accesses. An adversary
who logs perturbed identifiers over an year could sieve the
range to about E[RGs] = 263. Assuming that the adver-
sary performs a brute force attack on the sieved range, by
attempting a file read operation at the rate of one a mil-
lisecond, then it would take the adversary about 228 years
to discover the actual file identifier. Table 1 summarizes the
hardness of breaking the perturbation scheme for different
values of sq (maximum probability of safe perturbation) as-
suming that the adversary has logged 225 file accesses (one
access per second for one year) and that the nodes permit
not more one file access per millisecond.

An interesting observation that follows from the above
discussion is that, amount of time taken to break the file
identifier perturbation technique is almost independent of
the number of attackers. This because the time taken for a
brute force attack on a file identifier is fundamentally lim-
ited by the rate at which a hosting node permits accesses on
files stored locally. On contrary, a brute force attack on a
cryptographic key is inherently parallelizable and thus be-
comes more powerful as the number of attackers increases.
Nonetheless, cryptographic algorithms like HMAC, AES
and ElGamal are not vulnerable to the range sieving attack.

7

5 Countering Common Inference At-
tacks

We have discussed location key based schemes to effec-
tively hide files on an overlay network. We achieve strong
hiding properties by associating each file with a small lo-
cation key that is kept secret by the users of that file. The
properties of location keys ensure that an user who knows
a file’s location key can easily locate it; the location of a
file is otherwise unintelligible for an adversary.

In this section, we present two common inference at-
tacks: passive inference attacks and host compromise based
inference attacks; and propose techniques to mitigate them.
Inference attacks refer to those attacks wherein an adver-
sary attempts to infer the location of a file using indirect
techniques. Passive inference attacks refer to those attacks
wherein an adversary attempts to infer the location of a tar-
get file by passively observing the file system. Host com-
promise based inference attacks require the adversary to
perform an active host compromise attack before it can in-
fer the location of a target file. In the following portions of
this section, we study three passive inference attacks and
two host compromise based inference attacks on a location
keys based file system. It is very important to note that that
none of the inference attacks described below would be ef-
fective in the absence of collusion among malicious nodes.

5.1 Passive Inference Attacks

Our first attack is based on the ability of malicious nodes to
observe the frequency of lookup queries on the overlay net-
work; more specifically, malicious nodes may log lookup
queries routed through them and send them to an adversary.
Assuming that the adversary knows the relative file popu-
larity, it can perform a lookup frequency inference attack.
We also study two other potentially possible inference at-
tacks on location keys:end-user IP-address inference attack
and file access pattern inference attack.

5.1.1 Lookup Frequency Inference Attack

In this section we present lookup frequency inference at-
tack that would help a strategic adversary to infer the lo-
cation of a target file on the overlay network. It has been
observed that the general popularity of the web pages ac-
cessed over the Internet follows a Zipf-like distribution [22].
An adversary may study the frequency of file accesses by
sniffing lookup queries and match the observed file access
frequency profile with a actual (pre-determined) frequency
profile to infer the location of a target file 2. Note that if
the frequency profile of the files stored in the file system is
flat (all files are accessed with the same frequency) then an

2This is analogous to performing a frequency analysis attack on old
symmetric key ciphers like the Caesar’s cipher [21]

adversary will not be able to infer any information. Lemma
5.1 formalizes the notion of perfectly hiding a file from fre-
quency inference attack.

Lemma 5.1 Let F denote the collection of files in the file
system. Let λ′

f denote the apparent frequency of accesses
to file f as perceived by an adversary. Then, the collection
of files are perfectly hidden from frequency analysis attack
if λ′

f = c : ∀f ∈ F and some constant c.

A collection of read-only files can be perfectly hidden
from frequency inference attack. Let λf denote the actual
frequency of accesses on a file f . Set the number replicas
for file f to be proportional to its access frequency, namely
Rf = 1

c
∗ λf (for some constant c > 0). When a user

wishes to read the file f , the user randomly chooses one
replica of file f and issues a lookup query on it. From an
adversary’s point of view it would seem that the access fre-
quency to all the read-only files in the system is identical
(λ′

f =
λf

Rf
= c). By Lemma 5.1, an adversary would not be

able to derive any useful information from a frequency in-
ference attack. Interestingly, this replication strategy also
improves the performance and load balancing aspects of
the file system. However, it is not applicable to read-write
files since an update operation on a file may need to update
all the replicas of a file. In the following portions of this
section, we propose two techniques to flatten the apparent
frequency profile of read/write files.

Defense by Result Caching
The first technique to mitigate the frequency inference at-
tack is to perturb the apparent file access frequency with
lookup result caching. Lookup result caching, as the name
indicates, refers to caching the results of a lookup query.
Recall that wide-area network file systems like CFS, Farsite
and OceanStore permit nodes to join and leave the over-
lay network. Let us for now consider only node depar-
tures. Consider a file f stored at node n. Let λf de-
note the rate at which users accesses the file f . Let µdep

denote the rate at which a node leaves the overlay net-
work (rates are assumed to be exponentially distributed).
The first time the user accesses the file f , the lookup re-
sult (namely, node n) is cached. The lookup result is im-
plicitly invalidated when the user attempts to access file
f the first time after node n leaves the overlay network.
When the lookup result is invalidated, the user issues a
fresh lookup query for file f . One can show that the ap-
parent frequency of file access as observed by an adversary
is λ′

f =
λf µdep

λf+µdep
. The probability that any given file ac-

cess results is a lookup is equal to the probability that the
node responsible for the file leaves before the next access
and is given by Prlookup =

µdep

λf+µdep
. Hence, the apparent

file access frequency is equal to the product of the actual

8

file access frequency (λf) and the probability that a file ac-
cess results in a lookup operation (Prlookup). Intuitively,
in a static scenario where nodes never leave the network
(µdep � λf), λ′

f ≈ µdep; and when nodes leave the net-
work very frequently (µdep � λf), λ′

f ≈ λf . Hence, more
static the overlay network is, harder it is for an adversary
to perform a frequency inference attack since it would ap-
pear as if all files in the system are accessed at an uniform
frequency µdep.

It is very important to note that a node m storing a file
f may infer its name since the user has to ultimately access
node m to operate on file f . Hence, an adversary may infer
the identities of files stored at malicious nodes. However,
it would be very hard for an adversary to infer files stored
at good nodes.

Defense by File Identifier Perturbation
The second technique that makes the frequency inference
attack harder is based on the file identifier perturbation tech-
nique described in Section 4.5. Let f1, f2, · · · , fnf denote
the files stored at some node n. Let the identifiers of these
replicas be id1, id2, · · · idnf . Let the target file be f1. The
key idea is to perturb the identifiers such that an adversary
would not be able to distinguish between a perturbed iden-
tifier intended for locating file f1 and that for some other
file fj (2 ≤ j ≤ nf) stored at node n.

More concretely, when a user performs a lookup for f1,
the user would choose some random identifier in the range
R1 = (id1 −

thrsafe

N
, id1). A clever adversary may cluster

identifiers based on their numerical closeness and perform
a frequency inference attack on these clusters. However,
one could defend the system against such a clustering tech-
nique by increasing the perturbation added to identifiers.
Figure 2 presents the key intuition behind this idea dia-
grammatically. As the range R1 overlaps with the ranges
of more and more files stored at node n, the clustering
technique and consequently the frequency inference attack
would perform poorly. Let R1 ∩R2 denote the set of iden-
tifiers that belongs the intersection of ranges R1 and R2.
Then, given an identifier id ∈ R1∩R2, an adversary would
not able to distinguish whether the lookup was intended for
file f1 or f2; but the adversary would definitely know that
the lookup was intended either for file f1 or f2. Observe
that amount of information inferred by an adversary be-
comes poorer and poorer as more and more ranges overlap.
Also, as the number of files (nf) stored at node n increases,
even a small perturbation might introduce significant over-
lap between ranges of different files stored at node n.

The apparent access frequency of a file f is computed
as a weighted sum of the actual access frequencies of all
files that share their range with file f . For instance, the
apparent access frequency of file f1 (see Figure 2) is given

Figure 2: Countering Frequency Analysis Attack by adding more
4. X1X2, Y1Y2 and Z1Z2 denote the ranges of the perturbed

identifiers of files f1, f2, f3 stored at node n. Frequency
inference is very effective in scenario (i), but largely ineffective
in scenario (ii). Given an identifier id ∈ Y1Z1, it is hard for an

adversary to guess whether the lookup was intended for file f1 or
f2.

by Equation 3.

λ
′

f1
=

X1Y1 ∗ λf1
+ Y1Z1 ∗

(

λf1
+λf2
2

)

+ Z1X2 ∗

(

λf1
+λf2

+λf3
3

)

thrsafe

(3)

Clearly, the apparent access frequency of a file evens out
the sharp variations between the frequencies of different
files stored at a node, thereby making frequency inference
attack significantly harder. We discuss more on how to
quantify the effect of this perturbation on frequency infer-
ence attack in our experimental section 7.

5.1.2 Other Passive Inference Attacks

In this section we highlight two other potentially possible
passive inference attacks: (i) end-user IP-address inference
attack, and (ii) file access pattern inference attack.

The first attack is based on the assumption that the iden-
tity of an end-user can be inferred from his/her IP-address.
An user typically locate their files on the overlay network
by issuing a lookup query to some node r on the overlay
network. If node r were malicious then it may log the file
identifiers looked up by an user. Assuming that a user ac-
cesses only a small subset of the total number of files on the
overlay network (including the target file) the adversary can
narrow down the set of nodes on the overlay network that
may potentially hold the target file.

One possible solution is for users to issue lookup queries
through a trusted anonymizer. The anonymizer accepts lookup
queries from users and dispatches it to the overlay net-
work without revealing the user’s IP-address. However, the
anonymizer node could itself become a viable target for the
adversary. The second and a more promising solution is for
the user to join the overlay network (just like other nodes
hosting files on the overlay network). When the user issues
lookup queries, it is routed through some of its neighbors;

9

if some of its neighbors are malicious, then they may log
these lookup queries. However, it is a non-trivial task for
an adversary to distinguish between the queries that origi-
nated at the user and those that were simply routed through
it.

The second attack is based on file access pattern. For
instance, let us suppose that a target file is usually accessed
at 9:30am every day (the target file may have its own fin-
gerprint access pattern that uniquely identifies it). An ad-
versary may log all lookups made between 9:28am and
9:30am. This would help an adversary to narrow down the
possible identities of the target file. Further, if an adversary
repeats this attack over a couple of days, then the chance of
identifying the target file improves; while the target file is
accessed everyday at 9:30am, the rest of the files accessed
on one day at 9:30am are probably not accessed on other
days. We acknowledge that such attacks are in general
hard to be defended. However, we believe that such at-
tacks are not applicable to a vast majority of files stored on
the overlay network. We propose location re-keying 5.3 as
a technique to mitigate both known and unknown inference
attacks.

5.2 Host Compromise based Inference Attacks

In this section, we discuss two host compromise based in-
ference attacks. Recall that when an adversary compro-
mises a good node, the internal state of that node is com-
pletely exposed to the adversary. An adversary can pool
information from such compromised nodes to perform in-
ference attacks. In this section, we present file replica in-
ference attack and file size inference attack

5.2.1 File Replica Inference Attack

Despite making the file capabilities and file access frequen-
cies appear random to an adversary, the contents of a file
could by itself reveal the identity of the file f . The file
f could be encrypted to rule out the possibility of identi-
fying a file from its contents. Even when the replicas are
encrypted, the fact that all the replicas of file f are identi-
cal. When an adversary compromises a good node, it can
extract a list of identifier and file content pairs (or a hash
of the file contents) stored at that node. Note that an ad-
versary could perform a frequency inference attack on the
replicas stored at malicious nodes and infer their filenames.
Hence, if an adversary were to obtain the encrypted con-
tents of one of the replicas of a target file f , he/she could
examine the extracted list of identifiers and file contents to
obtain the identities of other replicas. This attack is espe-
cially more plausible on read-only files since their contents
do not change over a long period of time. The update fre-
quency on read-write files might guard them file replica in-
ference attack. For read-only files, one could easily make
the replicas non-identical by encrypting each replica with

a different cryptographic key. In our experimental section,
we study the probability of a successful attack using file
replica inference analysis attack for varying file update fre-
quencies.

5.2.2 File Size Inference Attack

File size inference attack is based on the assumption that an
adversary might be aware of the target file’s size. Malicious
nodes (and compromised nodes) report the size of the files
stored at them to an adversary. If the sizes of files stored on
the overlay network follow a skewed distribution, the ad-
versary would be able to identify the target file (much like
the lookup frequency inference attack). One can mitigate
this attack by fragmenting files into multiple file blocks of
equal size. For instance, CFS divides files into blocks of
8KBytes each and stores each file block separately. We
could hide the location of the jth block in the ith replica
of file f using a location key lk as khashlk(f ‖ i ‖ j).
Now, since all file blocks are of the same size, it would be
vary hard for an adversary to perform file size inference
attack. It is interesting to note that file blocks are also use-
ful in minimizing the communication overhead for small
reads/writes on large files.

5.3 Location Re-Keying

In addition to the inference attacks discussed in this paper,
there could be other possible inference attacks on a loca-
tion key based file system. Further, when a malicious node
compromises a node, an adversary can obtain all file tokens
stored at that node; the adversary may also use the compro-
mised node to perform inference attacks. In course of time
the adversary might be able to gather enough information
to attack a target file.

To mitigate this virtually unpreventable leakage of in-
formation, users need to periodically choose new location
keys so as to render all past inferences made by the ad-
versary useless. This is analogous to periodic re-keying of
cryptographic keys. Unfortunately, re-keying is an expen-
sive operation: re-keying cryptographic keys requires data
to be re-encrypted; re-keying location keys requires files
to be relocated on the overlay network. Hence, it is impor-
tant to keep the re-keying frequency small enough to reduce
performance overheads and large enough to secure files on
the overlay network.

There are two fundamentally different ways to imple-
ment location re-keying. (i) At periodic time instants, all
the files stored on the overlay network are re-keyed. (ii)
Each file in the system is independently re-keyed. The
first technique causes heavy bursts in network traffic and it
forces all files to be re-keyed with the same periodicity. On
the other hand, the second technique does not cause huge
bursts in network traffic. Also, it permits critical files to

10

be re-keyed more frequently than relatively less important
files. In our experiments section, we estimate the period-
icity with which location keys have be changed in order to
reduce the probability of a successful attack on a target file.

6 Discussion
In our discussion so far, we have defined and demonstrated
the usage of location keys. In this section, we briefly ex-
plore the key security, distribution and management aspects
of location keys.

Key Security. We have assumed that it is the responsibility
of the users to secure location keys from an adversary. If
an user has to access 1000s of files then the user must be
responsible for the secrecy of 1000s of location keys. One
viable solution would be compile all location keys into one
keys-file, encrypt the file and store it on the overlay net-
work. The user now needs to keep only one location key
that corresponds to the keys-file secret. This 128-bit loca-
tion key could be protected using untamparable hardware
devices, smartcards, etc.

Key Distribution. Secure distribution of keys has been
a major problem in large scale distributed systems. The
problem of distributing location keys is very similar to that
of distributing cryptographic keys. Traditionally, keys have
been distributed using out-of-band techniques. For instance,
one could use PGP [15] based secure email service to trans-
fer location keys from a file owner to file users.

Key Management. Managing location keys becomes as
important issue when (i) an owner owns several thousand
files, and (ii) the set of legal users for a file varies signifi-
cantly with time. When the number of files owned becomes
very large, the file owner may choose to group files and as-
sign one location key for a group of files. Frequent changes
to group membership could seriously impede the system’s
performance.

The major overhead for location keys arises from key
distribution and key management. Also, location re-keying
could be an important factor; frequent changes to the list of
legal users who are permitted to access a file can further ex-
acerbate this situation. Key security, distribution and man-
agement that leverage additional properties of location keys
are a part of our ongoing research work. There are other
issues that we have not addressed in this paper. Using a
capability-based access control mechanism we run into the
problem of a valid user illegally distributing the capabilities
(tokens) to an adversary. In this paper we assume that all
valid users are well behaved. Also, we do not address the
robustness of the lookup protocol or the overlay network in
the presence of malicious nodes; these issues are addressed
else where [18].

7 Experimental Evaluation
In this section, we report results from our simulation based
experiments to evaluate location keys approach for building
secure wide-area network file systems. We implemented
our simulator using a discrete event simulation [5] model.
Our system comprises of about N = 1024 nodes; a random
p = 10% of them are chosen to behave maliciously. We im-
plemented the Chord lookup protocol [19] on the overlay
network compromising of these nodes. We set the number
of replicas of a file to be R = 7 and vary the corruption
threshold cr in our experiments. Recall that our adversary
model in Section 3 models malicious nodes as powerful
nodes but with bounded resources. We use the parameter
α as an upper bound on the number of nodes on whom a
malicious node can perform a DoS attack. The parameter λ
(measured in number of node compromises per unit time)
limits rate at which a malicious node can compromise other
good nodes in the system. The parameter µ (measured in
number of node recoveries per unit time) limits the rate
at which a compromised node can recover to an uncom-
promised state. In the following portions of this section,
we present results from two sets of experiments. The first
set shows the robustness of location key based techniques
(Section 4) in countering targeted attacks. We measure ro-
bustness in terms of the effort required for an adversary to
attack a target file on the overlay network. The second set
of experiments shows the effectiveness of our solutions that
prevent inference attacks (Section 5).

7.1 Location Keys

Operational Overhead.3 We first quantify the performance
and storage overheads incurred by location keys. Let us
consider a typical file read/write operation. The operation
consists of the following steps: (i) generate the file replica
identifiers, (ii) lookup the replica holders on the overlay
network, and (iii) process the request at the replica holders.
Step (i) using location keys requires computations using the
keyed-hash function, which otherwise would have required
computations using a normal hash function. We found that
the computation time difference between HMAC (a keyed-
hash function) and MD5 (normal hash function) is negligi-
bly small (order of a few microseconds) using the standard
OpenSSL library [13]. Step (ii) involves a pseudo-random
number generation (few microseconds using the OpenSSL
library) and may require lookups to be retried in the event
that the perturbed identifier turns out to be unsafe. Given
that unsafe perturbations are extremely rare (one in a mil-
lion in our example in Section 4.5) retries are occasionally
required and thus they add virtually no overhead to the sys-
tem. Step (iii) adds no overhead because our access check

3As measured on a 900 MHz Intel Pentium III processor running Red-
Hat Linux 9.0

11

is virtually free. As long as the user can present the correct
filename (token), the replica holder would honor a request
on that file.

Now, let us compare the storage overhead at the users
and the nodes that are a part of the overlay network. Users
need to store an additional 128-bit location key along with
other file meta-data. Even an user who uses 1 million files
on the overlay network needs to store an additional 16MBytes
of location keys. Further, there is no additional storage
overhead on nodes that are a part of the overlay network.
Note that one can continue to use the same number of repli-
cas for reliability purposes.

Denial of Service Attacks. Figure 3 shows the probability
of an attack for varying α and different values of corrup-
tion threshold (cr) (see Adv(g) in Section 4.2). Without
the knowledge of the location of file replicas an adversary
is forced to attack (DoS) a random collection of nodes in
the system and hope that that at least cr replicas of the tar-
get file is attacked. Observe that if the malicious nodes are
more powerful (larger α) or if the corruption threshold cr
is very low, then the probability of an attack increases. If
an adversary were aware of the R replica holders of a tar-
get file then: (i) a weak collection of B malicious nodes
(B = 10% of N = 102) with α = R

B
≈ 7

102
= 0.07 can

easily attack the target file, or (ii) for a file system to handle
α = 1, it would require as large 100+ replicas to be main-
tained for each file. In this case, the effort required by an
adversary to attack a target file is dependent on R, but in-
dependent of the number of good nodes in the system. On
contrary, location key based techniques scale the hardness
of an attack with the number of good nodes in the system.

Host Compromise Attacks. Second, we evaluate location
keys against host compromise attacks. Our first experiment
on host compromise attack shows the probability of a suc-
cessful attack on the target file assuming that the adversary
does not collect capabilities (tokens) stored at the compro-
mised nodes. Hence, the target file is successfully attacked
if cr or more of its replicas are stored at either malicious
nodes or compromised nodes. Figure 4 shows the proba-
bility of an attack for different values of corruption thresh-
old (cr) and varying ρ = µ

λ
(measured in number of node

recoveres per node compromise). We ran the simulation
for a duration of 100

λ
time units. Recall that 1

λ
denotes the

mean time required for one malicious node to compromise
a good node. Note that if the simulation were run for infi-
nite time then the probability of attack is always one. This
is because, at some point in time, cr or more replicas of a
target file would be assigned to malicious nodes (or com-
promised nodes) in the system.

When ρ ≤ 1 the system is highly vulnerable; with high
probability the target file can be attacked by an adversary.
In contrast to the DoS attack that could tolerate powerful

ρ 0.5 1.0 1.1 1.2 1.5 3.0
G′ 0 0 0.05 0.44 0.77 0.96

Table 2: Mean Fraction of Good Nodes in an Uncompromised
State (G′)

ρ 0.5 1.0 1.1 1.2 1.5 3.0
Re-keying Interval 0 0 0.43 1.8 4.5 6.6

Table 3: Time Interval between Location Re-Keying (normalized
by 1

λ
time units)

malicious nodes (α > 1), the host compromise attack can-
not tolerate a situation wherein the node compromise rate
is higher than its recover rate (ρ ≤ 1). This is primarily
because of the cascading effect of host compromise attack.
Larger the number of compromised nodes, higher is the rate
at which other good nodes are compromised (see the adver-
sary model in Section 3). Table 2 shows the mean fraction
of good nodes (G′) that are in an uncompromised state for
different values of ρ.

As we have mentioned in Section 4.4, the adversary
could collect the capabilities (tokens) of the files stored at
compromised nodes; these tokens can be used by the adver-
sary at any point in future to corrupt the files using a sim-
ple write operation. Hence, our second experiment on host
compromise attack measures the probability of a attack as-
suming that the adversary collects the file tokens stored at
compromised nodes. Figure 5 shows the mean effort re-
quired to locate all the replicas of a target file (cr = R).
The effort required is expressed in terms of the fraction of
good that need to be compromised by the adversary to at-
tack the target file.

Note that in the absence of location keys, an adversary
needs to compromise at most R good nodes. Clearly, lo-
cation key based techniques increase the required effort by
several orders of magnitude. For instance, when ρ = 3,
an adversary has to compromise 70% of the good nodes in
the system before improving the probability of a successful
attack to a nominal value of 0.1 even under the assump-
tion that an adversary collects file capabilities from com-
promised nodes. Note that if an adversary compromises
every good node in the system once, it gets to know the
tokens of all files stored on the overlay network. In Sec-
tion 5.3 we had proposed location re-keying to protect the
system from such attacks. Periodicity of location re-keying
can be derived from Figure 5. For instance, when ρ = 3, if
a user wants to retain the attack probability below 0.1, the
time interval between re-keying should equal the amount
of time it takes for an adversary to compromise 70% of the
good nodes in the system. Table 3 shows the time taken
(normalized by 1

λ
) for an adversary to increase the attack

probability on a target file to 0.1 for different values of ρ.
Observe that if ρ increases, location re-keying can be more
and more infrequent.

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 3 3.5 4 4.5 5 5.5 6 6.5 7

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l A
tta

ck

Corruption Threshold (cr)

α = 0.5
α = 1.0
α = 2.0
α = 4.0

Figure 3: Probability of a Successful Target
File Attack for N = 1024 nodes and R = 7

using DoS Attack

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 3 3.5 4 4.5 5 5.5 6 6.5 7

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l A
tta

ck

Corruption Threshold (cr)

ρ = 1.1
ρ = 1.2
ρ = 1.5
ρ = 3.0

Figure 4: Probability of a Successful Target
File Attack for N = 1024 nodes and R = 7

using Host Compromise Attack (with no
token collection)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l A
tta

ck

Fraction of Good Nodes Compromised

ρ = 1.1
ρ = 1.2
ρ = 1.5
ρ = 3.0

Figure 5: Probability of a Successful Target
File Attack for N = 1024 nodes and R = 7
using Host Compromise Attack with token

collection from compromised Nodes

7.2 Inference Attacks

In this section we experimentally measured the effective-
ness of our solutions against the lookup frequency infer-
ence attack and the file replica inference attack.

Lookup Frequency Inference Attack. We have presented
lookup result caching and file identifier perturbation as two
techniques to thwart frequency inference attack. Recall that
our solutions attempt to flatten the frequency profile of files
stored in the system (see Lemma 5.1). Note that we do not
change the actual frequency profile of files; instead we flat-
ten the apparent frequency profile of files as perceived by
an adversary. We assume that files are accessed in propor-
tion to their popularity. File popularities are derived from
a Zipf-like distribution [22], wherein, the popularity of the
ith most popular file in the system is proportional to 1

iγ

with γ = 1.

Our first experiment on inference attacks shows the ef-
fectiveness of lookup result caching in mitigating frequency
analysis attack by measuring the entropy [11] of the appar-
ent frequency profile (measured as number of bits of in-
formation). Given the apparent access frequencies of F
files, namely, λ′

f1
, λ′

f2
, · · · , λ′

fF
, the entropy S is computed

as follows. First the frequencies are normalized such that
∑F

i=1
λ′

fi
= 1. Then, S = −

∑F
i=1

λ′

fi
∗ log2 λ′

fi
. When

all files are accessed uniformly and randomly, that is, λ′

fi
=

1

F
for 1 ≤ i ≤ F , the entropy S is maximum Smax =

log2 F . The entropy S decreases as the the access profile
becomes more and more skewed. Note that if S = log2 F ,
no matter how clever the adversary is, he/she cannot derive
any useful information about the files stored at good nodes
(from Lemma 5.1). Table 4 shows the maximum entropy
(Smax) and the entropy of a zipf-like distribution (Szipf)
for different values of F . Note that with every additional
bit of entropy, doubles the effort required for a successful
attack; hence, a frequency inference attack on a Zipf dis-
tributed 4K files is about 19 times (212−7.75) easier than the
ideal scenario where all files are uniformly and randomly
accessed.

F 4K 8K 16K 32K
Smax 12 13 14 15
Szipf 7.75 8.36 8.95 9.55

Table 4: Entropy (in number of bits) of a Zipf-distribution
µdep 0 1/256 1/16 1 16 256 ∞

S 15 12.64 11.30 10.63 10.00 9.71 9.55

Table 5: Countering Lookup Frequency Inference Attacks
Approach I: Result Caching (with 32K files)

Table 5 shows the entropy of apparent file access fre-
quency as perceived by an adversary when lookup result
caching is employed by the system for F = 32K files. We
assume that the actual access frequency profile of these files
follows a Zipf distribution with the frequency of access to
the most popular file (f1) normalized to one access per unit
time. Table 5 shows the entropy of the apparent lookup fre-
quency for different values of µdep (the mean rate at which
a node joins/leaves the system). Observe if µdep is large,
the entropy of apparent file access frequency is quite close
to that of Zipf-distribution (see Table 4 for 32K files); and
if the nodes are more stable (µdep is small), then the ap-
parent frequency of all files would appear to be identically
equal to µdep.

In our second experiment, we show the effectiveness
of file identifier perturbation in mitigating frequency infer-
ence attack. Figure 7.2 shows the entropy of the apparent
file access frequency for varying values of sq (the prob-
ability that perturbed queries are safe, see Theorem 4.1)
for different values of nf , the mean number of files per
node. Recall that a perturbed query identifier is safe if both
the original identifier and the perturbed identifier are as-
signed to the same node in the system. Higher the safety
of queries, smaller is the perturbation threshold (thrsafe);
and thus, the lookup queries for a file are distributed over
a smaller region in the identifier space. This decreases the
entropy of the apparent file access frequency. Also, as the
number of files stored at a node increases larger would be
overlap between the safe ranges of files assigned to a node
(see Figure 2). This evens out (partially) the differences
between different apparent file access frequencies and thus,
increases its entropy.

13

 8

 9

 10

 11

 12

 13

 14

 15

 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

E
nt

ro
py

 (
ha

rd
ne

ss
 o

f i
nf

er
en

ce
 a

tta
ck

)

Probability of Safe Perturbed Query (sq)

’nf = 4’
’nf = 8’

’nf = 16’
’nf = 32’

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

P
ro

ba
bi

lit
y

of
 A

tta
ck

File Update Frequency

’period=5’
’period=15’
’period=25’

Figure 6: Countering File Replica Frequency Inference Attack:
Location Re-Keying Frequency Vs File Update Frequency

File Replica Inference Attack. We study the severity of
file replica inference attack with respect to the update fre-
quency of files in the file system. We measured the proba-
bility that an adversary may be able to successfully locate
all the replicas of a target file using the file replica infer-
ence attack when all the replicas of a file are encrypted with
the same key. The adversary performs a host compromise
attack with ρ = 3. Figure 7.2 shows the probability of
a successful attack on a target file for different values of
its update frequency and different values of re-keying du-
rations. Note that the time period at which location keys
are changed and the time period between file updates are
normalized by 1

λ
(mean time to compromise a good node).

Observe the sharp knee in Figure 7.2; once the file update
frequency increases beyond 3λ (thrice the node compro-
mise rate) then probability of a successful attack is very
small.

Note that λ, the rate at which a node can be compro-
mised by one malicious node is likely to be quite small.
Hence, even if a file is infrequently updated, it could sur-
vive a file replica inference attack. However, read-only
files need to be encrypted with different cryptographic keys
to make their replicas non-identical. Note that this adds
the overhead of encrypting the replicas with different keys.
Figure 7.2 also illustrates that lowering the periodicity of
key changes lowers the probability of a successful attack
significantly. This is because each time the location key
is changed all the information collected by an adversary
would be rendered entirely useless.

Inference Attacks Discussion. We have presented tech-
niques to mitigate some popular inference attacks. There

could be other inference attacks (such as file access pattern
based attack) that are much harder to be condoned by our
design. Even the solutions provided by us for frequency
inference attack do not reach the theoretical optimum. For
instance, even when we used result caching and file iden-
tifier perturbation in combination, we could not increase
the entropy of apparent lookup frequency to the theoretical
maximum (Smax in Table 4). Identifying other potential in-
ference attacks and developing better defenses against the
inference attacks that we have already pointed out in this
paper would be a part of our future work.

8 Related Work
The secure Overlay Services (SOS) paper [8] presents an
architecture that proactively prevents DoS attacks using se-
cure overlay tunneling and routing via consistent hashing.
However, the assumptions in this paper are markedly differ-
ent from that of ours. For example, the SOS paper consid-
ers the overlay network as a black-box and assumes that all
the participants in the overlay network are good. Also, the
SOS architecture assumes that the client and server (service
provider) are outside the overlay network. Nonetheless, our
ideas were largely motivated by the SOS paper; we bor-
rowed the idea of introducing randomness and anonymity
into the architecture to make it difficult for malicious nodes
to target their attacks on a small subset of nodes in the sys-
tem.

The Hydra OS [3] proposed a capability-based file ac-
cess control mechanism. Each object in Hydra is associated
with a C-List (capability list). Each capability specifies an
object that can be accessed and the corresponding access
rights for that object. The OS Kernel is responsible for
protecting a capability and retrieving (lookup) the objects
pointed by it. Locations keys can be viewed as a technique
to implement simple capability-based access control on a
wide-area network. The most important challenge for loca-
tion keys is that of keeping a file’s capability secret and yet
being able to perform a lookup on it (see Section 4.5).

Data obfuscation and steganography [20] present sev-
eral interesting techniques to hide information by embed-
ding them in seemingly harmless messages. Steganography
(literally meaning covered writing) works by replacing bits
of useless or unused data in regular computer files (such
as graphics, sound, text, or HTML) with bits of different,
invisible information. Similar to steganography, location
keys embed files in an ocean of wide-area distributed work-
stations, and thus obfuscate the location of useful informa-
tion in an overlay network.

Indirect attacks have long been the most popular tech-
nique to break cryptographic algorithms. Indirect attack, as
the name suggests, does not directly break a cryptographic
algorithm; instead, it may attempt to compromise crypto-

14

graphic keys from system administrator or use fault attacks
like RSA timing attacks, glitch attacks, hardware and soft-
ware implementation bugs [14] to infer the encryption key.
Similarly, a brute force attack (even with range sieving) on
location keys is highly infeasible. Hence, attackers might
resort to indirect or inference attacks like the lookup fre-
quency, end-user IP-address and file access pattern based
inference attacks. Unfortunately, a system designer is never
aware of an exhaustive list of such inference attacks; hence,
one is forced to develop custom solutions as and when a
new inference attack surfaces.

9 Conclusion
In this paper we have proposed location keys. Analogous
to traditional cryptographic keys that hide the contents of
a file, location keys hide the location of a file on an over-
lay network. Location key guards a target file from DoS
and host compromise attacks, provides a simple and effi-
cient access control mechanism and adds minimal perfor-
mance and storage overhead to the system (in addition, one
could provide traditional guarantees like file confidential-
ity and integrity). We studied several inference attacks on
the file system including file frequency inference attack. In
conclusion, location keys based technique coupled with our
guards to mitigate inference attacks, can effectively secure
wide-area network file systems.

References
[1] K. Aberer and Z. Despotovic. Managing trust in a peer-2-

peer information system. In Proceedings of the 10th Inter-
national Conference of Information and Knowledge Man-
agement, 2001.

[2] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. Farsite: Federated, available and reliable stor-
age for an incompletely trusted environment. In 5th Sympo-
sium on OSDI, 2002.

[3] E. Cohen and D. Jefferson. Protection in the hydra operating
system. In ACM Symposium on Operating Systems Princi-
ples, 1975.

[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with cfs. In Proceedings
of the 18th SOSP, October 2001.

[5] FIPS. Data encryption standard (des).
http://www.itl.nist.gov/fipspubs/fip46-2.htm.

[6] Gnutella. The gnutella home page.
http://gnutella.wego.com/, 2002.

[7] HMAC. Hmac: Keyed-hashing for message authentication.
http://www.faqs.org/rfcs/rfc2104.html.

[8] A. Keromytis, V. Misra, and D. Rubenstein. Sos: Secure
overlay services. In ACM SIGCOMM, 2002.

[9] J. Kubiatowics, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-

tecture for global-scale persistent storage. In Proceedings
of the 9th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
November 2000.

[10] R. Laboratries. Rsa cryptography standard.
http://www.rsasecurity.com/rsalabs/pkcs/.

[11] MathWorld. Shannon entropy.
http://mathworld.wolfram.com/Entropy.html.

[12] NIST. Aes: Advanced encryption standard.
http://csrc.nist.gov/CryptoToolkit/aes/.

[13] OpenSSL. Openssl. http://www.openssl.org/.
[14] OpenSSL. Timing-based attacks on rsa keys.

http://www.openssl.org/news/secadv 20030317.txt.
[15] PGP. Pretty good privacy. http://www.pgp.com/.
[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. In Pro-
ceedings of SIGCOMM Annual Conference on Data Com-
munication, August 2001.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware
2001), November 2001.

[18] M. Srivatsa and L. Liu. Vulnerabilities and security issues in
structured overlay networks: A quantitative analysis. In Pro-
ceedings of Annual Computer Security Applications Confer-
ence (ACSAC), 2004.

[19] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of SIGCOMM An-
nual Conference on Data Communication, August 2001.

[20] Webopedia. Steganography.
http://www.webopedia.com/TERM/S/steganography.html.

[21] M. World. The caesar cipher. http://www.mathworld.com.
[22] L. Xiong and L. Liu. A reputation-based trust model for

peer-to-peer ecommerce communities. In IEEE Conference
on E-Commerce (CEC’03), 2003.

15

