
High Speed Memory Centric Protection on Software Execution Using
One-Time-Pad Prediction

July, 19, 2004

Weidong Shi Hsien-Hsin Sean Lee Chenghuai Lu Mrinmoy Ghosh
801 Atlantic Drive

Atlanta, GA 30332-0280
Georgia Institute of Technology

shiw,leehs,lulu,mrinmoy@cc.gatech.edu

ABSTRACT
This paper presents a new security model for protecting soft-
ware confidentiality. Different from the previous process-
centric systems designed for the same purpose, the new
model ties cryptographic properties and security attributes
to memory instead of a user process. The advantages of such
memory centric design over the previous process-centric de-
sign are two folds. First, it provides a better security model
and access control on software confidentiality that supports
both selective and mixed software encryption. Second, the
new model supports and facilitates information sharing in
an open software system where both confidential data and
code could be shared by different user processes without
unnecessary duplication as required by the process-centric
approach. Furthermore, the paper addresses the latency
issue of executing one-time-pad (OTP) encrypted software
through a novel OTP prediction technique. One-time-pad
based protection schemes on data confidentiality can im-
prove performance over block-cipher based protection ap-
proaches by parallelizing data fetch and OTP generation
when a sequence number associated with a missing cache
block is cached on-chip. On a sequence number cache miss,
OTP generation can not be started until the missing se-
quence number is fetched from the memory. Since the la-
tency of OTP generation is in the magnitude of the order of
hundreds of core CPU cycles, it becomes performance criti-
cal to have OTP ready as soon as possible. OTP prediction
meets this challenge by using idle decryption engine cycles
to speculatively compute OTPs for memory blocks whose se-
quence number are missing in the cache. Profiling and sim-
ulation results show that significant performance improve-
ment using speculative OTP over regular OTP under both
small 4KB and large sequence number cache settings 32KB
due to the capability of speculative OTP technique to reduce
misses on sequence number. The performance improvement
is in the range from 15% to 25% for seven SPEC2000 bench-
marks. The new access control protection and OTP predic-
tion scheme requires only small amount of additional hard-
ware resources over the existing proposed tamper resistant
system but with greatly improved performance, protection,
flexibility, and inter-operability.

1. INTRODUCTION
Recently, there is a growing interest in creating tamper-
resistant/copy protection systems that combine the strengths

of security hardware and secure operating systems to fight
against attacks [15, 9, 22, 23, 24, 16]. Those systems usu-
ally possess strong security features and are able to prevent
running applications from malicious software as well as phys-
ical hardware attacks. Such tamper resistant systems have
a great future for solving various problems in the security
domain such as digital rights protection, virus/worm detec-
tion, system intrusion prevention, digital privacy and etc.
For maximum protection, tamper-resistant/copy protection
system should be able to provide protection against both
software and hardware based tamper including duplication
(copy protection), alteration (integrity and authentication),
and reverse engineering (confidentiality). It is important to
note that this definition of a secure system is much stronger
than many previously proposed secure systems and protec-
tion schemes such as capability based systems like Hydra
[7] .

Many the above mentioned copy protection systems achieve
protection by encrypting the instructions and data of a user
process (every bit of information in the user’s virtual space)
with a single master key. Although such closed systems do
provide security for software execution, they are less flexi-
ble for real world applications because of the gap between a
closed tamper-resistance/copy protection system and a real
world software system. Most real world software environ-
ment can be best described as a multi-domain system. In
such a system, a user process often consists of program com-
ponents coming from heterogeneous sources with diversified
security requirements. For instance, almost every commer-
cial application in Windows system uses some number of dy-
namically linked libraries (DLL) or statically linked libraries.
Our study shows on average of 20-30 DLLs used by commer-
cial applications. When the dynamic libraries are provided
by middle-ware vendors, it is quite natural to expect that
vendors of these libraries prefer a separate copy protection of
their intellectual properties (IP) from the user applications.
Some of the DLLs are Windows libraries that are mapped
to many applications’ virtual space thus not possible to be
encrypted by a single application’s cryptographic key. Al-
though security need may be met by duplicating DLLs in
each application’s virtual space using the per-process cryp-
tographic key, it is not only in-efficient but also may cause
synchronization problems because many shared DLLs are
responsible for maintaining system resources. The nature of

de-centralized development of software components by dif-
ferent vendors makes it difficult to enforce a process centric
protection scheme.

It is important to point out that protection provided by vir-
tual memory system does not solve the problem because we
assume that all the data and software components belong-
ing to different security domains co-exist in the same virtual
space. Though traditional capability based protection sys-
tems such as Hydra [7] and CAP [17] provide access control
on information, they are not tamper resistant systems de-
signed to protect against software duplication, alternation,
and reverse engineering. Specifically, systems such as Hydra
and CAP do not address the following problems:

• Integrity issue: How access control interacts with other
protections provided by a copy protection system. Hard-
ware supported integrity checking and encryption are
two absolutely necessary components for a tamper re-
sistant system that protects against physical based tam-
pering of software integrity and confidentiality.

• Implementation issue: How control on information shar-
ing and access can be implemented efficiently at archi-
tecture level and tied to a modern day out-of-order pro-
cessor pipeline.

• Performance issue: Capability based control on informa-
tion access is costly to implement and could not satisfy
the performance goal demanded by a modern day com-
puting systems.

• Programming issue: A full blown capability based sys-
tem requires a different programming model and com-
plicated security policy management, which prohibits its
adoption by the industries.

In order to provide high speed protection for software in
open systems, a number of challenges on both the security
side and the performance side have to be addressed,

• Challenge of fine-grain security protection. A fine-grain
protection on process memory must be implemented so
as to protect different software components from hackers
as well as other un-trusted software components. This
fine-grain security protection should allow to different
security requirements for different software components,
by providing facilities such as selective encryption and
mixed encryption. Selective encryption means that only
selected regions of a user memory space are protected
with encryption and mixed encryption refers to that user
space can be partitioned into sub-spaces, each encrypted
using different keys.

• Challenge of access control. Since all the software com-
ponents and their data reside in the same virtual space,
access control has to be proposed to safeguard each pro-
tected domain so that information confidentiality can not
be compromised.

• Challenge of low overhead switching between security do-
mains. Because all the software components are in the
same virtual space, switching between protected domains
would be far more frequent than switching between ap-
plication mode and the kernel mode, which often involves
heavy handed system calls. Thus a light weighted switch-

ing mechanism is required.

• Challenge of low data decryption latency. Decryption
latency plays a major role in performance of a secure
system that supports confidentiality protection. OTP
based protection schemes have been proposed recently
to meet this challenge by parallelizing data fetch and
decryption (OTP generation). But, a sequence number
associated with each data block has to be cached in-
side the chip. When the sequence number is missing in
the on-chip cache, it has to be brought into the secure
processor, possibly decrypted first, then used to gener-
ate OTP using a standard cryptographic function often
taking hundred of cycles to complete. After all these,
the result OTP can be applied to the encrypted data.
Large size sequence number cache can improve perfor-
mance but add significant cost on chip size.

In this paper, we present a new framework called MEmory-
Centric Security Architecture or memory centric tamper re-
sistant /copy protection system which provides protection on
software integrity and confidentiality using a new set of op-
erating system and architecture features that support secure
software execution in a heterogeneous multi-domain, multi-
level security system. In this system, a concept, called mem-
ory module, is used as the basic atomic unit for managing
security. Memory module refine security control over the ex-
isting systems. Based on the per module security attributes,
access control can be defined to prevent unauthorized access
on confidential information stored in a memory module. On
the performance side, a novel OTP prediction technique is
presented for the first time to further reduce the latency
overhead of confidentiality protection. It is important to
point out that the OTP prediction technique does not trade
security for performance. It is an architecture optimization
and equally secure as a regular OTP based protection.

The major contributions of our work are:

• A unique memory centric protection system on software
confidentiality and integrity that is different from the
existing systems (e.g., XOM, AEGIS) by providing bet-
ter support for fine-grain information sharing in a multi-
domain, multi-task tamper resistant environment.

• A unique secure processor model that protects software
components from one another to prevent illegitimate in-
formation access across different tamper resistant do-
mains. Different from the previous systems on fine-grain
access control such as Hydra and CAP, it is simple, effi-
cient in performance with support of access control spec-
ulative execution (ACSE), light-weight in implementa-
tion, integratable, and transparent (require almost no
change on the current programming model).

• A novel OTP prediction technique that significantly re-
duces the latency overhead on fetching OTP encrypted
data from memory.

The rest of the paper is organized as follows. In section 2,
we give a high level introduction to our security model. This
section paves the road for the detailed presentation of each
component of the memory centric security model and its
architecture support in section 3, followed by evaluation and

Physical RAM

Ethernet Mouse Keyboard Disk

Cache
(L1 & L2)

Crypto
Engine

TLB
Access
Control

Security
Attribute Table

Processor Core

OS

Secure Kernel

Attacks

Figure 1: Memory-Centric Security Architecture

results. Discussion of related work is presented in section 5
and finally section 6 concludes the paper.

2. MEMORY-CENTRIC SECURITY ARCHI-
TECTURE

In this section, we give an overview of our security model,
called MEmory-centric Security Architecture (MESA) in con-
trast to the process-centric security model in prior work.
Figure 1 generalizes the security model and its operating
environment. It highlights certain assumptions made by
MESA,

• It is assumed that everything outside the CPU is unpro-
tected and subject to malicious tampering. The phys-
ical RAM itself is neither protected and hackers could
read/overwrite the memory content directly without in-
volving the CPU. Furthermore, all the system/peripheral
bus traffic is exposed and could be traced by the hackers.

• Like other tamper resistant systems, there is a pair of
public-private keys associated with each secure proces-
sor. The secure processor’s private key is permanently
burnt into the processor core and could not be accessed
by software [15].

• MESA assumes hardware supported encryption/decryption
and integrity check. When a cache line size memory
block of either data or instructions is brought into the
secure processor, it is decrypted and integrity of the en-
tire virtual memory space is verified using hash tree or
MAC tree [21, 1]. When a cache line is evicted from the
secure processor, it is encrypted and hash/MAC tree is
updated. The keys used for encryption/decryption and
integrity verification are set by the software vendors and
encrypted by the secure processor’s public key.

• MESA assumes the existence of a secure BIOS stored in
a securely sealed persistent storage device. Execution of
the secure BIOS is protected by tamper resistant mea-
sures.

• Most of the OS codes are treated as regular program ex-
cept a small set of core services, called secure kernel. The
secure kernel is signed and authenticated by the secure
BIOS during system boot [3]. Furthermore, integrity
code is computed for each cache-line size block of in-
structions of the secure kernel and verified each time it

is brought into the processor, therefore un-tamperable.
To further enhance security, secure kernel can be imple-
mented as firmware stored in either an on-chip ROM or
an off-chip securely sealed persistent memory.

• All the security process context such as keys, root sig-
natures, and etc defined in this paper are managed by
the secure kernel and securely preserved during process
context switch.

• A secure processor can either run at debug mode or re-
tail mode. In debug mode, decrypted software can be
traced. But in the retail mode, processor exceptions and
traps used for debugging are all disabled, thus prevent-
ing users from tracing the software. A bit for setting the
mode is defined as part of the signed binary image of an
application.

First in this section, we describe MESA from system per-
spective. The focus would be to present a global picture
how MESA operates as a system. In the next section, we
will present efficient implementation of MESA at architec-
ture level.

One critical concept MESA uses is memory module. A mem-
ory module is a virtual memory segment initialized with a
set of security attributes provided by the binary images that
are loaded into it. It is an information container that may
hold either data or code or both. A set of security attributes
are defined for each memory module beside its location and
size and initially set by system or software vendors. These
security attributes include security protection level, one or
more symmetric encryption keys encrypted using secure pro-
cessor’s public key, authentication signature (MAC or hash
tree), accesses control information, etc. For each application
process, the secure OS kernel maintains a list of memory
modules and their attributes as process context. The secu-
rity attributes set by software vendors can be encrypted and
authenticated using a processor’s public key. They are de-
crypted and verified by the secure processor using the cor-
responding private key. Security attributes are protected
when they are stored in the external RAM.

Based on the security attributes, access control of memory
module can be carried out. Active module is defined as the
currently executing module. When the active module is to
access some memory location of some other module, the ac-
cess will be checked. If the active module is allowed to access
the memory module, the access will be granted. Otherwise,
security exception of access violation will be raised. There
are two basic types of modules, private and public. Private
modules can be called by other modules but direct access
to its data or instructions is disallowed. Public module can
be accessed by any other module. Note that public modules
may be different on other security attributes.

Secure OS kernel is responsible for managing memory mod-
ules at OS level. Among the major services provided by the
secure kernel are, process and module creation, module au-
thentication, access control. We will discuss them one by
one.

Name Type Signature
Crypto

Key
Access

Right

app module
code &

data
*** public

Name Type Signature
Crypto

Key
Access

Right
Middle-ware

1
Shared

Library

code/

data
*** *** protected

code/

data
*** *** protected

Middle-ware
Interfac

e
*** *** public

Shared

Library

Interfac

e
*** *** public

Application Binary Image

Middleware and Shared

Library Binary Image

Process Memory Module Context

0x2100ab87

ID Name

app

module

0x261fab12
Middle-

ware

0xff321706 Shared Lib

Type Signature
Crypto

Key

Code &

data

Code &

data
*** ***

Code &

data
*** ***

0x65a6fd21 Public

Priv Stack Priv Heap

Yes Yes

Yes Yes

Certificate

Certificate

Certificate

Middle-ware (code, data, private

heap, private stack)

Shared library (code, data,

private heap, private stack)

Application, public interfaces,

shared public heap, shared

public stack

Memory Space Allocation

Figure 2: Secure Memory Module Management

2.1 Memory Module Creation
Firstly, during process creation, the secure OS kernel will
create a list of memory modules associated with the pro-
cess. Figure 2 shows an example application. Assume that
an application developer will use compiled binaries from two
different sources. Both of them want the linked libraries to
be protected from reverse engineering or tampering. Each
vendor will provide two binary images. One image is en-
crypted using a key chosen by the corresponding vendor plus
a root binary image authentication signature computed us-
ing hash tree or MAC tree (message authentication tree)
algorithm. The other one stores a public interface to the
encrypted codes for the application developer to use. De-
tails of how to perform encryption and authentication have
been studied recently in [15, 9, 22]. Each vendor indepen-
dently sets the security attributes of released binary images.
During process creation, the secure kernel creates a secure
memory module context based on the binary images. Each
memory module is uniquely identified with a randomly gen-
erated ID. For the example, there could be three modules if
the application itself does not demand special protection.

For dynamically linked libraries, a different module is cre-
ated with a different ID when it is linked to a different pro-
cess. However note that the code itself is not copied. It is
simply mapped to the new process’s memory space with a
different module entry in the module context table.

Heap and stack are two types of dynamic memory that can
be owned by a module. Privacy of information stored in
the heap and stack is protected under the same security re-
quirement of the module they belong to. When execution
switches to a different module, the processor stack register
is re-loaded so that it will point to the next module’s private
stack. Details of private stack are presented in the subsec-
tion of cross module procedure call.

With a private heap, there comes the issue of memory man-
agement of private heaps associated with each module. Does
each module need its own heap allocator? The answer is
no. Heap management can be implemented in a protected
shared system library. The key idea is that with hardware

Intrinsic Parameters Explanation

sec_malloc(s,id) s: size; id: module id allocate memory from module’s private heap

sec_free(p) p: memory pointer free memory of private heap

sec_swap_stack

(addr)
addr: address

switch the active stack pointer to another

module’s private stack. Addr points to a location

of the target module. Save <active stack

pointer, active module id> to the stack context

table
sec_get_id

(name)
name: module name get id of a module (secure kernel service)

sec_push_stack_

ptr()

read the current executing module’s stack

pointer from the stack context table and push it

into its private stack

sec_save_ret_addr

(addr)
addr: address assign addr to a return address register (RAR)

sec_return() assign RAR to PC and execute

Figure 3: MESA Security Intrinsics

supported integrity and confidentiality protection, the heap
manager can manage usage of each module’s private heap
but could not tamper its content.

2.2 Memory Module Authentication
MESA supports three possible ways of module authentica-
tion. The first approach is to authenticate a binary module
through a chain of certification. A module could be signed
and certificated by a trusted source [12]. If the certifi-
cation could be verified by the secure kernel, the created
module would become a trusted one because it is certified
by a trusted source. Another approach is to authenticate
a module using a public key supplied by software vendors.
This provides a way of private authentication. This ap-
proach is designed for multi-process, multi-user application
to authenticate each one for sharing information. The third
approach is to certify module using processor’s public key.
To give one example using figure 2, application vendors can
specify that the linked shared libraries must be certified by
a known source such as Microsoft. Failure of authenticating
code images will abort the creation of the user process. Pub-
lic key based authentication has been intensively studied in
the area of distributed computing and explained in detail in
[14, 6].

2.3 Cross Module Procedure Call
When a module is to call a function implemented by another
module, it passes all the parameters by copying them to the
callee’s private stack. To show how private stacks are pro-
tected during cross-module function call, we have to show
function call in assembly. It is given in figure 4 using x86
instruction set and MESA programming primitives and in-
trinsics listed in figure 3. Note that these security intrinsics
are programming primitives not instruction set. Although a
hardware implementation of MESA can implement some of
them as CISC instructions, it does not have to be that way.

In the example, the caller pushes values to the callee’s pri-
vate stack. When callee’s stack requires information be en-
crypted, pushed stack values will be encrypted with callee’s
crypto key. Switching the active stack pointer from the
caller’s private stack to the callee’s private stack is achieved
through intrinsic sec swap stack(addr). Input addr is either
a function entry address or return address. MESA maintains
a table of stack pointer context for all the running modules.
When sec swap stack(addr) is executed, it will save the cur-
rent active stack pointer as a < module, stack pointer > pair
and set the active stack pointer to the target module’s. The

// CALLER SIDE
push ebp /* save stack frame pointer */
sec swap stack addr of fun foo
// stack pointer switched to the callee’s stack
// caller’s esp saved to the context table
push 0x10; /* parameter */
push 0x20; /* parameter */
call fun foo /* push return addr to callee’s stack */
pop ebp /* get stack frame pointer back */

// CALLEE SIDE
sec push stack ptr
ebp = esp //ebp stack frame pointer
...
r1 = [ebp + 4] //return address
sec save ret addr r1 // save caller’s return
esp = [ebp]
sec swap stack r1
// stack pointer restored pointing to the caller’s stack
// callee’s eps saved to the context table
sec return
//return to caller by loading return addr in RAR to PC

Figure 4: Cross Module Function Call

Module Stack Pointer

0x12485670 200000

0xabc21339 800000

Caller

Callee

Caller’s stack

Callee’s stack

EBP200000

800000

Param#2,0x10

Param#1,0x20

Return Addr

ESP = 800000 EBP

Local Vars

...

Stack Context

Snapshot of Both Caller and Callee’s Stack After

Execution Switches to the Callee

Figure 5: Snapshot of stack after execution of Code

snapshot of the caller and callee stack after the execution of
the code is illustrated in figure 3. It is important to note
that MESA protects against tamper on the target module’s
stack by only allowing values to be pushed to other module’s
stack. A module can not modify another module’s stack
pointer context because only the owner module can save the
active stack pointer as its stack pointer context according to
the definition of sec swap stack. Explicitly assigning values
to the active stack pointer owned by a different module is
prohibited by MESA.

3. ARCHITECTURE SUPPORT FOR HIGH
PERFORMANCE MESA

This section discusses architecture features for supporting
MESA. Inside a typical secure processor, we added a few
security features at the micro-architectural level which in-
corporates encryption schemes as well as integrity protection
schemes. Hardware enabled protection on integrity and con-
fidentiality has been sufficiently studied in [15, 9, 22]. In
addition to the architecture components necessary for in-
tegrity and confidentiality protection, we introduced new
micro-architecture components for the MESA including a
Security Attribute Table (SAT), an Access Control Mecha-
nism (ACM), and OTP sequence Number Prediction sup-

TLB Entry SAT index

TLB Entry SAT index

TLB Entry SAT index

TLB Entry SAT index

... …

Vld Bit Encryption Key MAC/Hash Tree Root Control Bits

Encryption Enable Bit

Vld Bit Encryption Key MAC/Hash Tree Root Control Bits

...

Vld Bit Encryption Key MAC/Hash Tree Root Control Bits

Authentication EnableBit

TLB (iTLB or dTLB)

Security Attribute Table

ID

ID

ID

...

Private Memory Module

Figure 6: SAT (security attribute table) and TLB

port. New system features are also proposed to cope with
the new security architecture to manage the secure architec-
ture asset.

3.1 Security Attribute Table
Secure memory module management lies at the heart of
MESA. The secure OS kernel keeps track of a list of memory
modules used by a application. Security attributes of fre-
quently accessed secure memory modules are cached on-chip
in a structure called SAT (security attribute table). Figure 6
shows the structure of SAT attached to TLB for instruction
or data. Each entry caches a set of security attributes asso-
ciated with a secure memory module. The Encryption key
of each SAT entry is used to decrypt or encrypt informa-
tion stored in the memory module. The secure kernel uses
intrinsic sec SATld(addr) to load security attributes from
the memory module context stored in memory to the SAT.
The Encryption keys in the memory module context are en-
crypted using processor’s public key. The secure processor
will extract the keys from the process’s memory module con-
text when they are loaded into SAT.

A secure memory module could be bound to one or many vir-
tual memory pages of a user process. When the entire user
virtual memory space is bound to only one secure memory
module, the model is equivalent to a process-centric security
model. As figure 6 shows, each TLB entry contains an in-
dex to SAT for retrieving the security attributes of the corre-
sponding memory page. During context switches, the secure
kernel authenticates the process’s memory module context
first, then load security attributes into the SAT. The SAT is
accessed for each external memory access. For a load opera-
tion, if a cache miss occurs, data in the external memory will
be brought into the cache, decrypted using the encryption
key in the SAT and its integrity verified against the root
authentication signature also stored in the SAT using hash
tree [9] or MAC tree [1]. On-chip caches store and maintain
only plaintext data. The SAT is also accessed when data is
to be evicted from the on-chip caches. The evicted data will
be encrypted using keys store in the SAT and a new root
signature is computed.

If the required security attributes could not be found in the
SAT, a SAT miss fault is triggered and the secure kernel
would take over. First, the secure kernel would flush the
cache, then load the required security attributes into the
SAT. The SAT indexes stored in the TLB are also updated

Figure 7: Information Security Monitor

accordingly. A SAT miss is expected to happen very rarely.
It is at user’s control to choose the right number of protected
memory modules so that SAT miss can be completely elimi-
nated. For example, if there are 8 SAT entries supported in
hardware, it means that at most 8 protected domains can be
executed without causing SAT misses. This should be more
than enough because the chance of finding programs from
8 different sources in the same application’s virtual space
is extremely low. Although it is possible, but not recom-
mended to protect programs from the same vendor in dif-
ferent memory modules. Performance wise, vendors should
always minimize SAT entry usage by packaging all the data
and codes that require protection together.

Figure 6 assumes a virtually indexed cache. For physical
address tagged cache, an inverse translation table is needed.

3.2 Access Control Mechanism
Efficient hardware supported access control plays a key role
for protecting memory modules from being accessed by un-
trusted software components. It is important to point out
that encryption of a software component or memory mod-
ule does not mean that it can be trusted. A hacker can
encrypt a malicious library and have the OS to load it into
an application’s virtual space. The encrypted malicious li-
brary despite encrypted can illegally access confidential data
deemed to be accessed by only the application program.

Access control is achieved through an access monitoring
mechanism shown in figure 7. The proposed architecture
protects confidential information of a protected memory mod-
ule from being accessed by un-trusted codes with minimal
impact on performance.

To minimize performance impact of access control on mem-
ory accesses, the proposed architecture conducts checking on
access violation in parallel with storing information into the
cache, thus incurs almost no performance loss. As shown in
figure 7, there is an access control bit map (ACBM) where

Data Security Status (2bit)

... …

ROB (Reorder Buffer)

Read Checked

Data Unchecked

Clean

Receipt of access control

result on the read itself

Read Unchecked

Data Unchecked

Read Unchecked

Data checked

Memory read hits unchecked

L1 cache block

Receipt of access control

result on the data (checking

result of the last write)

Receipt of access control

result on the read itself

Receipt of access control

result on the data (checking

result of the last write)

Memory read hits checked

L1 cache block

Figure 8: Security Speculative Execution

r1 => memory address l1
r2 <= memory address l1
r3 = r2 + 100

Figure 9: Example of Access Control Speculative
Execution

each bit corresponds to a L1 cache line. Each bit of ACBM
denotes whether the stored data in the associated L1 cache
line has passed access control security checking. When data
is written to a cache line, the bit will be clear. When access
control reports no violation, the bit will be set. To guar-
antee that a protected memory module is not updated by
instructions who do not have write access right, cache lines
with clear bits in ACBM are inhibited from being written
back to L2 or the external memory. If an access violation is
detected, the proposed access control mechanism will raise
an access control exception. To support precise interrupts
on access control exception, write instructions are not to al-
lowed to retire before access control checking is completed.
After the access monitor finishes checking on a memory ac-
cess, it will send the result to the memory unit so that the
waiting memory write can be retired.

On the performance side, access control requires only one
TLB access, one SAC access, and simple comparisons. It
can be completed in 2 CPU cycles with SAC access and com-
parison combined into one cycle considering SAC is accessed
through index. Furthermore, to minimize any potential im-
pact on performance, a speculative execution mechanism is
proposed to allow processor pipeline to read unchecked data
stored in the L1 cache.

We explain the Speculative Execution Mechanism using the
short code sequence in figure 9 as example. Assume that
data in r1 is stored to L1 cache and when the second in-
struction tries to read the data, access control has not been
finished. In this case, the data is allowed to be loaded and
used. But the instruction in the RUU will be tagged with
status specifying that it is using data that has not completed
its access control checking, furthermore, the read access it-
self has not passed access control checking. Later, when
the access monitor completes checking of the fetched data
(whether the fetched data is allowed to be written to the
cache line by the previous write), it will forward the result
to the RUU and the status will be changed to the situation
that only the read access itself has not passed access con-

OTP Mode

Plaintext (cache line size

memory block)

Cryptographic Function

Virtual addrSequence number

OTP

Bit

XOR

Ciphertext

(encrypted memory

block)

Ciphertext (encrypted memory

block)

Cryptographic Function

Virtual addrSequence number

OTP

Bit

XOR
Plaintext (decrypted

memory block)

Issue to the OTP generation

logic
Issue memory fetch request

External Memory

System

Encrypting a Memory Block

Decrypting a Memory Block

Figure 10: OTP

Cache Line

VAddr

Sequence

Number (64bit)

SHA256

Key Padding (read from

SAT)

256Bit OTP

Figure 11: Generate OTP for a Cache Line Using
SHA256

trol checking yet. When result of checking on the read itself
(whether the program is allowed to read the cache line) is
returned, the status will be marked as clean, meaning it can
be retired after completion. Since access control checking
takes only 2 cycles, assuming 1 cycle L1 access latency, in
ideal case, checking result of the fetched data will be avail-
able right after the data is loaded into r2. One cycle later,
result on checking the read itself will also be available.

3.3 One-Time-Pad (OTP) Prediction
One time pad based protection schemes have been proposed
recently to address the latency overhead associated with
confidentiality protection of program and data [22, 23]1.
Figure 10 shows the difference between regular block cipher
based protection and OTP based protection. OTP based
approaches reduces the overall data fetch latency by paral-
lelizing OTP generation and data block fetch from the main
memory. However, OTP based schemes are vulnerable to
potential known plain-text attacks if the same seed is used
repeatedly for the same cache line size memory block. To
solve this problem, a sequence number is associated with
each cache line size data memory block. The sequence num-
ber is initialized to a random secret value and encrypted
when it is stored in the main memory. Each time, a dirty
cache line is to be evicted from the processor cache, its as-
sociated sequence number is incremented, and the new se-
quence number is used to generate a OTP for encrypting
the evicted data. Next time, when the data is fetched again
into the processor, its associated sequence number has to
be either cached inside the processor, or fetched from the
memory, decrypted, and then used to generate the OTP for
decryption.

OTP based schemes reduce latency only when the associated
sequence number is cached on-chip. There are two conven-
tional techniques to improve hit rate of OTP caching. First,

1As pointed in [1], all the proposed OTP based schemes
so far are not true OTP in the sense OTP used by security
community. They can be best described as OTP like.

Pipelined Cryptographic

Function for OPT

generation

Arbitration

Decryption Engine

Pipelined Cryptographic

Function for OPT

generation...

OTP addr

OTP(i)

... …

sequence number addr

i

... …

Prediction Queue

root sequence number

... …

Add

2

...

5

dTLB

If sequence number cache misses,

- insert x number of predictions to the

prediction queue

- issue sequence number fetch to the

bus

- issue x number of sequence

number of predictions to sequence

number encryption logicsequence number addr

... …

Hit Queue

Sequence Number

Cache

If sequence number

cache hits, insert to

hit queue

Pipelined Sequence

Number Encryption

Logic

Encrypted Sequence Number

Matching with Encryp(i)

...

Encrypted Sequence Number

Returned From Memory,

Encryp(i)

OTP Encrypted Cipher

Memory Block
Bit

XOR
Decrypted Memory Block

Figure 12: OTP Prediction

a bigger or high associativity sequence number cache can
be used with the cost of more chip area. Second, using
sequence number pre-fetch to exploit the spacial locality of
memory access. In this paper, we propose a third technique,
sequence number prediction for reducing the overall latency
of fetching encrypted data from memory. Sequence num-
ber prediction is based on the observation, 1) a pipelined
decryption engine often stays idle when waiting for missing
sequence number been fetched from the memory; 2) during
the whole life a physical memory page is bound to a virtual
memory page, many of its cache line size memory blocks
are only updated very few times. Our profiling study on
SPEC benchmarks indicate that many memory blocks are
updated very few times during the whole process lifetime.
The means that for a cache line that misses sequence num-
ber cache, its sequence number is very likely within a small
range of the first time initialized random sequence number.
The kinds of data that most likely to be updated rarely are
constant values, constant strings, data structures that are
initialized only when program starts. Sequence number of
non-constant data may also exhibit predictability if the data
is not dirty evicted from the L2 too frequently. To exploit
this fact, we designed a OTP prediction technique shown in
figure 12.

First, there is a root OTP sequence number assigned to each
virtual memory page. This root OTP sequence number is
initialized by a hardware random number generator each
time the virtual page is mapped to a physical memory page.
The root OTP sequence number is a secret not accessible
by software. All memory blocks of the same page use the
same root OTP sequence number as their initial value. Each
time, a dirty block is evicted from the processor, its sequence
number will be incremented. When a sequence number is
evicted from the processor, it will be encrypted using AES
encryption scheme [8]. Secondly, the decryption engine is
pipelined and it stores decryption (OTP) requests in two
queues, hit queue and prediction queue. When a missing
cache block has its sequence found in the sequence number
cache, its address and the sequence number will be inserted
to the hit queue. When a missing cache block also misses

the sequence number cache, the prediction logic will take
the root OTP sequence number associated with the virtual
page, and inserts a few sequence number guesses into the
prediction queue. The hit queue has higher priority than
the prediction queue. In each fetch cycle, the decryption
engine will try to fetch the next request from the hit queue
first. Only when the hit queue is empty, the engine will fetch
from the prediction queue. As shown in the figure, the de-
sign supports potential multiple OTP generation pipelines.
However, in this paper, we assume that there is only one
available for decrypting fetched memory blocks.

There is a concern about OTP prediction performance over
a large time window of execution. It is reasonable to suspect
that prediction rate may drop as more data is updated. To
address this issue, a dynamic prediction rate tracking and
sequence number reset mechanism is proposed. The purpose
of this mechanism is to find out virtual pages with low pre-
diction rate caused by frequent memory updates and reset
the page root sequence number to a new value so that high
prediction rate can be restored.

Prediction tracking is performed in hardware using a scheme
described as follows. There is a 16 bit prediction history
value (PHV) associated with each virtual page. The PHV
records hit or miss of the last 16 sequence number prediction
on blocks of the associated page. Each time a data block is
loaded from memory, the PHV of that page is shifted to left
by 1 and ORed with the result of prediction represented by
a single bit (e.g., 1 denotes miss and 0 denotes hit). When
the total number of miss predictions of the last 16 predic-
tions is greater than a threshold, the root sequence number
associated with that page will be reset to a new randomly
generated number. After reset, blocks of the involved page
will use this new number for OTP generation next time when
it is evicted from the L2. Figure 13 lists the operations of
OTP prediction and sequence number reset in pseudo code.

One basic function required by the pseudo-code is the abil-
ity to test whether a sequence number used by a memory
block starts counting from the current root sequence num-
ber. Note that this function does not have to be 100% ac-
curate because a wrong test result will only cause reset of
the memory block’s sequence number. A simple implemen-
tation is, after a sequence number is incremented, it is Bit
XORed with the current root sequence number and a sim-
ple CRC is calculated using the result of XOR. This simple
CRC is stored in pair together with the sequence number.
To decide whether a sequence number starts counting from
the current root sequence number, the sequence number is
XORed with the current root, and a CRC is generated and
matched with the one stored in memory. If they do not
match, the sequence number is considered starting count
from an old root sequence number. This checking is done
every time before a sequence is to be incremented. If a mis-
match is detected, the block will reset its sequence number
to the current root sequence number.

It is important to point out that predictability of the se-
quence number does not mean that it is not secure. The
sequence number is predictable by the secure processor does
not suggest that it can also be predicted by hackers. The
root sequence number for each page is randomly initial-

Assume
Baccess : address of memory block that misses on L2
Brepl: address of memory block that will be replaced in L2
Seq(addr) : current sequence number of a memory block
PageSeq(addr) : root sequence number of a page
OTP(addr) : one-time-pad associated with a block
OTP gen(addr, seq number, key) : crypto logic taking
block addr and seq number for generating OTP

seq encrypt(addr, seq number) : crypto logic
encrypting a sequence number for external store

When a memory block Baccess misses L2
get key from SAT
if seq number cache hit

insert OTP generation request to the hit queue
else

seq pred = PageSeq(Baccess);
for (int i=0; i<prediction depth; i++)
insert OTP generation request to the prediction queue
with seq number seq pred+i, Baccess address, and key from SAT
insert request of seq encrypt(Baccess,seq pred+i)

endfor
fetch sequence number Seq(Baccess) from memory

endif
fetch memory block

When encrypted sequence number Seq(Baccess) is returned
match Seq(Baccess) with encrypted seq number predictions
if a match is found
update prediction history PHV with a hit

else if Seq(Baccess) counts from PageSeq(Baccess)
update prediction history PHV with a miss

else // Seq(Baccess) starts from old PageSeq(Baccess)
update the sequence number in memory so that it
will count from PageSeq(Baccess) next time
force Baccess in L2 as dirty so next time
when it is replaced, it will be written back
encrypted with OTP generated from PageSeq(Baccess)

endif
send OTP generation request if a match can not be found

When the encrypted memory block for Baccess is returned
get decrypted data by OTP(Baccess) XOR encrypted data block

When Brepl is replaced in L2
if dirty or Seq(Brepl) starts from old PageSeq(Brepl)
if Seq(Brepl) does not count from the current PageSeq(Brepl)
reset Seq(Brepl) to PageSeq(Brepl)

endif
Seq(Brepl)++;
generate OTP(Brepl) using Seq(Brepl), Brepl address, and key from SAT
encrypt evicted data by OTP(Brepl) XOR evicted data

endif

Figure 13: OTP Prediction and Sequence Number
Prediction

ized. Each time when the sequence number associated with
a memory block (including the root sequence number it-
self) is stored to memory, it is encrypted using AES en-
cryption standard [8]. Furthermore, even a hacker knows
the OTP of a particular memory block, it does not tell any
information about the sequence number or OTPs of other
blocks on the same page. The security requirement that
each time an evicted L2 block is encrypted using a different
non-predictable OTP is maintained.

3.4 Integrity Protection Under MESA
The existing integrity protection schemes for secure proces-
sor architectures are based on the construction of an m-ary
hash/MACtree. Under the memory centric mode in which
information within a process space is usually encrypted by
multiple encryption keys,the original schemes of hash tree
or MAC (message authentication code) tree based mem-
ory authentication cannot be directly applied [9]. Con-
sequently, we generalized the integrity protection tree struc-
ture. We first protect individual memory module with their
own hash/MAC tree, and then, a new hash/MAC tree is
constructed on top of it, as shown in figure 14. In figure 14,
a leaf node represents an individual integrity code and each
internal node denotes a MAC of all the children nodes. All
the nodes of integrity trees are securely stored in the ex-

…

….

..

.

.

.

.

.

.

.

.

Memory Module

Root Signature

RAM

Block

RAM

Block...

Root Signature

MAC

.

.

.

.

.

.

.

.

RAM

Block

RAM

Block...

MAC

MAC
MAC

...

MAC

m-way MAC integrity tree in

memory

Base address

Figure 14: Layered MAC Tree for Memory Integrity
Verification

ternal RAM. To speed up integrity verification, frequently
accessed nodes of the MAC tree are cached on-chip. When
a new cache line size block of data/instructions is fetched,
the secure processor verifies its integrity by inserting it into
the MAC tree. Starting from the bottom of the tree, re-
cursively, a new MAC is computed and compared with the
internal MAC tree node. The MAC tree is updated when
a dirty cache line is evicted from the secure processor. The
secure processor can automatically determine the memory
locations of MAC tree nodes and fetch them automatically
during integrity check if they are needed. Root of the MAC
tree is preserved securely when a process is swapped out
of the processor pipeline. MESA uses authentication spec-
ulative execution [15, 1, 20]. In authentication speculative
execution, decrypted instructions are allowed to be issued
and executed before the result of integrity verification is de-
termined. Similar to access control speculative execution,
instructions using data that has not passed integrity check
can not be retired. In [20], a detailed scheme of authenti-
cation speculative execution is described.

4. PERFORMANCE EVALUATION
The purpose of performance evaluation is to show that ac-
cess control does not incur significantly more performance
overhead over protection without it. Furthermore, we want
to study the potential performance advantages of OTP pre-
diction. A cycle-accurate processor architecture is used for
detailed performance evaluation.

4.1 Simulation Framework
Our simulation framework is based on SimpleScalar [5] run-
ning SPEC2000 integer and FP benchmarks compiled with
-O3 option. We implemented architecture support for ac-
cess control and OTP prediction over SimpleScalar’s out of
order Alpha processor simulator. We also integrated a more
accurate DRAM model [11] to improve the system mem-
ory modelling, in which back conflicts, page miss, row miss,
page miss are all modelled following the PC SDRAM specifi-
cation. The architectural parameters used for performance
evaluation are listed in table 1. We used pipelined OTP
decryption and encryption engines. SHA-256 [18] has 64
rounds and each round is performed in one pipeline stage.
With 1.0 GHz processor core clock rate, each round can be
completed in two core clock cycles, giving a total SHA-256
based OTP generation latency of 128 cycles or 128ns under
1.0 GHz core clock speed. Under this pipelined design, a new

Parameters Values

Fetch/Decode width 8
Issue/Commit width 8

L1 I-Cache DM, 8KB, 32B line
L1 D-Cache DM, 8KB, 32B line
L2 Cache 4way, Unified, 32B line, write back cache

256KB and 2M
L1/L2 Latency 1 cycle / 6 cycles (256KB), 12 cycles (2M)

I-TLB 4-way, 256 entries
D-TLB 4-way, 256 entries

Memory Bus 200MHz, 8B wide
SHA-256 latency 64 stages, 2 cycle each, 128ns total

AES latency 120ns
Access Control Monitoring latency 2 cycle

Sequence number cache size 4KB, 8KB, 32KB
Prediction history window 16bit

Prediction range 4

Table 1: Processor model parameters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

art

am
m

p

sw
im

m
grid

facerec

w
upw

ise

lucas

applu

sixtrack

apsi

m
esa

galgel

equake

fm
a3d

m
cf

bzip

tw
olf

vpr

parser

gap

gzip

gcc

vortex

crafty

perlbm
k

eon

SPEC2000INTSPEC2000FP

Figure 15: L2 miss rates for SPEC 2000 (256KB)

decryption request can be issued every two clock cycles. To
model OTP prediction faithfully, we added a memory pro-
filing support to SimpleScalar that keeps track important
memory information for evaluating OTP prediction, such as
number of times a memory block is evicted from L2 cache,
sequence number allocated to each virtual page, and etc.
Each benchmark is fast-forwarded according to SimPoint’s
suggestion [19] then simulated for 400M instructions in per-
formance mode. During fast-forwarding, L1 cache, L2cache
, sequence number cache prediction mechanism are also sim-
ulated. The profiled memory status is also update during
fast-forwarding. To study sensitivity of OTP prediction to
execution time, we also run each benchmark in a simplified
mode that simulates the memory hierarchy and OTP pre-
diction using 8 billion instructions. Other OTP prediction
related parameters are prediction history window, which is
16 bits. By default, the sequence number of each virtual
page is reset if the number of prediction misses over the
last 16 is greater than or equal to 12. Prediction range is
the number of guesses generated for each missing sequence
number.

Both SPEC2000 INT and FP benchmarks were used for our
evaluation. We subset the simulations for those with high
L2 misses2 as indicated in figure 15. All the benchmarks are
simulated under the security setting that data confidential-
ity has to be protected.

4.2 Performance Analysis
2The reason we did not choose facerec and lucas was because
their absolute numbers of misses are low despite of their high
miss rates.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Am
m

p

applu
art

bzip2
gcc

gzip
m

cf
m

grid
parser

swim
twolf

vortex

vpr
W

upwise

Average

4K 4K-pred

Figure 16: Normalized Performance of Sequence
Number Prediction plus Sequence Number Cache
vs. Sequence Number Cache Only

4.2.1 Access control
We simulated all the selected benchmarks with access con-
trol enabled. The access control monitor checks every data
read/write from and to L1 cache and broadcasts the result
after the checking is completed. Instructions reading L1
cache line with pending access control result are allowed to
be issued and executed but can be only retired after the
result is obtained. Using the proposed access control mech-
anism, our simulation result does not show performance
changes for all the studied benchmarks. Two main possible
reasons why the proposed access control does not impact on
performance are, 1) it is conducted in parallel with L1 access
and taking only very small number of cycles; 2) instructions
are allowed to access and use data with pending access con-
trol result. Since access control checking is very fast and in
parallel with L1 access, access control result is almost cer-
tainly ready when the instruction is completed and ready
to be retired because there is only one more cycle delay on
access control result of L1 read/write. This extra cycle can
be tolerated by the access control speculative execution be-
cause instructions using either stored data from unchecked
store or fetched data from unchecked read can be issued and
executed at the same time. If execution of instructions us-
ing unchecked data takes at least one cycle to finish, which
is certainly true, when the instruction is completed, access
control checking result is also ready. Note that access control
involves only L1 cache and its performance is not sensitive
to cache sizes, L2 performance, and etc.

4.2.2 Performance improvement using OTP predic-
tion

Performance results under small L2 cache is critical because
protection on data confidentiality is not only deemed for
very high end machines but commodity platforms as well.
Majority sold processors for regular users have L2 cache of
only 256K or even less.

Figure 16 shows normalized IPC performance results of 4K
sequence number cache vs. 4K sequence number cache with
sequence number prediction. The IPC is normalized to a
baseline of ideal situation that there is no miss of sequence
number. This represents a perfect scenario that OTP gen-
eration for every fetched memory block can be parallelized

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Am
m

p

applu
art

bzip2
gcc

gzip
m

cf
m

grid
parser

swim
twolf

vortex

vpr
W

upwise

Average

4K 8K 32K

Figure 17: Normalized Performance of 4K,8K, and
32K Sequence Number Cache without Sequence
Number Prediction

with memory access. As indicated by the results, OTP pre-
diction improves performance for almost every simulated
benchmark. The average improvement is about 11%. But
for certain benchmarks, such as bzip2, mgrid, twolf, vpr, the
improvement is in the range of 15-25%. The improvement
is largely due to the increase of sequence number hit for
fetching missed memory blocks.

To show that sequence number prediction improves perfor-
mance even for relatively large sequence number caches, we
did experiment using 8K and 32K sequence number caches
and compare the results in figure 17. The results show that
although increasing sequence number cache size can improve
performance slightly, but the improvement is not propor-
tional to the increase of sequence number cache size. One
possible explanation is that for sequence number cache to
perform well, is that the processor has to miss on the same
memory block many times within a short time window be-
fore the sequence number is evicted from the sequence num-
ber cache. Due to the temporal locality and memory work-
ing set, a processor rarely repeats missing on the same mem-
ory block many times in a short time. This suggests that
sequence number may have a very large secondary working
set.

The slow improvement of sequence number hit rate under
increase of sequence number cache suggests that a combi-
nation of sequence number prediction and a small sequence
number cache is best for reducing sequence number misses.
A small sequence number cache with relatively large cache
line size can be used to capture spacial locality of L2 misses
and repeated conflict misses, while sequence number predic-
tion can be used to reduce misses on data blocks that are
not frequently updated.

One parameter used for OTP prediction is prediction range,
number of guesses inserted to the prediction queue of OTP
generation engine. To study the effect of prediction range,
we experimented 3 settings using 4 guesses, 7 guesses, and
10 guesses respectively. The result is shown in figure 18

The results show little difference over the three experimented
settings. There is no significant trend of performance im-
provement using large number of guesses. In fact, per-

 0

 0.2

 0.4

 0.6

 0.8

 1

Am
m

p

applu
art

bzip2
gcc

gzip
m

cf
m

grid
parser

swim
twolf

vortex

vpr
W

upwise

Average

Prediction_Depth_4
Prediction_Depth_7
Prediction_Depth_10

Figure 18: Normalized Performance Under 4, 7, and
10 Guesses For Each Missing Sequence Number

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Am
m

p

applu
art

bzip2
gcc

gzip
m

cf
m

grid
parser

swim
twolf

vortex

vpr
W

upwise

Average

normal_policy aggressive_policy

Figure 19: Overall OTP Hit Rate Across 8 Billion
Instructions

formance of some benchmarks decreases slightly when too
many guesses are generated. One explanation of why large
number of guesses does not lead to improved performance
is that it can generate overwhelming number of predictions
and cause great resource contention on the OTP generation
engine.

4.2.3 OTP prediction over large execution time
One concern about OTP prediction is that its performance
may decrease over execution time. To answer this question,
we simulated performance of OTP prediction over relatively
large time window, 8 billion instructions under 256K L2.
Since we suspected that OTP prediction performance over
a large period may be affected by the sequence number reset
threshold, we experimented two settings of reset threshold,
called normal setting and aggressive setting. Under normal
policy, sequence number associated with a virtual page is
reset if twelve of the last sixteen predictions meet sequence
number outside the prediction range. Under aggressive set-
ting, threshold is set to eight instead of twelve.

Figure 19 shows the overall OTP hit rate for the two studied
settings. First, the results indicate that OTP hit rate does
not decrease over time. The overall hit rate is relatively high
even after 8 billions of instructions are simulated. Figure 20
breaks the total number of hits under normal policy into
three categories, 1)hit both, a sequence number that is in the

 0

 0.2

 0.4

 0.6

 0.8

 1

Am
m

p

applu
art

bzip2
gcc

gzip
m

cf
m

grid
parser

swim
twolf

vortex

vpr
W

upwise

Average

Both_Hit
Seq_Only
Pred_Hit

Figure 20: Breakdown of Contribution of Sequence
Number Cache, and Sequence Number Prediction

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Am
m

p

applu
art

bzip2
gcc

gzip
m

cf
m

grid
parser

swim
twolf

vortex

vpr
W

upwise

Average

4K 4K-pred

Figure 21: Normalized Performance of Sequence
Number Prediction plus Sequence Number Cache
vs. Sequence Number Cache Only, 2M L2

sequence number cache and can be predicted; 2) prediction
only, a sequence number that is missing in the sequence
number cache, but can be predicted; 3) sequence cache only,
sequence number can not be predicted but available in the
cache. The result suggests that sequence number prediction
makes a great contribution to improving the overall sequence
number hit rate. Secondly, the results show that aggressive
setting only improves the overall OTP hit rate slightly.

4.2.4 Performance improvement on 2M L2
We also evaluated sequence number prediction under large
L2 cache size. Note that sequence number prediction is a
technique for reducing latency of fetching OTP encrypted
data from memory. If the application does not require a
large memory throughput due to large size of L2, OTP pre-
diction will not be expected to improve performance signifi-
cantly. Many of the memory hungry SPEC2000 benchmarks
(e.g., bzip2, mgrid, and mcf) under 256K L2 are no longer
so under 2M L2 size because their entire working can be fit
into a large 2M L2.

Figure 21 shows normalized performance results using 2M
L2 cache under 4K sequence number cache and sequence
number prediction. The performance is normalized to the
baseline of ideal situation that there is no miss on sequence
number. The averaged performance improvement is about

Table 2: Tamper Resistant/Copy Protection System Comparison
System Confidentiality Cipher Access Control
XOM [15] whole process based triple-DES NA
Aegis [9] whole process based AES NA

MESA fine grain OTP, OTP prediction yes
Yang, Zhang, and Gao [23] whole process based DES based OTP NA

Suh, etal [22] whole process based AES based OTP NA
Zhang, Gupta [24] instruction slices based block cipher NA

 0

 0.05

 0.1

 0.15

 0.2

Am
m

p

applu
art

bzip2
gcc

gzip
m

cf
m

grid
parser

swim
twolf

vortex

vpr
W

upwise

Average

aggressive_policy
normal_policy

Figure 22: Percentage of Extra L2 Blocks That Have
to Be Evicted Due to Sequence Number Reset, 256K
L2

5%. For some benchmarks, it is about 10%. The perfor-
mance improvement is less than the situation of 256K L1
cache. One reason is that 2M is big enough to hold many
benchmarks’ working set, thus leave a small margin for im-
provement. Under 4K sequence number without prediction,
the averaged IPC is almost 90% of the ideal scenario that
assumes no miss of sequence number.

4.2.5 Memory Throughput overhead of OTP predic-
tion

Resetting the sequence number associated with each virtual
page as the prediction rate goes down can improve future
prediction on frequently evicted memory blocks, but may
cause more demand on memory throughput because a non-
dirty L2 block of the same page has to be evicted if it is
replaced by other memory block. Figure 22 shows the per-
centage of extra L2 blocks that have to be evicted due to
resetting of sequence numbers under the two reset threshold
settings (8 billion instructions). As shown by the result, the
overhead is relatively small. Under the normal threshold
setting, it is below 5%.

5. RELATED WORK
Software protection and trusted computing are among the
most important issues in the area of computer security, which
have received extensive studies for years. Traditionally, the
protections on software are provided through trusted op-
erating systems. The operating systems implement certain
mechanisms to ensure that the applications are cryptograph-
ically protected and the information spaces of different ap-
plications are isolated from one another. Consequently, the
software protections are achieved since malicious applica-
tions will not be able to access to others without the per-
mission of OS. The trusted computing is ensured as well
since an application is protect from tampering from others

by the underlying operating system. To improve the secu-
rity model, some tamper resistant devices are embedded into
computer architecture to ensure the loaded operating system
is trusted. From there, a chain of trust applications are run,
each depending on the underlying layer. A typical example
of such computer architecture is the TCPA [2] architecture
and the related operating system is known as NGSCB [4].
Another example based on the concept of virtual machine is
Terra [10]. Although these systems provide authentication
services and prevent simple tamper on the application, they
are not designed for protection on software confidentiality.
They may be used for digital right protection but it is un-
likely that they can prevent physical based attack on copy
protection and software confidentiality.

Nevertheless, as history indicated, to the issue of copy pro-
tection and software confidentiality, computer hackers/crackers
tend to be well-knowledge, highly motivated, and sometimes
well supported financially to crack a protected machine and
its software. In many cases, the computing devices them-
selves can be in the hands of adversaries. Consequently,
they can launch physical attacks which are even serious than
the software based attacks prevented by the previous ap-
proaches. The instance of XBOX security key breaking is
one such example [13]. This imposes additional challenges
and traditional software protection approaches seem not suf-
ficient to address the problem. As a result, new processor
architecture, e.g. XOM and Aegis, has emerged, which pro-
tects trusted computing with architectural support. With
the architectural support, an operating system, called XO-
MOS [16], is proposed that is able to not only protected ap-
plications, but also provide most necessary services available
in traditional OS. Another work by Shi et al. [20] proposes
a technique for protection of memory integrity in Multipro-
cessor Systems. Table 2 compares some recently published
systems designed for hardware based protection on software
confidentiality.

Note that though traditional capability based systems such
as Hydra and CAP have mechanisms to manage access on
information, they are not the kind of tamper resistant sys-
tems that can prevent physical attacks on software integrity
and confidentiality. The architecture and the associated OS
we proposed is able to address high performance fine-grain
protection on software confidentiality with the proposed ac-
cess control and OTP prediction technique.

6. CONCLUSIONS
This paper describes a high performance memory centric se-
curity system that protects software confidentiality using a
novel one-time-pad (OTP) prediction technique. Different
from the previous process-based tamper-resistant systems
designed for the same purpose, the new system allows differ-
ent software components to be selectively protected or sep-
arately protected based on different security requirements,

therefore more flexible than the previous process based pro-
tection. It supports selective protection on software com-
ponents in an un-trusted and opened software environment.
The novel hardware based access control enforces security
protection on memory modules with heterogeneous security
requirements. Implementation of memory centric protection
requires only small amount of additional hardware resources
over process-centric based approach and causes no more per-
formance degradation than process-centric based protection
because of proposed security speculative execution and par-
allel of access control with cache access. The proposed novel
OTP prediction technique significantly improves benchmark
performance over the previous OTP based designs using se-
quence number cache. For some memory hungry bench-
marks, the gain is in the range of 15% to 25%. The OTP
prediction technique when combined with a small 4KB se-
quence number cache outperforms setting of large 32KB se-
quence number cache on average by 11%. The prediction
technique generates OTP guesses using free idle pipeline cy-
cles of OTP generation logic thus requires little extra hard-
ware resources.

7. REFERENCES
[1] M-TREE: A Fast Secure Architecture for Protecting the

Integrity and Privacy of Software. Submitted for
publication.http:
//www.cc.gatech.edu/people/home/lulu/Mtree.pdf, 2004.

[2] The Trusted Computing Platform Alliance.
http://www.trustedpc.com. 2003.

[3] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure
and reliable bootstrap architecture. In Proceedings of the
1997 IEEE Symposium on Security and Privacy, page 65.
IEEE Computer Society, 1997.

[4] Next-Generation Secure Computing Base.
http://www.microsoft.com/resources/ngscb/default.mspx.

[5] D. Burger and T.M. Austin. The simplescalar toolset,
version 2.0. Technical Report 1342, University of
Wisconsin, June 1997.

[6] Carlisle Adams, Steve Lloyd, and Stephen Kent.
Understanding the Public-Key Infrastructure: Concepts,
Standards, and Deployment Considerations. . New Riders
Publishing, 1999.

[7] Ellis Cohen and David Jefferson. Protection in the hydra
operating system. In Proceedings of the fifth ACM
symposium on Operating systems principles, pages
141–160. ACM Press, 1975.

[8] Federal Information Processing Standard Draft. Advanced
encryption standard (aes). national institute of standards
and technology, 2001.

[9] E.G.Suh, D.Clarke, M.van Dijk, B. Gassend, and
S.Devadas. Aegis: Architecture for tamper-evident and
tamper-resistant processing. In Proceedings of The Int’l
Conference on Supercomputing, 2003, 2003.

[10] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum,
and Dan Boneh. Terra: a virtual machine-based platform
for trusted computing. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages
193–206. ACM Press, 2003.

[11] Matthias Gries and Andreas Romer. Performance
evaluation of recent dram architectures for embedded
syhstems. TIK Report Nr. 82, Computer Engineering and
Networks Lab (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, 1999.

[12] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509
public key infrastructure certificate and CRL profile. RFC
2459, Internet Engineering Task Force, January 1999.

[13] A. Huang. Keeping secrets in hardware the microsoft xbox
case study. MIT AI Memo, 2002.

[14] Butler Lampson, Martin Abadi, Michael Burrows, and
Edward Wobber. Authentication in distributed systems:
theory and practice. ACM Trans. Comput. Syst.,
10(4):265–310, 1992.

[15] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectual support for copy
and tamper resistant software. In Proceedings of the 9th
Symposium on Architectural Support for Programming
Languages and Operating Systems, 2000.

[16] David Lie, Chandramohan A. Thekkath, and Mark
Horowitz. Implementing an untrusted operating system on
trusted hardware. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, pages
178–192. ACM Press, October, 2003.

[17] R. M. Needham and R. D.H. Walker. The cambridge cap
computer and its protection system. In Proceedings of the
sixth ACM symposium on Operating systems principles,
pages 1–10. ACM Press, 1977.

[18] National Institute of Science and Technology. Fips pub
180-2: Sha256 hashing algorithm.

[19] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior.
In Proceedings of the 10th Symposium on Architectural
Support for Programming Languages and Operating
Systems, pages 45–57, October 2002.

[20] Weidong Shi, Hsien-Hsin S. Lee, Mrinmoy Ghosh, and
Chenghuai Lu. Architectural support for high speed
protection of memory integrity and confidentiality in
symmetric multiprocessor systems. In Proceedings of the
2004 International Conference on Parallel Architectures
and Compilation Techniques, 2004.

[21] E. Suh, B. Gassend, D. Clarke, M. Van Dijk, and
S. Devadas. Caches and merkle trees for efficient memory
authentication. In Proceedings of the Ninth Annual
Symposium on High Performance Computer Architecture,
February 2003.

[22] E. G. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. Efficient Memory Integrity Verification and
Encryption for Secure Processors. In Proceedings 0f the
36th Annual International Symposium on
Microarchitecture, December, 2003.

[23] Jun Yang, Youtao Zhang, and Lan Gao. Fast secure
processor for inhibiting software piracty and tampering. In
36th Annual IEEE/ACM International Symposium on
Microarchitecture, December, 2003.

[24] Xiangyu Zhang and Rajiv Gupta. Hiding program slices for
software security. In Proceedings of the 2003 Internal
Conference on Code Genration and Optimization, pages
325–336, 2003.

