Towards the Issues in Architectural Support for Protection of Software
Execution

Weidong Shi'

Hsien-Hsin S. Lee?

Chenghuai Lu' Mrinmoy Ghosh!

College of Computing?
School of Electrical and Computer Engineering?
Georgia Institute of Technology
Atlanta, GA 30332-0280

{shiw,lulu} @cc.gatech.edu’

Abstract

Recently, there is a growing interest in the research commu-
nity to employ tamper-resistant processors for software pro-
tection. Many of these proposed systems rely on a specially
tailored secure processor to prevent 1) illegal software dupli-
cation, 2) unauthorized software modification, and 3) unau-
thorized software reverse engineering. Most of these works
primarily focus on the feasibility demonstration and design
details rather than trying to elucidate many fundamental is-
sues that are either “elusive” or “confusing” to the architec-
ture researchers. Furthermore, many proposed systems have
been built on assumptions whose security implications have
not been well studied or understood. Instead of proposing
yet another new secure architecture model, in this paper, we
will try to answer some of these fundamental questions with
respect to using hardware-based cryptography for protecting
software execution. Those issues include, 1) Is hardware
cryptography necessary? 2) Is per-process single cryptogra-
phy key enough to provide the flexibility, inter-operability,
and compatibility required by today’s complex software sys-
tem? 8) Is OTP (one-time-pad) in combination with “lazy”
authentication secure enough to protect software confiden-
tiality? 4) Is there way to protect software integrity using
less hardware resource? Finally, the paper defines the dif-
ference between off-line and on-line attacks and presents a
very low overhead security enhancement technique that can
improve protection on software integrity over on-line attacks
by several magnitudes.

Keywords
tamper resistance, security, copy protection,encryption, at-
tack

1. INTRODUCTION

Recently, there is growing interest of designing secure pro-
cessor architectures to provide a secure software execution
environment on unprotected computing platforms. Such se-
cure processor architecture supports tamper-resistance via
new architectural and microarchitectural features. Coupled
with hardware-based cryptography schemes, the secure pro-
cessor architecture can be used to enable a secure environ-
ment where only authorized and un-tampered applications
can be executed. The security is achieved by employing en-
cryption/decryption and integrity checking mechanisms [7,
13, 12, 15, 16, 8] to protect data located in un-trusted ex-
ternal hardware devices, mainly the off-chip memory and
hard disks. The fine grain on-demand integrity checking
and decryption mean that only when the data and instruc-

{Ieehs,mrinmoy}@ece.gatech.eduI

tions are brought into the tamper-resistant processor will
they be decrypted and their integrity be verified. When ex-
ecuting applications, the architecture ensures that sensitive
data and instructions of the applications will not be dis-
closed at any point of time and the software integrity is al-
ways guaranteed as well. The secure processor architecture
can be used not only to prevent possible software attacks on
protected applications, but also to prevent hardware attacks
which have not been addressed by other similar secure sys-
tems [2]. Due to the strong protections provided, the secure
processor architecture is able to address many challenging
security problems that have haunted computer industry for
decades including software copy protection, anti-reverse en-
gineer, virus protection, and trusted distributed computing.

Despite of the many published works on demonstrating de-
signs of secure processor architecture, discussions and anal-
ysis on many fundamental issues of using hardware features
to secure software execution are still lacking. This research
deficiency could cause confusion and misunderstanding in
the research community. For example, there is no published
work in the literature that provides risk assessment on secure
processor architecture, which is a typical research practice
in the security community to study security schemes. In this
paper, instead of presenting a new security architecture, we
attempt to address some of the issues we have noticed that
cause confusion and misunderstanding in the architecture
research community for security. Our answers to these is-
sues may seem controversial to some researchers. However,
the purpose of this paper is not to present a final answer to
these issues but to put them in focus to guide future work
so that more secure and better systems can be developed.

The main contributions of this work are

e Presented the arguments for the necessities of hardware-

based cryptography for protecting software execution through

analysis of security requirements based on sample appli-
cation scenarios.

e Presented the first time in the literature an attack model
on lazy authentication based protection on software con-
fidentiality using a detailed example.

e Detailed analysis of potential problems associated with

using single per-process cryptographic key based approaches

to protect today’s complex software systems.

e Definition and discussion of the differences between on-
line attack and off-line attack on hardware cryptogra-

phy. The taxonomy of on-line/off-line attacks is unique
to the protection of software using hardware cryptogra-
phy. This important property of software protection has
been largely neglected in prior research works.

e Proposed a unique low cost tamper prevention mecha-
nism (TPM) that can be used to strengthen protection
on software integrity. Performance studies show that in-
tegrity protection based on 32-bit MAC (message au-
thentication code) has substantial performance advan-
tage over hash based integrity verification [1]. However,
there is a concern about using “short” MAC to protect
integrity. As presented in this paper, a 32-bit MAC when
combined with the proposed tamper preventing mecha-
nism can increase the difficulty of compromising integrity
protection by several orders of magnitude. With a care-
ful design, a 32-bit MAC based integrity protection plus
the proposed tamper preventing technique can be more
secure than a pure hash based protection.

The rest of the paper is organized as the follows. In the
next section, we present scope on software security protec-
tion based on examining the security requirements of sev-
eral application scenarios. In section 3, we briefly present
some of the proposed protection systems and compare the
differences. Then, in section 4, detailed discussion of sev-
eral issues are presented where each issue is presented as a
subsection. Section 5 concludes the paper.

2. SECURITY REQUIREMENTS FOR SOFT-
WARE EXECUTION

Depending on the types of applications, their operating en-
vironments, business model or even for political reasons, the
requirements on software protection and the definition of se-
curity would be totally different. A system that is secure or
a protection measure that is sufficient for one application
could mean security disaster when applyed to a different
type of application or used under a different business model.
For example, some of the biggest security concerns for en-
terprise computing may be accountability, software virus,
and access control. Due to the nature of enterprise comput-
ing, security is far more likely been compromised by software
based attacks than by hardware-based tampering such as at-
tacks involving a complicated logical analyzer. However, for
consumer game console application, as indicated by history,
hardware-based tampering has caused wide spread security
breaches on consoles including compromising copy protec-
tion through user installed various types of cheating and
spoofing devices.

To give more details, we present five different application
scenarios ranging from military embedded system, game con-
soles, to distributed computing and examine their respective
security requirements.

Firstly, high-tech military systems/weapons are increasingly
dependent on complicated computer software. One of the
many security concerns on high-tech military application
systems is that they may fall into enemy’s hand. If un-
protected, the system along with its software can be studied
by the enemy to come up counter measurement or counter
system. Furthermore, the enemy can reverse engineer and
design copied version of the system. Both are security night-
mares that should be prevented regardless of the cost.

Secondly, software piracy has haunted software industry for
decades. Many solutions have been proposed in the past to
fight against software piracy. As indicated by the cases of
XBOX security key breach [6] and compromise of Nokia N-
Gage, achieving software copy protection on consumer plat-
form is far more difficult than expected due to two specific
attacks. One is hardware modification and the other is plat-
form emulation. The first involves installing a spoof device
such as Mod-Chip to break copy protection and the sec-
ond bypasses security protection by running copied software
through a software machine emulator (for example playing
a PSX game on a PC).

Thirdly, most today’s software systems often include pro-
gram components coming from heterogenous sources such
as device drivers provided by hardware vendors, OS pro-
vided by system developers, and software libraries provided
by miscellaneous middle-ware developers and third party
developers. Sometimes, developer of each software compo-
nent may have its own requirements on security. For exam-
ple, software drivers and BIOS often contain a great deal
of information of the underlying hardware and architecture
design. Device or platform developers may decide to hide
these details from system developers, application develop-
ers, and software users. This could not only prevent com-
petitors from studying the protected system but also prevent
hackers from reverse engineering the driver/BIOS codes for
writing a machine emulator. For middle-ware developers,
they may want their libraries to be used by many applica-
tion developers but at the same time, prevent application
developers from knowing the underlying secret how their
software works. Example middle-ware applications include
expert systems, Al systems, financial analyzing kit, com-
plicated control systems, application specific signal process-
ing libraries and etc. The intellectual properties of these
middle-ware systems often include complex software algo-
rithms, data/parameters obtained through years of accu-
mulated experimental study or observation.

Fourthly, privacy and secrecy of mobile software agents and
mobile data has been intensively studied recently [14]. In
many cases, the mobile software to be protected is not a
stand-alone process, but a piece of program, called mobile
agent. How to execute a piece of mobile code on a host
machine without potentially exposing or disclosing both the
software and its data is a great challenge.

Fifthly, internet based multi-player video gaming is growing
rapidly. However, online multi-player gaming since the first
day of its success has been mauled by rampant sometimes,
wide spread “cheating”s [9]. Many of the cheating tech-
niques involves reverse-engineer the client game software,
modifying either the client code or data (so called author-
itative clients) so that players using the hacked client will
have advantages over others. The worst scenario is that the
hacked clients or patches most time can be downloaded on-
line, which clearly jeopardizes the entire business of online
video gaming. How to prevent reverse engineer of the game
clients and protect against tampering on the client game
code and data is vital for this emerging market.

Most of the discussed security requirements can not be met
by today’s hardware design. Although researchers have tried
to tackle some of the security requirements through software

Untrusted part of OS

Secure
Kernal
Physical attacks
% Softwamk\s\
Id \l
- Untrusted
\ﬂsﬂ‘* Encryption and

Malicious software

Cache ™™ Integrity check Memory \
Unit .
Software, physical attacks
Processor code
Proceso 0

4 {
Key Board | | Display

Disk

Figure 1: Secure computing model

based protection, the solutions are far from being satisfac-
tory because there is always possibility of breaking a soft-
ware based protection through either hardware based attack
or software reverse engineering.

It is important to point out that the best practice of secu-
rity hardware design is not to come up specific hardware
features for each type of application, but to find out a set
of basic security components behind the diversified secu-
rity requirements. These basic security components can be
implemented as trusted hardware security primitives. Vari-
ous domain or application specific security requirements can
be enforced through proper combination or usage of these
trusted hardware security primitives. In short, protection
of software security should include, 1) flexible, fine-grained
protection on software confidentiality; 2) timely, rigorous
checking on software integrity; 3) protection that prevents
illegally duplicated software from being executed correctly.

3. RELATED WORK

A typical secure processor architecture model comprises of
a tamper-resistant processor, external memory and periph-
erals as shown in Figure 1. Naturally, the protection bound-
ary is drawn between the processor and external hardware
units. Hardware units, like registers and on-chip caches,
are protected from any possible attack while the remaining
hardware units such as external memory and peripherals
are considered vulnerable to physical attacks. Besides the
aforementioned hardware, the secure computing model also
includes a small trusted program, e.g., XVMM in XOM [7]
and secure kernel in AEGIS [13]. The trusted program will
be called secure kernel hereafter. The secure kernel has a
higher privilege level than any other program including the
regular operating systems and is responsible for perform-
ing encryptions/decryptions for the protected applications
when their data are crossing the protection boundary. The
secure kernel is also responsible for maintaining sensitive
data that resides in private memory and registers during
context switches. Note that confidentiality and integrity of
“process context” are protected by the secure processor .

'Here process context refers to all per-process information
that need confidentiality or integrity protection including
but not limited to register values, page table, dirty cache
lines, MAC/hash tree nodes, and etc. All those informa-
tion are encrypted by the secure processor using secret key
unique to each process. The root node of hash/MAC |1,

11] tree is preserved in securely sealed persistent memory

Some common features of proposed tamper resistant systems
are described as follows.

e [t is assumed that everything outside the CPU is unpro-
tected and subject to malicious tampering. The phys-
ical RAM itself is neither protected and hackers could
read/overwrite the memory content directly without in-
volving the CPU. Furthermore, all the system/peripheral
bus traffic is exposed and could be traced by the hackers.

e Like other tamper resistant systems, there is a pair of
public-private keys associated with each secure proces-
sor. The secure processor’s private key is permanently
burnt inside the processor core and could not be accessed
by software [7].

e Encryption/decryption and integrity check are supported
by the hardware. When a data or instruction cache line
is brought into the secure processor, it is decrypted and
integrity of the entire virtual memory space is verified
using a hash tree or MAC tree [1, 11]. When a cache
line is evicted from the secure processor, it is encrypted
and hash/MAC tree is updated. The keys used for en-
cryption/decryption and integrity verification are set by
the software vendors and encrypted by the secure pro-
cessor’s public key.

Most of the proposed systems support separate protection
on software confidentiality and integrity. In XOM [7], a per-
process encryption key (triple-DES) is used to decrypt soft-
ware on-the-fly, while AEGIS [13] uses AES [5]. One major
difference between Aegis and XOM is that Aegis employs
an on-chip hash tree to verify integrity of the entire process
space also in the execution time, thus preventing memory re-
play attack. As Yang et al. [15] indicates, block cipher based
systems can incur substantial performance penalty. Systems
using encryption schemes similar to one-time pad (OTP)
and relaxed integrity check [12, 15] are proposed because
they support faster software execution. Alternative solu-
tions also aimed for better performance such as encrypting
only small amount of carefully selected instructions, called
software slices, can also be found in the literature [16]. In
[10], a different architecture model, called MESA, is pre-
sented. Different from the previously proposed models that
use a single cryptographic key to encrypt all the informa-
tion in a process’s memory space, MESA associates security
attributes and cryptography keys with memory subspaces.
Each protected memory subspace becomes an independent
security domain, or security “sandbox”, where information
integrity and confidentiality of the memory subspace can be
separately protected. One unique property of MESA is that
it allows multiple protected “sandbox”es co-existing in the
same memory space. This makes MESA a suitable solution
for protecting shared libraries, mobile codes, device driver
module, and etc. Table 1 lists some of the systems and their
differences.

4. SOME ISSUES OF HARDWARE-BASED
CRYPTOGRAPHY FOR SOFTWARE SE-
CURITY

Although hardware cryptography is a promising direction
for enforcing software security, there are still many remain-
ing issues that have to be solved before it is mature enough

during context switch.

Table 1: Some Tamper Resistant/Copy Protection System Comparison

Runtime | Confi- Cipher Protection

System Integrity | dentiality | Cipher Range Granularity
XoM [7] none yes triple-DES | code & data process based
AEGIS [13] hash tree | yes AES code & data process based
Yang et al. [15] none yes DES OTP | code & data process based
LogHash [12] log hash yes AES OTP | code & data process based

(lazy authentication)

Zhang & Gupta [16] none yes unknown instruction slices | process based

MESA [10] yes yes OoTP code & data fine-grained,

memory subspaces

for real use. These issues include, testing issues, compati-
bility issues, programming model issues, privacy issues, per-
formance issues, inter-operability issues, and security issues,
etc. It is not possible to address all these issues in one pa-
per. In this paper, we focus on some unique security and
inter-operability issues of hardware cryptography. Although
seemingly unrelated, they are important problems that a
consensus on these issues if can be reached will definitely
be beneficial to the future design of hardware cryptography
based tamper resistant system. The four chosen issues are,
1) Is hardware cryptography necessary for building a tamper
resistant system? 2) Is per-process single cryptography key
enough to provide the flexibility, inter-operability, and com-
patibility required by today’s complex software system? 3)
Is OTP (one-time-pad) in combination with “lazy” authen-
tication secure enough to protect software confidentiality?
4) Is there way to protect software integrity using less hard-
ware resource?

4.1 Necessity of hardware-based cryptography

Does hardware cryptography provide more value than sys-
tems with only a trusted nucleus (secure kernel) and secure
boot [3]? This concern on necessity of hardware cryptogra-
phy is caused by the confusion of definition of security. It
is true that hardware cryptography may not be absolutely
necessary for some application scenarios. But as addressed
in section 2, the diversity of security requirements for many
important software protection scenarios demands on time,
fast, secure protection on software confidentiality that can
not be achieved without hardware supported cryptography.

Wherever there is software protection measure, there will
be attacks. As history indicates, computer hackers/crackers
tend to be well-knowledged, highly motivated, and some-
times well supported financially to crack a software protec-
tion system. Computer hackers often have many techniques,
either in hardware and/or software, at their disposal to crack
out the secret. Their efforts and dedication should never be
underestimated. The instance of XBOX security key breach
is one such example [6]. For copy-protection and software
confidentiality, the problem becomes even harder. The en-
tire protections on software confidentiality can be considered
as broken if one adversary successfully reverse engineers a
single copy of the protected software. Among the hacker’s
arsenal, two with demonstrated power of breaking protected
software system are mod-chip based spoof attack and reverse
engineer based emulator attack. Both attacks can be used
to compromise copy protected software that does not use
hardware cryptographic protection.

e Mod-chip spoof attack. Here we use the word mod-

chip to refer to all the spoofing devices designed for
bypassing or unravellig software protection mechanism.
Mod-chips are low cost PCB attached to a platform de-
signed for this purpose. Powerful and sophisticated Mod-
chips can be used to record and replay memory and bus
transactions. They can also be designed for hijacking an-
other device’s signal or launching device spoof attacks.

e Reverse engineer based machine emulator. Soft-
ware copy protection is deemed broken if the protected
software can be executed on a machine emulator with-
out authorization. It is very difficult to fight against this
attack without using software encryption. As suggested
by history, machine emulator can be developed through
reverse engineering BIOS and driver codes. Encryption
of drivers and BIOS software can increase the difficulty
of having emulator developed through simple reverse en-
gineer. However, machine emulator can be alternatively
developed through other means. In that case, software
right can be protected by encrypting the application it-
self.

Please note that the XBOX security incident was caused
by only one or two amateur crackers. When come to re-
verse engineer high-tech software systems for national secu-
rity reasons, the cost, expertise, and resources would not be
a concern at all.

4.2 Security of OTP and “lazy" authentication
for protecting software confidentiality

To prevent hardware-based tamper, timely, rigorous pro-
tection on software integrity must be used. By “lazy” in-
tegrity checking, we mean that either integrity of instruc-
tions is not verified promptly or as frequently as on a per-
instruction basis or architectural state can be altered before
per-instruction integrity checking is completed. “Lazy” in-
tegrity check also refers to the situation that unauthenti-
cated data is used as operant and the result is allowed to
modify processor state before integrity of the source oper-
ant is verified. “Lazy” integrity check has been proposed
for its better performance over rigorous and timely integrity
checking mechanisms.

4.2.1 Program confidentiality
Many nowadays’processors such as Alpha, MIPS, and ARM
adopt RISC design philosophy. The simplicity of RISC in-

struction set enables more aggressive instruction fetching/decoding,

pipelining and scheduling. However, on the other hand, the
regular format and simplicity of RISC instructions also make
it easy for adversaries to unravel encrypted RISC instruc-
tions. Here we use Alpha instruction set as an example

Number PALcode Format

RA Disp Branch Format

Memoary Farmat

1
|

Jeetil] RA, RE Disy
|

RA RE Function 1 RC |Operate Farmat

Figure 2: Secure computing model

to illustrate how an adversary can exploit the regularity of
Alpha instruction set to crack instructions encrypted using
one-time pad (OTP) generated from a per-process key. The
attack assumes that the adversary can obtain front side bus
traces of program execution via hardware based attack.

The vulnerability of RISC instruction set includes, 1) all
the instructions have the same length and in many cases
they are short, 16 bits, 24 bit or 32 bits. One weakness
of short instructions is that it may be vulnerable to brute-
force attacks; 2) the instructions are well formatted for easy
decoding, for example, fixed opcode field. In the case of
Alpha instruction, bit[31:26] is fixed as opcode. As shown
in the example below, the biggest risk posed by this prop-
erty of RISC instructions is that it may allow incremental
guess of instructions. In such an attack, an adversary can
divide each instruction into portions (opcode, operand one,
operand two, and etc.) and launch brute-force guess piece
by piece on each portion of the targeted instruction. This
may significantly reduce the search space of brute-force at-
tack. For instance, to apply brute-force attack on a 32-bit
instruction, there are 232 possibilities. However if the in-
struction could be divided into four 8-bit portions and each
portion could be attacked in brute-force way, there are only
4*256 total possibilities, which is way smaller than 2%%; 3)
RISC philosophy advocates a small set of instructions and
does not favor large number of complex instructions. This
reduces the search space of possible instructions. Figure 2
shows some of the Alpha instruction formats used in the
example attack [4].

To make it easier to understand, assume that the targeted
Alpha binary does not use any dynamically linked libraries
and all the instructions are packed into one code section and
each instruction is encrypted using one-time-pad (regardless
how it is generated). Also assume that the adversary has
no prior knowledge of the program but is able to obtain
front side bus traces of program execution. Further assume
that the secure processor only performs a “lazy” integrity
checking on the executed instructions.

In order to launch the attack, the adversary has to start
from something s/he already knew. One candidate would
be invariant instruction sequence that is pretty much fixed
in almost every executable image generated by a compiler.
For example, almost all the benchmarks in the compiled
SPEC2000 binary have the same startup prologue instruc-
tions as the follows,

510"16(51))
stq zero,8(sp)

Using these two known instructions as starting point, the
adversary could launch known-plaintext attack and crack

out more instructions that s/he could not guess so easily. A
few good candidates would be the instructions in the mid-
dle of the code section. Assisted with the two known in-
structions, the adversary could control the next executed
instruction by modifying the known instruction into a jump
instruction with any target address s/he likes. We use sam-
ple code from SPEC2000’s crafty as an example (Table 2),
The code section has 37789 instructions. The list shows one
candidate instruction (addq) in the middle that the adver-
sary may choose as the jump target. The reason to choose
instructions in the middle is because as shown later, they,
after being altered into jump instructions by changing the
opcode, are more likely to jump into valid code space than
instructions close to the boundaries. Next, the adversary
may perform a brute-force attack on the opcode of the tar-
geted instruction by changing it. Since the Alpha instruction
always uses bit[31:26] as opcode, the adversary could figure
out bit[31:26] of the one-time-pad with at most 64 trials of
opcode guessing. The opcode of the targeted instruction
“addq” is 0x10. Assume that the adversary’s first guess is
opcode 0x4. The speculated bit[31:26] of the one-time-pad
would be 0x21. Then s/he could change the instruction
into an unconditional jump by altering bit[31:26] of the tar-
geted instruction to the result of 0x21 @ 0x30, where 0x30
is opcode of jump. Because the opcode guess is wrong, the
altered instruction will be decrypted into an AND (0x11)
instruction instead of a jump. Since there is no jump in
the trace of instruction fetch, the adversary is certain that
the guessed opcode is incorrect. Assume that the next op-
code guess is 0x10 and is correct. This time, the program
trace will show jump of program execution to target ad-
dress 0x1200263E0 from address 0x12001139¢(0x12001139¢
+ 0x5411*4). This will reveal bit[20:0] of the encrypted tar-
get instruction. The rest 5 bits (bit[25:21]) could be guessed
by trying to alter the targeted instruction into a FETCH
instruction, where all the 5 bits should be zero for a valid
FETCH instruction. At most another 32 trials are required.
Note that the above opcode attack can be launched in par-
allel using multiple machines with each machine taking one
alternative guess. Given a moderate size of 64 machines,
only under two parallel trials, the adversary is able to crack
the encrypted target instruction.

The above case represents an ideal situation where the al-
tered instruction jumps to an address within the code sec-
tion. Since the displacement field of jump instruction has 21
bits, it is very likely that the targeted address may be outside
the range of the code section. The adversary could tackle
this problem in two ways, 1) modify the virtual address to
physical address translation table so that the targeted ad-
dress would be translated and fetched. Rigorous integrity
checking and protection on TLB and process context of ad-
dress translation may prevent such an attack; 2) Brute-force
attack on both the opcode and the remaining displacement
field bits whose range is outside the code section. In the
above benchmark example, since there are about 37000 in-
structions, only the high 6 bits of the total 21 bits of the
displacement field need brute-force guessing. Given 64 ma-
chines with each machine taking one guess of the opcode,
at most 64 parallel trials are sufficient to break both the
opcode and the remaining high bits of displacement field
given the assumption that there is no alternative way for
the adversary to tamper the address translation.

Table 2: List of Crafty Code Section

Address Plaintext
0x120008840 | 0x23defff0
0x120008844 | 0xb7fe0008
0x120010194 | 0x46520413
0x12001139c¢ | 0x40c05411
0x12002d670 | 0x23de0010
0x12002d674 | 0x6bfa8001

Ciphertext | Instruction
0x3127d04a | 1da sp,-16(sp)
Ox4c0d4efd | stq zero,8(sp)
0xa0481bf0 | mov a2,a3
0x9426814a | addq t5,0x2,al
0x3704e241 | lda sp,16(sp)
0x7a3250bf | ret

Many embedded systems do not support virtual memory.
For those systems, the tampered addresses could be ob-
served directly on the bus. Since fetching the next instruc-
tion could be started before execution of the previous in-
struction is completed, even stronger instruction authenti-
cation is required. In such systems, jump targets of con-
ditional and unconditional branches should not be fetched
before integrity of the jump instructions are verified.

An adversary may use the above technique to figure out
all the instructions. Alternatively, if only program code is
encrypted, the adversary can use the following “short-cut”
procedure. Firstly, s/he can figure out a short sequence of
instructions (about 40) in the middle of the code section
using method described above. Then s/he can speed up the
attack by trying to alter other encrypted instructions into
a STORE instruction. Take the mov instruction in Table 2
as one example. Through brute-force attack on the opcode,
the mov instruction could be altered into,

stw al2,a12(1043)

To crack out the remaining 26 bits, the adversary may firstly
transfer execution to the short code sequence which s/he has
figured out, load a constant value to all the 32 Alpha regis-
ters by altering the cracked 40 instructions so that the com-
puted data address (address register value + displacement)
would be certainly within the space of data virtual address
translation, then s/he can transfer execution to the altered
targeted instruction. All these can be completed using less
than 40 altered instructions. By observing the traces of data
access, s/he would be able to figure out the last 16 bits of
the targeted instruction (0x0413). This requires only one
parallel trial or 64 single trials. To figure out bit[25:16], the
adversary may repeat the same procedure. But instead of
loading the same constant to all the alpha register, s/he will
load a unique value to each Alpha register. Since the dis-
placement is already known, subtracting displacement from
the write address observed from the memory trace will re-
veal one unique value loaded to the alpha registers. This
unique value will tell which alpha register is used and its
register ID reveals 5 bit plaintext of bit[25:16]. The unique
value stored will tell which register is used as data source
and its register ID reveals the remaining 5 bits of bit[25:16].
In total, only two parallel trials are sufficient to crack the
mov instruction.

As shown above, with only an amortized cost of two paral-
lel trials/per instruction using 64 machines, the adversary is
able to recover an OTP protected program within a reason-
able time. Assume that it takes 30 seconds for the adversary

load r1, any address // load any data to r1
load r2, a chosen constant
if (ri<r2)
goto address 1
else goto address 2

Figure 3: Example Program

to complete one parallel trial (in fact, this is an overestimate
and the real time needed could be much less after the proce-
dure is automated). It takes only about one and half month
to crack out a program with about 64K instructions (256KB
code size).

We call the described attack technique, “alter then trace at-
tack” (ATT attack). To use this attack, 1) the adversary
must be able to alter a piece of software (program or data)
bit-by-bit (satisfied by all the OTP based protection); 2)
altered instructions can be executed and integrity of exe-
cuted instructions or used data is not verified promptly or
rigorously on per-instruction basis.

4.2.2 Data confidentiality

The above example shows how to break protection on pro-
gram confidentiality when integrity of instructions is not
verified promptly. Next, we will show protection on data
confidentiality is also at risk. “Lazy” integrity check also
refers to the situation that data source is used as operant
and the result is allowed to change processor state before
its integrity is authenticated. If altered instructions are al-
lowed to be executed, an adversary can compromise confi-
dentiality of any program data. Assume again that software
confidentiality is protected using OTP and the adversary
has successfully recovered a short program sequence (might
use ATT attack). Then s/he can convert the known short
program sequence into an attack code sequence shown in
Figure 3. The short code loads any data into the processor
and compares the data with a chosen constant. If the se-
cret data is 32-bit long, according to the principle of binary
search, at most log2(23?) = 32 trials are enough to recover
the protected data. Alternatively, the adversary can treat
data as instruction and use “alter then trace attack” to figure
out its value.

If integrity of instructions is verified promptly but integrity
of data is not, protection on data confidentiality may also
be compromisable. It is hard to enumerate all the attack
scenarios. Here we give one example, called “link-list at-

tack” to illustrate how to recover confidential data by only
altering program data. Link-list is widely used in software
program. One property of link-list is that the last node
is always terminated with a NULL pointer. Assume that
nodes of a link-list are protected using “lazy” authentication
based OTP and the adversary knows where the link-list ends
(the last node). Then, the NULL pointer becomes a known
plaintext. Further assume that there is a secret data value
x stored in memory location I, which the adversary wants to
compromise. S/he can alter the NULL pointer into ! - node
size + 4 so that the secret data becomes a node pointer.
When the link-list is traversed, the program will try to use
the secret data as a node pointer and issue a corresponding
memory load which may reveal its value. Note that “link-list
attack” is only one of the many possible attacks that can be
tried for breaking data confidentiality. For example, “string
attack” may be another candidate for compromising secret
data when certain conditions are met. In “string attack”,
assume that the software compares a string referenced by
a string pointer with another constant string. If both the
constant string and the string pointer can be modified, then
the adversary can alter the pointer so that it points to some
secret data s/he wants to compromise. Using method sim-
ilar to the binary search attack example, s/he can recover
value of the secret data.

In this section, we show some examples of breaking pro-
tection on software confidentiality under the situation that
program or data integrity is not verified promptly. In short,
all one-time pad (OTP) based approaches with “lazy” au-
thentication check are potentially vulnerable. Approaches
that check integrity in a timely fashion but have other flaws
may also be vulnerable when certain conditions are met such
as when the adversary is able to tamper the address trans-
lation.

4.3 Issue of single cryptography key

It seems that using a single cryptographic key to encrypt
an entire process memory space is enough to provide secu-
rity. However, in-depth study of single key based approach
reveals that it is inefficient, inflexible, and sometimes, im-
practical for today’s complex software system.

Firstly, in today’s software system, it it hard to find applica-
tions that do not include pieces of software components come
from heterogenous sources. Co-existing in the same mem-
ory space, these “external” software components could be
static libraries provided by middle-ware vendors, dynamic
libraries or other software modules that may not or may be
also mapped to other tasks’ memory spaces, mobile codes
and data uploaded from other machines. Profiling of com-
mercial Windows applications show that on average each
application uses 20-30 shared libraries and in most cases,
the combined code size of shared libraries is several times
larger than the application itself. From the security per-
spective, under the single key approach, it is not possible
for vendors of software components to enforce separate pro-
tection of their intellectual properties. For single key based
approach to work, either all the external software compo-
nents (often 70% to 90% of the total code size of an ap-
plication under Windows System) left unprotected or have
them duplicated and encrypted using the application’s cryp-
tographic key. The problems of duplicating shared libraries
are four folds. 1) It is inefficient. Today’s multi-task soft-

ware system can easily have 60-100 tasks running concur-
rently. Each task can further have 20-30 shared libraries
mapped to its memory space. Therefore, the memory over-
head of duplicating shared libraries can be overwhelming; 2)
It is not secure. If any application can have shared libraries
being re-encrypted using its own key. It means no protection
of the shared libraries themselves; 3) Encrypting shared li-
braries using application’s cryptographic key can cause secu-
rity problems for the application itself if the shared libraries
contain malicious codes; 4) Simple duplication is not prac-
tical for libraries or software modules whose functionality is
to achieve centralized management of software or hardware
resources.

Secondly, it is very difficult if not impossible to enforce secu-
rity on mobile codes under single key based approach. For
mobile codes, the security requirements have two sides. On
one hand, owners of the mobile codes/data may be con-
cerned about potential disclosing of either the software or
its data to the hosting system. On the other hand, the host
system may be worried about potential security risk caused
by malicious mobile codes. These two security goals may
appear to counter each other because a perfect protection
on mobile code may increase difficulty of protection of the
host program because perfect protection on the mobile codes
mean that the host has absolutely no knowledge what the
mobile codes are doing. One advantage of MESA is that it
allows multiple protected software execution “sandboxes” to
exist in the same memory space thus can be used to provide
security for both the mobile codes and the host program.

There has been a misconception that a secure kernel is hard
to implement. In fact, under MESA, it is straightforward to
implement a secure kernel as one protected “sandbox”. Dif-
ferent from other “sandbox”, the secure kernel’s “sandbox”
can be protected with hardwired secret cryptographic key
that is known only by the secure kernel developers and the
secure processor, therefore, preventing a different or mali-
ciously altered secure kernel ever been loaded or executed
by the system.

4.4 Protect integrity using less hardware re-
source

MAC (message authentication code) has been used to pro-
tect integrity of binary code and data in several proposed
tamper-resistant systems. In some systems, a MAC is com-
puted for each cache line size memory block of instructions
or data and stored together with the memory block. When
the memory block is fetched into the processor cache, in-
tegrity of the instructions or data is verified by re-computing
a new MAC based on the fetched block and comparing it
with the stored MAC. A mismatch between the two MACs
indicates failed integrity check. A MAC tree can be also
constructed to verify integrity of the whole virtual memory
as shown in [1]. It is common knowledge that the length
of the MAC itself is a direct measurement how secure the
integrity protection is. A longer MAC often provides bet-
ter protection against brute-force attacks than a shorter one.
However, a long MAC also requires more hardware resources
and incurs more memory overheads if they have to be cached
inside the processor for performance reasons. Experimental
results [1] show substantial performance advantage of using
shorter MAC such as 32-bit MAC. The question is that, will
a shorter MAC secure?

Unique Secret

‘ Address ‘ Memory Block ‘ Padding

‘ Address ‘ Memory Block ‘

MAC Algorithm MAC Algorithm

Figure 4: On-line vs. Off-line Attacks On Integrity

// Code Ezample Begin
push param1

push param?2

push param3

push param/

push params

call security_check

/*a jump to a subroutine */
tst ax, 0

/* assume return value in ax*/
bne security_failed

// Code Example End

Figure 5: Example Code

In this section, we present a simple hardware mechanism
that can improve the strength of MAC by several magni-
tudes over on-line attacks on software integrity. There exists
confusion in the architecture community on the difference
between on-line attacks and off-line attacks on software in-
tegrity. On-line attack means that the attack has to be
launched on the victim machine (targeted machine whose
security an adversary wants to compromise) while in an off-
line attack, presence of the victim machine is not necessary
and the attack often can be conducted in parallel using mul-
tiple machines. Figure 4 shows two ways of computing MAC
for each memory block. The first approach may suffer from
off-line attacks on the MAC if the MAC algorithm does not
require a key while the second would not because the secret
padding is a secret unique to a machine and application thus
preventing the attacker from computing a MAC without us-
ing the victim machine. Alternatively, if the MAC algorithm
requires a cryptographic key unique to each platform and
application, it will also prevent off-line attacks on the MAC.
2 To give a concrete example, considering the code sequence
in Figure 5 and assuming an integrity code stored side by
side with every 8 instructions,

Assume that the purpose of attack is to bypass the secu-
rity check, there are two brute-force attacks the adversary
could launch, one on the integrity code itself and the other
one on the code sequence. First, brute-force attack on the
integrity code, the adversary could alter the code sequence
to another sequence (see Figure 6). This new code se-
quence very likely will have a different integrity code from
the unaltered version. To fool the authentication check, the
adversary could try to execute the altered code each time
with a different random “integrity code” guess. If the in-
tegrity code is short, for example 16 bit long, after certain
number of trials, a matching “integrity code” guess could be

2There exist off-line attacks on either cryptographic key or
the secret padding itself. However, the key and padding
can be long enough, say 256 bits long to make such off-
line attacks impractical. Secret padding is encrypted using
secure processor’s public key when stored externally.

// Altered Code Example Begin
nop
nop
nop
nop
nop
nop
nop

nop
// Altered Code Example End

Figure 6: Altering Both Program and Integrity
Code

// Altered Code Example Begin
mov az, random_num

zor azr, ar

mov bz, random_num

zor bz, bx

mov cx, random_num

zor cz, cT

nop

nop

// Altered Code Example End

Figure 7: Altering Program Only

found. The adversary is able to test whether a trial is suc-
cessful through program traces. If instruction fetch starts
on the instruction after the last nop, the adversary knows
that it is a success trial. However, this attack has to be con-
ducted on the victim machine. Alternatively, the adversary
could come up a huge number of “equivalent” attack code
sequences and hope that one of them will have the same in-
tegrity code as the unmodified code sequence (see Figure 7).
Different attacking code sequence will assign different ran-
dom number to ax, bx, or cx. If the integrity code is short,
by chance alone, some attack code sequence will have the
same integrity code as the unmodified version. This allows
the adversary to replace the original code sequence with a
new one without change of the integrity code. However, this
attack also requires that each altered code sequence be tried
on the victim machine.

If a brute-force attack on integrity protection can be only
launched online, a MAC as short as 32-bit can provide suf-
ficient protection when combined with a tamper preven-
tion technique presented next. To enhance security, a tam-
per prevention logic device, called tamper prevention timer
(TPT) can be used to fight against online attacks on in-
tegrity code. TPT increases the difficulty of attack on in-
tegrity by deliberately inserting long time delay between
integrity verification failures. Because the attack has to
be launched on the victim machine, TPT can increase the
amount of time required to break a system by several mag-
nitudes, thus make a short MAC equally harder (in terms
of required actual machine time) to break as a much longer
MAC without using TPT. Pseudo-code of TPT is listed in
Figure 8.

It is important to note that TPT is a hardware device em-
bedded inside the processor core. It is not visible or acces-
sible to any software. TPT has an output signal line called
OK_line. During processor boot process, the OK _line will be

Assume
tick_counter :
penalty_register :
failure_counter :
failure_threshold :
OK_line : output

‘When integrity check fails
failure_counter++;
if (failure_counter > failure_threshold)
failure_counter = 0;
tick_register = penalty_register;
freeze processor;
// execution can only be resumed through power cycling
endif

For each core processor clock cycle
if (tick_register > 0) tick_register—;
if (tick_register==0)

set OK_line;
else

clear OK_line;
endif

Figure 8: TPT Pseudo-codes

checked. The processor will not start normal execution un-
til the OK_line of TPT is set. Internal data such as data in
tick_counter, failure_counter, and penalty _register are stored
in persistent on-chip memory inside TPT. Their values can
live across processor power cycling.

To give a concrete example of how TPT improves protection,
assume that the delay for every 10 failed integrity verifica-
tion is 1 minute. For a brute-force attack on a 32-bit MAC
to succeed, on average 23! number of trials are needed. This
means 204 years.

It is important to point out that though TPT plus 32-bit
MAC is reasonably secure against on-line attacks aimed to
breaking integrity protection on a specific machine, a longer
MAC such as 64-bit MAC might be preferred when an at-
tack, we called, “MAC collision attack” is a security concern.
“MAC collision attack” takes advantage of a well-known
cryptography phenomena called the birthday paradox to re-
duce the MAC search effort comparing with a sheer brute-
force search. The birthday paradox suggests that given some
property (the birthday) that might have n distinct values
and two set of values of the property, each &/n values, there
is a high probability that some value of the property in the
first set is the same as some value of the property in the sec-
ond set. To attack 32-bit MAC protected with TPT using
“MAC collision attack”, the adversary must have access to
216 (/232) machines. Then s/he can come up 2*° random
numbers as MAC guesses. Next, s/he can try the altered
code sequence each time with a different MAC guess on the
2'¢ machines. According to the birthday paradoz, there is a
high probability that one of the machines will use one of the
21% random numbers as integrity code of the altered code
sequence. However, this very involved attack is not very
practicable considering, 1) it requires large number of ma-
chines; 2) it does not make it easy to compromise any given
machine. It may speed up breach of one machine among a
huge number of machines with less number of trails. For
most application scenarios, this attack is not a security con-
cern at all. Alternatively, longer MAC such as 48-bit MAC
or 64-bit MAC can be used together with TPT if “MAC
collision attack” becomes a real security concern.

5. CONCLUSION

This paper presents an in-depth discussion of several issues
of using hardware cryptography for protecting software con-
fidentiality and integrity. The paper advocates the necessity
of using hardware cryptography for preventing reverse en-
gineering, and copy protection. It presents in detail why
“lazy” authentication is not secure for protecting software
confidentiality. Furthermore, it discusses many potential is-
sues associated with applying single cryptographic key based
approaches to protect software confidentiality in complex
software system. Then, the paper defines the difference be-
tween off-line and on-line attacks and presented a security
enhancement technique that can improve protection on soft-
ware integrity over on-line attacks by several magnitudes.

6. REFERENCES
[1] M-TREE: A Fast Secure Architecture for Protecting
the Integrity and Privacy of Software. Submitted for
publication.http:
//www.cc.gatech.edu/people/home/lulu/Mtree.pdf,
2004.

[2] The Trusted Computing Platform Alliance.
https://www.trustedcomputinggroup.org/home. 2003.

[3] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A
secure and reliable bootstrap architecture. In
Proceedings of the 1997 IEEE Symposium on Security
and Privacy, page 65. IEEE Computer Society, 1997.

[4] Compaq Computer. Alpha 21264 Microprocessor
Hardware Reference Manual.

[5] Federal Information Processing Standard Draft.
Advanced Encryption Standard (AES). National
Institute of Standards and Technology, 2001.

[6] A. Huang. Keeping secrets in hardware the microsoft
xbox case study. MIT AI Memo, 2002.

[7] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh J. Mitchell, and M. Horowitz. Architectual
support for copy and tamper resistant software. In
Proceedings of the 9th Symposium on Architectural
Support for Programming Languages and Operating
Systems, 2000.

[8] David Lie, Chandramohan A. Thekkath, and Mark
Horowitz. Implementing an untrusted operating
system on trusted hardware. In Proceedings of the
19th ACM Symposium on Operating Systems
Principles, pages 178-192. ACM Press, October, 2003.

[9] Matt Pritchard. How to Hurt the Hackers: The Scoop
on Internet Cheating and How You Can Combat It.

http://www.gamasutra.com/features/20000724 /pritchard01.htm

[10] Weidong Shi, Hsien-Hsin S. Lee, Chenghuai Lu, and
Mrinmoy Ghosh. High Speed Memory Centric
Protection on Software Execution Using
One-Time-Pad Prediction. Report GIT-CERCS-04-27,
Geogia Institute of Technology, Atlanta, GA, July
2004.

[11] E. Suh, B. Gassend, D. Clarke, M. Van Dijk, and
S. Devadas. Caches and merkle trees for efficient
memory authentication. In Proceedings of the Ninth
Annual Symposium on High Performance Computer
Architecture, February 2003.

[12]

[16]

E. G. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. Efficient Memory Integrity Verification
and Encryption for Secure Processors. In Proceedings
Of the 36th Annual International Symposium on
Microarchitecture, December, 2003.

E. G. Suh, D. Clarke, M. van Dijk, B. Gassend, and
S.Devadas. AEGIS: Architecture for Tamper-Evident
and Tamper-Resistant Processing . In Proceedings of
The Int’l Conference on Supercomputing, 2003.

T.Sander and C. Tschudin. Protecting mobile agents
against malicious hosts. Mobile Agents and Security.
LNCS, Feb, 1998.

Jun Yang, Youtao Zhang, and Lan Gao. Fast Secure
Processor for Inhibiting Software Piracty and
Tampering. In 36th Annual IEEE/ACM International
Symposium on Microarchitecture, December, 2003.

Xiangyu Zhang and Rajiv Gupta. Hiding program
slices for software security. In Proceedings of the 2003
Internal Conference on Code Genration and
Optimization, pages 325-336, 2003.

