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Abstract 

 
Until now context free grammars (CFG) have been used mainly for the design of programming languages. There 
have been several studies, which demonstrate the relationship between learning theory and number theory. This 
paper presents protocols, which use context free languages for an authentication protocol using one-time 
authentication information. This authentication information can be used for the generation of one-time passwords. 
This paper also analyses of the difficulty of guessing strings in such a language. The paper further discusses 
structured and unstructured techniques for generating strings, which is a part of ongoing work. We present here 
our approach and some of our early results. 
 
1.0 Introduction 

Reusable passwords have traditionally been the weakest link in host security. Often they are poorly chosen and 
therefore easy to guess, or their storage is poorly protected. In recent years the reusable password has also become 
a favorite target for network eavesdroppers [14].  Since passwords must often be sent ``in the clear,'' they can be 
easily captured by eavesdroppers and used later for intrusions. Intruders often leave behind automated ``sniffer'' 
programs in order to harvest passwords for later use.  

Systems like Kerberos encrypt all sensitive network traffic, foiling both active and passive attacks. But the user is 
required to use only ``kerberized'' hosts to participate; remote logins over an unprotected link or from a dumb 
terminal are still vulnerable. This problem also exists with other application-level encryption protocols like SSH. 
They are great tools and should be used when available, but in many situations they are either unavailable or 
inconvenient.  

“One-time” passwords provide one solution for fixed static password, as they allow users to authenticate over 
insecure links without revealing any sensitive information in the process. As the name implies, a one-time 
password is only good for one authentication session, after which it automatically expires, and a new (previously 
unused) password becomes valid.  

Design of the schemes to generate one time passwords has been one of the interesting areas of research. Leslie 
[13] in his paper proposed the use of hash functions for the generation of one-time password.  Symmetric keys, 
asymmetric keys and challenge response are also being used for the design of one-time passwords. Learning 
theory till now has been used for the design of programming languages. This paper explores the usage of learning 
theory for the design of authentication protocol generation one-time authention information. We present here 
some of our initial results. 

Section 2.0 discusses the hardness of learning the grammars. Section 3.0 discusses the hardness of guessing a 
string. Section 4.0 presents the protocol making use of mutually independent grammar for the generation of one-
time authentication information. In section 5.0 we present the structured and unstructured manner of generation of 
strings. Section 6.0 presents a method to prevent replay of previously generated strings. In section 7.0 we present 
a protocol using distinct CFGs. Section 8.0 notes the need for future work. 
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2.0 Learning Grammars 
 

In [2], a representation class was defined as a class of objects that can be represented by strings over some 
alphabet. The set of all context free grammars is a representation class. A learning algorithm is one that tries to 
learn a representation class from positive and negative instances.  [2] presents a formal definition of the learning 
process.  We let c and h be two instances of some representation class, where c is the target class (the class to be 
learned), while h is the output class.  We let A be the learning algorithm, which takes positive and negative 
instances as an input.  A outputs class h.  We use ec

+(hA) to denote that algorithm A errors on a positive instance 
of c and classifies them as a negative instance of h. Similarly, ec

-(hA) represents the probability that A errors on 
negative instances of c.  When ec

+(hA) = ec
-(hA) = 0 then the classes c and h are identical. This is the ideal case 

of complete learning, with zero errors, and can be classified as strong learning. There can be another case where 
the error is not zero, but it is a small, negligible value, called “weak learnable”. [2] presents a representation class 
c as weakly learnable if there exists a probabilistic polynomial time algorithm A that  on access to a set of positive 
and negative instances  of a target representation c � C, generates an output representation h, so that  ec

+(hA)  <  ½ 
- 1/O(|c|K) and  ec

-(hA)  <  ½ - 1/O(|c|K)  and for some constant k.  |c| is usually taken as some polynomial in n, the 
length of the sample instance 

 If ACFG is a learning algorithm for context free grammars, then for any given context free grammar G1, 
with access to a small subset of positive and negative instances (i.e., strings that belong to G1 and are outside of 

G1 respectively), ACFG can implicitly construct a grammar G2 which is almost identical to G1.  Almost identical 
can either be a case of strong learnability or weak learnability. Strong learnability lies in the undecidable domain. 
We present a proof. 

 Given a set of strings S1, S2, S3…S n, S n+1… Sm there can be an infinite number of grammars that can 
generate these strings. The exact context free grammar is a grammar which can be generated by using S1, S2, 
S3…. Sn and which successfully accepts S n+1, S n+2… Sm.  Let’s assume that there exist an learning algorithm A 
which on an input set of string S1, S2, … Sn can predict the exact context free Grammar G which generated it. Now 
let us pick any context free grammar G1 and generate strings S1, S2.. Sn by randomly selecting rules from the 
grammar. These strings are passed through the learning algorithm A, which gives grammar G2 as the exact context 
free grammar. However, it is known that given two context free grammars G1 and G2, whether the languages are 
equal, L(G1) = L(G2), is an undecidable problem [1]. Therefore there exists no way to verify if the language 
generated by G1 and G2 are equivalent. Hence there cannot be any algorithm, which can give an exact context free 
grammar.  So the strong learnability of context free grammars lies in the undecidable domain. 

  Strong learnability implies learning the whole CFG. Since strong learnability requires false positives and 
false negatives to be zero, the output class is the same as the target class. Hence it classifies the instances with 
probability one. This makes strong learning a very strong assumption for cryptographic purposes.  Randomly, we 
can guess whether a target class and an output class are identical with probability ½.  For cryptographic purposes 
must define how much better a learning algorithm can learn a grammar compared to random guessing. A 
representation class is weakly learnable if there exists an algorithm that can do a little better as a classifier than 
random guessing. Weak learnability expects a learning algorithm to classify the output class just slightly better 
than random guessing.  

 According to results of Kearns and Valiant [2], if ADFA n p(n) denotes the class of deterministic finite 
automata of size at most p(n) that only accepts strings of length n, and ADFA p( n) = ∪n>1 ADFA n p( n) , then 
for some polynomial p(n), the problem of inverting the RSA encryption function, recognizing quadratic residues 
and factoring blum integers are probabilistic polynomial-time reducible to weakly learning ADFAp(n).  They 
further state that any representation class whose computational power subsumes that of NC1 is not weakly 
learnable. Since CFGs contain the computational complexity class NC1, they are also not weakly learnable under 
the similar cryptographic assumptions as that of ADFA. Factoring RSA, recognizing quadratic residues and 
factoring Blum integers are reducible to weakly leaning CFG’s. So it can be concluded that it is hard to learn 
CFGs. We use the term “guessing a string” throughout this paper to refer to the problem where, given a set 
of strings in a language, one must guess another string which belongs to the same language.  This problem of 
“guessing a string” still lacks a strong theoretical foundation. This leads to an interesting research challenge: If a 
context free grammar is hard to learn can it be used to construct any useful security protocols? �
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3.0 Guessing a String 

 Even though theoretically for an average case it is hard to learn the CFG, there have been several studies using 
artificial neural networks [9] and genetic algorithms [10] to learn grammars. Singh et. al.[4] detail studies of 
learning context free grammars and the design consideration of an algorithm to make learning the grammar hard. 
Note that there can be many algorithms that make learning hard. One of them is presented in [4].  Even though it 
is tough to learn a grammar, the difficulty of guessing a string is still an interesting research problem. This paper 
presents some of our initial results on string guessing.  The main purpose of the research is to present some of our 
initial research results to address the issue of guessing a string.  

 To assess the hardness of guessing the string, several experiments (presented in the appendix) were 
conducted.  The algorithm in [4] was used to generate random strings.  Sample strings were collected, broken into 
different combinations and parsed through the CFG.  One percent of the combinations were accepted. 

This test demonstrates that the acceptance rate is too high for cryptographic purposes. In [3] a protocol 
making use of CFG for the generation of one-time authentication was proposed. In the proposed protocol only one 
string was sent at a time. However our experiments show that it might be easier for an adversary to guess the string 
belonging to a language than to learn the grammar. It can be seen from the above experiments that, given a set of 
strings from a grammar, guessing a string is easier than learning the grammar. Therefore in order to get a stronger 
resistance to guessing we propose the use of mutually independent grammars to generate “n” strings.  The intuition is 
this: if an adversary has a measurable probability of guessing a string successfully, use many such independent 
grammars to force the adversary to repeat their success. 

Two events are said to be independent if the knowledge about one event does not affect the probability of the 
other event. So if the grammars follow an independent distribution then, the probability of guessing a string S1, will 
have no effect on the probability of guessing a string from another grammar. Hence under the assumption that 
independent grammars can be generated, we define an adversary’s chance of success as: 

Pr [Guess S] =∏
=

n

i 1

 Pr [Guess Si]  

 Here, we let S be a concatenation of strings in independent grammars, S = S1| S2 | S3 |… Sn.  Hence to minimize the 
adversary’s chance of success, it should be ensured that the probability of guessing of a string Pr [Guess Si ]  < ½. By 
enforcing this rule it can be ensured that as we add more and more grammars the chances of guessing the string S (= 

∏
=

n

i 1

 Si) reduces. This results from the use of independent grammars and minimizes the guessing ability of an 

adversary. For the modified version of the protocol, in order to successfully guess a string S, an adversary will have to 
guess all the substrings S1, S2….S n . Even if there is a one percept acceptance rate for randomly generated strings, as 
demonstrated by our simple test, the use multiple independent grammars provides a promising way to use such 
grammars in a security protocol. 
 
Hence the grammar for the proposed protocol should follow two characteristics. 
• The grammar should be hard to learn.  This makes guessing the grammar a tough task, and minimizes Pr 

[Guess Si]. 
• It should be independent. This makes guessing the string difficult. Instead of guessing one string, an 

adversary will have to guess all the substrings.  
 
4.0 The Protocol making use of mutually independent context free grammar  

 
The version of the protocol proposed in this section is making use of mutually independent context free 

grammars. In the sub section 4.1 we present the protocol and address the issue of guessing of strings.  In Section 6.0, 
we address the issue of replay attacks. 

 
For this discussion, we use the following terms:  
• The entity, which generates the one time authentication information, is called as the generator. 
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• The entity, which validates the one time authentication information, is called as the verifier. 
• Output of the grammar  Gl is called a string Sl 
• The output of the protocol, a concatenation of the strings, is called an authentication token S = S1| S2 |…. 

|Sn. 
 

The generation of the string has to be performed on the generator’s end and the verification of the string has to be 
performed on the verifiers end. 
 
4.1 Authentication protocols using mutually independent grammars. 
The generator and the verifier both share the same grammar {G1, G2, G3…. Gk}. The number of grammars “k” and the 
grammars themselves are kept secret.  We also choose a fixed “n” where n is the number of strings to be concatenated.  
It has to be ensured that k > n otherwise an adversary can make an easy guess about the number of grammars.  If k < n 
then a substring from the same grammar can appear in the string, and independence is lost. For this subsection it is 
assumed that the replay of the previously generated strings is not possible. Prevention of replay attacks is 
discussed in the section 6.0. 
 
4.1.1 Generation of the Strings 
 
Figure 1 shows the pseudo code for the generation of the string. The number l is the length of the string generated by 
the grammar.  The grammar at the position l mod k is chosen to generate a string of length l. This process is repeated 
“n” times and the strings generated after “n” operations are concatenated and sent to the verifier. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1.0 Pseudo code for the Generation of the “n” Strings. 

 
 
4.1.2 Verification of the Strings: 
 
Figure 2 shows the pseudo code for the verification of the string. The verifier takes the authentication token S and 
breaks it up into strings S1…. S n. Verifier then calculates the length l1 of the string S1.  The string S 1 is parsed 
through the grammar at the position l. The process is repeated for the “n” strings. If all the “n” strings are 
successfully parsed then an authentication procedure is complete.  
 
     
     
   
  
 
 
   

Procedure: Verification of the “n” strings 
Begin 
Step 1.  Get the authentication token S = S1|S2….|Sn 

Step 2   Start for i= 1 to n   
Step 3.  Take a string Si 

Step 4.  Calculate the length of the substring Si = l i 
Step 5.  Parse the string at grammar at position li . 
 End for  
 If all the strings are accepted then authenticate else reject. 
 End  

Procedure Generation of n strings 
Input: n, number of strings. 
Begin 
Step 1.  Start for i equal to 1 to n 
Step 2. Generate a random l. 
Step 2.  Pick up a grammar at position l mod k = G (l mod k) 
Step 3.  Generate a string of length l. = S1. 
Step 4.  Repeat the process n times ensuring that every time a      
different independent grammar is used to generate each 
string. 
Step 5.  Concatenate to get the strings to get authentication  
token S = S1| S2|... |Sn 

Step 6.  Send the  S to the verifier 
End 
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            Figure 2.0 Pseudo code for the verification of the “n” strings 
 
 
 
4.2 Difficulty of guessing the string 
 

The protocol to generate one-time authentication information is still susceptible to man in the middle attacks. 
Our protocol does not address these, and so other existing solutions should be used.  For example, we assume that 
the generator is using a trusted platform to create the strings and the communication infrastructure between the 
generator and the verifier is using a VPN to prevent monitoring.  

The proposed adversary is given all the terminals, which can appear in a language, and a string with the last 
missing terminal. An adversary will only have to successfully guess the last terminal, which can occur in a string. 
If the number of terminals is 25, and out of these 25 terminals if 12 can occur at the last position then the random 
guessing probability of an adversary becomes 12/25.  

Since the output of the protocol consists of “n” strings from mutually independent grammars at each 
instance, an adversary will have to perform the guessing of string  “n” times.  Hence the probability of guessing 
for an instant reduces to [12/25] n.  Here we introduce the notion of a confidence factor. 

Confidence factor = 1 – probability of successful guess. 
 

  Pr[Guess S1]                                           =  12/25              =    0.48         
                Pr[Guess S1  | S2]                                    = [12/25] 2          =  [0.48] 2     

 Pr[Guess S1 | S2 | S 3 ]          = [12/25] 3          =  [0.48] 3      

  . 
  .  

       
         Pr[Guess S1| S2 | … | S n]                           = [12/25] n          =   [0.48] n 

 
 

 
Figure 3.0 Graph of confidence factor   vs. Number of strings in a grammar.  

 

Hence it can be seen that as the number of strings increases, the confidence factor also increases. This increase in 
confidence is exponential in nature. Even though it might be simpler for an adversary to make a guess about the one 
string, since the protocol is making use of “n” strings at an instant, the adversary will have to make a successful 
guess about all “n” strings.  The usage of “n” mutually independent strings at each instant reduces the guessing 
probability of an adversary.  In a practical situation an adversary will get only a few limited attempts before the 
authentication mechanism detects the attack.  For example, the cost of each guess might take time, or a user might 
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have a limited number of authentication attempts. So with a very high confidence factor and a limited number of 
attempts it might be tough for an adversary to guess the output of the protocol. 
 
5.0 Structured and Unstructured manner of generating string. 

 
There have been many studies to determine patterns in grammars and learn CFGs. The earliest method 

for CFG learning was proposed by Solomonoff [6].  In this approach the learner is given a positive sample S+ 
from a language L and has access to a membership oracle for L. Solomonoff in his work proposed to find repeated 
patterns in a string: for every string w ∈ S+, delete sub-strings from w to create new string w’ and ask the oracle if 
w’ is in the language. If it is, then insert repetitions of the deleted sub-strings into the string and ask if the new 
string is also in the language. If so, then there must be a recursive rule. For example, if there are several strings of 
type an bn, then we can infer that A →aAb is in the grammar. This method is inefficient and does not include all 
the context free grammars. It has been shown in [8] that this method fails if we have sequential embedding. For 
the same example, if we have A→ aAb | cAd then this method will not work.  

 Another attempt for predicting context free grammars is reported in [7]. It is assumed in [7] that there is a 
teacher that gives a set of strings to a learner or a program. The program first checks if the sample is already in the 
language.  If it is, then the program decides in consultation with the teacher if it is finished or if it should continue 
with more samples. If the string is not in the machine’s language, the program adds to the grammar a production 
that adds this sentence to the language, attempts to verify that this production does not lead to illegal strings, and 
requests the next sample from the teacher. This method heavily depends upon the order in which samples are 
presented. This algorithm may choose a grammar rule that is too general. At a later stage a new sample may come 
up and even the predicted grammar may generate text that is not in the language.  An example is when predicting 
the language of arbitrarily long strings of a’s or b’s, but not both a and b. If samples a and aa are given the 
algorithm will produce a partial grammar with the following rules 

S → a  | SS 

Now if sample b is given it produces S → b. This grammar can produce the string ab, which is not in the 
language. The algorithm has made use of only positive instances to predict the grammar. Neural networks were 
used to learn context free grammars in [9]. Neural networks were trained with both positive and negative 
instances. As in [9], the order of input was important. The network was trained first with shorter strings and then 
with longer instances. This scheme proved good only for small context free grammars having around four to five 
terminals. It failed to scale for larger context free grammars. 

Genetic algorithms are used to learn stochastic context free grammars from a finite sample in [10]. 
Genetic algorithms [11] are a family of robust, probabilistic optimization techniques that offer advantages over 
specialized procedures for automated grammatical inference. A stochastic context free grammar is a variant of 
ordinary context free grammars in which grammar rules are associated with a probability, a real number from the 
range of [0,1].  A genetic algorithm was used to identify the context free grammar. This algorithm took a corpus C 
as an input. This corpus C for a language L was a finite set of strings drawn from L where each strings α ∈ C is 
associated with an integer fα representing its frequency. As in [9] this only can be used for small grammars. The 
chief limitation of this approach is the cost involved in evaluating the fitness of each candidate solution, which 
required parsing every string in each possible way.  The number of parsing operations increased exponentially 
with the number of non-terminals. Hence, this scheme proved prohibitively costly for more than 8 non-terminals. 
As it can be seen in the functional approach, patterns can be found. The main problem of such an approach is the 
visibility of the patterns which can be inferred in the strings.  The current way to generate the grammar is called a 
functional approach.  For functional approaches there is random generation of productions. The main problem in 
the functional approach is that if the grammar is composed of functional units, after seeing the patterns, functional 
units can be easily guessed. For example: A � nsew, (or A � a) (B �b) (C �c).  Over the time, an adversary 
will find these basis productions rules: 
    cb == CB 
    cc == CC  
Over time, an adversary can make a good guess about production rules.  We have not quantified the power of an 
adversary guessing production rules in a functionally-generated grammar.  However, we believe it is trivial to 
guess many such rules, depending on the grammar. 
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There are two tiers of difficulties that we want to create for an adversary. The first one is predicated upon 
the hardness of learning context-free grammars. Earlier works showed that learning context free grammars from 
example strings is a hard problem [2] [12]. Taking inspiration from those results, we conjecture that if a generator 
authenticates himself with a verifier using authentication tokens generated by a CFG (which is not known to the 
adversary), then it may be hard as such for the adversary to present a false acceptable token which must be a string 
from the grammar. However after getting certain strings it might be simple for an adversary to guess the pattern 
which appears in the string. 

 
 Here we introduce the notion of structured and unstructured manner of generation of strings. We call the 

approach of generating the random strings from a grammar as an “unstructured” manner of generating the string. 
As a second measure of hardness, we also propose to generate the strings in a “structured” way, so that the 
verifier always expects the generator to present the authentication tokens in a specific order. The knowledge of 
generating string in a structured manner will be shared by both the verifier and the generator. Therefore, for the 
adversary, it does not suffice to just learn the grammar and present ‘any’ string. The adversary needs to learn the 
‘order’ as well.   

 
5.1 Unstructured manner of generating Strings 

 
 For an unstructured manner, it can be assumed that the strings are generated randomly. If the strings are 

generated in an unstructured manner, then given a set of strings, an adversary can learn much about a language. A 
simple example appears in figure 4.0: for a context free language L = {a n b m c p: m, n, p � 0, and m � n or m � p} 
if one random string, ab2c, is generated, an adversary learns that (1) the language contains a, b, c., and (2) b 
follows a and c follows b.  Now, given a second string “a4 b?”, with the last terminal missing, an adversary can 
make an better guess about the last eight bits in the string.   
 
5.2 Structured manner of Generating Strings for N mutually independent grammars. 
 
A structured generation is defined as the production of strings in a grammar following certain rules and regulation. 
For example, we might require that the generated strings follow a certain sequence, or are produced in-order, 
based on length.  This shared knowledge has to be kept secret by both the generator and the verifier.  So for 
structured generation of strings the total number of terminals, the grammar and the structured manner of 
generating string will have to be kept as a secret. One of the simplest structured manners of generating strings can 
be with each string a new terminal is introduced. So even though an adversary has the information about all the 
previously generated strings he will still have to guess the last eight bits.  Explaining it with the same example 
which was used for the unstructured manner of the context free language L = {a n b m c p: m, n, p � 0, and m � n or 
m � p} is used to generate only two strings in a controlled fashion in the order of a2 b, a3 bc2 then given a2 b and   a 
3 b ?  it might be hard for an adversary to guess the last eight bits of the given string since with each new string a 
new terminal is being introduced and the loops follow particular pattern.  
 

The intuition is this: a structured manner of string generation requires a specific string at a particular 
instant. Apparently it might be hard to generate the strings that are specifically expected at every instant without 
learning the CFG. However according to the results of Kearns and valiant, weakly learning is a hard problem. It 
has been shown that factoring RSA, recognizing quadratic residue, and factoring blum integers is equivalent to 
weakly learning CFG. Hence we believe that the scheme of generating strings in a structured manner is secure.  
We have not provided a formal proof, and leave for future work the investigation of this intuition. 

 
If all the terminals are generated randomly, and for the structured manner of generation of strings a new 

terminal is introduced after each instant. For an adversary he will be inferring these terminals as random 
terminals. In order to successfully guess the new terminals, which have been generated, randomly adversary will 
have to make a random guess or learn the grammar. For n bits probability of random guess is 1/ 2 n. From the 
collected set of terminals, he will try to guess the next missing terminal by learning the grammar.  However 
according to the results of Kerns and Valiant, weakly learning is a hard problem. It has been shown that factoring 
RSA, recognizing quadratic residue and factoring blum integers is equivalent to weakly learning CFG.  Hence if 
the strings are generated in a structured manner it is secure. 
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As per the proposed protocol in section 4.0, at a particular instant S (= ∏
=

n

i 1

Si) strings generated from the 

mutually independent grammars are sent at each instance of authentication.  So given “n” strings along with the 
previously generated strings with the last missing terminal, if the strings are generated in an structured manner an 
adversary will have to make a guess about 8*n bits.  If a new terminal is introduced after every instant then the 
structured manner of generation of the grammars requires that the grammar will have to be replaced after all the 
terminals have been used.   

 
 

 
CFG  L = {a n  b m  cp :  m, n, p � 0 and m � n or m � p} 

The language L is used to generate only two strings 
 

Unstructured Manner 
 

 
Structured Manner 

Generator and Verifier will have to keep 
secret  

• CFG  
• Terminals a, b, c  

Generator and Verifier will have to keep 
secret 

• CFG  
• Terminals a, b, c  
• Structured manner of generation of 

string.  
Adversary is given 

 
                       a b2 c 

 

Adversary is given 
 

a2 b 
 

Adversary learns 
• b follows a, c follows b 
• Language contains a, b, c 

Adversary learns 
• b follows a 
• Language contains a, b 

 
Easy to guess the last terminal 
 

a4 b ? 
 

Hard to guess the last terminal  
 

a 3 b ?   
 

       
Figure 4.0 Table showing the hardness of guessing the last 8 bits for structured and unstructured 

string generation. 
  
5.3 Protocol making use of structured manner of generating strings with a Single Grammar. 
 
 A structured manner of generation of string can also be used for the design an authentication protocol 
making use of a single grammar. For this version of the protocol, the generator and the verifier will share a secret 
grammar and the knowledge of how to structure the generation of strings. One of the ways to generate the string 
in a structured manner is to introduce “n” new terminals belonging to the language at each instant. If the number 
of terminals, the grammar and the structured manner of generation of strings is kept as a secret, then given all the 
previously generated strings to an adversary, at each instant he will still have to make a random guess about the 8n 
bits which results in 28n combinations.  It can be seen that as the number of new terminals “n” increases, the 
number of combinations increases exponentially. If k is the total number of terminals then it can be seen that the 
grammar will have to be replaced after k/n strings are generated.   

All the previously generated strings do not contain the new valid terminals introduced in subsequent 
strings. Generator and the verifier both share the knowledge of structured manner of the generation of the string. 
So at each instant the generator and verifier will share the knowledge about the occurrence of terminals in a string.  
So not only it makes it hard for an adversary to guess the terminal but also the knowledge of occurrence of 
particular strings at an instant can be used to prevent replay attacks using previously generated strings. 
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The context free nature of the language can also be used to generate the strings in a structured manner. From [8] it 
can be inferred that if the strings is in the A � aAb, A � λ is present; it is easy to infer the pattern. However for 
the language, A� aAb | cAd | eAf, it becomes difficult to infer a pattern. For a “structured” manner to generate 
the strings the context free property can again be used to prevent the easy guessing of the string.  Explaining it 
with an example for a language L1:  A� aAb, A � λ, by using unstructured manner to generate the strings given 
aaa bbb, aabb, ab, it becomes easier for an adversary to guess the next string. For a language L2 : A� aAb | cAd | 
eAf, A � λ ,  which has more sequential embedding as compared to the language L1, when generating a string in 
an structured manner,  adversary will witness only acbd, aebf, eabf .  Thus, it becomes hard for an adversary to 
guess the next string. �
 
6.0 Prevention of Replay attack 
 
 One way to prevent the replay attack is to make sure that once a string in a grammar is used, it must be 
recorded to prevent its usage for the second time.  However storing these strings and checking the inputs may 
require considerable resources. An efficient way to handle this problem is to use a Bloom filter [5].   For each 
grammar the generator and the verifier maintain identical bloom filters. A Bloom filter can be implemented as a 
vector of bits, all initially set to zero. When a string is used, it is hashed k times using independent hash 
operations, and the corresponding bit in the filter is set to one.  To check whether a string has been seen before, 
one merely hashes the string k times to make sure each bit is already set. 
 
 Thus, when a generator creates a string, it is hashed k times with independent hash operations.  These k 
operations each point to a bit in the vector, which is set to one.  Thus, for the grammar G, if the string S, we hash 
the string, and set the corresponding bit entry in the filter F.  
F [H1(l)] = 1 
F [H2(l)] = 1 
.. 
F [Hk (l)] = 1 
 
To check whether a string has been used, a similar operation is used.  One merely checks that all of the 
corresponding k bits in the filter are set.  In such a case, the string would be rejected, since it can only be used 
once.  Rules in the string are called again to generate the string.    

With any Bloom filter, there’s no chance of a false negative.  However, there is a possibility of a false 
positive, particularly when the filter is near ``full'' and many bits have been set.  With k hash operations and n 
strings already in the hash table, sized m, the probability that any particular bit remains zero is: 
(1 – 1/m) km 

 

Thus, the chance of a false positive can be approximated as: 
 
( 1 – ( 1 -  1/m)km )k    ≈  (1 – e ( kn / m) ) k�
 
Since a false positive in the Bloom filter leads to the rejection of a valid string, we can think of this as a false 
negative for the grammar making use of the filter.  The proposed implementation of a grammar-based 
authentication scheme therefore has a false negative (incorrectly rejecting a valid string) and a false positive rate 
(having an adversary guess a string).  As before, we merely have to adjust parameters to make the risk acceptably 
low. 
 Key parameters for Bloom filter operations include table size, m, and the number of hashes, k.  One could 
also reduce the number items hashed into the filter, n but for efficiency reasons, we don't want to restrict this.  
That is, n is effectively the number of strings in a grammar G, and we may wish this to be large. So, one merely 
has to expand the size of the bit table m, in relation to k and n to make the false positive rate acceptable. 
 
7.0 Authentication protocols using distinct CFG. 
 
In the earlier version of the protocol strings are being used for authentication. For this version of the protocol we 
present the exchange of context free grammars for authentication between the generator and the verifier. We 
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present here the initial approach and the intuition behind the approach. This protocol will be investigated further 
in detail. 

 For this version of protocol, the generator and the verifier both share the same grammar G = Υ
n

i 1=

 Gi. .  

Each of the CFG’s G1, G2,  ... , Gn, which forms the grammar G, are called sub CFG’s. Each of these sub context 
free grammars contains distinct terminals. The generator and verifier keep the grammar G as a secret. At each 
instant “i” the generator selects a sub grammar Gi, and sends it to the verifier. Once sent, the sub grammar Gi is 

deleted from the generator’s end, the verifier receives Gi, validates it with the stored grammar at its end. Upon 
successful validation generator is authenticated.   

Let us assume that replay of the previously used sub grammar is prohibited by the protocol. An adversary 
who is listening to the communication between the generator and the verifier will collect the sub grammars G1, G2, 

…, Gn where Gi is the sub grammar generated at ith instant. From these collected set of sub grammars, generated 
between the first and the nth instant an adversary will have to guess the grammar, which will be used at the n+1 th   

instant. One way of guessing the output sub grammar at n+1th instant is to guess the grammar G. From the 
grammar G an adversary will try to guess the output at n+1 th instant. The context free languages are closed under 
union, concatenation and Kleene Star [1].  The sub-grammars G1, G2 ….. Gn belong to the grammar G, hence an 
adversary can collect the positive and the negative instances of the grammar G. From these instances an adversary 
will try to learn the grammar G so that he can predict the output at n+1 th instant. However it can be seen from the 
result of Kearns and Valiant that factoring RSA, recognizing quadratic residues and factoring Blum integers are 
reducible to weakly leaning CFG’s.  Since it is hard to learn a CFG, so it is hard to successfully guess the output 
at n+1th instant by learning the grammar G.  

For the proposed protocol there can be other forms of attacks like concatenating the previously generated 
grammar and sending it, deleting some terminals from the previously generated grammar and sending it. These 
attacks can be prevented by ensuring that the grammar used at each particular instant contains a distinct terminal. 
Since this information of the terminal/(terminals) is not present in the previously generated grammars attacks like 
concatenation of the previously generated grammars or deleting some terminals from the previously generated 
grammars and sending to the verifier will not be successful. 

This protocol to generate one-time authentication information can give only a fixed number of attempts. 
After all the grammars have been used, the generator and the verifier will have to use fresh set of grammars. 

 

8.0 Conclusion and Focus of future work. 

Generation of one-time authentication protocols has been an area of active research. Current authentication 
protocols make use of symmetric keys, public private keys and hash functions. Our research attempts to use 
context free grammars for the generation of one-time authentication information. We presented some of our early 
work in this direction, including three protocols: 
 
• In the first version of the protocol mutually independent grammars are being used. For the protocol making 

use of mutually independent grammars the adversary is confined to guessing the string.  As a part of future 
work more powerful adversary will be considered. The powerful adversary will be given set of previously 
generated strings and the next string with the last missing terminal / (terminals). He will have to successfully 
guess the last missing terminal. 

The current adversary in Section 4.2 is making a random guess. Instead of making a random guess an 
adversary can use other stronger guessing algorithms.  As discussed in the section 2.0 some tests to guess a 
string were performed. For the worst case the acceptance probability was observed to be one percent. For the 
above-mentioned experiments strings were generated in an unstructured manner. These experiments show 
that a single grammar is not acceptable for a security application.  However, mutually independent grammars 
can be used to make guessing hard. As a part of future work further rigorous experiments will be performed 
by using other more powerful guessing algorithms to estimate the guessing of next string, given a set of 
strings.  

To make it hard for a powerful adversary to guess the string, rules to generate strings are investigated. 
One of the structured manners of string generation is the introduction of new terminals at each instant.  Future 
work will also explore the guessing probability of other algorithms. Input to these algorithms will be strings 
generated in a structured manner and unstructured manner.  
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• In the second version of the protocol, proposed in section 5.3 a single CFG is shared between generator and 

verifier, which make use of structured string generation.  As shown in figure 6.0, given the information from 
1 to n-1 instant, structured manner of generation of string makes it  hard to guess the string at n th instant. We 
believe that the structured manner of generating strings can increase the hardness of guessing the string since 
if the strings are generated in a structured manner, guessing algorithm will have not only have to guess the 
string belonging to a language but also to guess the order as well. We present here a simple case of structured 
manner of generation of strings.  Again there can be many ways of generation of string in a structured 
manner. We present here one of the manner of the generation of string in a structured way where in at each 
instant “new terminals” are being introduced.  It may happen that for the structured manner of generation of 
string that a string is generated and never used by him. Structured manner of generation of string will require 
that the information has to be shard with the verifier. Resynchronization process has not been discussed here 
due to the space limitations. 

• For the third version of the protocol, instead of string, context free grammar is being exchanged. For this 
version of the protocol we present here some of our initial intuition behind the approach. Future work will 
involve further detailed investigation and validating the protocol. 

 We presented here some of our initial research directions. Many details have been omitted due to space 
limitations. Further analysis of each of these protocols along with performance results is left to future work. An 
algorithm to generate the context free grammar was proposed in [4]. Ongoing work is focused on finding and 
enforcing structured patterns on the rules generation such that it might be hard for a powerful adversary to guess 
the new terminals, which are introduced at each instant. This complexity can further be increased by mutually 
independent grammars. Mutually independent grammars provides the inherent advantage that even in the case that 
the adversary can learn a grammar, from a set of grammars, confidence factor will not be reduced to zero.  
Necessary modifications in the protocol discussed in the section 3.0 and to the algorithm [4] to generate context 
free grammar may be proposed based upon the structured string generation pattern.  Structured manner of 
generating strings will require that the grammars should be disposed after certain number of strings is generated. 
Guessing probability of the more powerful guessing algorithms is also a focus of future research. Comparison of 
the CFG based authentication protocol with the existing protocol in different domain will be an interesting study.  

Acknowledgement 
 
We would like to thank Dr. Mostafa H. Ammar for his discussion about statistics. 
 
References 
 
[1] Lewis H.R., Papadimitriou C. H., “Elements of the Theory of Computation”, Prentice – Hall, 1998. 
 
[2] Kearns Michael and Valiant Leslie, “Cryptographic limitations on learning Boolean formulae and finite 

Automata”, Journal of ACM, 41(1): 67 – 95, January 1994. 
 
[3]  Previously published result making use of one CFG. 
 
[4]  Published result for an algorithm to generate CFG which is hard to learn. 
 
[5] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors”, Communications of the ACM, 

13(7):422-426, July 1970. 
 
[6] Solomonoff R. J., “A method for discovering the grammars of phase structure language”, Information 

processing, New York: UNESCO, 1959. 
 
[7] Gold E Mark, “Language identification in a Limit”, Information and Control, 10(5), pp 447 – 474, 1967. 
 



GIT-CERCS-04-24 

[8] Knobe Bruce and Knobe Kathleen, “A method for inferring context free grammars”, Information Control 2(2), 
pp 129 – 146, 1976. 

 
[9] Das Sreeupa, Giles C. Lee, Sun Guo- Zheng, “ Learning context free grammars : Capabilities and 
       Limitations of a Recurrent Neural Networks with an External Stack Memory” , Fourteen Annual Conference 

of the Cognitive Science Society, Morgan Kaufmann, San Mateo, CA, P 791 – 795, 1992. 
 
[10] Keller, B. and Lutz R., “Learning Stochastic Context free grammars from examples from corpora using a 

genetic algorithm”, in ICANNGA 97. 
 
 [11] Fu King-Sun and Booth Taylor R., “ Grammatical Inference: Introduction and survey”, Parts I and II, IEEE 

Transaction Systems, Man and Cybernetics, SMC- 5(1) and (4), pp. 95 – 111 and pp. 409-423, 1975. 
 
 [12]L. Pitt and M. Warmuth. Reductions among prediction problems: On the difficulty of predicting 

 automata. In 3rd Conference on Structure in Complexity Theory, pages 60-69, 1988  
 
[13] Leslie Lamport , “ Password Authentication over Insecure Communication”,  Communications of ACM, 24 

(11), pp.770 – 772, November 1981.  
 
[14] CERT Advisory CA – 1994- 01, Ongoing Network Monitoring Attacks,  
 http://www.cert.org/advisories/CA-1994-01.html 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



GIT-CERCS-04-24 

 
 
 
 
 
 
 

Appendix 
 

Several experiments were conducted to get a feel about the toughness of guessing a string from a given set of strings. 
Input to these guessing tests were the strings generated in a random manner. These tests were named frontbreaking, 
backbreaking, allfrontbreakimg, allbackbreaking.  The frontbreaking test selects a string and breaks into different 
combinations such that the first terminal remains same. For example, different combinations of the string “abcdefg” by 
the frontbreaking rule are abc, abcd, abcde, and abcdf. The backbreaking rule selects a string and breaks it into 
different combinations such that the last terminal remains the same. Different combinations for the same example by 
back breaking rule are efg, defg,cdefg, bdefg. These strings were passed through the grammar. The allfrontbreaking 
type of rule involves collection of all the terminals, which start a string, followed by the selection of a string and 
parsing it to find out if any of the start terminals appears in it. In case of appearance of any of the start terminals at any 
position except at the starting of the string, the string is broken such that start symbol occupies the first position and 
the frontbreaking rule is applied. The allbackbreaking type of rule involves collection of all the terminals, which ends 
the strings, followed by the selection of a string and parsing it. In case of appearance of any of the end terminals at any 
position except at the end, string is broken such that the end terminal occupies the last position and the backbreaking 
rule is applied.  

As a simple example, if there are two strings “abcdef” and “crafgd” we collect all the terminals which start 
the strings and all the terminals which end the string. For starting terminals we get “a” (starting terminals for “abcdef”) 
and “c” (starting terminal for “crafgd”).  A string is chosen and it is parsed to find out if any of the start symbols 
appear in it. In the current example “c” appears in “abcdef” so by the allfrontbreaking rule the strings “cdef” and “cde” 
are generated. Similarly all the end terminals are collected. For the given example the end terminals are “f” and “d”. 
Since the end terminal “f” appears in “crafgd” strings “craf” and “raf” are generated using the allbackbreaking rule.  

. The strings were generated by randomly calling the grammar’s production rules. 674 strings of length ranging from 3 
– 25 were generated. By applying frontbreaking rule, the strings resulted in 4902 combinations. Out of these 4902 
combinations 390 strings were accepted by the grammar.  So for strings of length between 3 – 25, around 90% of time 
it can be ensured that the strings generated by applying frontbreaking rule will not be accepted by the grammar. 956 
strings of length between 3-150, resulted in 20925 combinations by frontbreaking rule, out of which only 398 strings 
got accepted by the grammar. This gives an acceptance rate of 1.9%.  For each range, a different set of strings was 
generated by randomly expanding the start symbol and nonterminals. This means that the 674 strings generated for the 
length-range 3-25 are totally different from 956 strings generated for the length-range 3-150. As the string-length 
increases, the front-breaking rule results in increasing number of output combinations. And at the same time, the 
number of strings accepted by the grammar decreases. By applying backbreaking rule, 674 strings of length between 
3- 25 resulted in 4902 combinations, out of which 195 got accepted by the grammar. 956 strings of length ranging 
from 3 – 150 resulted in 20925 combinations, out of which 212 got accepted. For the backbreaking rule, string-length 
ranging from 3 – 25 resulted in 3.9% acceptance and of size between 3 – 150 results in 1.013% acceptance by the 
grammar.  By applying the allfrontbreaking rule, 724 strings of length between 3-25, resulted in 4250 combinations 
out of which 169 got accepted.  1203 strings of size ranging from 3 – 150 resulted in 19991 combinations by using 
allfrontbreaking rule. Out of 19991 strings, 213 got accepted giving an acceptance rate of 1.06%.  Allbackbreaking 
rule for 724 strings of length ranging from 3 – 25 resulted in 3369 combinations out of which 125 strings got accepted 
by the grammar. This gives an acceptance rate of 3.7%.  1023 strings of length between 3- 150, resulted in 16232 
combinations by allbackbreaking rule. Out of 16232 combinations, 209 strings got accepted by the grammar. This 
gives an acceptance rate of 1.28%. From these tests it can be concluded that given a set of strings it might be simple to 
guess the next string. 


